Biodegradation rate of biodegradable plastics at molecular level

Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of t...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 147; pp. 237 - 244
Main Authors Chinaglia, Selene, Tosin, Maurizio, Degli-Innocenti, Francesco
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.01.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm2g-1). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kmax = 97 mg Cpolymer day−1). The kmax can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kmax. The Michaelis constant (Km), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm2. It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisfy the Organization for Economic Co-operation and Development (OECD) criteria of “ready biodegradability” for chemicals (e.g. 60% biodegradation in a 10-day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach. •This is one of the few systematic studies where the effect of granulometry on biodegradation rate is tackled experimentally.•The surface area and biodegradation rate are well correlated by a double reciprocal model (the Lineweaver-Burk plot).•The maximum biodegradation rate of the polymer when surface area is not a limiting factor was estimated to be very high.•If the polymer were tested in a nanopolymeric form it could satisfy the OECD “ready biodegradability” for chemicals.Ready biodegradable chemicals are expected to undergo biodegradation in any biologically-active environment.
AbstractList Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by bio- degradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm2g-1). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kMAX=97mg Cpolymer day-1). The kmaz can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kmax. The Michaelis constant (Km), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm2. It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisty the Organization for Economic Co-operation and Development (OECD) criteria of "ready biodegradability" for chemicals (e.g. 60% biodegradation in a 10- day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach.
Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm²g⁻¹). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kₘₐₓ = 97 mg Cₚₒₗyₘₑᵣ day⁻¹). The kₘₐₓ can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kₘₐₓ. The Michaelis constant (Kₘ), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm². It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisfy the Organization for Economic Co-operation and Development (OECD) criteria of “ready biodegradability” for chemicals (e.g. 60% biodegradation in a 10-day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach.
Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm2g-1). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kmax = 97 mg Cpolymer day−1). The kmax can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kmax. The Michaelis constant (Km), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm2. It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisfy the Organization for Economic Co-operation and Development (OECD) criteria of “ready biodegradability” for chemicals (e.g. 60% biodegradation in a 10-day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach. •This is one of the few systematic studies where the effect of granulometry on biodegradation rate is tackled experimentally.•The surface area and biodegradation rate are well correlated by a double reciprocal model (the Lineweaver-Burk plot).•The maximum biodegradation rate of the polymer when surface area is not a limiting factor was estimated to be very high.•If the polymer were tested in a nanopolymeric form it could satisfy the OECD “ready biodegradability” for chemicals.Ready biodegradable chemicals are expected to undergo biodegradation in any biologically-active environment.
Author Chinaglia, Selene
Tosin, Maurizio
Degli-Innocenti, Francesco
Author_xml – sequence: 1
  givenname: Selene
  surname: Chinaglia
  fullname: Chinaglia, Selene
  email: selene.chinaglia@novamont.com
– sequence: 2
  givenname: Maurizio
  surname: Tosin
  fullname: Tosin, Maurizio
  email: maurizio.tosin@novamont.com
– sequence: 3
  givenname: Francesco
  orcidid: 0000-0001-5572-0935
  surname: Degli-Innocenti
  fullname: Degli-Innocenti, Francesco
  email: fdi@novamont.com
BookMark eNqNkMtKBDEQRYMoOD7-oUEEN92mkn4uBHXwBYIbXYfqdLVkyHTGJCP492YccTErK4uC4t5DOEdsf3ITMXYOvAAO9eWiWDn7tRzo3eMQIvaF4NAUIAoOsMdm0DYyF1LAPptxKCGXHfBDdhTCgqcpK5ix61vjtgCMxk2Zx0iZG7P-79xbylYWQzQ6ZBizpbOk1xZ9ZumT7Ak7GNEGOv3dx-zt_u51_pg_vzw8zW-ec11VIuYCZDlgVxNpXVKLzcgr5L2WPZYcW8KhE13H666tRj206Syx66mUSKJsOpLH7GLLXXn3saYQ1dIETdbiRG4dlKhEuXk1pOjZTnTh1n5Kv1NJkKiaCmSdUlfblPYuBE-jWnmzRP-lgKuNX7VQO3439UaBUMlv6s93-trEH4nRo7H_pjxsKZTcfRryKmhDk6bBeNJRDc78k_QNT0Sm8w
CitedBy_id crossref_primary_10_1016_j_polymdegradstab_2021_109578
crossref_primary_10_1016_j_biortech_2021_126265
crossref_primary_10_3390_polym17020169
crossref_primary_10_1002_ldr_5115
crossref_primary_10_1021_acsapm_2c00600
crossref_primary_10_1016_j_hazadv_2021_100024
crossref_primary_10_1021_acs_est_0c07253
crossref_primary_10_1016_j_scitotenv_2023_162324
crossref_primary_10_1016_j_polymer_2021_124508
crossref_primary_10_3390_w14162581
crossref_primary_10_3390_su12187255
crossref_primary_10_3389_fmars_2021_662074
crossref_primary_10_1016_j_jclepro_2022_133232
crossref_primary_10_1021_acssuschemeng_3c03837
crossref_primary_10_1007_s12666_021_02504_2
crossref_primary_10_1111_1750_3841_16819
crossref_primary_10_3389_fchem_2021_671750
crossref_primary_10_1016_j_polymdegradstab_2019_05_034
crossref_primary_10_1038_s41598_023_29414_1
crossref_primary_10_1016_j_matchemphys_2023_127813
crossref_primary_10_1016_j_rser_2021_111237
crossref_primary_10_3390_polym14224928
crossref_primary_10_1002_adsu_202400172
crossref_primary_10_1016_j_clce_2025_100162
crossref_primary_10_1557_adv_2020_377
crossref_primary_10_4028_www_scientific_net_KEM_821_359
crossref_primary_10_1016_j_scitotenv_2021_150238
crossref_primary_10_1016_j_envres_2024_119979
crossref_primary_10_3390_polym15051196
crossref_primary_10_1016_j_coche_2021_100695
crossref_primary_10_1134_S0003683822060102
crossref_primary_10_3390_w14233968
crossref_primary_10_1016_j_scitotenv_2020_143536
crossref_primary_10_1002_gch2_202300020
crossref_primary_10_1016_j_apsoil_2021_104216
crossref_primary_10_1016_j_matt_2022_11_006
crossref_primary_10_1002_app_49189
crossref_primary_10_3389_fmats_2024_1334863
crossref_primary_10_1016_j_polymdegradstab_2019_02_009
crossref_primary_10_1039_D1GC01916C
crossref_primary_10_1016_j_ocecoaman_2019_105005
crossref_primary_10_1021_acs_est_1c00994
crossref_primary_10_1016_j_jenvman_2021_112906
crossref_primary_10_1186_s43591_024_00084_8
crossref_primary_10_1029_2018JC014719
crossref_primary_10_1016_j_scitotenv_2022_154868
crossref_primary_10_1016_j_eurpolymj_2023_112026
crossref_primary_10_1016_j_envpol_2023_122390
crossref_primary_10_1021_acs_est_4c07554
crossref_primary_10_1016_j_wasman_2021_08_016
crossref_primary_10_54393_pbmj_v5i10_810
crossref_primary_10_1016_j_susmat_2024_e01065
crossref_primary_10_1007_s44169_023_00057_7
crossref_primary_10_3390_polym13111737
crossref_primary_10_1515_psr_2021_0061
crossref_primary_10_1002_anie_202210823
crossref_primary_10_1038_s44222_023_00142_5
crossref_primary_10_1002_pc_26007
crossref_primary_10_1007_s11356_018_3079_7
crossref_primary_10_1016_j_impact_2023_100474
crossref_primary_10_1039_C9RA03221E
crossref_primary_10_1021_acssuschemeng_0c08026
crossref_primary_10_1016_j_scitotenv_2021_151880
crossref_primary_10_1016_j_polymdegradstab_2020_109309
crossref_primary_10_1016_j_jhazmat_2020_123337
crossref_primary_10_3389_fsufs_2022_921496
crossref_primary_10_1002_cssc_202002044
crossref_primary_10_1016_j_matpr_2020_12_086
crossref_primary_10_1016_j_scitotenv_2023_161706
crossref_primary_10_1016_j_greeac_2022_100030
crossref_primary_10_1016_j_rser_2021_110971
crossref_primary_10_3390_polym14214770
crossref_primary_10_1016_j_psep_2022_03_053
crossref_primary_10_1002_marc_202200769
crossref_primary_10_1016_j_chemosphere_2021_133392
crossref_primary_10_1016_j_jhazmat_2023_130796
crossref_primary_10_1039_D4GC06323F
crossref_primary_10_1021_acs_est_8b05208
crossref_primary_10_1021_acs_estlett_3c00394
crossref_primary_10_3390_polym15040927
crossref_primary_10_1007_s11356_024_31994_y
crossref_primary_10_1016_j_biortech_2021_125473
crossref_primary_10_1016_j_biortech_2020_124537
crossref_primary_10_3389_fmars_2020_567126
crossref_primary_10_1186_s40538_023_00528_y
crossref_primary_10_1016_j_biortech_2025_132296
crossref_primary_10_1016_j_ijbiomac_2021_07_196
crossref_primary_10_1002_app_50914
crossref_primary_10_1016_j_scitotenv_2021_151768
crossref_primary_10_1016_j_chemosphere_2024_141410
crossref_primary_10_1016_j_polymertesting_2021_107137
crossref_primary_10_1016_j_scitotenv_2024_176920
crossref_primary_10_1007_s10532_023_10031_8
crossref_primary_10_1016_j_jhazmat_2021_125957
crossref_primary_10_2139_ssrn_4174230
crossref_primary_10_15446_ing_investig_95432
crossref_primary_10_1021_acs_est_0c01495
crossref_primary_10_1039_D4PY00307A
crossref_primary_10_3390_polym12030704
crossref_primary_10_1002_ange_202210823
crossref_primary_10_1016_j_marpolbul_2023_115295
crossref_primary_10_1016_j_polymdegradstab_2025_111174
crossref_primary_10_1016_j_marpolbul_2022_114458
crossref_primary_10_1515_revce_2024_0061
crossref_primary_10_1038_s41598_020_78122_7
crossref_primary_10_1002_app_54970
crossref_primary_10_1016_j_polymdegradstab_2021_109617
crossref_primary_10_1016_j_biortech_2021_126661
crossref_primary_10_1002_etc_5116
crossref_primary_10_3389_fbioe_2023_1303830
crossref_primary_10_1016_j_jtice_2021_05_030
crossref_primary_10_1016_j_polymdegradstab_2024_110698
crossref_primary_10_1007_s10924_024_03470_8
crossref_primary_10_1007_s13726_025_01475_1
crossref_primary_10_1016_j_ijbiomac_2018_12_168
crossref_primary_10_17660_ActaHortic_2019_1252_7
crossref_primary_10_1080_24701556_2022_2081190
crossref_primary_10_1002_mame_201800537
crossref_primary_10_1016_j_biortech_2022_127224
crossref_primary_10_3390_polym16111474
crossref_primary_10_1016_j_chemosphere_2024_144024
crossref_primary_10_1016_j_jenvman_2019_06_087
crossref_primary_10_1016_j_jscs_2018_08_008
crossref_primary_10_1016_j_polymdegradstab_2019_07_008
crossref_primary_10_1016_j_scitotenv_2023_161867
crossref_primary_10_1016_j_biortech_2021_125459
crossref_primary_10_1016_j_ecoenv_2022_113933
crossref_primary_10_1016_j_envpol_2020_116363
crossref_primary_10_3390_polym15143093
crossref_primary_10_11144_Javeriana_SC281_asac
crossref_primary_10_3390_ijms24043963
crossref_primary_10_1016_j_polymdegradstab_2021_109719
crossref_primary_10_1016_j_scitotenv_2023_167850
crossref_primary_10_1007_s00289_022_04565_9
crossref_primary_10_1016_j_polymer_2024_127235
crossref_primary_10_1016_j_biotechadv_2021_107772
crossref_primary_10_4081_ija_2022_2044
crossref_primary_10_1021_acs_est_1c00588
crossref_primary_10_1155_2022_2363134
crossref_primary_10_3390_polym17030352
crossref_primary_10_1007_s11270_020_04712_w
crossref_primary_10_3390_microorganisms10122441
crossref_primary_10_1080_26395940_2022_2128884
crossref_primary_10_1177_20412479231165454
crossref_primary_10_1007_s00128_020_02908_8
crossref_primary_10_1016_j_procbio_2020_04_001
crossref_primary_10_1039_D3CS00556A
crossref_primary_10_1016_j_ijbiomac_2024_134595
crossref_primary_10_3390_agriculture12060865
crossref_primary_10_3390_microorganisms13030609
crossref_primary_10_1007_s10924_023_03086_4
crossref_primary_10_1016_j_jhazmat_2022_130313
crossref_primary_10_1007_s10965_021_02457_6
crossref_primary_10_1016_j_trac_2023_117189
crossref_primary_10_1016_j_polymdegradstab_2022_109934
crossref_primary_10_1016_j_envint_2022_107244
crossref_primary_10_1021_acssuschemeng_1c00801
crossref_primary_10_1039_D0RA07521C
crossref_primary_10_1016_j_scitotenv_2020_140975
crossref_primary_10_1016_j_jenvman_2019_06_056
crossref_primary_10_1039_D4GC00618F
crossref_primary_10_1007_s10924_021_02088_4
crossref_primary_10_1021_acs_chemrev_2c00644
crossref_primary_10_1007_s10924_020_01776_x
crossref_primary_10_1021_acssuschemeng_0c01230
crossref_primary_10_3390_ijms232012165
crossref_primary_10_1016_j_jclepro_2021_127816
crossref_primary_10_1016_j_polymdegradstab_2023_110538
crossref_primary_10_1134_S2635167621020075
crossref_primary_10_3390_polym14081532
crossref_primary_10_1007_s10965_019_1822_5
crossref_primary_10_1016_j_scitotenv_2022_154056
crossref_primary_10_2139_ssrn_4061451
crossref_primary_10_1080_10643389_2024_2443284
crossref_primary_10_1016_j_marpolbul_2019_03_020
crossref_primary_10_4028_www_scientific_net_JERA_41_145
crossref_primary_10_7717_peerj_9876
crossref_primary_10_1371_journal_pone_0318938
crossref_primary_10_1080_24701556_2020_1813768
crossref_primary_10_1016_j_polymdegradstab_2019_04_014
crossref_primary_10_1016_j_scitotenv_2024_172737
crossref_primary_10_3390_polym13010010
crossref_primary_10_1016_j_scitotenv_2024_173920
crossref_primary_10_1016_j_envres_2023_116634
crossref_primary_10_1007_s10924_020_01653_7
crossref_primary_10_1016_j_scitotenv_2020_140518
crossref_primary_10_1016_j_indcrop_2024_120245
crossref_primary_10_1007_s11783_022_1596_6
crossref_primary_10_1016_j_jenvman_2023_117493
crossref_primary_10_47836_pjst_30_2_41
crossref_primary_10_3390_polym14204430
crossref_primary_10_3390_ma14216449
crossref_primary_10_1016_j_scitotenv_2021_146590
crossref_primary_10_1680_jenes_22_00088
crossref_primary_10_3390_polym11071193
crossref_primary_10_1016_j_scitotenv_2020_141959
crossref_primary_10_3389_ftox_2025_1494220
crossref_primary_10_1016_j_chemosphere_2020_128453
crossref_primary_10_1016_j_jhazmat_2024_137064
crossref_primary_10_1007_s11356_024_35472_3
crossref_primary_10_1016_j_scitotenv_2023_165698
crossref_primary_10_1007_s11274_024_03932_0
crossref_primary_10_1016_j_ese_2020_100065
crossref_primary_10_1186_s12302_023_00755_y
crossref_primary_10_1002_star_202100302
Cites_doi 10.1016/j.polymdegradstab.2006.03.003
10.1016/j.soilbio.2007.09.008
10.1007/BF02083883
10.1023/A:1021864402395
10.1007/s10924-006-0041-4
10.1016/j.polymdegradstab.2004.07.016
10.1007/s11270-011-0787-8
10.1016/j.jenvman.2012.11.043
10.1016/j.procbio.2006.05.018
10.3390/ijms10093722
10.1016/j.soilbio.2009.06.020
10.1016/j.jenvman.2011.08.018
10.1007/s10924-007-0066-3
10.1016/j.polymertesting.2009.05.002
10.1016/j.biotechadv.2007.12.005
10.1021/ja01269a023
10.3390/ijms15057064
ContentType Journal Article
Copyright 2017 The Authors
Copyright Elsevier BV Jan 2018
Copyright_xml – notice: 2017 The Authors
– notice: Copyright Elsevier BV Jan 2018
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.polymdegradstab.2017.12.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
EndPage 244
ExternalDocumentID 10_1016_j_polymdegradstab_2017_12_011
S0141391017303816
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8FD
EFKBS
JG9
7S9
L.6
ID FETCH-LOGICAL-c552t-2134da96eecc4e8a7f05a0bc3ba40a8ead929906985fcd83ba3a9be43ae2479e3
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Fri Jul 11 06:10:08 EDT 2025
Fri Jul 25 06:45:52 EDT 2025
Tue Jul 01 02:29:47 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Fri Feb 23 02:45:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Polybutylene sebacate
Biodegradable plastics
Kinetics
Surface area
Mineralization rate
ASTM D 5988-12
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-2134da96eecc4e8a7f05a0bc3ba40a8ead929906985fcd83ba3a9be43ae2479e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5572-0935
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0141391017303816
PQID 2012575136
PQPubID 2045418
PageCount 8
ParticipantIDs proquest_miscellaneous_2524242461
proquest_journals_2012575136
crossref_primary_10_1016_j_polymdegradstab_2017_12_011
crossref_citationtrail_10_1016_j_polymdegradstab_2017_12_011
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2017_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Polymer degradation and stability
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References van der Zee (bib1) 2014
Modelli, Calcagno, Scandola (bib9) 1999; 7
European Parliament and Council. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC.
Tosin, Degli Innocenti, Bastioli (bib24) 1996; 4
ASTM D7991 (bib23) 2015
Shah, Hasan, Hameed, Ahmed (bib17) 2008; 26
Tokiwa, Calabia (bib14) 2007; 15
EC 648/2004. Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on detergents.
Diaz, Katsarava, Puiggali (bib11) 2014; 15
Müller (bib5) 2005; 10
Tokiwa, Calabia, Ugwu, Aiba (bib18) 2009; 10
César, Mariani, Innocentini-Mei, Cardoso (bib10) 2009; 28
Siotto, Zoia, Tosin, Degli Innocenti, Orlandi, Mezzanotte (bib15) 2013; 15
Siotto, Sezenna, Saponaro, Degli innocenti, Tosin, Bonomo, Mezzanotte (bib16) 2012; 93
Oburger, Jones (bib3) 2009; 41
Mueller (bib13) 2006; 41
Violante, Adamo (bib22) 2000
Hill, Farrar, Jones (bib2) 2008; 40
Yang, Yoon, Kim (bib6) 2005; 87
ASTM D5988 (bib20) 2012
Brunauer, Emmett, Teller (bib21) 1938; 60
Funabashi, Ninomiya, Kunioka (bib8) 2007; 15
Siotto, Tosin, Degli Innocenti, Mezzanotte (bib12) 2011; 221
Kunioka, Ninomiya, Funabashi (bib7) 2006; 91
Ambekar, Kukade, Mahajan (bib19) 2010; 55
van der Zee (10.1016/j.polymdegradstab.2017.12.011_bib1) 2014
Violante (10.1016/j.polymdegradstab.2017.12.011_bib22) 2000
Oburger (10.1016/j.polymdegradstab.2017.12.011_bib3) 2009; 41
Ambekar (10.1016/j.polymdegradstab.2017.12.011_bib19) 2010; 55
Tokiwa (10.1016/j.polymdegradstab.2017.12.011_bib18) 2009; 10
Müller (10.1016/j.polymdegradstab.2017.12.011_bib5) 2005; 10
César (10.1016/j.polymdegradstab.2017.12.011_bib10) 2009; 28
10.1016/j.polymdegradstab.2017.12.011_bib4
Brunauer (10.1016/j.polymdegradstab.2017.12.011_bib21) 1938; 60
Tokiwa (10.1016/j.polymdegradstab.2017.12.011_bib14) 2007; 15
Siotto (10.1016/j.polymdegradstab.2017.12.011_bib15) 2013; 15
Hill (10.1016/j.polymdegradstab.2017.12.011_bib2) 2008; 40
Tosin (10.1016/j.polymdegradstab.2017.12.011_bib24) 1996; 4
Kunioka (10.1016/j.polymdegradstab.2017.12.011_bib7) 2006; 91
10.1016/j.polymdegradstab.2017.12.011_bib25
Funabashi (10.1016/j.polymdegradstab.2017.12.011_bib8) 2007; 15
Siotto (10.1016/j.polymdegradstab.2017.12.011_bib12) 2011; 221
Mueller (10.1016/j.polymdegradstab.2017.12.011_bib13) 2006; 41
Yang (10.1016/j.polymdegradstab.2017.12.011_bib6) 2005; 87
Shah (10.1016/j.polymdegradstab.2017.12.011_bib17) 2008; 26
ASTM D7991 (10.1016/j.polymdegradstab.2017.12.011_bib23) 2015
Siotto (10.1016/j.polymdegradstab.2017.12.011_bib16) 2012; 93
ASTM D5988 (10.1016/j.polymdegradstab.2017.12.011_bib20) 2012
Modelli (10.1016/j.polymdegradstab.2017.12.011_bib9) 1999; 7
Diaz (10.1016/j.polymdegradstab.2017.12.011_bib11) 2014; 15
References_xml – volume: 4
  start-page: 55
  year: 1996
  end-page: 63
  ident: bib24
  article-title: Effect of the composting substrate on biodegradation of solid materials under controlled composting conditions
  publication-title: J. Environ. Polym. Degrad.
– start-page: 1
  year: 2014
  end-page: 28
  ident: bib1
  article-title: Methods for evaluating the biodegradability of environmentally degradable polymers
  publication-title: In Handbook of Biodegradable Polymers
– volume: 41
  start-page: 1951
  year: 2009
  end-page: 1956
  ident: bib3
  article-title: Substrate mineralization studies in the laboratory show different microbial C partitioning dynamics than in the field
  publication-title: Soil Biol. Biochem.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: bib21
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 109
  year: 1999
  end-page: 116
  ident: bib9
  article-title: Kinetics of aerobic polymer degradation in soil by means of the ASTM D 5988-96 standard method
  publication-title: J. Environ. Polym. Degrad.
– volume: 26
  start-page: 246
  year: 2008
  end-page: 265
  ident: bib17
  article-title: Biological degradation of plastics: a comprehensive review
  publication-title: Biotechnol. Adv.
– volume: 41
  start-page: 2124
  year: 2006
  end-page: 2128
  ident: bib13
  article-title: Biological degradation of synthetic polyesters - enzymes as potential catalysts for polyester recycling
  publication-title: Process Biochem.
– volume: 10
  start-page: 3722
  year: 2009
  end-page: 3742
  ident: bib18
  article-title: Biodegradability of plastics
  publication-title: Int. J. Mol. Sci.
– volume: 15
  start-page: 27
  year: 2013
  end-page: 35
  ident: bib15
  article-title: Monitoring biodegradation of poly(butylene sebacate) by Gel Permeation Chromatography, (1)H-NMR and (31)P-NMR techniques
  publication-title: J. Environ. Manag.
– reference: EC 648/2004. Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on detergents.
– volume: 15
  start-page: 259
  year: 2007
  end-page: 267
  ident: bib14
  article-title: Biodegradability and biodegradation of polyesters
  publication-title: J. Polym. Environ.
– year: 2012
  ident: bib20
  article-title: Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil
– volume: 15
  start-page: 7064
  year: 2014
  end-page: 7123
  ident: bib11
  article-title: Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s
  publication-title: Int. J. Mol. Sci.
– start-page: 1
  year: 2000
  end-page: 13
  ident: bib22
  article-title: II. Reazione
  publication-title: in Metodi di Analisi Chimica del Suolo
– volume: 87
  start-page: 131
  year: 2005
  end-page: 135
  ident: bib6
  article-title: Dependence of biodegradability of plastics in compost on the shape of specimens
  publication-title: Polym. Degrad. Stabil.
– volume: 91
  start-page: 1919
  year: 2006
  end-page: 1928
  ident: bib7
  article-title: Biodegradation of poly(lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods
  publication-title: Polym. Degrad. Stabil.
– volume: 28
  start-page: 680
  year: 2009
  end-page: 687
  ident: bib10
  article-title: Particle size and concentration of poly(ɛ-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures
  publication-title: Polym. Test.
– volume: 221
  start-page: 245
  year: 2011
  end-page: 254
  ident: bib12
  article-title: Mineralization of monomeric components of biodegradable plastics in preconditioned and enriched sandy loam soil under laboratory conditions
  publication-title: Water Air Soil Pollut.
– volume: 40
  start-page: 616
  year: 2008
  end-page: 624
  ident: bib2
  article-title: Decoupling of microbial glucose uptake and mineralization in soil
  publication-title: Soil Biol. Biochem.
– volume: 15
  start-page: 7
  year: 2007
  end-page: 17
  ident: bib8
  article-title: Biodegradation of polycaprolactone powders proposed as reference test materials for international standard of biodegradation evaluation method
  publication-title: J. Polym. Environ.
– volume: 55
  start-page: 17
  year: 2010
  end-page: 21
  ident: bib19
  article-title: Biodegradation of polymers- Part 1
  publication-title: Popular Plast. Packag.
– volume: 10
  start-page: 365
  year: 2005
  end-page: 391
  ident: bib5
  article-title: Biodegradability of polymers: regulations and methods for testing
  publication-title: Biopolymers Online
– year: 2015
  ident: bib23
  article-title: Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment under Controlled Laboratory Conditions
– volume: 93
  start-page: 31
  year: 2012
  end-page: 37
  ident: bib16
  article-title: Kinetics of monomer biodegradation in soil
  publication-title: J. Environ. Manag.
– reference: European Parliament and Council. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC.
– volume: 91
  start-page: 1919
  year: 2006
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib7
  article-title: Biodegradation of poly(lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2006.03.003
– ident: 10.1016/j.polymdegradstab.2017.12.011_bib4
– volume: 40
  start-page: 616
  year: 2008
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib2
  article-title: Decoupling of microbial glucose uptake and mineralization in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.09.008
– volume: 4
  start-page: 55
  year: 1996
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib24
  article-title: Effect of the composting substrate on biodegradation of solid materials under controlled composting conditions
  publication-title: J. Environ. Polym. Degrad.
  doi: 10.1007/BF02083883
– volume: 7
  start-page: 109
  year: 1999
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib9
  article-title: Kinetics of aerobic polymer degradation in soil by means of the ASTM D 5988-96 standard method
  publication-title: J. Environ. Polym. Degrad.
  doi: 10.1023/A:1021864402395
– start-page: 1
  year: 2000
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib22
  article-title: II. Reazione
– volume: 15
  start-page: 7
  year: 2007
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib8
  article-title: Biodegradation of polycaprolactone powders proposed as reference test materials for international standard of biodegradation evaluation method
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-006-0041-4
– volume: 87
  start-page: 131
  year: 2005
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib6
  article-title: Dependence of biodegradability of plastics in compost on the shape of specimens
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.07.016
– volume: 221
  start-page: 245
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib12
  article-title: Mineralization of monomeric components of biodegradable plastics in preconditioned and enriched sandy loam soil under laboratory conditions
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-011-0787-8
– start-page: 1
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib1
  article-title: Methods for evaluating the biodegradability of environmentally degradable polymers
– volume: 15
  start-page: 27
  issue: 116
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib15
  article-title: Monitoring biodegradation of poly(butylene sebacate) by Gel Permeation Chromatography, (1)H-NMR and (31)P-NMR techniques
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2012.11.043
– volume: 55
  start-page: 17
  year: 2010
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib19
  article-title: Biodegradation of polymers- Part 1
  publication-title: Popular Plast. Packag.
– volume: 10
  start-page: 365
  year: 2005
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib5
  article-title: Biodegradability of polymers: regulations and methods for testing
  publication-title: Biopolymers Online
– volume: 41
  start-page: 2124
  year: 2006
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib13
  article-title: Biological degradation of synthetic polyesters - enzymes as potential catalysts for polyester recycling
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2006.05.018
– volume: 10
  start-page: 3722
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib18
  article-title: Biodegradability of plastics
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10093722
– year: 2015
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib23
– volume: 41
  start-page: 1951
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib3
  article-title: Substrate mineralization studies in the laboratory show different microbial C partitioning dynamics than in the field
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.06.020
– volume: 93
  start-page: 31
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib16
  article-title: Kinetics of monomer biodegradation in soil
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2011.08.018
– volume: 15
  start-page: 259
  year: 2007
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib14
  article-title: Biodegradability and biodegradation of polyesters
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-007-0066-3
– ident: 10.1016/j.polymdegradstab.2017.12.011_bib25
– volume: 28
  start-page: 680
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib10
  article-title: Particle size and concentration of poly(ɛ-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2009.05.002
– volume: 26
  start-page: 246
  year: 2008
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib17
  article-title: Biological degradation of plastics: a comprehensive review
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2007.12.005
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib21
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 15
  start-page: 7064
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib11
  article-title: Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15057064
– year: 2012
  ident: 10.1016/j.polymdegradstab.2017.12.011_bib20
SSID ssj0000451
Score 2.6248665
Snippet Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be...
Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by bio- degradation while the inner part should not be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 237
SubjectTerms Addition polymerization
ASTM D 5988-12
Biodegradability
Biodegradable plastics
Biodegradation
Environmental conditions
enzyme kinetics
Image analysis
Kinetics
Microorganisms
Mineralization
Mineralization rate
particle size
Pellets
Plastics
Polybutylene sebacate
Polymers
Reaction kinetics
Regression analysis
soil
Surface area
Windows (intervals)
Title Biodegradation rate of biodegradable plastics at molecular level
URI https://dx.doi.org/10.1016/j.polymdegradstab.2017.12.011
https://www.proquest.com/docview/2012575136
https://www.proquest.com/docview/2524242461
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-Ggh8P4idOp0TQx7quSZsUfJgOx1Tck4O9haRNYbKtQ-uDL_7t5vqx6UAY-NhL0oa7S-6a3P0O4FIJ4bssjpzED0OHBUY7SiSuY3TAExEFnBr8UXzuB70Bexz6wxp0qlwYDKss9_5iT89365LSLLnZnI1GTQxLsu4LqhTNr78wg51x1PLrr0WYB-KnFGGMLQd7b8DVIsZrlo4_JzGiMsTvmKFgrSHPTwdbrb_s1NKOnZuh7i7slP4juS2muAc1M92HzU5Vtm0ftn8gDB5A-26UFl_OJUAQGIKkCdFzsh4bMrMuNMI1E5WRSVUvl4wxnugQBt37l07PKYsmOJHve5mDCG2xCgNjZcOMUDxxfeXqiGrFXCWs4oRogYJQ-EkUC0umKtSGUWU8xkNDj2Btmk7NMZCIUcE159asM2ZcqnGxR5ZiXRo09XW4qVgkoxJRHAtbjGUVOvYqlzgskcOy5UnL4ToE8-GzAlpj1YHtSh7yl65IawZWfUWjkqMsF-07tnt4DUWDOlzMm6348A5FTU36Yfv4mE-DIHwn_5_FKWzZJ1Gc6DRgLXv7MGfWx8n0ea7E57B--_DU638DvCL-0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGkHgcEE8xnkGCY1i3pG0qcQAmpvHYTiBxi5I2lYa6dmLbgQu_nbiP8ZCQkLg6j0a2Y7uJ8xngVAnhOjwKaewGAeWe0VSJ2KFGe34sQs9nBn8U-wOv98Tvnt3nGnSqtzCYVlna_sKm59a6pDRLbjbHw2ET05Js-IIqxfLrrwVY5Hb7YhmD8_fPPA8EUCnyGFsUuy_B2WeS1zhL3kYRwjJEE3yiYN2hnx8Ptlq_OaofJjv3Q911WCsDSHJVrHEDaibdhOVOVbdtE1a_QAxuweX1MCu-nIuAIDIEyWKi52SdGDK2MTTiNRM1JaOqYC5JMKFoG566N4-dHi2rJtDQddtTihBtkQo8Y4XDjVB-7LjK0SHTijtKWM0J0AV5gXDjMBKWzFSgDWfKtLkfGLYD9TRLzS6QkDPha9-3fp1z4zCNuz20FBvToK9vwEXFIhmWkOJY2SKRVe7Yi_zBYYkclq22tBxugDcfPi6wNf468LKSh_ymLNL6gb9OcVDJUZa7doLtbbyHYl4DTubNVnx4iaJSk81sHxcf1CAK397_V3EMy73H_oN8uB3c78OKbRHF8c4B1KevM3NoA56pPsoV-gN_mQBt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+rate+of+biodegradable+plastics+at+molecular+level&rft.jtitle=Polymer+degradation+and+stability&rft.au=Chinaglia%2C+Selene&rft.au=Tosin%2C+Maurizio&rft.au=Degli-Innocenti%2C+Francesco&rft.date=2018-01-01&rft.issn=0141-3910&rft.volume=147+p.237-244&rft.spage=237&rft.epage=244&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2017.12.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon