Biodegradation rate of biodegradable plastics at molecular level
Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of t...
Saved in:
Published in | Polymer degradation and stability Vol. 147; pp. 237 - 244 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.01.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm2g-1). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kmax = 97 mg Cpolymer day−1). The kmax can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kmax. The Michaelis constant (Km), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm2. It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisfy the Organization for Economic Co-operation and Development (OECD) criteria of “ready biodegradability” for chemicals (e.g. 60% biodegradation in a 10-day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach.
•This is one of the few systematic studies where the effect of granulometry on biodegradation rate is tackled experimentally.•The surface area and biodegradation rate are well correlated by a double reciprocal model (the Lineweaver-Burk plot).•The maximum biodegradation rate of the polymer when surface area is not a limiting factor was estimated to be very high.•If the polymer were tested in a nanopolymeric form it could satisfy the OECD “ready biodegradability” for chemicals.Ready biodegradable chemicals are expected to undergo biodegradation in any biologically-active environment. |
---|---|
AbstractList | Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by bio- degradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm2g-1). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kMAX=97mg Cpolymer day-1). The kmaz can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kmax. The Michaelis constant (Km), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm2. It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisty the Organization for Economic Co-operation and Development (OECD) criteria of "ready biodegradability" for chemicals (e.g. 60% biodegradation in a 10- day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach. Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm²g⁻¹). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kₘₐₓ = 97 mg Cₚₒₗyₘₑᵣ day⁻¹). The kₘₐₓ can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kₘₐₓ. The Michaelis constant (Kₘ), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm². It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisfy the Organization for Economic Co-operation and Development (OECD) criteria of “ready biodegradability” for chemicals (e.g. 60% biodegradation in a 10-day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach. Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be readily available for biodegradation. Thus, at a laboratory level, the biodegradation rate is expected to be a function of the surface area of the tested sample. The higher the surface area, the higher the biodegradation rate, all other environmental conditions being equal. In order to further explore the role of particle size on biodegradability, plastic pellets of polybutylene sebacate were milled and sieved into different particle sizes, thus obtaining four samples, pellets included, with different specific surface areas (33, 89, 193, and 824 cm2g-1). The surface areas were assessed through direct measurement (pellets) or a theoretical estimation followed by an image analysis. The different samples were tested for biodegradation in soil for 138 days. The rates calculated with a linear regression in the first part of the biodegradation process were related to the respective total available surface area. The data are well described by a linear regression of the double reciprocal plot (the Lineweaver-Burk approach used in enzymatic kinetics) that enables the estimation of the theoretical maximum biodegradation rate (kmax = 97 mg Cpolymer day−1). The kmax can be considered as an estimation of the biodegradation rate at molecular level, when the available surface area is not limiting biodegradation. An additional hypothesis is that the same polymer tested in soils with different microbial loads would display different kmax. The Michaelis constant (Km), i.e. the surface area at which the reaction rate k is half the maximum rate, is 1122 cm2. It is remarkable to notice that if polybutylene sebacate could be tested in a nanopolymeric form, it could very likely satisfy the Organization for Economic Co-operation and Development (OECD) criteria of “ready biodegradability” for chemicals (e.g. 60% biodegradation in a 10-day window within a 28-day test). This is the first time that the biodegradation kinetics of a solid polymer have been estimated by using the Michaelis-Menten approach. •This is one of the few systematic studies where the effect of granulometry on biodegradation rate is tackled experimentally.•The surface area and biodegradation rate are well correlated by a double reciprocal model (the Lineweaver-Burk plot).•The maximum biodegradation rate of the polymer when surface area is not a limiting factor was estimated to be very high.•If the polymer were tested in a nanopolymeric form it could satisfy the OECD “ready biodegradability” for chemicals.Ready biodegradable chemicals are expected to undergo biodegradation in any biologically-active environment. |
Author | Chinaglia, Selene Tosin, Maurizio Degli-Innocenti, Francesco |
Author_xml | – sequence: 1 givenname: Selene surname: Chinaglia fullname: Chinaglia, Selene email: selene.chinaglia@novamont.com – sequence: 2 givenname: Maurizio surname: Tosin fullname: Tosin, Maurizio email: maurizio.tosin@novamont.com – sequence: 3 givenname: Francesco orcidid: 0000-0001-5572-0935 surname: Degli-Innocenti fullname: Degli-Innocenti, Francesco email: fdi@novamont.com |
BookMark | eNqNkMtKBDEQRYMoOD7-oUEEN92mkn4uBHXwBYIbXYfqdLVkyHTGJCP492YccTErK4uC4t5DOEdsf3ITMXYOvAAO9eWiWDn7tRzo3eMQIvaF4NAUIAoOsMdm0DYyF1LAPptxKCGXHfBDdhTCgqcpK5ix61vjtgCMxk2Zx0iZG7P-79xbylYWQzQ6ZBizpbOk1xZ9ZumT7Ak7GNEGOv3dx-zt_u51_pg_vzw8zW-ec11VIuYCZDlgVxNpXVKLzcgr5L2WPZYcW8KhE13H666tRj206Syx66mUSKJsOpLH7GLLXXn3saYQ1dIETdbiRG4dlKhEuXk1pOjZTnTh1n5Kv1NJkKiaCmSdUlfblPYuBE-jWnmzRP-lgKuNX7VQO3439UaBUMlv6s93-trEH4nRo7H_pjxsKZTcfRryKmhDk6bBeNJRDc78k_QNT0Sm8w |
CitedBy_id | crossref_primary_10_1016_j_polymdegradstab_2021_109578 crossref_primary_10_1016_j_biortech_2021_126265 crossref_primary_10_3390_polym17020169 crossref_primary_10_1002_ldr_5115 crossref_primary_10_1021_acsapm_2c00600 crossref_primary_10_1016_j_hazadv_2021_100024 crossref_primary_10_1021_acs_est_0c07253 crossref_primary_10_1016_j_scitotenv_2023_162324 crossref_primary_10_1016_j_polymer_2021_124508 crossref_primary_10_3390_w14162581 crossref_primary_10_3390_su12187255 crossref_primary_10_3389_fmars_2021_662074 crossref_primary_10_1016_j_jclepro_2022_133232 crossref_primary_10_1021_acssuschemeng_3c03837 crossref_primary_10_1007_s12666_021_02504_2 crossref_primary_10_1111_1750_3841_16819 crossref_primary_10_3389_fchem_2021_671750 crossref_primary_10_1016_j_polymdegradstab_2019_05_034 crossref_primary_10_1038_s41598_023_29414_1 crossref_primary_10_1016_j_matchemphys_2023_127813 crossref_primary_10_1016_j_rser_2021_111237 crossref_primary_10_3390_polym14224928 crossref_primary_10_1002_adsu_202400172 crossref_primary_10_1016_j_clce_2025_100162 crossref_primary_10_1557_adv_2020_377 crossref_primary_10_4028_www_scientific_net_KEM_821_359 crossref_primary_10_1016_j_scitotenv_2021_150238 crossref_primary_10_1016_j_envres_2024_119979 crossref_primary_10_3390_polym15051196 crossref_primary_10_1016_j_coche_2021_100695 crossref_primary_10_1134_S0003683822060102 crossref_primary_10_3390_w14233968 crossref_primary_10_1016_j_scitotenv_2020_143536 crossref_primary_10_1002_gch2_202300020 crossref_primary_10_1016_j_apsoil_2021_104216 crossref_primary_10_1016_j_matt_2022_11_006 crossref_primary_10_1002_app_49189 crossref_primary_10_3389_fmats_2024_1334863 crossref_primary_10_1016_j_polymdegradstab_2019_02_009 crossref_primary_10_1039_D1GC01916C crossref_primary_10_1016_j_ocecoaman_2019_105005 crossref_primary_10_1021_acs_est_1c00994 crossref_primary_10_1016_j_jenvman_2021_112906 crossref_primary_10_1186_s43591_024_00084_8 crossref_primary_10_1029_2018JC014719 crossref_primary_10_1016_j_scitotenv_2022_154868 crossref_primary_10_1016_j_eurpolymj_2023_112026 crossref_primary_10_1016_j_envpol_2023_122390 crossref_primary_10_1021_acs_est_4c07554 crossref_primary_10_1016_j_wasman_2021_08_016 crossref_primary_10_54393_pbmj_v5i10_810 crossref_primary_10_1016_j_susmat_2024_e01065 crossref_primary_10_1007_s44169_023_00057_7 crossref_primary_10_3390_polym13111737 crossref_primary_10_1515_psr_2021_0061 crossref_primary_10_1002_anie_202210823 crossref_primary_10_1038_s44222_023_00142_5 crossref_primary_10_1002_pc_26007 crossref_primary_10_1007_s11356_018_3079_7 crossref_primary_10_1016_j_impact_2023_100474 crossref_primary_10_1039_C9RA03221E crossref_primary_10_1021_acssuschemeng_0c08026 crossref_primary_10_1016_j_scitotenv_2021_151880 crossref_primary_10_1016_j_polymdegradstab_2020_109309 crossref_primary_10_1016_j_jhazmat_2020_123337 crossref_primary_10_3389_fsufs_2022_921496 crossref_primary_10_1002_cssc_202002044 crossref_primary_10_1016_j_matpr_2020_12_086 crossref_primary_10_1016_j_scitotenv_2023_161706 crossref_primary_10_1016_j_greeac_2022_100030 crossref_primary_10_1016_j_rser_2021_110971 crossref_primary_10_3390_polym14214770 crossref_primary_10_1016_j_psep_2022_03_053 crossref_primary_10_1002_marc_202200769 crossref_primary_10_1016_j_chemosphere_2021_133392 crossref_primary_10_1016_j_jhazmat_2023_130796 crossref_primary_10_1039_D4GC06323F crossref_primary_10_1021_acs_est_8b05208 crossref_primary_10_1021_acs_estlett_3c00394 crossref_primary_10_3390_polym15040927 crossref_primary_10_1007_s11356_024_31994_y crossref_primary_10_1016_j_biortech_2021_125473 crossref_primary_10_1016_j_biortech_2020_124537 crossref_primary_10_3389_fmars_2020_567126 crossref_primary_10_1186_s40538_023_00528_y crossref_primary_10_1016_j_biortech_2025_132296 crossref_primary_10_1016_j_ijbiomac_2021_07_196 crossref_primary_10_1002_app_50914 crossref_primary_10_1016_j_scitotenv_2021_151768 crossref_primary_10_1016_j_chemosphere_2024_141410 crossref_primary_10_1016_j_polymertesting_2021_107137 crossref_primary_10_1016_j_scitotenv_2024_176920 crossref_primary_10_1007_s10532_023_10031_8 crossref_primary_10_1016_j_jhazmat_2021_125957 crossref_primary_10_2139_ssrn_4174230 crossref_primary_10_15446_ing_investig_95432 crossref_primary_10_1021_acs_est_0c01495 crossref_primary_10_1039_D4PY00307A crossref_primary_10_3390_polym12030704 crossref_primary_10_1002_ange_202210823 crossref_primary_10_1016_j_marpolbul_2023_115295 crossref_primary_10_1016_j_polymdegradstab_2025_111174 crossref_primary_10_1016_j_marpolbul_2022_114458 crossref_primary_10_1515_revce_2024_0061 crossref_primary_10_1038_s41598_020_78122_7 crossref_primary_10_1002_app_54970 crossref_primary_10_1016_j_polymdegradstab_2021_109617 crossref_primary_10_1016_j_biortech_2021_126661 crossref_primary_10_1002_etc_5116 crossref_primary_10_3389_fbioe_2023_1303830 crossref_primary_10_1016_j_jtice_2021_05_030 crossref_primary_10_1016_j_polymdegradstab_2024_110698 crossref_primary_10_1007_s10924_024_03470_8 crossref_primary_10_1007_s13726_025_01475_1 crossref_primary_10_1016_j_ijbiomac_2018_12_168 crossref_primary_10_17660_ActaHortic_2019_1252_7 crossref_primary_10_1080_24701556_2022_2081190 crossref_primary_10_1002_mame_201800537 crossref_primary_10_1016_j_biortech_2022_127224 crossref_primary_10_3390_polym16111474 crossref_primary_10_1016_j_chemosphere_2024_144024 crossref_primary_10_1016_j_jenvman_2019_06_087 crossref_primary_10_1016_j_jscs_2018_08_008 crossref_primary_10_1016_j_polymdegradstab_2019_07_008 crossref_primary_10_1016_j_scitotenv_2023_161867 crossref_primary_10_1016_j_biortech_2021_125459 crossref_primary_10_1016_j_ecoenv_2022_113933 crossref_primary_10_1016_j_envpol_2020_116363 crossref_primary_10_3390_polym15143093 crossref_primary_10_11144_Javeriana_SC281_asac crossref_primary_10_3390_ijms24043963 crossref_primary_10_1016_j_polymdegradstab_2021_109719 crossref_primary_10_1016_j_scitotenv_2023_167850 crossref_primary_10_1007_s00289_022_04565_9 crossref_primary_10_1016_j_polymer_2024_127235 crossref_primary_10_1016_j_biotechadv_2021_107772 crossref_primary_10_4081_ija_2022_2044 crossref_primary_10_1021_acs_est_1c00588 crossref_primary_10_1155_2022_2363134 crossref_primary_10_3390_polym17030352 crossref_primary_10_1007_s11270_020_04712_w crossref_primary_10_3390_microorganisms10122441 crossref_primary_10_1080_26395940_2022_2128884 crossref_primary_10_1177_20412479231165454 crossref_primary_10_1007_s00128_020_02908_8 crossref_primary_10_1016_j_procbio_2020_04_001 crossref_primary_10_1039_D3CS00556A crossref_primary_10_1016_j_ijbiomac_2024_134595 crossref_primary_10_3390_agriculture12060865 crossref_primary_10_3390_microorganisms13030609 crossref_primary_10_1007_s10924_023_03086_4 crossref_primary_10_1016_j_jhazmat_2022_130313 crossref_primary_10_1007_s10965_021_02457_6 crossref_primary_10_1016_j_trac_2023_117189 crossref_primary_10_1016_j_polymdegradstab_2022_109934 crossref_primary_10_1016_j_envint_2022_107244 crossref_primary_10_1021_acssuschemeng_1c00801 crossref_primary_10_1039_D0RA07521C crossref_primary_10_1016_j_scitotenv_2020_140975 crossref_primary_10_1016_j_jenvman_2019_06_056 crossref_primary_10_1039_D4GC00618F crossref_primary_10_1007_s10924_021_02088_4 crossref_primary_10_1021_acs_chemrev_2c00644 crossref_primary_10_1007_s10924_020_01776_x crossref_primary_10_1021_acssuschemeng_0c01230 crossref_primary_10_3390_ijms232012165 crossref_primary_10_1016_j_jclepro_2021_127816 crossref_primary_10_1016_j_polymdegradstab_2023_110538 crossref_primary_10_1134_S2635167621020075 crossref_primary_10_3390_polym14081532 crossref_primary_10_1007_s10965_019_1822_5 crossref_primary_10_1016_j_scitotenv_2022_154056 crossref_primary_10_2139_ssrn_4061451 crossref_primary_10_1080_10643389_2024_2443284 crossref_primary_10_1016_j_marpolbul_2019_03_020 crossref_primary_10_4028_www_scientific_net_JERA_41_145 crossref_primary_10_7717_peerj_9876 crossref_primary_10_1371_journal_pone_0318938 crossref_primary_10_1080_24701556_2020_1813768 crossref_primary_10_1016_j_polymdegradstab_2019_04_014 crossref_primary_10_1016_j_scitotenv_2024_172737 crossref_primary_10_3390_polym13010010 crossref_primary_10_1016_j_scitotenv_2024_173920 crossref_primary_10_1016_j_envres_2023_116634 crossref_primary_10_1007_s10924_020_01653_7 crossref_primary_10_1016_j_scitotenv_2020_140518 crossref_primary_10_1016_j_indcrop_2024_120245 crossref_primary_10_1007_s11783_022_1596_6 crossref_primary_10_1016_j_jenvman_2023_117493 crossref_primary_10_47836_pjst_30_2_41 crossref_primary_10_3390_polym14204430 crossref_primary_10_3390_ma14216449 crossref_primary_10_1016_j_scitotenv_2021_146590 crossref_primary_10_1680_jenes_22_00088 crossref_primary_10_3390_polym11071193 crossref_primary_10_1016_j_scitotenv_2020_141959 crossref_primary_10_3389_ftox_2025_1494220 crossref_primary_10_1016_j_chemosphere_2020_128453 crossref_primary_10_1016_j_jhazmat_2024_137064 crossref_primary_10_1007_s11356_024_35472_3 crossref_primary_10_1016_j_scitotenv_2023_165698 crossref_primary_10_1007_s11274_024_03932_0 crossref_primary_10_1016_j_ese_2020_100065 crossref_primary_10_1186_s12302_023_00755_y crossref_primary_10_1002_star_202100302 |
Cites_doi | 10.1016/j.polymdegradstab.2006.03.003 10.1016/j.soilbio.2007.09.008 10.1007/BF02083883 10.1023/A:1021864402395 10.1007/s10924-006-0041-4 10.1016/j.polymdegradstab.2004.07.016 10.1007/s11270-011-0787-8 10.1016/j.jenvman.2012.11.043 10.1016/j.procbio.2006.05.018 10.3390/ijms10093722 10.1016/j.soilbio.2009.06.020 10.1016/j.jenvman.2011.08.018 10.1007/s10924-007-0066-3 10.1016/j.polymertesting.2009.05.002 10.1016/j.biotechadv.2007.12.005 10.1021/ja01269a023 10.3390/ijms15057064 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright Elsevier BV Jan 2018 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright Elsevier BV Jan 2018 |
DBID | 6I. AAFTH AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2017.12.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
EndPage | 244 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2017_12_011 S0141391017303816 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8FD EFKBS JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c552t-2134da96eecc4e8a7f05a0bc3ba40a8ead929906985fcd83ba3a9be43ae2479e3 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Fri Jul 11 06:10:08 EDT 2025 Fri Jul 25 06:45:52 EDT 2025 Tue Jul 01 02:29:47 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Fri Feb 23 02:45:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polybutylene sebacate Biodegradable plastics Kinetics Surface area Mineralization rate ASTM D 5988-12 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-2134da96eecc4e8a7f05a0bc3ba40a8ead929906985fcd83ba3a9be43ae2479e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5572-0935 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0141391017303816 |
PQID | 2012575136 |
PQPubID | 2045418 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2524242461 proquest_journals_2012575136 crossref_primary_10_1016_j_polymdegradstab_2017_12_011 crossref_citationtrail_10_1016_j_polymdegradstab_2017_12_011 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2017_12_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | van der Zee (bib1) 2014 Modelli, Calcagno, Scandola (bib9) 1999; 7 European Parliament and Council. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Tosin, Degli Innocenti, Bastioli (bib24) 1996; 4 ASTM D7991 (bib23) 2015 Shah, Hasan, Hameed, Ahmed (bib17) 2008; 26 Tokiwa, Calabia (bib14) 2007; 15 EC 648/2004. Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on detergents. Diaz, Katsarava, Puiggali (bib11) 2014; 15 Müller (bib5) 2005; 10 Tokiwa, Calabia, Ugwu, Aiba (bib18) 2009; 10 César, Mariani, Innocentini-Mei, Cardoso (bib10) 2009; 28 Siotto, Zoia, Tosin, Degli Innocenti, Orlandi, Mezzanotte (bib15) 2013; 15 Siotto, Sezenna, Saponaro, Degli innocenti, Tosin, Bonomo, Mezzanotte (bib16) 2012; 93 Oburger, Jones (bib3) 2009; 41 Mueller (bib13) 2006; 41 Violante, Adamo (bib22) 2000 Hill, Farrar, Jones (bib2) 2008; 40 Yang, Yoon, Kim (bib6) 2005; 87 ASTM D5988 (bib20) 2012 Brunauer, Emmett, Teller (bib21) 1938; 60 Funabashi, Ninomiya, Kunioka (bib8) 2007; 15 Siotto, Tosin, Degli Innocenti, Mezzanotte (bib12) 2011; 221 Kunioka, Ninomiya, Funabashi (bib7) 2006; 91 Ambekar, Kukade, Mahajan (bib19) 2010; 55 van der Zee (10.1016/j.polymdegradstab.2017.12.011_bib1) 2014 Violante (10.1016/j.polymdegradstab.2017.12.011_bib22) 2000 Oburger (10.1016/j.polymdegradstab.2017.12.011_bib3) 2009; 41 Ambekar (10.1016/j.polymdegradstab.2017.12.011_bib19) 2010; 55 Tokiwa (10.1016/j.polymdegradstab.2017.12.011_bib18) 2009; 10 Müller (10.1016/j.polymdegradstab.2017.12.011_bib5) 2005; 10 César (10.1016/j.polymdegradstab.2017.12.011_bib10) 2009; 28 10.1016/j.polymdegradstab.2017.12.011_bib4 Brunauer (10.1016/j.polymdegradstab.2017.12.011_bib21) 1938; 60 Tokiwa (10.1016/j.polymdegradstab.2017.12.011_bib14) 2007; 15 Siotto (10.1016/j.polymdegradstab.2017.12.011_bib15) 2013; 15 Hill (10.1016/j.polymdegradstab.2017.12.011_bib2) 2008; 40 Tosin (10.1016/j.polymdegradstab.2017.12.011_bib24) 1996; 4 Kunioka (10.1016/j.polymdegradstab.2017.12.011_bib7) 2006; 91 10.1016/j.polymdegradstab.2017.12.011_bib25 Funabashi (10.1016/j.polymdegradstab.2017.12.011_bib8) 2007; 15 Siotto (10.1016/j.polymdegradstab.2017.12.011_bib12) 2011; 221 Mueller (10.1016/j.polymdegradstab.2017.12.011_bib13) 2006; 41 Yang (10.1016/j.polymdegradstab.2017.12.011_bib6) 2005; 87 Shah (10.1016/j.polymdegradstab.2017.12.011_bib17) 2008; 26 ASTM D7991 (10.1016/j.polymdegradstab.2017.12.011_bib23) 2015 Siotto (10.1016/j.polymdegradstab.2017.12.011_bib16) 2012; 93 ASTM D5988 (10.1016/j.polymdegradstab.2017.12.011_bib20) 2012 Modelli (10.1016/j.polymdegradstab.2017.12.011_bib9) 1999; 7 Diaz (10.1016/j.polymdegradstab.2017.12.011_bib11) 2014; 15 |
References_xml | – volume: 4 start-page: 55 year: 1996 end-page: 63 ident: bib24 article-title: Effect of the composting substrate on biodegradation of solid materials under controlled composting conditions publication-title: J. Environ. Polym. Degrad. – start-page: 1 year: 2014 end-page: 28 ident: bib1 article-title: Methods for evaluating the biodegradability of environmentally degradable polymers publication-title: In Handbook of Biodegradable Polymers – volume: 41 start-page: 1951 year: 2009 end-page: 1956 ident: bib3 article-title: Substrate mineralization studies in the laboratory show different microbial C partitioning dynamics than in the field publication-title: Soil Biol. Biochem. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: bib21 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 109 year: 1999 end-page: 116 ident: bib9 article-title: Kinetics of aerobic polymer degradation in soil by means of the ASTM D 5988-96 standard method publication-title: J. Environ. Polym. Degrad. – volume: 26 start-page: 246 year: 2008 end-page: 265 ident: bib17 article-title: Biological degradation of plastics: a comprehensive review publication-title: Biotechnol. Adv. – volume: 41 start-page: 2124 year: 2006 end-page: 2128 ident: bib13 article-title: Biological degradation of synthetic polyesters - enzymes as potential catalysts for polyester recycling publication-title: Process Biochem. – volume: 10 start-page: 3722 year: 2009 end-page: 3742 ident: bib18 article-title: Biodegradability of plastics publication-title: Int. J. Mol. Sci. – volume: 15 start-page: 27 year: 2013 end-page: 35 ident: bib15 article-title: Monitoring biodegradation of poly(butylene sebacate) by Gel Permeation Chromatography, (1)H-NMR and (31)P-NMR techniques publication-title: J. Environ. Manag. – reference: EC 648/2004. Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on detergents. – volume: 15 start-page: 259 year: 2007 end-page: 267 ident: bib14 article-title: Biodegradability and biodegradation of polyesters publication-title: J. Polym. Environ. – year: 2012 ident: bib20 article-title: Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil – volume: 15 start-page: 7064 year: 2014 end-page: 7123 ident: bib11 article-title: Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s publication-title: Int. J. Mol. Sci. – start-page: 1 year: 2000 end-page: 13 ident: bib22 article-title: II. Reazione publication-title: in Metodi di Analisi Chimica del Suolo – volume: 87 start-page: 131 year: 2005 end-page: 135 ident: bib6 article-title: Dependence of biodegradability of plastics in compost on the shape of specimens publication-title: Polym. Degrad. Stabil. – volume: 91 start-page: 1919 year: 2006 end-page: 1928 ident: bib7 article-title: Biodegradation of poly(lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods publication-title: Polym. Degrad. Stabil. – volume: 28 start-page: 680 year: 2009 end-page: 687 ident: bib10 article-title: Particle size and concentration of poly(ɛ-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures publication-title: Polym. Test. – volume: 221 start-page: 245 year: 2011 end-page: 254 ident: bib12 article-title: Mineralization of monomeric components of biodegradable plastics in preconditioned and enriched sandy loam soil under laboratory conditions publication-title: Water Air Soil Pollut. – volume: 40 start-page: 616 year: 2008 end-page: 624 ident: bib2 article-title: Decoupling of microbial glucose uptake and mineralization in soil publication-title: Soil Biol. Biochem. – volume: 15 start-page: 7 year: 2007 end-page: 17 ident: bib8 article-title: Biodegradation of polycaprolactone powders proposed as reference test materials for international standard of biodegradation evaluation method publication-title: J. Polym. Environ. – volume: 55 start-page: 17 year: 2010 end-page: 21 ident: bib19 article-title: Biodegradation of polymers- Part 1 publication-title: Popular Plast. Packag. – volume: 10 start-page: 365 year: 2005 end-page: 391 ident: bib5 article-title: Biodegradability of polymers: regulations and methods for testing publication-title: Biopolymers Online – year: 2015 ident: bib23 article-title: Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment under Controlled Laboratory Conditions – volume: 93 start-page: 31 year: 2012 end-page: 37 ident: bib16 article-title: Kinetics of monomer biodegradation in soil publication-title: J. Environ. Manag. – reference: European Parliament and Council. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. – volume: 91 start-page: 1919 year: 2006 ident: 10.1016/j.polymdegradstab.2017.12.011_bib7 article-title: Biodegradation of poly(lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2006.03.003 – ident: 10.1016/j.polymdegradstab.2017.12.011_bib4 – volume: 40 start-page: 616 year: 2008 ident: 10.1016/j.polymdegradstab.2017.12.011_bib2 article-title: Decoupling of microbial glucose uptake and mineralization in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.09.008 – volume: 4 start-page: 55 year: 1996 ident: 10.1016/j.polymdegradstab.2017.12.011_bib24 article-title: Effect of the composting substrate on biodegradation of solid materials under controlled composting conditions publication-title: J. Environ. Polym. Degrad. doi: 10.1007/BF02083883 – volume: 7 start-page: 109 year: 1999 ident: 10.1016/j.polymdegradstab.2017.12.011_bib9 article-title: Kinetics of aerobic polymer degradation in soil by means of the ASTM D 5988-96 standard method publication-title: J. Environ. Polym. Degrad. doi: 10.1023/A:1021864402395 – start-page: 1 year: 2000 ident: 10.1016/j.polymdegradstab.2017.12.011_bib22 article-title: II. Reazione – volume: 15 start-page: 7 year: 2007 ident: 10.1016/j.polymdegradstab.2017.12.011_bib8 article-title: Biodegradation of polycaprolactone powders proposed as reference test materials for international standard of biodegradation evaluation method publication-title: J. Polym. Environ. doi: 10.1007/s10924-006-0041-4 – volume: 87 start-page: 131 year: 2005 ident: 10.1016/j.polymdegradstab.2017.12.011_bib6 article-title: Dependence of biodegradability of plastics in compost on the shape of specimens publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.07.016 – volume: 221 start-page: 245 year: 2011 ident: 10.1016/j.polymdegradstab.2017.12.011_bib12 article-title: Mineralization of monomeric components of biodegradable plastics in preconditioned and enriched sandy loam soil under laboratory conditions publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-011-0787-8 – start-page: 1 year: 2014 ident: 10.1016/j.polymdegradstab.2017.12.011_bib1 article-title: Methods for evaluating the biodegradability of environmentally degradable polymers – volume: 15 start-page: 27 issue: 116 year: 2013 ident: 10.1016/j.polymdegradstab.2017.12.011_bib15 article-title: Monitoring biodegradation of poly(butylene sebacate) by Gel Permeation Chromatography, (1)H-NMR and (31)P-NMR techniques publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2012.11.043 – volume: 55 start-page: 17 year: 2010 ident: 10.1016/j.polymdegradstab.2017.12.011_bib19 article-title: Biodegradation of polymers- Part 1 publication-title: Popular Plast. Packag. – volume: 10 start-page: 365 year: 2005 ident: 10.1016/j.polymdegradstab.2017.12.011_bib5 article-title: Biodegradability of polymers: regulations and methods for testing publication-title: Biopolymers Online – volume: 41 start-page: 2124 year: 2006 ident: 10.1016/j.polymdegradstab.2017.12.011_bib13 article-title: Biological degradation of synthetic polyesters - enzymes as potential catalysts for polyester recycling publication-title: Process Biochem. doi: 10.1016/j.procbio.2006.05.018 – volume: 10 start-page: 3722 year: 2009 ident: 10.1016/j.polymdegradstab.2017.12.011_bib18 article-title: Biodegradability of plastics publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10093722 – year: 2015 ident: 10.1016/j.polymdegradstab.2017.12.011_bib23 – volume: 41 start-page: 1951 year: 2009 ident: 10.1016/j.polymdegradstab.2017.12.011_bib3 article-title: Substrate mineralization studies in the laboratory show different microbial C partitioning dynamics than in the field publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.06.020 – volume: 93 start-page: 31 year: 2012 ident: 10.1016/j.polymdegradstab.2017.12.011_bib16 article-title: Kinetics of monomer biodegradation in soil publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2011.08.018 – volume: 15 start-page: 259 year: 2007 ident: 10.1016/j.polymdegradstab.2017.12.011_bib14 article-title: Biodegradability and biodegradation of polyesters publication-title: J. Polym. Environ. doi: 10.1007/s10924-007-0066-3 – ident: 10.1016/j.polymdegradstab.2017.12.011_bib25 – volume: 28 start-page: 680 year: 2009 ident: 10.1016/j.polymdegradstab.2017.12.011_bib10 article-title: Particle size and concentration of poly(ɛ-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2009.05.002 – volume: 26 start-page: 246 year: 2008 ident: 10.1016/j.polymdegradstab.2017.12.011_bib17 article-title: Biological degradation of plastics: a comprehensive review publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2007.12.005 – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.polymdegradstab.2017.12.011_bib21 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 15 start-page: 7064 year: 2014 ident: 10.1016/j.polymdegradstab.2017.12.011_bib11 article-title: Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15057064 – year: 2012 ident: 10.1016/j.polymdegradstab.2017.12.011_bib20 |
SSID | ssj0000451 |
Score | 2.6248665 |
Snippet | Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by biodegradation while the inner part should not be... Plastics are solid materials where biodegradation happens on the surface. Only the surface is affected by bio- degradation while the inner part should not be... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 237 |
SubjectTerms | Addition polymerization ASTM D 5988-12 Biodegradability Biodegradable plastics Biodegradation Environmental conditions enzyme kinetics Image analysis Kinetics Microorganisms Mineralization Mineralization rate particle size Pellets Plastics Polybutylene sebacate Polymers Reaction kinetics Regression analysis soil Surface area Windows (intervals) |
Title | Biodegradation rate of biodegradable plastics at molecular level |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2017.12.011 https://www.proquest.com/docview/2012575136 https://www.proquest.com/docview/2524242461 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-Ggh8P4idOp0TQx7quSZsUfJgOx1Tck4O9haRNYbKtQ-uDL_7t5vqx6UAY-NhL0oa7S-6a3P0O4FIJ4bssjpzED0OHBUY7SiSuY3TAExEFnBr8UXzuB70Bexz6wxp0qlwYDKss9_5iT89365LSLLnZnI1GTQxLsu4LqhTNr78wg51x1PLrr0WYB-KnFGGMLQd7b8DVIsZrlo4_JzGiMsTvmKFgrSHPTwdbrb_s1NKOnZuh7i7slP4juS2muAc1M92HzU5Vtm0ftn8gDB5A-26UFl_OJUAQGIKkCdFzsh4bMrMuNMI1E5WRSVUvl4wxnugQBt37l07PKYsmOJHve5mDCG2xCgNjZcOMUDxxfeXqiGrFXCWs4oRogYJQ-EkUC0umKtSGUWU8xkNDj2Btmk7NMZCIUcE159asM2ZcqnGxR5ZiXRo09XW4qVgkoxJRHAtbjGUVOvYqlzgskcOy5UnL4ToE8-GzAlpj1YHtSh7yl65IawZWfUWjkqMsF-07tnt4DUWDOlzMm6348A5FTU36Yfv4mE-DIHwn_5_FKWzZJ1Gc6DRgLXv7MGfWx8n0ea7E57B--_DU638DvCL-0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGkHgcEE8xnkGCY1i3pG0qcQAmpvHYTiBxi5I2lYa6dmLbgQu_nbiP8ZCQkLg6j0a2Y7uJ8xngVAnhOjwKaewGAeWe0VSJ2KFGe34sQs9nBn8U-wOv98Tvnt3nGnSqtzCYVlna_sKm59a6pDRLbjbHw2ET05Js-IIqxfLrrwVY5Hb7YhmD8_fPPA8EUCnyGFsUuy_B2WeS1zhL3kYRwjJEE3yiYN2hnx8Ptlq_OaofJjv3Q911WCsDSHJVrHEDaibdhOVOVbdtE1a_QAxuweX1MCu-nIuAIDIEyWKi52SdGDK2MTTiNRM1JaOqYC5JMKFoG566N4-dHi2rJtDQddtTihBtkQo8Y4XDjVB-7LjK0SHTijtKWM0J0AV5gXDjMBKWzFSgDWfKtLkfGLYD9TRLzS6QkDPha9-3fp1z4zCNuz20FBvToK9vwEXFIhmWkOJY2SKRVe7Yi_zBYYkclq22tBxugDcfPi6wNf468LKSh_ymLNL6gb9OcVDJUZa7doLtbbyHYl4DTubNVnx4iaJSk81sHxcf1CAK397_V3EMy73H_oN8uB3c78OKbRHF8c4B1KevM3NoA56pPsoV-gN_mQBt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+rate+of+biodegradable+plastics+at+molecular+level&rft.jtitle=Polymer+degradation+and+stability&rft.au=Chinaglia%2C+Selene&rft.au=Tosin%2C+Maurizio&rft.au=Degli-Innocenti%2C+Francesco&rft.date=2018-01-01&rft.issn=0141-3910&rft.volume=147+p.237-244&rft.spage=237&rft.epage=244&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2017.12.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |