Preserving the nutritional quality of crop plants under a changing climate importance and strategies
Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. Scope This review focuses on the global impact of climate change on the nutritional value of...
Saved in:
Published in | Plant and soil Vol. 443; no. 1/2; pp. 1 - 26 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer Science + Business Media
01.10.2019
Springer International Publishing Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients.
Scope
This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO
2
(eCO
2
), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates.
Conclusions
Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO
2
being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability. |
---|---|
AbstractList | BackgroundGlobal climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients.ScopeThis review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO2 (eCO2), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates.ConclusionsClimate change has an impact on the accumulation of minerals and protein in crop plants, with eCO2 being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability. BACKGROUND: Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. SCOPE: This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO₂ (eCO₂), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates. CONCLUSIONS: Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO₂ being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability. Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. Scope This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO.sub.2 (eCO.sub.2), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates. Conclusions Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO.sub.2 being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability. Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. Scope This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO 2 (eCO 2 ), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates. Conclusions Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO 2 being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability. |
Audience | Academic |
Author | Carvalho, Susana M. P. Santos, Carla S. Vasconcelos, Marta W. Pintado, Manuela M. Soares, José C. |
Author_xml | – sequence: 1 givenname: José C. surname: Soares fullname: Soares, José C. – sequence: 2 givenname: Carla S. surname: Santos fullname: Santos, Carla S. – sequence: 3 givenname: Susana M. P. surname: Carvalho fullname: Carvalho, Susana M. P. – sequence: 4 givenname: Manuela M. surname: Pintado fullname: Pintado, Manuela M. – sequence: 5 givenname: Marta W. surname: Vasconcelos fullname: Vasconcelos, Marta W. |
BookMark | eNp9kUtr3DAUhUVJoZNp_0AhIMgmG6dXL9uzDCHpg0C7aKE7IStXEw0eaSLJgfn3kevSQhZBICFxPt17zj0lJyEGJOQjg0sG0H3KjDGQDbBNA5Lzur8hK6Y60SgQ7QlZAQjeQLf5_Y6c5ryD-c7aFfn2I2HG9OTDlpYHpGEqyRcfgxnp42RGX440OmpTPNDDaELJdAr3mKih9sGE7czZ0e9NwffkrTNjxg9_zzX5dXvz8_pLc_f989frq7vGKsVLwwEYIAfV2n5olRmY6tkwdAYllxas4wMatNxxMXAQBqs_iXJwaFon0Io1uVj-PaT4OGEueu-zxbF2h3HKmguhGBeyOl-T8xfSXZxS9VZVvO1U1286WVWXi2prRtQ-uFiSsXXd497bGrTz9f2qBalawcQM8AWoseSc0OlDqhGko2ag53noZR66zkP_mYeee-lfQNYXM0ddq_nxdVQsaK51whbTfxuvUmcLtcslpn8tyr4DKYCLZ84aqls |
CitedBy_id | crossref_primary_10_1007_s10343_021_00615_w crossref_primary_10_1016_j_jafr_2024_101592 crossref_primary_10_3389_fsufs_2021_685801 crossref_primary_10_1016_j_scitotenv_2020_137808 crossref_primary_10_1007_s00344_024_11355_2 crossref_primary_10_1016_j_phyplu_2021_100079 crossref_primary_10_1016_j_jfca_2023_105961 crossref_primary_10_3389_fpls_2023_1119148 crossref_primary_10_2525_shita_32_191 crossref_primary_10_3389_fnut_2022_955231 crossref_primary_10_3390_horticulturae7080251 crossref_primary_10_1371_journal_pone_0232699 crossref_primary_10_1016_j_indcrop_2022_115599 crossref_primary_10_1038_s41598_025_85606_x crossref_primary_10_1007_s42729_024_01772_3 crossref_primary_10_1016_j_heliyon_2020_e05390 crossref_primary_10_3390_su17052298 crossref_primary_10_1016_j_jhazmat_2021_126193 crossref_primary_10_1111_aab_12651 crossref_primary_10_3390_f15112016 crossref_primary_10_3390_agronomy13020398 crossref_primary_10_3390_agronomy12040888 crossref_primary_10_1016_j_jfca_2023_105332 crossref_primary_10_1111_ppl_13160 crossref_primary_10_1080_07352689_2024_2410145 crossref_primary_10_3389_fpls_2023_1221466 crossref_primary_10_1186_s43014_022_00096_y crossref_primary_10_3390_molecules26133895 crossref_primary_10_1007_s12011_022_03158_x crossref_primary_10_3390_plants14070981 crossref_primary_10_1016_j_resourpol_2023_103970 crossref_primary_10_1093_ajcn_nqac220 crossref_primary_10_1007_s40124_024_00332_8 crossref_primary_10_3390_agriculture15050568 crossref_primary_10_1007_s11104_024_07072_0 crossref_primary_10_1016_j_envexpbot_2024_105670 crossref_primary_10_1016_j_plana_2024_100129 crossref_primary_10_3390_agronomy12112617 crossref_primary_10_1088_1748_9326_ac3401 crossref_primary_10_1007_s11356_020_11903_9 crossref_primary_10_1016_j_scitotenv_2023_162321 crossref_primary_10_3389_fpls_2023_1324184 crossref_primary_10_1002_pld3_402 crossref_primary_10_1016_j_chemosphere_2022_137575 crossref_primary_10_1007_s10722_024_02259_x crossref_primary_10_3390_agronomy13020561 crossref_primary_10_3390_agronomy12123008 crossref_primary_10_3390_nano12213915 crossref_primary_10_1002_ppp3_10174 crossref_primary_10_3389_fgene_2023_1193780 crossref_primary_10_1007_s00299_021_02738_w crossref_primary_10_1038_s41598_024_80798_0 crossref_primary_10_1093_plphys_kiab197 crossref_primary_10_1111_tpj_16506 crossref_primary_10_1007_s42729_024_02138_5 crossref_primary_10_1016_j_ajcnut_2023_08_024 crossref_primary_10_1016_j_indcrop_2024_118808 crossref_primary_10_1016_j_onehlt_2024_100748 crossref_primary_10_1038_s41598_025_92250_y crossref_primary_10_1111_pce_14532 crossref_primary_10_3390_agronomy14010064 crossref_primary_10_1080_19315260_2021_1925384 crossref_primary_10_1007_s42729_020_00388_7 crossref_primary_10_1186_s12870_020_02688_7 crossref_primary_10_1002_pei3_10065 crossref_primary_10_1007_s10725_020_00661_w crossref_primary_10_1007_s12355_020_00917_9 crossref_primary_10_1002_ajpa_24438 crossref_primary_10_1007_s42729_024_02098_w crossref_primary_10_1007_s42835_022_01254_5 crossref_primary_10_3389_fenvs_2021_599814 crossref_primary_10_3390_environments8110122 crossref_primary_10_1088_1748_9326_abafd4 crossref_primary_10_3389_fpls_2021_641678 crossref_primary_10_3390_agronomy10081097 crossref_primary_10_1007_s10646_020_02168_6 crossref_primary_10_3389_fclim_2022_941842 crossref_primary_10_1080_10408398_2024_2402998 crossref_primary_10_1007_s11157_023_09653_4 crossref_primary_10_1007_s11356_022_20549_8 crossref_primary_10_3390_ijms23020781 crossref_primary_10_1080_15427528_2021_1872754 crossref_primary_10_1111_ppl_13624 crossref_primary_10_1016_j_scitotenv_2020_141763 crossref_primary_10_15835_nbha50212677 crossref_primary_10_1016_j_fcr_2022_108662 crossref_primary_10_3390_agronomy14061164 crossref_primary_10_1016_j_biocon_2020_108575 crossref_primary_10_3389_fmicb_2020_01677 crossref_primary_10_3390_plants13101291 crossref_primary_10_3390_cli10030040 crossref_primary_10_1016_j_agrformet_2023_109454 crossref_primary_10_1007_s00344_023_11016_w crossref_primary_10_1016_j_apsoil_2024_105607 crossref_primary_10_1016_j_spc_2021_05_004 crossref_primary_10_1016_j_seh_2025_100130 crossref_primary_10_3390_agronomy14122752 crossref_primary_10_1111_pbr_12871 crossref_primary_10_1016_j_tjnut_2023_07_017 crossref_primary_10_1038_s41598_025_87047_y crossref_primary_10_1002_ppp3_10544 crossref_primary_10_1111_ppl_14561 crossref_primary_10_3390_plants12040839 crossref_primary_10_1080_01904167_2024_2315969 crossref_primary_10_1016_j_gloplacha_2024_104586 crossref_primary_10_4236_as_2023_143026 crossref_primary_10_3390_agriculture13050984 crossref_primary_10_3390_plants12183182 crossref_primary_10_1515_opag_2022_0185 crossref_primary_10_3390_plants11233393 crossref_primary_10_3389_fpls_2023_1166720 crossref_primary_10_1002_agr_21971 crossref_primary_10_1016_j_bbabio_2023_149018 crossref_primary_10_1111_aab_12866 crossref_primary_10_3390_agronomy14030420 crossref_primary_10_1093_aob_mcac015 crossref_primary_10_1007_s40003_024_00749_z crossref_primary_10_1016_j_sajb_2023_09_044 crossref_primary_10_1016_j_still_2020_104767 crossref_primary_10_3390_su14137932 crossref_primary_10_1016_j_jafr_2021_100197 crossref_primary_10_1088_1748_9326_ad8cf0 crossref_primary_10_3390_foods13060877 crossref_primary_10_7769_gesec_v15i9_4161 crossref_primary_10_1016_j_fcr_2024_109338 crossref_primary_10_3390_agronomy15010186 crossref_primary_10_3389_fsufs_2021_692137 crossref_primary_10_3390_agronomy14071415 crossref_primary_10_1016_j_gfs_2022_100636 crossref_primary_10_1007_s10725_024_01120_6 crossref_primary_10_3390_agronomy10030435 crossref_primary_10_3390_plants9040541 crossref_primary_10_1007_s10886_023_01449_8 crossref_primary_10_14258_jcprm_2021027543 crossref_primary_10_3389_fvets_2023_1234872 crossref_primary_10_3390_agronomy12040967 crossref_primary_10_1007_s00122_021_03854_7 crossref_primary_10_1080_19315260_2021_1957052 crossref_primary_10_1016_j_scitotenv_2023_169023 crossref_primary_10_1007_s00344_024_11604_4 crossref_primary_10_1016_j_scienta_2022_111136 crossref_primary_10_3389_fpls_2022_807844 crossref_primary_10_1016_j_molp_2023_09_003 crossref_primary_10_1016_j_tplants_2022_09_002 crossref_primary_10_3390_plants11131620 crossref_primary_10_1177_0021955X20948560 crossref_primary_10_1093_jmammal_gyad086 crossref_primary_10_3390_su14020914 crossref_primary_10_3390_su15043336 crossref_primary_10_13080_z_a_2021_108_003 crossref_primary_10_1016_j_compag_2024_109474 crossref_primary_10_1016_j_foodres_2024_114855 crossref_primary_10_1016_j_farsys_2024_100098 crossref_primary_10_3390_horticulturae8111032 crossref_primary_10_1080_01904167_2024_2416075 crossref_primary_10_18006_2020_8_2__84_89 crossref_primary_10_3389_fpls_2020_576718 crossref_primary_10_1007_s11104_024_07074_y crossref_primary_10_3389_fpls_2024_1444436 crossref_primary_10_1002_jsfa_11743 crossref_primary_10_3390_su14148329 crossref_primary_10_1016_j_plaphy_2020_08_010 crossref_primary_10_56946_jspae_v3i1_371 crossref_primary_10_3390_nu15184045 crossref_primary_10_1002_pld3_384 crossref_primary_10_3390_agronomy12051117 crossref_primary_10_1016_j_fbio_2020_100601 crossref_primary_10_1016_j_fcr_2022_108624 crossref_primary_10_1016_S2542_5196_24_00332_2 crossref_primary_10_1016_j_apsoil_2025_106033 crossref_primary_10_1016_j_envexpbot_2023_105633 crossref_primary_10_3389_fagro_2022_825087 |
Cites_doi | 10.1007/s11258-011-9998-8 10.1016/B978-0-12-812104-7.00015-0 10.1016/j.agrformet.2003.09.002 10.1007/s11104-016-2996-9 10.1093/jxb/erl259 10.1016/j.foodchem.2012.01.105 10.1098/rspb.2015.2578 10.1007/s10661-016-5563-1 10.1080/07352689.2013.758544 10.1007/s11104-016-2979-x 10.1038/nature13179 10.1038/s41893-018-0114-0 10.1071/PP97045 10.1016/j.still.2006.11.004 10.1111/j.1399-3054.2007.01042.x 10.1104/pp.109.136721 10.1016/j.flora.2018.07.001 10.1016/j.scitotenv.2018.12.181 10.1016/j.foodres.2009.07.033 10.1111/ejss.12437 10.1007/s00468-014-1015-0 10.1016/j.jcs.2016.03.006 10.1111/ppl.12590 10.1016/j.copbio.2016.10.001 10.1111/j.1469-8137.2007.02180.x 10.1626/pps.15.238 10.1016/j.tplants.2014.07.005 10.1016/0304-3770(95)00453-7 10.1016/j.jplph.2008.06.011 10.1080/07352689.2014.870421 10.1016/B978-0-12-384905-2.00007-8 10.1104/pp.108.129791 10.1080/14620316.2017.1373037 10.1111/gcb.12520 10.3389/fpls.2018.01361 10.1126/science.1185383 10.1186/1471-2229-10-120 10.1146/annurev.pp.44.060193.001521 10.3389/fpls.2016.01720 10.1016/S1002-0160(17)60458-2 10.1089/omi.2011.0109 10.1046/j.1365-3040.1997.d01-84.x 10.1016/j.foodchem.2018.11.035 10.1016/j.agee.2008.06.003 10.1093/jxb/eru539 10.1016/S0014-5793(00)01873-1 10.1016/j.jprot.2016.03.017 10.1016/j.rsci.2018.04.002 10.1073/pnas.022627299 10.1038/sdata.2015.36 10.3389/fevo.2017.00051 10.1016/j.plaphy.2017.04.006 10.1002/jpln.200420485 10.3389/fpls.2017.01348 10.1111/j.1750-3841.2011.02135.x 10.1016/j.scitotenv.2018.02.322 10.1016/j.jplph.2013.01.001 10.3389/fpls.2018.01115 10.1104/pp.15.00980 10.1016/j.scitotenv.2018.09.332 10.1016/j.plaphy.2016.04.053 10.1021/jf101197h 10.1016/j.biotechadv.2015.03.011 10.1016/j.ecoenv.2013.12.021 10.1002/jpln.201600616 10.1016/j.plantsci.2014.11.001 10.1016/j.scienta.2018.09.072 10.1002/jpln.201400117 10.1016/j.envexpbot.2015.02.003 10.1016/j.tplants.2011.10.003 10.1016/S0169-5347(02)02587-9 10.1080/03650340.2017.1315105 10.1093/jxb/erw383 10.1016/j.nbt.2017.08.003 10.1017/S1355770X1300065X 10.1016/S2095-3119(18)62005-2 10.1038/npg.els.0001306 10.1111/jfq.12066 10.1093/jxb/ers077 10.1186/1752-0509-4-177 10.1007/s10681-011-0359-4 10.1134/S1021443711050074 10.1093/jn/138.12.2534 10.1093/aob/mcv182 10.2134/jeq2017.03.0121 10.1111/tpj.14166 10.1016/S2214-109X(15)00093-5 10.1038/srep09212 10.1016/j.plantsci.2018.12.021 10.1016/j.scitotenv.2018.10.170 10.1007/s11104-018-3808-1 10.1016/j.gloenvcha.2018.09.010 10.1016/j.scitotenv.2018.10.019 10.1016/j.plaphy.2019.05.012 10.7554/eLife.02245 10.1007/s11356-017-9813-8 10.1093/aob/mcu209 10.1104/pp.010191 10.1016/j.agee.2015.04.007 10.1016/S0065-2113(02)77017-X 10.17221/3630-PSE 10.1007/s13199-018-0573-0 10.5897/AJARX11.084 10.1016/j.foodres.2012.12.021 10.1016/j.fcr.2017.02.018 10.1093/jxb/eri189 10.1002/jpln.200520558 10.1016/j.scitotenv.2019.02.149 10.1007/s13205-018-1179-1 10.3390/horticulturae4020011 10.1111/gcb.13185 10.3389/fpls.2018.01249 10.1016/j.fcr.2007.03.006 10.1111/tpj.12550 10.1016/j.tplants.2010.08.002 10.1016/j.jplph.2017.03.011 10.3389/fpls.2018.00617 10.1007/s11120-018-0490-3 10.1071/CP18421 10.1016/j.pbi.2018.05.012 10.3390/ijms18061202 10.1016/j.ydbio.2016.07.023 10.1016/j.envexpbot.2006.11.003 10.1104/pp.124.2.873 10.1111/pce.12007 10.1016/j.indcrop.2018.10.048 10.1016/j.foodchem.2015.04.116 10.1016/j.apsoil.2015.05.006 10.1111/pbr.12501 10.1016/j.envexpbot.2005.04.004 10.1016/j.jcs.2013.12.002 10.17061/phrp2841831 10.1016/j.foodchem.2018.09.052 10.1016/j.jhazmat.2019.01.058 10.1016/j.scienta.2015.08.034 10.1016/j.gfs.2018.06.001 10.1016/j.micres.2018.10.012 10.1002/pmic.200700942 10.1155/2013/610721 10.1371/journal.pone.0206388 10.3389/fpls.2018.01413 10.1146/annurev.arplant.55.031903.141610 10.1126/science.1224304 10.1007/s11104-018-3603-z 10.1016/j.mcm.2010.11.050 10.1111/j.1744-7909.2008.00754.x 10.3389/fpls.2018.00936 10.1016/j.scitotenv.2018.08.257 10.1002/eco.1803 10.1016/S2095-3119(13)60349-4 10.1080/01904167.2010.503829 10.1093/aob/mcy171 10.1016/j.jcs.2012.07.010 10.1016/j.ab.2018.08.020 10.1016/j.abb.2016.04.010 10.1111/j.1438-8677.2009.00230.x 10.1016/j.plaphy.2018.10.016 10.1007/s11274-017-2364-9 10.1111/j.1399-3054.2011.01555.x 10.1016/j.jplph.2009.01.003 10.3390/su8030281 10.1016/j.gene.2018.03.057 10.2135/cropsci2003.1548 10.1046/j.1469-8137.2002.00494.x 10.1002/wcc.56 10.1007/s10661-017-6441-1 10.1007/s00374-010-0496-2 10.1371/journal.pone.0196439 10.1016/B978-0-08-100596-5.22333-0 10.1289/ehp41 10.1023/A:1016093317898 10.3389/fpls.2015.00319 10.1631/jzus.2006.B0283 10.1371/journal.pone.0043583 10.1016/j.jplph.2009.09.007 10.1016/j.plaphy.2017.06.031 10.1016/j.foodchem.2018.01.097 10.3389/fpls.2014.00112 10.1016/j.envexpbot.2013.07.003 10.1002/jsfa.8996 10.1016/j.gfs.2017.01.009 10.1016/j.envexpbot.2017.01.012 10.1016/j.fcr.2014.05.003 10.1088/1755-1307/6/29/292045 10.1016/j.scienta.2018.09.035 10.1016/j.scitotenv.2016.07.048 10.1146/annurev-arplant-042811-105522 10.1046/j.1365-3040.2003.01074.x 10.1093/jxb/ers341 10.1146/annurev-publhealth-031816-044356 10.5147/ajpb.2016.0157 10.2134/jeq2006.0136 10.1016/j.foodchem.2016.07.080 10.1016/0304-4238(94)90149-X 10.1111/j.1469-8137.2004.01224.x 10.21273/JASHS.137.4.221 10.1007/s11274-018-2568-7 10.1016/j.soilbio.2007.03.014 10.1364/AO.57.007722 10.1016/S2095-3119(14)60846-7 10.1111/j.1365-313X.2008.03421.x 10.1093/aob/mcs209 10.1002/jpln.201700575 10.1016/j.agee.2004.01.018 10.3390/agronomy7020032 10.1007/s11356-017-9268-y 10.3390/ijms20061359 10.1007/s11104-004-1082-x 10.1016/j.envexpbot.2011.12.007 10.1093/aob/mcv088 10.1016/j.jcs.2008.01.006 10.1016/S1002-0160(17)60420-X 10.1016/S0065-2113(08)00404-5 10.2135/cropsci2014.04.0273 10.3389/fpls.2018.00924 10.1038/s41598-018-33952-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 COPYRIGHT 2019 Springer Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2019 Springer – notice: Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-019-04229-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 26 |
ExternalDocumentID | A604563134 10_1007_s11104_019_04229_0 48704302 |
GeographicLocations | Canada United Kingdom |
GeographicLocations_xml | – name: United Kingdom – name: Canada |
GrantInformation_xml | – fundername: European Social Fund through the Northern Operational Program-Norte2020 grantid: NORTE-08-5369-FSE-000007 – fundername: Fundação para a Ciência e a Tecnologia grantid: UID/Multi/50016/2019, PTDC/AGRPRO/3972/2014 funderid: http://dx.doi.org/10.13039/501100001871 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ACBXY ACKIV ADINQ ADULT ADYPR AEBTG AEFIE AEKMD AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW BBWZM C6C CAG COF EJD EN4 GQ6 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI UZXMN VFIZW WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c552t-20010e2056c8b65ab1581bb7ae424c0cf2beaec2f23b203ae0074e4bfea6f3ec3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 03:33:03 EDT 2025 Fri Jul 25 19:08:12 EDT 2025 Tue Jun 10 20:44:36 EDT 2025 Tue Jul 01 01:47:06 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Fri Feb 21 02:33:29 EST 2025 Thu Jun 19 22:18:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Climate change Environmental factors Minerals Nutrient concentration Elevated carbon dioxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-20010e2056c8b65ab1581bb7ae424c0cf2beaec2f23b203ae0074e4bfea6f3ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5110-7006 |
OpenAccessLink | https://doi.org/10.1007/s11104-019-04229-0 |
PQID | 2267578974 |
PQPubID | 54098 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2335123450 proquest_journals_2267578974 gale_infotracacademiconefile_A604563134 crossref_primary_10_1007_s11104_019_04229_0 crossref_citationtrail_10_1007_s11104_019_04229_0 springer_journals_10_1007_s11104_019_04229_0 jstor_primary_48704302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2019 |
Publisher | Springer Science + Business Media Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | KobayashiTNishizawaNKIron Uptake, Translocation, and Regulation in Higher PlantsAnnu Rev Plant Biol2012631311521:CAS:528:DC%2BC38Xos1ams78%3D10.1146/annurev-arplant-042811-10552222404471 YilmazOKahramanKOzgurRUzildayBTurkanIOzturkLGrowth performance and antioxidative response in bread and durum wheat plants grown with varied potassium treatments under ambient and elevated carbon dioxideEnviron Exp Bot201713726351:CAS:528:DC%2BC2sXisVCntL8%3D10.1016/j.envexpbot.2017.01.012 Pérez-LópezUMiranda-ApodacaJLacuestaMMena-PetiteAMuñoz-RuedaAGrowth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinitySci Hortic201519556661:CAS:528:DC%2BC2MXhsV2gurzE10.1016/j.scienta.2015.08.034 FischerSHilgerTPiephoH-PJordanICadischGDo we need more drought for better nutrition? The effect of precipitation on nutrient concentration in East African food cropsSci Total Environ20196584054151:CAS:528:DC%2BC1cXisFOkt7jP10.1016/j.scitotenv.2018.12.18130579198 HögyPFangmeierAEffects of elevated atmospheric CO2 on grain quality of wheatJ Cereal Sci2008485805911:CAS:528:DC%2BD1cXhtlagtbjK10.1016/j.jcs.2008.01.006 PetropoulosSALevizouENtatsiGFernandesÂPetrotosKAkoumianakisKBarrosLFerreiraICSalinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum LFood Chem20172141291361:CAS:528:DC%2BC28XhtFOksr%2FO10.1016/j.foodchem.2016.07.08027507457 AbdelgawadHFarfan-VignoloERVosDAsardHElevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumesPlant Sci20152311101:CAS:528:DC%2BC2cXitVWku73L10.1016/j.plantsci.2014.11.00125575986 MurgiaIArosioPTarantinoDSoaveCBiofortification for combating 'hidden hunger' for ironTrends Plant Sci20121747551:CAS:528:DC%2BC38XptVSnsA%3D%3D10.1016/j.tplants.2011.10.00322093370 AsifMYilmazOOzturkLElevated carbon dioxide ameliorates the effect of Zn deficiency and terminal drought on wheat grain yield but compromises nutritional qualityPlant Soil201741157671:CAS:528:DC%2BC28Xht1Krt73P10.1007/s11104-016-2996-9 PrettyJulesBentonTim G.BharuchaZareen PervezDicksLynn V.FloraCornelia ButlerGodfrayH. Charles J.GoulsonDaveHartleySueLampkinNicMorrisCarolPierzynskiGaryPrasadP. V. VaraReganoldJohnRockströmJohanSmithPeteThornePeterWrattenSteveGlobal assessment of agricultural system redesign for sustainable intensificationNature Sustainability20181844144610.1038/s41893-018-0114-0 Da GeTSuiFGSaNSunNBHaXTongCLDifferential responses of yield and selected nutritional compositions to drought stress in summer maize grainsJ Plant Nutr201033181118181:CAS:528:DC%2BC3cXhtVCnt7fI10.1080/01904167.2010.503829 JinJTangCSalePThe impact of elevated carbon dioxide on the phosphorus nutrition of plants: a reviewAnn Bot-London20151169879991:CAS:528:DC%2BC1cXkt1yltbc%3D10.1093/aob/mcv088 VeluGGuzmanCMondalSAutriqueJEHuertaJSinghRPEffect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheatJ Cereal Sci2016691821861:CAS:528:DC%2BC28XltFGltL4%3D10.1016/j.jcs.2016.03.006 KaplanFZhaoWRichardsJTWheelerRMGuyCLLevineLHTranscriptional and metabolic insights into the differential physiological responses of Arabidopsis to optimal and supraoptimal atmospheric CO2PLoS One201271:CAS:528:DC%2BC38Xht1Ggu7nE10.1371/journal.pone.0043583229162803423350 RustioniLGrossiDBrancadoroLFaillaOCharacterization of iron deficiency symptoms in grapevine (Vitis spp.) leaves by reflectance spectroscopyPlant Physiol Biochem20171183423471:CAS:528:DC%2BC2sXhtFart73M10.1016/j.plaphy.2017.06.03128688348 PalaciosCJGrandisACarvalhoVJSalatinoABuckeridgeMSIsolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seedsFood Chem20192756106171:CAS:528:DC%2BC1cXhvVamurrE10.1016/j.foodchem.2018.09.05230724240 KumagaiEAokiNMasuyaYShimonoHPhenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 ConcentrationPlant Physiol2015169202120291:CAS:528:DC%2BC28Xjs1Kgtrs%3D10.1104/pp.15.00980263736584634073 WissuwaMGamatGIsmailAMIs root growth under phosphorus deficiency affected by source or sink limitations?J Exp Bot200556194319501:CAS:528:DC%2BD2MXpvFKntb0%3D10.1093/jxb/eri18915911558 Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2009) Climate Change Impact on Agriculture and Costs of Adaptation. International Food Policy Research Institute, Washington, DC. BowesGFacing the inevitable: plants and increasing atmospheric CO2Annu Rev Plant Physiol1993443093321:CAS:528:DyaK3sXlsFKisbs%3D10.1146/annurev.pp.44.060193.001521 López-MillánAna FlorMoralesFermı́nAbadı́aAnunciaciónAbadı́aJavierEffects of Iron Deficiency on the Composition of the Leaf Apoplastic Fluid and Xylem Sap in Sugar Beet. Implications for Iron and Carbon TransportPlant Physiology2000124287388410.1104/pp.124.2.873 BrobergMHögyPPleijelHCO2-induced changes in wheat grain composition: meta-analysis and response functionsAgron20177321:CAS:528:DC%2BC1cXitFGlurfM10.3390/agronomy7020032 KarkanisANtatsiGNLepseLFernándezJAVågenIMRewaldBAlsiņaIKronbergaABalliuAOlleMFaba bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systemsFront Plant Sci20189111510.3389/fpls.2018.01115301162516083270 Watts-WilliamsSJAndrew SmithFJakobsenISoil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonisationSymbiosis201977738210.1007/s13199-018-0573-0 Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: Recent advances, challenges, and future implications. Front Plant Sci, 9. https://doi.org/10.3389/fpls.2018.01361 JablonskiLMWangXCurtisPSPlant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild speciesNew Phytol200215692610.1046/j.1469-8137.2002.00494.x ParajuliRThomaGMatlockMDEnvironmental sustainability of fruit and vegetable production supply chains in the face of climate change: A reviewSci Total Environ2018650286328791:CAS:528:DC%2BC1cXhvVyhur%2FJ10.1016/j.scitotenv.2018.10.01930373063 ZhaoXLiuSLPuCZhangXQXueJFZhangRWangYQLalRZhangHLChenFMethane and nitrous oxide emissions under no-till farming in China: a meta-analysisGlob Chang Biol2016221372138410.1111/gcb.1318526661415 ShimonoHKonnoTSakaiHSameshimaRInteractive Effects of Elevated Atmospheric CO2 and Waterlogging on Vegetative Growth of Soybean (Glycine max (L.) Merr.)Plant Prod Sci2012152382451:CAS:528:DC%2BC38Xht1GisLvE10.1626/pps.15.238 CarvalhoSMPVasconcelosMWProducing more with less: Strategies and novel technologies for plant-based food biofortificationFood Res Int2013549619711:CAS:528:DC%2BC3sXovFWruw%3D%3D10.1016/j.foodres.2012.12.021 NezhadahmadiArashProdhanZakaria HossainFaruqGolamDrought Tolerance in WheatThe Scientific World Journal2013201311210.1155/2013/610721 WeiXLiuMWangSJiangMSeed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitationFlora2018246-247192510.1016/j.flora.2018.07.001 BavorovaMImamverdiyevNPonkinaEFarm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian SiberiaEnviron Sci Pollut R2018251016103210.1007/s11356-017-9268-y LarbiAjmiMoralesFermínAbadíaAnunciaciónAbadíaJavierChanges in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupplyJournal of Plant Physiology201016742552601:CAS:528:DC%2BC3cXktFOnsbs%3D10.1016/j.jplph.2009.09.007 FengG-QLiYChengZ-MPlant Molecular and Genomic Responses to Stresses in Projected Future CO2 EnvironmentCrit Rev Plant Sci2014332382491:CAS:528:DC%2BC2cXkt1aiu7w%3D10.1080/07352689.2014.870421 JakobsenISmithSESmithFAWatts-WilliamsSJClausenSSGrønlundMPlant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizasJ Exp Bot201667617361861:CAS:528:DC%2BC2sXht1CqsrnM10.1093/jxb/erw383278110845100028 AbbasSSharmilaPUpretyDSaradhiPEffects of elevated CO2 on soil physicochemical characteristics under Free Air CO2 Enrichment (FACE) technologyIOP Conference Series: Earth and Environmental Science2009629204510.1088/1755-1307/6/29/292045 HajibolandRAhmadPPrasadMNVEffect of Micronutrient Deficiencies on Plants Stress ResponsesAbiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability2012New York, NYSpringer New York YuJingjinDuHongmeiXuMingHuangBingruMetabolic Responses to Heat Stress under Elevated Atmospheric CO2 Concentration in a Cool-season Grass SpeciesJournal of the American Society for Horticultural Science201213742212281:CAS:528:DC%2BC38Xhtlehtb3L10.21273/JASHS.137.4.221 MaYSchwenkeGSunLLi LiuDWangBYangBModeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenariosSci Total Environ2018630154415521:CAS:528:DC%2BC1cXktV2iurY%3D10.1016/j.scitotenv.2018.02.32229554771 ZengNYangZZhangZHuLChenLComparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (Medicago sativa) Response to Waterlogging StressInt J Mol Sci201920135910.3390/ijms200613596471898 Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X (2018b) Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. FRONT PLANT SCI 9. https://doi.org/10.3389/fpls.2018.01413 MannersRvan EttenJAre agricultural researchers working on the right crops to enable food and nutrition security under future climates?Glob Environ Chang20185318219410.1016/j.gloenvcha.2018.09.010 HögyPBrunnbauerMKoehlerPSchwadorfKBreuerJFranzaringJZhunusbayevaDFangmeierAGrain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichmentEnviron Exp Bot20138811181: A Wang (4229_CR199) 2018; 132 M Wissuwa (4229_CR206) 2005; 56 R Manners (4229_CR120) 2018; 53 B Kimball (4229_CR95) 2002 M Shahbaz (4229_CR178) 2013; 32 J Jin (4229_CR89) 2015; 116 H Poorter (4229_CR157) 1997; 20 A Kumar (4229_CR101) 2019; 650 JA Bunce (4229_CR30) 2008; 128 M Saeed (4229_CR171) 2012; 16 G Zocchi (4229_CR226) 2006 JL Beard (4229_CR20) 2008; 138 P Högy (4229_CR78) 2008; 48 Y Niu (4229_CR139) 2012; 64 T Gomiero (4229_CR64) 2016; 8 N Fernando (4229_CR59) 2012; 133 J Fanzo (4229_CR56) 2018; 18 RC Sicher (4229_CR180) 2012; 144 M Nie (4229_CR138) 2015; 5 J Pang (4229_CR146) 2006; 57 D. Steffens (4229_CR186) 2011; 51 W Sublett (4229_CR187) 2018; 4 H Zhu (4229_CR222) 2018; 57 D Neocleous (4229_CR135) 2014; 37 Javier Abadía (4229_CR1) 2002; 241 R Lal (4229_CR103) 2007; 93 P Pandey (4229_CR145) 2017; 8 M Asif (4229_CR15) 2019; 434 CB Lobo (4229_CR110) 2018; 219 MW Vasconcelos (4229_CR195) 2017; 44 J Prior (4229_CR160) 2018; 28 JF Silva (4229_CR181) 2018; 34 Gina Ziervogel (4229_CR224) 2010; 1 A Chrysargyris (4229_CR42) 2019; 368 Shardendu K. Singh (4229_CR182) 2014; 177 A Elia (4229_CR53) 2015; 6 S Saha (4229_CR172) 2015; 187 LM Mungai (4229_CR127) 2016; 7 S Kumari (4229_CR102) 2014; 101 C Zaghdoud (4229_CR215) 2013; 95 Chathurika Wijewardana (4229_CR205) 2019; 278 F Ludewig (4229_CR116) 2000; 479 Y Ma (4229_CR118) 2018; 630 E Mitterbauer (4229_CR125) 2017; 136 Y Xue (4229_CR208) 2016; 117 J-F Briat (4229_CR26) 2015; 20 JR Lawson (4229_CR105) 2017; 10 SB Gray (4229_CR65) 2016; 419 4229_CR124 M Bencke-Malato (4229_CR22) 2019; 280 Ajmi Larbi (4229_CR104) 2010; 167 S Bassu (4229_CR18) 2014; 20 4229_CR49 4229_CR121 H Shimono (4229_CR179) 2012; 15 M Asif (4229_CR12) 2017; 411 L Cheng (4229_CR41) 2012; 337 DJ Burritt (4229_CR33) 2019 R Hajiboland (4229_CR72) 2012 J Rodríguez-Celma (4229_CR168) 2016; 140 J Pang (4229_CR147) 2018; 45 AC Newton (4229_CR136) 2011; 179 OS Olanrewaju (4229_CR141) 2017; 33 A Sabir (4229_CR170) 2019; 244 DE Medek (4229_CR123) 2017; 125 W Yuhui (4229_CR214) 2017; 27 DJ Pilbeam (4229_CR156) 2015; 66 J Jin (4229_CR90) 2019; 651 O Yilmaz (4229_CR210) 2017; 137 G Zhang (4229_CR218) 2018; 660 4229_CR109 X-z Zhao (4229_CR219) 2006; 7 T Da Ge (4229_CR43) 2010; 33 C Zaghdoud (4229_CR216) 2016; 571 N Zeng (4229_CR217) 2019; 20 LH Ziska (4229_CR225) 2007; 175 BC Arenque (4229_CR10) 2014; 28 M Broberg (4229_CR28) 2017; 7 Z Chen (4229_CR40) 2016; 188 Arash Nezhadahmadi (4229_CR137) 2013; 2013 4229_CR21 I Cakmak (4229_CR36) 2018; 69 O Yilmaz (4229_CR211) 2017; 410 P Madan (4229_CR119) 2012; 63 C Sgherri (4229_CR176) 2017; 115 Y Hu (4229_CR81) 2007; 60 I Loladze (4229_CR112) 2014; 3 N Fernando (4229_CR61) 2014; 59 H Kanani (4229_CR91) 2010; 4 U Sarker (4229_CR174) 2018; 13 GM Lenssen (4229_CR106) 1995; 50 M Li (4229_CR108) 2018; 559 Ana Flor López-Millán (4229_CR115) 2009; 166 AK Chaturvedi (4229_CR39) 2017; 206 S Fischer (4229_CR62) 2019; 658 PMA Ramzani (4229_CR164) 2016; 104 4229_CR4 JC Vu (4229_CR198) 2009; 166 4229_CR11 X Han (4229_CR73) 2015; 209 M Asif (4229_CR14) 2018; 426 O Thimm (4229_CR191) 2001; 127 SMP Carvalho (4229_CR38) 2013; 54 JL Hatfield (4229_CR76) 2014 AJ Bloom (4229_CR23) 2002; 99 S Kazemi (4229_CR94) 2018; 25 U Pérez-López (4229_CR153) 2015; 195 4229_CR84 4229_CR83 SP Long (4229_CR113) 2004; 55 HCJ Godfray (4229_CR63) 2010; 327 LM Jablonski (4229_CR85) 2002; 156 JM McGrath (4229_CR122) 2013; 36 CJ Palacios (4229_CR143) 2019; 275 SK Singh (4229_CR183) 2018; 137 P Högy (4229_CR79) 2009; 11 4229_CR162 D-X Wu (4229_CR207) 2004; 104 EA Ainsworth (4229_CR8) 2004; 122 P Burgess (4229_CR32) 2014; 165 R Parajuli (4229_CR148) 2018; 650 J Wesseler (4229_CR204) 2014; 19 CF Scagel (4229_CR175) 2019; 127 S Haase (4229_CR69) 2007; 39 MH Rafiq (4229_CR163) 2017; 24 J Kromdijk (4229_CR99) 2016; 283 F Ai (4229_CR6) 2018; 13 M Pérez-Jiménez (4229_CR152) 2019; 244 Y Qiao (4229_CR161) 2019; 666 P Högy (4229_CR80) 2013; 88 Giacomo Luigi Petretto (4229_CR154) 2019; 141 4229_CR71 N Fernando (4229_CR60) 2012; 56 D Elias (4229_CR54) 2018; 190 M Grover (4229_CR66) 2015; 95 I Cakmak (4229_CR34) 2005; 168 J Guo (4229_CR68) 2015; 14 IH Köhler (4229_CR97) 2018; 97 I Jakobsen (4229_CR86) 2016; 67 CF Smethurst (4229_CR185) 2005; 270 A Hashiguchi (4229_CR75) 2010; 43 T Brumbarova (4229_CR29) 2008; 54 S Haase (4229_CR70) 2008; 37 A Toreti (4229_CR193) 2019 4229_CR67 X Wei (4229_CR203) 2018; 246-247 A Robin (4229_CR167) 2008 EA Ainsworth (4229_CR7) 2005; 165 J He (4229_CR77) 2011; 54 J. WASAKI (4229_CR201) 2003; 26 G-Q Feng (4229_CR58) 2014; 33 E Tani (4229_CR188) 2017; 18 X Zhao (4229_CR220) 2016; 22 4229_CR134 J Yu (4229_CR213) 2015; 115 A Krężel (4229_CR98) 2016; 611 Jules Pretty (4229_CR159) 2018; 1 Ana Flor López-Millán (4229_CR114) 2000; 124 HE Bouis (4229_CR24) 2017; 12 M Norisada (4229_CR140) 2006; 169 4229_CR57 4229_CR132 S Abbas (4229_CR2) 2009; 6 SS Myers (4229_CR131) 2017; 38 LM Mortensen (4229_CR126) 1994; 58 Y Wang (4229_CR200) 2018; 98 FP O'Mara (4229_CR142) 2012; 110 H Zheng (4229_CR221) 2018; 9 H Abdelgawad (4229_CR3) 2015; 231 DJ Barrett (4229_CR17) 1998; 25 JMG Thomas (4229_CR192) 2003; 43 SS Myers (4229_CR130) 2015; 3 F Kaplan (4229_CR92) 2012; 7 I Murgia (4229_CR128) 2012; 17 S Daryanto (4229_CR44) 2017; 46 I Ahuja (4229_CR5) 2010; 15 A Anandan (4229_CR9) 2011; 76 J Jin (4229_CR88) 2014; 116 JA Bunce (4229_CR31) 2015; 55 T Kobayashi (4229_CR96) 2012; 63 M Hummel (4229_CR82) 2018; 8 E Kumagai (4229_CR100) 2015; 169 M Broadley (4229_CR27) 2012 Jingjin Yu (4229_CR212) 2012; 137 L Rustioni (4229_CR169) 2017; 118 G Shabani (4229_CR177) 2015; 17 SK Singh (4229_CR184) 2013; 170 4229_CR194 SJ Watts-Williams (4229_CR202) 2019; 77 J-l Dong (4229_CR48) 2018; 17 U Sarker (4229_CR173) 2018; 252 J Dong (4229_CR50) 2018; 123 R Vicente (4229_CR197) 2018; 40 A Karkanis (4229_CR93) 2018; 9 G Bowes (4229_CR25) 1993; 44 4229_CR189 L Yang (4229_CR209) 2007; 102 SA Petropoulos (4229_CR155) 2017; 214 G Velu (4229_CR196) 2016; 69 R Rasheed (4229_CR165) 2018; 93 I Cakmak (4229_CR35) 2008; 133 CW Jin (4229_CR87) 2009; 150 R Pandey (4229_CR144) 2015; 33 SK Dey (4229_CR46) 2017; 63 S Parvin (4229_CR149) 2019; 70 Zhong MA (4229_CR117) 2018; 28 K Nakashima (4229_CR133) 2009; 149 S Das (4229_CR45) 2011; 47 E Haque (4229_CR74) 2018; 9 M Asif (4229_CR13) 2017; 180 M Pérez-Jiménez (4229_CR150) 2017; 213 BD Duval (4229_CR51) 2012; 213 LH Dietterich (4229_CR47) 2015; 2 Y-Z Zong (4229_CR228) 2014; 13 Jie Li (4229_CR107) 2008; 8 R Rellán-Álvarez (4229_CR166) 2010; 10 M Pérez-Jiménez (4229_CR151) 2017; 161 DR Taub (4229_CR190) 2008; 50 SL Dwivedi (4229_CR52) 2018; 9 A Ershova (4229_CR55) 2011; 58 SS Myers (4229_CR129) 2014; 510 N Poursarebani (4229_CR158) 2014; 79 I Cakmak (4229_CR37) 2010; 58 M Bavorova (4229_CR19) 2018; 25 G Zocchi (4229_CR227) 2007; 58 X Zhu (4229_CR223) 2018; 181 L Barão (4229_CR16) 2019; 649 I Loladze (4229_CR111) 2002; 17 |
References_xml | – reference: TaubDRWangXWhy are Nitrogen Concentrations in Plant Tissues Lower under Elevated CO2? A Critical Examination of the HypothesesJ Integr Plant Biol200850136513741:CAS:528:DC%2BD1cXhsVyltb7M10.1111/j.1744-7909.2008.00754.x19017124 – reference: KobayashiTNishizawaNKIron Uptake, Translocation, and Regulation in Higher PlantsAnnu Rev Plant Biol2012631311521:CAS:528:DC%2BC38Xos1ams78%3D10.1146/annurev-arplant-042811-10552222404471 – reference: RustioniLGrossiDBrancadoroLFaillaOCharacterization of iron deficiency symptoms in grapevine (Vitis spp.) leaves by reflectance spectroscopyPlant Physiol Biochem20171183423471:CAS:528:DC%2BC2sXhtFart73M10.1016/j.plaphy.2017.06.03128688348 – reference: SinghSKReddyVRCo-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: mechanisms of limitations and adaptationsPhotosynth Res20181371832001:CAS:528:DC%2BC1cXjtlyhtbk%3D10.1007/s11120-018-0490-329478203 – reference: ZhangGZhangTLiuJZhangJHeCComprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO2 levels in two sea buckthorn cultivarsGene20186601201271:CAS:528:DC%2BC1cXmsF2lsrc%3D10.1016/j.gene.2018.03.05729574192 – reference: FernandoNPanozzoJTauszMNortonRMFitzgeraldGJMyersSWalkerCStangoulisJSeneweeraSWheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping systemJ Cereal Sci2012566846901:CAS:528:DC%2BC38Xht1yqu7zP10.1016/j.jcs.2012.07.010 – reference: SabirASariGZinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition in grapevines (Vitis vinifera L.)Sci Hortic201924461671:CAS:528:DC%2BC1cXhslOgs7vI10.1016/j.scienta.2018.09.035 – reference: ParvinSUddinSTausz-PoschSArmstrongRFitzgeraldGTauszMGrain mineral quality of dryland legumes as affected by elevated CO2 and drought: a FACE study on lentil (Lens culinaris) and faba bean (Vicia faba)Crop Pasture Science2019702442531:CAS:528:DC%2BC1MXls1Kltrg%3D10.1071/CP18421 – reference: BeardJLWhy iron deficiency is important in infant developmentJ Nutr2008138253425361:CAS:528:DC%2BD1cXhsVClsbrF10.1093/jn/138.12.2534190229853415871 – reference: BriatJ-FDubosCGaymardFIron nutrition, biomass production, and plant product qualityTrends Plant Sci20152033401:CAS:528:DC%2BC2cXhtlamsb%2FO10.1016/j.tplants.2014.07.00525153038 – reference: SilvaJFSilvaTREscobarIECFraizACRdos SantosJWMdo NascimentoTRdos SantosJMRSJWPde MeloRFSignorDScreening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylandsWorld J Microbiol Biotechnol2018341861:CAS:528:DC%2BC1cXisVakt7nP10.1007/s11274-018-2568-730506306 – reference: FernandoNPanozzoJTauszMNortonRFitzgeraldGSeneweeraSRising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grainFood Chem2012133130713111:CAS:528:DC%2BC38XjtF2hurk%3D10.1016/j.foodchem.2012.01.105 – reference: JinJTangCSalePThe impact of elevated carbon dioxide on the phosphorus nutrition of plants: a reviewAnn Bot-London20151169879991:CAS:528:DC%2BC1cXkt1yltbc%3D10.1093/aob/mcv088 – reference: SmethurstCFGarnettTShabalaSNutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recoveryPlant Soil200527031451:CAS:528:DC%2BD2MXks1ektr0%3D10.1007/s11104-004-1082-x – reference: GuoJZhangM-qWangX-wW-jZA possible mechanism of mineral responses to elevated atmospheric CO2 in rice grainsJ Integr Agric20151450571:CAS:528:DC%2BC2MXksF2gs7c%3D10.1016/S2095-3119(14)60846-7 – reference: HatfieldJLWalthallCLVan AlfenNKClimate Change: Cropping System Changes and AdaptationsEncyclopedia of Agriculture and Food Systems2014OxfordAcademic Press – reference: DasSBhattacharyyaPAdhyaTImpact of elevated CO 2, flooding, and temperature interaction on heterotrophic nitrogen fixation in tropical rice soilsBiol Fertil Soils20114725301:CAS:528:DC%2BC3MXisFChurs%3D10.1007/s00374-010-0496-2 – reference: PoursarebaniNNussbaumerTSimkovaHSafarJWitsenboerHvan OeverenJDolezelJMayerKFSteinNSchnurbuschTWhole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6APlant J2014793343471:CAS:528:DC%2BC2cXhtFWjtL3K10.1111/tpj.12550248130604241024 – reference: YilmazOKahramanKOzgurRUzildayBTurkanIOzturkLGrowth performance and antioxidative response in bread and durum wheat plants grown with varied potassium treatments under ambient and elevated carbon dioxideEnviron Exp Bot201713726351:CAS:528:DC%2BC2sXisVCntL8%3D10.1016/j.envexpbot.2017.01.012 – reference: PrettyJulesBentonTim G.BharuchaZareen PervezDicksLynn V.FloraCornelia ButlerGodfrayH. Charles J.GoulsonDaveHartleySueLampkinNicMorrisCarolPierzynskiGaryPrasadP. V. VaraReganoldJohnRockströmJohanSmithPeteThornePeterWrattenSteveGlobal assessment of agricultural system redesign for sustainable intensificationNature Sustainability20181844144610.1038/s41893-018-0114-0 – reference: SinghSKBadgujarGReddyVRFleisherDHBunceJACarbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cottonJ Plant Physiol20131708018131:CAS:528:DC%2BC3sXhvFaht7c%3D10.1016/j.jplph.2013.01.00123384758 – reference: ZhengHChengTLiDYaoXTianYCaoWZhuYCombining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in RiceFront Plant Sci2018993610.3389/fpls.2018.00936300344056043795 – reference: BloomAJSmartDRNguyenDTSearlesPSNitrogen assimilation and growth of wheat under elevated carbon dioxideP Natl Acad Sc200299173017351:CAS:528:DC%2BD38Xht1Cltb0%3D10.1073/pnas.022627299 – reference: AiFEisenhauerNXieYZhuJJoussetADuWYinYZhangXJiRGuoHElevated CO2 accelerates polycyclic aromatic hydrocarbon accumulation in a paddy soil grown with ricePLoS One2018131:CAS:528:DC%2BC1cXhsl2itLvM10.1371/journal.pone.0196439296890895916858 – reference: EliasDWangLJacintheP-AA meta-analysis of pesticide loss in runoff under conventional tillage and no-till managementEnviron Monit Assess2018190791:CAS:528:DC%2BC1cXovFCrsQ%3D%3D10.1007/s10661-017-6441-129330590 – reference: SarkerUObaSResponse of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water contentFood Chem201825272831:CAS:528:DC%2BC1cXhtlyjtbk%3D10.1016/j.foodchem.2018.01.09729478565 – reference: SinghShardendu K.ReddyVangimalla R.Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis, and nutrient efficiency of cottonJournal of Plant Nutrition and Soil Science201417768929021:CAS:528:DC%2BC2cXitVaktr3N10.1002/jpln.201400117 – reference: ZaghdoudCCarvajalMFerchichiAdel CarmenM-BMWater balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2Sci Total Environ20165717637711:CAS:528:DC%2BC28Xht1SgsLbF10.1016/j.scitotenv.2016.07.04827450252 – reference: DuvalBDBlankinshipJCDijkstraPHungateBARETRACTED ARTICLE:CO2 effects on plant nutrient concentration depend on plantfunctional group and available nitrogen: a meta-analysisPlant Ecol201221350552110.1007/s11258-011-9998-8 – reference: JakobsenISmithSESmithFAWatts-WilliamsSJClausenSSGrønlundMPlant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizasJ Exp Bot201667617361861:CAS:528:DC%2BC2sXht1CqsrnM10.1093/jxb/erw383278110845100028 – reference: Pérez-LópezUMiranda-ApodacaJLacuestaMMena-PetiteAMuñoz-RuedaAGrowth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinitySci Hortic201519556661:CAS:528:DC%2BC2MXhsV2gurzE10.1016/j.scienta.2015.08.034 – reference: IPCC (2018) IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. – reference: PetropoulosSALevizouENtatsiGFernandesÂPetrotosKAkoumianakisKBarrosLFerreiraICSalinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum LFood Chem20172141291361:CAS:528:DC%2BC28XhtFOksr%2FO10.1016/j.foodchem.2016.07.08027507457 – reference: Rodríguez-CelmaJLattanzioGVillarroyaDGutierrez-CarbonellECeballos-LaitaLRencoretJGutiérrezAdel RíoJCGrusakMAAbadíaAAbadíaJLópez-MillánA-FEffects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonateJ Proteome20161401121:CAS:528:DC%2BC28XlvVartro%3D10.1016/j.jprot.2016.03.017 – reference: PoorterHVan BerkelYBaxterRDen HertogJDijkstraPGiffordRMGriffinKLRoumetCRoyJWongSCThe effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 speciesPlant Cell Environ1997204724821:CAS:528:DyaK2sXjtVOgsrY%3D10.1046/j.1365-3040.1997.d01-84.x – reference: Radhapriya P, Ramachandran A, Palani P (2018) Indigenous plant growth-promoting bacteria enhance plant growth, biomass, and nutrient uptake in degraded forest plants. 3 Biotech 8: 154 https://doi.org/10.1007/s13205-018-1179-1. – reference: BavorovaMImamverdiyevNPonkinaEFarm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian SiberiaEnviron Sci Pollut R2018251016103210.1007/s11356-017-9268-y – reference: QiaoYMiaoSLiQJinJLuoXTangCElevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate regionSci Total Environ20196664054131:CAS:528:DC%2BC1MXjs1Oks7o%3D10.1016/j.scitotenv.2019.02.14930802656 – reference: MungaiLMSnappSMessinaJPChikowoRSmithAAndersERichardsonRBLiGSmallholder farms and the potential for sustainable intensificationFront Plant Sci20167172010.3389/fpls.2016.01720279094445113132 – reference: Ahmed M, Stöckle CO, Nelson R, Higgins S (2017) Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble. Front Ecol Environ 5. https://doi.org/10.3389/fevo.2017.00051 – reference: LarbiAjmiMoralesFermínAbadíaAnunciaciónAbadíaJavierChanges in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupplyJournal of Plant Physiology201016742552601:CAS:528:DC%2BC3cXktFOnsbs%3D10.1016/j.jplph.2009.09.007 – reference: SublettWBarickmanTSamsCEffects of elevated temperature and potassium on biomass and quality of dark red ‘Lollo Rosso’lettuceHortic201841110.3390/horticulturae4020011 – reference: AhujaIde VosRCBonesAMHallRDPlant molecular stress responses face climate changeTrends Plant Sci2010156646741:CAS:528:DC%2BC3cXhsVyht73I10.1016/j.tplants.2010.08.00220846898 – reference: ChenZWangBWangJPanGXiongZContrasting effects of elevated CO 2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy fieldEnviron Monit Assess20161885451:CAS:528:DC%2BC28XhsVymtr7J10.1007/s10661-016-5563-1 – reference: ZhaoX-zWangG-xShenZ-xZhangHM-qQImpact of elevated CO 2 concentration under three soil water levels on growth of Cinnamomum camphoraJ Zhejiang Univ Sci B200672832901:CAS:528:DC%2BD28XjslOjtbc%3D10.1631/jzus.2006.B0283 – reference: BrumbarovaTMatrosAMockH-PBauerPA proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FERPlant J2008543213341:CAS:528:DC%2BD1cXlsVWhs78%3D10.1111/j.1365-313X.2008.03421.x18221364 – reference: HögyPBrunnbauerMKoehlerPSchwadorfKBreuerJFranzaringJZhunusbayevaDFangmeierAGrain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichmentEnviron Exp Bot20138811181:CAS:528:DC%2BC3sXjslajsr0%3D10.1016/j.envexpbot.2011.12.007 – reference: DongJ-lLiXNazimGZ-qDInteractive effects of elevated carbon dioxide and nitrogen availability on fruit quality of cucumber (Cucumis sativus L.)J Integr Agric201817243824461:CAS:528:DC%2BC1MXmtVCgtrw%3D10.1016/S2095-3119(18)62005-2 – reference: HögyPWieserHKöhlerPSchwadorfKBreuerJFranzaringJMuntiferingRFangmeierAEffects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experimentPlant Biol20091160691:CAS:528:DC%2BC3cXlslajsrw%3D10.1111/j.1438-8677.2009.00230.x19778369 – reference: WASAKIJ.YONETANIR.KURODAS.SHINANOT.YAZAKIJ.FUJIIF.SHIMBOK.YAMAMOTOK.SAKATAK.SASAKIT.KISHIMOTON.KIKUCHIS.YAMAGISHIM.OSAKIM.Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant rootsPlant, Cell and Environment2003269151515231:CAS:528:DC%2BD3sXotFyqsr8%3D10.1046/j.1365-3040.2003.01074.x – reference: Rellán-ÁlvarezRAndaluzSRodríguez-CelmaJWohlgemuthGZocchiGÁlvarez-FernándezAFiehnOLópez-MillánAFAbadíaJChanges in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupplyBMC Plant Biol2010101151:CAS:528:DC%2BC3cXosVanu7w%3D10.1186/1471-2229-10-120 – reference: JinCWDuSTChenWWLiGXZhangYSZhengSJElevated Carbon Dioxide Improves Plant Iron Nutrition through Enhancing the Iron-Deficiency-Induced Responses under Iron-Limited Conditions in TomatoPlant Physiol20091502722801:CAS:528:DC%2BD1MXlvFahs7s%3D10.1104/pp.109.136721193295652675727 – reference: Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2009) Climate Change Impact on Agriculture and Costs of Adaptation. International Food Policy Research Institute, Washington, DC. – reference: PandeyPGeYStoergerVSchnableJCHigh throughput in vivo analysis of plant leaf chemical properties using hyperspectral imagingFront Plant Sci20178134810.3389/fpls.2017.01348288246835540889 – reference: KrężelAMaretWThe biological inorganic chemistry of zinc ionsArch Biochem Biophys20166113191:CAS:528:DC%2BC28XnslGrtLs%3D10.1016/j.abb.2016.04.010271172345120989 – reference: YuhuiWDenghuaYJunfengWYiDXinshanSEffects of elevated CO2 and drought on plant physiology, soil carbon and soil enzyme activitiesPedosphere20172784685510.1016/S1002-0160(17)60458-2 – reference: SgherriCPérez-LópezUMicaelliFMiranda-ApodacaJMena-PetiteAMuñoz-RuedaAQuartacciMFElevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettucesPlant Physiol Biochem20171152692781:CAS:528:DC%2BC2sXmtVyntLk%3D10.1016/j.plaphy.2017.04.00628411511 – reference: ZiskaLHBunceJAPredicting the impact of changing CO2 on crop yields: some thoughts on foodNew Phytol20071756076181:CAS:528:DC%2BD2sXhtVKgsLzF10.1111/j.1469-8137.2007.02180.x17688578 – reference: MyersSSSmithMRGuthSGoldenCDVaitlaBMuellerNDDangourADHuybersPClimate Change and Global Food Systems: Potential Impacts on Food Security and UndernutritionAnnu Rev Public Health20173825927710.1146/annurev-publhealth-031816-04435628125383 – reference: WeiXLiuMWangSJiangMSeed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitationFlora2018246-247192510.1016/j.flora.2018.07.001 – reference: NiuYChaiRDongHWangHTangCZhangYEffect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen formsJ Exp Bot2012643553671:CAS:528:DC%2BC38XhvV2gsbrE10.1093/jxb/ers341231832553528041 – reference: PandeyRZintaGAbdElgawadHAhmadAJainVJanssensIAPhysiological and molecular alterations in plants exposed to high [CO2] under phosphorus stressBiotechnol Adv2015333033161:CAS:528:DC%2BC2MXlsV2gsbs%3D10.1016/j.biotechadv.2015.03.01125797341 – reference: RasheedRIqbalMAshrafMAHussainIShafiqFYousafAZaheerAGlycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomatoJ Hortic Sci Biotechnol2018933853911:CAS:528:DC%2BC2sXhsFWgtb3N10.1080/14620316.2017.1373037 – reference: PalaciosCJGrandisACarvalhoVJSalatinoABuckeridgeMSIsolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seedsFood Chem20192756106171:CAS:528:DC%2BC1cXhvVamurrE10.1016/j.foodchem.2018.09.05230724240 – reference: AbadíaJavierLópez-MillánAna-FlorRombolàAdamoAbadíaAnunciaciónPlant and Soil20022411758610.1023/A:1016093317898 – reference: LoladzeIRising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?Trends Ecol Evol20021745746110.1016/S0169-5347(02)02587-9 – reference: BrobergMHögyPPleijelHCO2-induced changes in wheat grain composition: meta-analysis and response functionsAgron20177321:CAS:528:DC%2BC1cXitFGlurfM10.3390/agronomy7020032 – reference: CakmakIThe role of potassium in alleviating detrimental effects of abiotic stresses in plantsJ Plant Nutr Soil Sc20051685215301:CAS:528:DC%2BD2MXpsFCntL8%3D10.1002/jpln.200420485 – reference: KromdijkJLongSPOne crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviationP Roy Soc B-Biol Sci2016283201525781:CAS:528:DC%2BC2sXosl2qtw%3D%3D10.1098/rspb.2015.2578 – reference: MyersSSZanobettiAKloogIHuybersPLeakeyADBBloomAJCarlisleEDietterichLHFitzgeraldGHasegawaTHolbrookNMNelsonRLOttmanMJRaboyVSakaiHSartorKASchwartzJSeneweeraSTauszMUsuiYIncreasing CO2 threatens human nutritionNature20145101391421:CAS:528:DC%2BC2cXhtFygsrfE10.1038/nature13179248052314810679 – reference: DeySKChakrabartiBPrasannaRPratapDSinghSDPurakayasthaTJPathakHElevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea cropArch Agron Soil Sci201763192719371:CAS:528:DC%2BC2sXmtVGjt74%3D10.1080/03650340.2017.1315105 – reference: KumariSAgrawalMGrowth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactionsEcotox Environ Safe20141011461561:CAS:528:DC%2BC2cXitV2ltb8%3D10.1016/j.ecoenv.2013.12.021 – reference: Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: Recent advances, challenges, and future implications. Front Plant Sci, 9. https://doi.org/10.3389/fpls.2018.01361 – reference: McGrathJMLobellDBReduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrationsPlant Cell Environ2013366977051:CAS:528:DC%2BC3sXhs1ais7s%3D10.1111/pce.1200722943419 – reference: RamzaniPMAKhalidMNaveedMAhmadRShahidMIron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soilPlant Physiol Biochem20161042842931:CAS:528:DC%2BC28XnslKhuro%3D10.1016/j.plaphy.2016.04.05327179316 – reference: ZhaoXLiuSLPuCZhangXQXueJFZhangRWangYQLalRZhangHLChenFMethane and nitrous oxide emissions under no-till farming in China: a meta-analysisGlob Chang Biol2016221372138410.1111/gcb.1318526661415 – reference: Pérez-JiménezMPiñeroMCdel AmorFMHeat shock, high CO2 and nitrogen fertilization effects in pepper plants submitted to elevated temperaturesSci Hortic20192443223291:CAS:528:DC%2BC1cXhvVeqtLbO10.1016/j.scienta.2018.09.072 – reference: WuD-XWangG-XBaiY-FLiaoJ-XEffects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levelsAgric Ecosyst Environ200410449350710.1016/j.agee.2004.01.018 – reference: VicenteRMartínez-CarrascoRPérezPMorcuendeRNew insights into the impacts of elevated CO2, nitrogen, and temperature levels on the regulation of C and N metabolism in durum wheat using network analysisNew Biotechnol2018401921991:CAS:528:DC%2BC2sXhtl2gtbjE10.1016/j.nbt.2017.08.003 – reference: YangLWangYDongGGuHHuangJZhuJYangHLiuGHanYThe impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of riceField Crop Res200710212814010.1016/j.fcr.2007.03.006 – reference: YilmazOKahramanKOzturkLElevated carbon dioxide exacerbates adverse effects of Mg deficiency in durum wheatPlant Soil201741041501:CAS:528:DC%2BC28XhtFerurzF10.1007/s11104-016-2979-x – reference: RafiqMHAhmadRJabbarAMunirHHussainMWheat productivity responses in the rice-based system under different no-till techniques and nitrogen sourcesEnviron Sci Pollut R20172421797218061:CAS:528:DC%2BC2sXhtlakur%2FL10.1007/s11356-017-9813-8 – reference: MyersSSWessellsKRKloogIZanobettiASchwartzJEffect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling studyLancet Glob Health20153e639e64510.1016/S2214-109X(15)00093-5 – reference: NewtonACJohnsonSNGregoryPJImplications of climate change for diseases, crop yields and food securityEuphytica201117931810.1007/s10681-011-0359-4 – reference: SahaSChakrabortyDSehgalVKPalMPotential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.)Food Chem20151874314361:CAS:528:DC%2BC2MXnt1Wgtbw%3D10.1016/j.foodchem.2015.04.11625977047 – reference: HanXHaoXLamSKWangHLiYWheelerTJuHLinEYield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experimentAgric Ecosyst Environ20152091321371:CAS:528:DC%2BC2MXmtlenur0%3D10.1016/j.agee.2015.04.007 – reference: MAZhongFLYNNJenniferLIBRAGrantSHIZechuanElevated CO 2 Accelerates Phosphorus Depletion by Common Bean ( Phaseolus vulgaris ) in Association with Altered Leaf Biochemical PropertiesPedosphere201828342242910.1016/S1002-0160(17)60420-X – reference: IPCC (2014) IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. – reference: FanzoJDavisCMcLarenRChoufaniJThe effect of climate change across food systems: Implications for nutrition outcomesGlob Food Secur201818121910.1016/j.gfs.2018.06.001 – reference: BassuSBrissonNDurandJLBooteKLizasoJJonesJWRosenzweigCRuaneACAdamMBaronCHow do various maize crop models vary in their responses to climate change factors?Glob Chang Biol2014202301232010.1111/gcb.1252024395589 – reference: BurrittDJMeltonLShahidiFVarelisPCrop Plant Adaption to Climate Change and Extreme EnvironmentsEncyclopedia of Food Chemistry2019OxfordAcademic Press19620110.1016/B978-0-08-100596-5.22333-0 – reference: BunceJAElevated Carbon Dioxide Effects on Reproductive Phenology and Seed Yield among Soybean CultivarsCrop Sci2015553393431:CAS:528:DC%2BC2MXntFOqtg%3D%3D10.2135/cropsci2014.04.0273 – reference: López-MillánAna FlorMoralesFermı́nAbadı́aAnunciaciónAbadı́aJavierEffects of Iron Deficiency on the Composition of the Leaf Apoplastic Fluid and Xylem Sap in Sugar Beet. Implications for Iron and Carbon TransportPlant Physiology2000124287388410.1104/pp.124.2.873 – reference: OlanrewajuOSGlickBRBabalolaOOMechanisms of action of plant growth promoting bacteriaWorld J Microbiol Biotechnol2017331971:CAS:528:DC%2BC2sXhs1amu7bL10.1007/s11274-017-2364-9289866765686270 – reference: WangYHuXHouZNingJZhangZDiscrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imagingJ Sci Food Agric201898465946641:CAS:528:DC%2BC1cXntVOntrs%3D10.1002/jsfa.899629607500 – reference: ParajuliRThomaGMatlockMDEnvironmental sustainability of fruit and vegetable production supply chains in the face of climate change: A reviewSci Total Environ2018650286328791:CAS:528:DC%2BC1cXhvVyhur%2FJ10.1016/j.scitotenv.2018.10.01930373063 – reference: BunceJAContrasting responses of seed yield to elevated carbon dioxide under field conditions within Phaseolus vulgarisAgric Ecosyst Environ20081282192241:CAS:528:DC%2BD1cXhtVKlsLzE10.1016/j.agee.2008.06.003 – reference: JinJArmstrongRTangCImpact of elevated CO2 on grain nutrient concentration varies with crops and soils – A long-term FACE studySci Total Environ2019651264126471:CAS:528:DC%2BC1cXhvFKltLbF10.1016/j.scitotenv.2018.10.17030463119 – reference: ShabaniGArdakaniMChaichiMFriedelJKhavaziKEffect of Different Fertilizing Treatments on Nutrient Uptake in Annual Medic (Medicago scutellata cv. Robinson) under Irrigated and Dry Farming SystemsJ Agric Sci Technol201517299310 – reference: NeocleousDKoukounarasASiomosAVasilakakisMAssessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuceJ Food Qual201437181:CAS:528:DC%2BC2cXitFaiur4%3D10.1111/jfq.12066 – reference: KumagaiEAokiNMasuyaYShimonoHPhenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 ConcentrationPlant Physiol2015169202120291:CAS:528:DC%2BC28Xjs1Kgtrs%3D10.1104/pp.15.00980263736584634073 – reference: Ashraf MA (2012) Waterlogging stress in plants: A review. Afr J Agric Res Vol 7(13). https://doi.org/10.5897/AJARX11.084 – reference: WesselerJZilbermanDThe economic power of the Golden Rice oppositionEnviron Dev Econ20141972474210.1017/S1355770X1300065X – reference: NorisadaMMotoshigeTKojimaKTangeTEffects of phosphate supply and elevated CO2 on root acid phosphatase activity in Pinus densiflora seedlingsJ Plant Nutr Soil Sc20061692742791:CAS:528:DC%2BD28XjvFGlt7g%3D10.1002/jpln.200520558 – reference: DongJGryllsSHuntJArmstrongRDelhaizeETangCElevated CO2 (free-air CO2 enrichment) increases grain yield of aluminium-resistant but not aluminium-sensitive wheat (Triticum aestivum) grown in an acid soilAnn Bot-London201812346146810.1093/aob/mcy171 – reference: PilbeamDJBreeding crops for improved mineral nutrition under climate change conditionsJ Exp Bot201566351135211:CAS:528:DC%2BC2MXitVCqu7zJ10.1093/jxb/eru53925614661 – reference: HaqueETaniguchiHHassanMMBhowmikPKarimMRŚmiechMZhaoKRahmanMIslamTApplication of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and ChallengesFront Plant Sci2018961710.3389/fpls.2018.00617298680735952327 – reference: ZocchiGBartonLLAbadíaJMetabolic changes in iron stressed dicotiledoneus plantsIron Nutrition in Plants and Rizospheric Microorganisms2006Dordrecht, The NetherlandsSpringer – reference: Pérez-JiménezMHernández-MunueraMPiñero ZapataMCLópez-OrtegaGdel AmorFMTwo minuses can make a plus: waterlogging and elevated CO2 interactions in sweet cherry (Prunus avium) cultivarsPhysiol Plant20171612572721:CAS:528:DC%2BC2sXhtVOisrrI10.1111/ppl.1259028568609 – reference: ChaturvediAKBahugunaRNPalMShahDMauryaSJagadishKSElevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditionsField Crop Res201720614915710.1016/j.fcr.2017.02.018 – reference: Marschner H (2012) Marschner's Mineral Nutrition of Higher Plants.(Ed.): Marschner, P. Academic press. – reference: SarkerUIslamMTObaSSalinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leavesPLoS One2018131:CAS:528:DC%2BC1MXmvFagtbo%3D10.1371/journal.pone.0206388303837796211690 – reference: MadanPJagadishSCraufurdPFitzgeraldMLafargeTWheelerTEffect of elevated CO2 and high temperature on seed-set and grain quality of riceJ Exp Bot201263384338521:CAS:528:DC%2BC38XhtVShtL7M10.1093/jxb/ers077224383023388820 – reference: VeluGGuzmanCMondalSAutriqueJEHuertaJSinghRPEffect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheatJ Cereal Sci2016691821861:CAS:528:DC%2BC28XltFGltL4%3D10.1016/j.jcs.2016.03.006 – reference: HögyPFangmeierAEffects of elevated atmospheric CO2 on grain quality of wheatJ Cereal Sci2008485805911:CAS:528:DC%2BD1cXhtlagtbjK10.1016/j.jcs.2008.01.006 – reference: AnandanARajivGEswaranRPrakashMGenotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypesJ Food Sci201176H122H1301:CAS:528:DC%2BC3MXmslOhsb4%3D10.1111/j.1750-3841.2011.02135.x22417360 – reference: FAO (2017) The future of food and agriculture – Trends and challenges. Roeme. – reference: HummelMHallahanBFBrychkovaGRamirez-VillegasJGuwelaVChataikaBCurleyEMcKeownPCMorrisonLTalsmaEFBeebeSJarvisAChirwaRSpillaneCReduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in AfricaSci Rep20188161871:CAS:528:DC%2BC1MXht1Cqt7s%3D10.1038/s41598-018-33952-4303857666212502 – reference: MortensenLMEffects of elevated CO2 concentrations on growth and yield of eight vegetable species in a cool climateSci Hortic19945817718510.1016/0304-4238(94)90149-X – reference: AsifMTuncCEOzturkLChanges in yield attributes and K allocation in wheat as affected by K deficiency and elevated CO2Plant Soil20184261531621:CAS:528:DC%2BC1cXltVygtbw%3D10.1007/s11104-018-3603-z – reference: CakmakIKirkbyEARole of magnesium in carbon partitioning and alleviating photooxidative damagePhysiol Plant20081336927041:CAS:528:DC%2BD1cXps1Oit7g%3D10.1111/j.1399-3054.2007.01042.x18724409 – reference: MaYSchwenkeGSunLLi LiuDWangBYangBModeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenariosSci Total Environ2018630154415521:CAS:528:DC%2BC1cXktV2iurY%3D10.1016/j.scitotenv.2018.02.32229554771 – reference: Watts-WilliamsSJAndrew SmithFJakobsenISoil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonisationSymbiosis201977738210.1007/s13199-018-0573-0 – reference: BarrettDJRichardsonAEGiffordRMElevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorusFunct Plant Biol19982587941:CAS:528:DyaK1cXisl2qt7s%3D10.1071/PP97045 – reference: KimballBKobayashiKBindiMResponses of agricultural crops to free-air CO2 enrichment2002ADV AGRONElsevier10.1016/S0065-2113(02)77017-X – reference: HaaseSRotheAKaniaAWasakiJRömheldVEngelsCKandelerENeumannGResponses to Iron Limitation in Hordeum vulgare L. as Affected by the Atmospheric CO2 ConcentrationJ Environ Qual200837125412621:CAS:528:DC%2BD1cXmtlahurY%3D10.2134/jeq2006.013618453445 – reference: HajibolandRAhmadPPrasadMNVEffect of Micronutrient Deficiencies on Plants Stress ResponsesAbiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability2012New York, NYSpringer New York – reference: GomieroTSoil degradation, land scarcity and food security: Reviewing a complex challengeSustainability2016828110.3390/su8030281 – reference: HaaseSNeumannGKaniaAKuzyakovYRömheldVKandelerEElevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris LSoil Biol Biochem200739220822211:CAS:528:DC%2BD2sXmsFKrsr8%3D10.1016/j.soilbio.2007.03.014 – reference: KumarANayakAKDasBSPanigrahiNDasguptaPMohantySKumarUPanneerselvamPPathakHEffects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2Sci Total Environ2019650203220501:CAS:528:DC%2BC1cXhvVKlu7jF10.1016/j.scitotenv.2018.09.33230290346 – reference: YuJingjinDuHongmeiXuMingHuangBingruMetabolic Responses to Heat Stress under Elevated Atmospheric CO2 Concentration in a Cool-season Grass SpeciesJournal of the American Society for Horticultural Science201213742212281:CAS:528:DC%2BC38Xhtlehtb3L10.21273/JASHS.137.4.221 – reference: SaeedMDahabAAWangzhenGTianzhenZA cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plantsOmics2012161881991:CAS:528:DC%2BC38XltVKhsbo%3D10.1089/omi.2011.010922433075 – reference: PangJZhuJ-GXieZ-BLiuGZhangY-LChenG-PZengQChengLA new explanation of the N concentration decrease in tissues of rice (Oryza sativa L.) exposed to elevated atmospheric CO2Environ Exp Bot200657981051:CAS:528:DC%2BD28XkslSks7Y%3D10.1016/j.envexpbot.2005.04.004 – reference: AbbasSSharmilaPUpretyDSaradhiPEffects of elevated CO2 on soil physicochemical characteristics under Free Air CO2 Enrichment (FACE) technologyIOP Conference Series: Earth and Environmental Science2009629204510.1088/1755-1307/6/29/292045 – reference: AsifMYilmazOOzturkLElevated carbon dioxide ameliorates the effect of Zn deficiency and terminal drought on wheat grain yield but compromises nutritional qualityPlant Soil201741157671:CAS:528:DC%2BC28Xht1Krt73P10.1007/s11104-016-2996-9 – reference: ZocchiGDe NisiPDell'OrtoMEspenLGallinaPMIron deficiency differently affects metabolic responses in soybean rootsJ Exp Bot200758599310001:CAS:528:DC%2BD2sXktlWjs7o%3D10.1093/jxb/erl25917229758 – reference: DaryantoSWangLJacinthePAMeta-analysis of phosphorus loss from no-till soilsJ Environ Qual201746102810371:CAS:528:DC%2BC1cXitFWjt74%3D10.2134/jeq2017.03.012128991965 – reference: EliaAConversaGA decision support system (GesCoN) for managing fertigation in open field vegetable crops. Part I—methodological approach and description of the softwareFront Plant Sci2015631910.3389/fpls.2015.00319260421284438600 – reference: NakashimaKItoYYamaguchi-ShinozakiKTranscriptional regulatory networks in response to abiotic stresses in Arabidopsis and grassesPlant Physiol200914988951:CAS:528:DC%2BD1MXjt1WqsLs%3D10.1104/pp.108.129791191266992613698 – reference: MedekDESchwartzJMyersSSEstimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and RegionEnviron Health Perspect20171251:CAS:528:DC%2BC1MXlsFOisb8%3D10.1289/ehp41288859775783645 – reference: WangALamSKHaoXLiFYZongYWangHLiPElevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max (L.) Merr.) cultivar by increasing water use efficiencyPlant Physiol Biochem20181326606651:CAS:528:DC%2BC1cXhvFKksbrI10.1016/j.plaphy.2018.10.01630347376 – reference: Tarekegne A, Bennie A, Labuschagne M (2000) Effects of soil waterlogging on the concentration and uptake of selected nutrients in wheat genotypes differing in tolerance. The eleventh regional wheat workshop for eastern, central and southern Africa, Addis Abeba, Ethiopia, Addis Ababa. – reference: MurgiaIArosioPTarantinoDSoaveCBiofortification for combating 'hidden hunger' for ironTrends Plant Sci20121747551:CAS:528:DC%2BC38XptVSnsA%3D%3D10.1016/j.tplants.2011.10.00322093370 – reference: O'MaraFPThe role of grasslands in food security and climate changeAnn Bot2012110126312701:STN:280:DC%2BC38bptlClsQ%3D%3D10.1093/aob/mcs209230022703478061 – reference: AinsworthEARogersANelsonRLongSPTesting the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine maxAgric For Meteorol2004122859410.1016/j.agrformet.2003.09.002 – reference: WijewardanaChathurikaReddyK. RajaBellalouiNacerSoybean seed physiology, quality, and chemical composition under soil moisture stressFood Chemistry2019278921001:CAS:528:DC%2BC1cXit1Whs7jP10.1016/j.foodchem.2018.11.035 – reference: LoboCBTomásMSJViruelEFerreroMALuccaMEDevelopment of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologiesMicrobiol Res201821912251:CAS:528:DC%2BC1cXitFOisL7P10.1016/j.micres.2018.10.01230642462 – reference: López-MillánAna FlorMoralesFermínGogorcenaYolandaAbadíaAnunciaciónAbadíaJavierMetabolic responses in iron deficient tomato plantsJournal of Plant Physiology2009166437538410.1016/j.jplph.2008.06.011 – reference: NezhadahmadiArashProdhanZakaria HossainFaruqGolamDrought Tolerance in WheatThe Scientific World Journal2013201311210.1155/2013/610721 – reference: AsifMYilmazOOzturkLPotassium deficiency impedes elevated carbon dioxide-induced biomass enhancement in well watered or drought-stressed bread wheatJ Plant Nutr Soil Sc20171804744811:CAS:528:DC%2BC2sXhtFaqtb%2FP10.1002/jpln.201600616 – reference: SicherRCBarnabyJYImpact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stressPhysiol Plant20121442382531:CAS:528:DC%2BC38Xjt12gt7c%3D10.1111/j.1399-3054.2011.01555.x22150442 – reference: Bencke-MalatoMDe SouzaAPRibeiro-AlvesMSchmitzJFBuckeridgeMSAlves-FerreiraMShort-term responses of soybean roots to individual and combinatorial effects of elevated [CO2] and water deficitPlant Sci20192802832961:CAS:528:DC%2BC1MXktFeqsw%3D%3D10.1016/j.plantsci.2018.12.02130824006 – reference: NieMBellCWallensteinMDPendallEIncreased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2Sci Rep2015592121:CAS:528:DC%2BC2MXhtFKkur7J10.1038/srep09212257846474363858 – reference: ScagelCFLeeJMitchellJNSalinity from NaCl changes the nutrient and polyphenolic composition of basil leavesInd Crop Prod20191271191281:CAS:528:DC%2BC1cXitVCkurvK10.1016/j.indcrop.2018.10.048 – reference: Grusak MA (2001) Plant Macro- and Micronutrient Minerals. eLS In: Encyclopedia of Life Sciences. Nature Publishing Group, London. – reference: PangJRyanMHLambersHSiddiqueKHPhosphorus acquisition and utilisation in crop legumes under global changeCurr Opin Plant Biol2018452482541:CAS:528:DC%2BC1cXhtVeit7%2FL10.1016/j.pbi.2018.05.01229853281 – reference: ZhuHLiuHXuYGuijunYUAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheatAppl Opt201857772277321:CAS:528:DC%2BC1cXisVejtbjL10.1364/AO.57.00772230462034 – reference: TaniEAbrahamEChachalisDTravlosIMolecular, genetic and agronomic approaches to utilizing pulses as cover crops and green manure into cropping systemsInt J Mol Sci20171812021:CAS:528:DC%2BC1cXhvFOjtrzE10.3390/ijms180612025486025 – reference: Bellaloui N, Hu Y, Mengistu A, Abbas HK, Kassem MA, Tigabu M (2016) Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments. Atlas J Plant Biol: 56-65 https://doi.org/10.5147/ajpb.2016.0157. – reference: Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X (2018b) Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. FRONT PLANT SCI 9. https://doi.org/10.3389/fpls.2018.01413 – reference: FernandoNPanozzoJTauszMNortonRMFitzgeraldGJMyersSNicolasMESeneweeraSIntra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatmentsJ Cereal Sci2014591371441:CAS:528:DC%2BC2cXhsVyntr4%3D10.1016/j.jcs.2013.12.002 – reference: HuYBurucsZvon TucherSSchmidhalterUShort-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlingsEnviron Exp Bot2007602682751:CAS:528:DC%2BD2sXislWgtLo%3D10.1016/j.envexpbot.2006.11.003 – reference: LawsonJRFryirsKALeishmanMRInteractive effects of waterlogging and atmospheric CO2 concentration on gas exchange, growth and functional traits of Australian riparian tree seedlingsEcohydrology2017101:CAS:528:DC%2BC2sXmtlOis74%3D10.1002/eco.1803 – reference: AinsworthEALongSPWhat have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2New Phytol200516535137210.1111/j.1469-8137.2004.01224.x15720649 – reference: GodfrayHCJBeddingtonJRCruteIRHaddadLLawrenceDMuirJFPrettyJRobinsonSThomasSMToulminCFood Security: The Challenge of Feeding 9 Billion PeopleScience20103278128181:CAS:528:DC%2BC3cXhslWisLo%3D10.1126/science.118538320110467 – reference: GraySBBradySMPlant developmental responses to climate changeDev Biol201641964771:CAS:528:DC%2BC28Xhtlyjtb%2FN10.1016/j.ydbio.2016.07.02327521050 – reference: LudewigFSonnewaldUHigh CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulationFEBS Lett200047919241:CAS:528:DC%2BD3cXlsFCit7g%3D10.1016/S0014-5793(00)01873-110940381 – reference: FengG-QLiYChengZ-MPlant Molecular and Genomic Responses to Stresses in Projected Future CO2 EnvironmentCrit Rev Plant Sci2014332382491:CAS:528:DC%2BC2cXkt1aiu7w%3D10.1080/07352689.2014.870421 – reference: MannersRvan EttenJAre agricultural researchers working on the right crops to enable food and nutrition security under future climates?Glob Environ Chang20185318219410.1016/j.gloenvcha.2018.09.010 – reference: CarvalhoSMPVasconcelosMWProducing more with less: Strategies and novel technologies for plant-based food biofortificationFood Res Int2013549619711:CAS:528:DC%2BC3sXovFWruw%3D%3D10.1016/j.foodres.2012.12.021 – reference: FischerSHilgerTPiephoH-PJordanICadischGDo we need more drought for better nutrition? The effect of precipitation on nutrient concentration in East African food cropsSci Total Environ20196584054151:CAS:528:DC%2BC1cXisFOkt7jP10.1016/j.scitotenv.2018.12.18130579198 – reference: VuJCAllenLHJStem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperatureJ Plant Physiol2009166114111511:CAS:528:DC%2BD1MXosFelsL8%3D10.1016/j.jplph.2009.01.00319217687 – reference: HeJWangJHeDDongJWangYThe design and implementation of an integrated optimal fertilization decision support systemMath Comput Model2011541167117410.1016/j.mcm.2010.11.050 – reference: Nakandalage N, Seneweera S (2018) Chapter 12 - Micronutrients Use Efficiency of Crop-Plants Under Changing Climate. In: Hossain MA, Kamiya T, Burritt DJ, Phan Tran L-S, Fujiwara T (eds) Plant Micronutrient Use Efficiency. Academic Press – reference: ErshovaAPopovaNBerdnikovaOProduction of reactive oxygen species and antioxidant enzymes of pea and soybean plants under hypoxia and high CO 2 concentration in mediumRuss J Plant Physl2011589821:CAS:528:DC%2BC3MXht12qsrfE10.1134/S1021443711050074 – reference: Dong J, Gruda N, Lam SK, Li X, Duan Z (2018b) Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00924 – reference: BroadleyMBrownPCakmakIRengelZZhaoFFunction of nutrients: micronutrientsMarschner’s mineral nutrition of higher plants2012London ppElsevier Ltd19124810.1016/B978-0-12-384905-2.00007-8 – reference: ShahbazMAshrafMImproving salinity tolerance in cerealsCrit Rev Plant Sci20133223724910.1080/07352689.2013.758544 – reference: XueYXiaHChristiePZhangZLiLTangCCrop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical reviewAnn Bot-London20161173633771:CAS:528:DC%2BC1cXlvV2hs70%3D10.1093/aob/mcv182 – reference: ZhuXSongFLiuSLiuFLiXArbuscular mycorrhiza enhances nutrient accumulation in wheat exposed to elevated CO2 and soil salinityJ Plant Nutr Soil Sc20181818368461:CAS:528:DC%2BC1cXhslSrsL%2FE10.1002/jpln.201700575 – reference: ZiervogelGinaEricksenPolly J.Adapting to climate change to sustain food securityWiley Interdisciplinary Reviews: Climate Change201014525540 – reference: RobinAVansuytGHinsingerPMeyerJMBriatJFLemanceauPChapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and Nutrition2008ADV AGRONAcademic Press10.1016/S0065-2113(08)00404-5 – reference: KananiHDuttaBKlapaMIIndividual vs. combinatorial effect of elevated CO 2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecuelar response using time-series transcriptomic and metabolomic analysesBMC Syst Biol201041771:CAS:528:DC%2BC3MXlvVSgug%3D%3D10.1186/1752-0509-4-177211905703027597 – reference: ArenqueBCGrandisAPociusOde SouzaAPBuckeridgeMSResponses of Senna reticulata, a legume tree from the Amazonian floodplains, to elevated atmospheric CO2 concentration and waterloggingTrees201428102110341:CAS:528:DC%2BC2cXmsFamsrw%3D10.1007/s00468-014-1015-0 – reference: Vasconcelos M, Clemente T, Grusak M (2014) Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L). Front Plant Sci 5 https://doi.org/10.3389/fpls.2014.00112. – reference: KöhlerIHHuberSCBernacchiCJBaxterIRIncreased temperatures may safeguard the nutritional quality of crops under future elevated CO2 concentrationsPlant J2018978728861:CAS:528:DC%2BC1MXht12lsLw%3D10.1111/tpj.14166 – reference: GroverMMaheswariMDesaiSGopinathKAVenkateswarluBElevated CO2: Plant associated microorganisms and carbon sequestrationAppl Soil Ecol201595738510.1016/j.apsoil.2015.05.006 – reference: ZengNYangZZhangZHuLChenLComparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (Medicago sativa) Response to Waterlogging StressInt J Mol Sci201920135910.3390/ijms200613596471898 – reference: ThomasJMGBooteKJAllenLHGallo-MeagherMDavisJMElevated Temperature and Carbon Dioxide Effects on Soybean Seed Composition and Transcript AbundanceCrop Sci2003431548155710.2135/cropsci2003.1548 – reference: LenssenGMvan DuinWEJakPRozemaJThe response of Aster tripolium and Puccinellia maritima to atmospheric carbon dioxide enrichment and their interactions with flooding and salinityAquat Bot19955018119210.1016/0304-3770(95)00453-7 – reference: ChengLBookerFLTuCBurkeyKOZhouLShewHDRuftyTWHuSArbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2Science2012337108410871:CAS:528:DC%2BC38Xht1GrsbfL10.1126/science.122430422936776 – reference: ChrysargyrisAPapakyriakouEPetropoulosSATzortzakisNThe combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plantsJ Hazard Mater20193685845931:CAS:528:DC%2BC1MXitlGgsLY%3D10.1016/j.jhazmat.2019.01.05830716568 – reference: KazemiSEshghizadehHRZahediMResponses of Four Rice Varieties to Elevated CO2 and Different Salinity LevelsRice Sci20182514215110.1016/j.rsci.2018.04.002 – reference: LiJieWuXu-DongHaoShan-TingWangXiu-JieLingHong-QingProteomic response to iron deficiency in tomato rootPROTEOMICS2008811229923111:CAS:528:DC%2BD1cXotVeitbg%3D10.1002/pmic.200700942 – reference: CakmakIKalayciMKayaYTorunAAydinNWangYArisoyZErdemHYaziciAGokmenOBiofortification and localization of zinc in wheat grainJ Agric Food Chem201058909291021:CAS:528:DC%2BC3cXptlWgt7w%3D10.1021/jf101197h23654236 – reference: AbdelgawadHFarfan-VignoloERVosDAsardHElevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumesPlant Sci20152311101:CAS:528:DC%2BC2cXitVWku73L10.1016/j.plantsci.2014.11.00125575986 – reference: JablonskiLMWangXCurtisPSPlant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild speciesNew Phytol200215692610.1046/j.1469-8137.2002.00494.x – reference: CakmakIKutmanUBAgronomic biofortification of cereals with zinc: a reviewEur J Soil Sci20186917218010.1111/ejss.12437 – reference: LiMLiYZhangWLiSGaoYAiXZhangDLiuBLiQMetabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leavesAnal Biochem201855971851:CAS:528:DC%2BC1cXhs1eitLrM10.1016/j.ab.2018.08.02030149025 – reference: AsifMTuncCEYaziciMATutusYRehmanRRehmanAOzturkLEffect of predicted climate change on growth and yield performance of wheat under varied nitrogen and zinc supplyPlant Soil20194342312441:CAS:528:DC%2BC1cXhslSnt7bN10.1007/s11104-018-3808-1 – reference: ZaghdoudCMota-CadenasCCarvajalMMuriesBFerchichiAMartínez-BallestaMCElevated CO2 alleviates negative effects of salinity on broccoli (Brassica oleracea L. var Italica) plants by modulating water balance through aquaporins abundanceEnviron Exp Bot20139515241:CAS:528:DC%2BC3sXhsV2murrF10.1016/j.envexpbot.2013.07.003 – reference: PetrettoGiacomo LuigiUrgeghePietro PaoloMassaDanieleMelitoSaraEffect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypesPlant Physiology and Biochemistry201914130391:CAS:528:DC%2BC1MXhtVWksLjP10.1016/j.plaphy.2019.05.012 – reference: PriorJConnonIMcIntyreEAdamsJCaponTKentJRisselCThomasLThompsonSWestcottHBuilt environment interventions for human and planetary health: integrating health in climate change adaption and mitigationPublic Health Res Pract2018284e284183110.17061/phrp2841831 – reference: WissuwaMGamatGIsmailAMIs root growth under phosphorus deficiency affected by source or sink limitations?J Exp Bot200556194319501:CAS:528:DC%2BD2MXpvFKntb0%3D10.1093/jxb/eri18915911558 – reference: BowesGFacing the inevitable: plants and increasing atmospheric CO2Annu Rev Plant Physiol1993443093321:CAS:528:DyaK3sXlsFKisbs%3D10.1146/annurev.pp.44.060193.001521 – reference: LoladzeIHidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutritionElife20143e02245e022451:CAS:528:DC%2BC2cXhs1SmtLbI10.7554/eLife.02245248676394034684 – reference: Da GeTSuiFGSaNSunNBHaXTongCLDifferential responses of yield and selected nutritional compositions to drought stress in summer maize grainsJ Plant Nutr201033181118181:CAS:528:DC%2BC3cXhtVCnt7fI10.1080/01904167.2010.503829 – reference: ToretiABassuSCeglarAZampieriMFerrantiPBerryEMAndersonJRClimate Change and Crop YieldsEncyclopedia of Food Security and Sustainability2019OxfordElsevier – reference: BouisHESaltzmanAImproving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016Glob Food Sec201712495810.1016/j.gfs.2017.01.009285802395439484 – reference: DwivediSLSiddiqueKHFarooqMThorntonPKOrtizRUsing Biotechnology-Led Approaches to Uplift Cereal and Food Legume Yields in Dryland EnvironmentsFront Plant Sci20189124910.3389/fpls.2018.01249302105196120061 – reference: ShimonoHKonnoTSakaiHSameshimaRInteractive Effects of Elevated Atmospheric CO2 and Waterlogging on Vegetative Growth of Soybean (Glycine max (L.) Merr.)Plant Prod Sci2012152382451:CAS:528:DC%2BC38Xht1GisLvE10.1626/pps.15.238 – reference: BarãoLAlaouiAFerreiraCBaschGSchwilchGGeissenVSukkelWLemesleJGarcia-OrenesFMorugán-CoronadoAAssessment of promising agricultural management practicesSci Total Environ20196496106191:CAS:528:DC%2BC1cXhs1ektL3E10.1016/j.scitotenv.2018.08.25730176472 – reference: JinJLauricellaDArmstrongRSalePTangCPhosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisolAnn Bot-London20141169759851:CAS:528:DC%2BC1cXkt1yksr8%3D10.1093/aob/mcu209 – reference: KaplanFZhaoWRichardsJTWheelerRMGuyCLLevineLHTranscriptional and metabolic insights into the differential physiological responses of Arabidopsis to optimal and supraoptimal atmospheric CO2PLoS One201271:CAS:528:DC%2BC38Xht1Ggu7nE10.1371/journal.pone.0043583229162803423350 – reference: HashiguchiAAhsanNKomatsuSProteomics application of crops in the context of climatic changesFood Res Int201043180318131:CAS:528:DC%2BC3cXhtFCkt7vK10.1016/j.foodres.2009.07.033 – reference: ThimmOEssigmannBKloskaSAltmannTBuckhoutTJResponse of Arabidopsis to Iron Deficiency Stress as Revealed by Microarray AnalysisPlant Physiol2001127103010431:CAS:528:DC%2BD3MXos1Kms7g%3D10.1104/pp.01019111706184129273 – reference: YuJSunLFanNYangZHuangBPhysiological factors involved in positive effects of elevated carbon dioxide concentration on Bermudagrass tolerance to salinity stressEnviron Exp Bot201511520271:CAS:528:DC%2BC2MXisF2rsrs%3D10.1016/j.envexpbot.2015.02.003 – reference: BurgessPHuangBRoot protein metabolism in association with improved root growth and drought tolerance by elevated carbon dioxide in creeping bentgrassField Crop Res2014165809110.1016/j.fcr.2014.05.003 – reference: SteffensD.HütschB.W.EschholzT.LošákT.SchubertS.Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicityPlant, Soil and Environment201151No. 1254555210.17221/3630-PSE – reference: KarkanisANtatsiGNLepseLFernándezJAVågenIMRewaldBAlsiņaIKronbergaABalliuAOlleMFaba bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systemsFront Plant Sci20189111510.3389/fpls.2018.01115301162516083270 – reference: Pérez-JiménezMHernández-MunueraMPiñeroMCLópez-OrtegaGdel AmorFMCO2 effects on the waterlogging response of ‘Gisela 5’ and ‘Gisela 6’ (Prunus cerasusxPrunus canescens) sweet cherry (Prunus avium) rootstocksJ Plant Physiol20172131781871:CAS:528:DC%2BC2sXlvVOhs7w%3D10.1016/j.jplph.2017.03.01128407490 – reference: MitterbauerEEndersMBenderJErbsMHabekußAKilianBOrdonFWeigelH-JGrowth response of 98 barley (Hordeum vulgare L.) genotypes to elevated CO2 and identification of related quantitative trait loci using genome-wide association studiesPlant Breed20171364834971:CAS:528:DC%2BC2sXhtlWnsrfF10.1111/pbr.12501 – reference: VasconcelosMWGruissemWBhullarNKIron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutritionCurr Opin Biotechnol2017448151:CAS:528:DC%2BC28XhslSit7rP10.1016/j.copbio.2016.10.00127780080 – reference: ZongY-ZShangguanZ-PNitrogen Deficiency Limited the Improvement of Photosynthesis in Maize by Elevated CO2 Under DroughtJ Integr Agric20141373811:CAS:528:DC%2BC2MXhtF2jtbk%3D10.1016/S2095-3119(13)60349-4 – reference: LongSPAinsworthEARogersAOrtDRRising atmospheric carbon dioxide: plants FACE the futureAnnu Rev Plant Biol2004555916281:CAS:528:DC%2BD2cXlvFeisb8%3D10.1146/annurev.arplant.55.031903.14161015377233 – reference: LalRReicoskyDHansonJEvolution of the plow over 10,000 years and the rationale for no-till farmingSoil Tillage Res20079311210.1016/j.still.2006.11.004 – reference: DietterichLHZanobettiAKloogIHuybersPLeakeyADBBloomAJCarlisleEFernandoNFitzgeraldGHasegawaTHolbrookNMNelsonRLNortonROttmanMJRaboyVSakaiHSartorKASchwartzJSeneweeraSUsuiYYoshinagaSMyersSSImpacts of elevated atmospheric CO2 on nutrient content of important food cropsScientific Data201521500361:CAS:528:DC%2BC2MXhtlKlt7jJ10.1038/sdata.2015.36262174904508823 – reference: Haddad LJ, Hawkes C, Achadi E, Ahuja A, Ag Bendech M, Bhatia K, Bhutta Z, Blossner M, Borghi E, Eriksen K (2015) Global Nutrition Report 2015: Actions and accountability to advance nutrition and sustainable development. Intl Food Policy Res Inst. – volume: 213 start-page: 505 year: 2012 ident: 4229_CR51 publication-title: Plant Ecol doi: 10.1007/s11258-011-9998-8 – ident: 4229_CR132 doi: 10.1016/B978-0-12-812104-7.00015-0 – volume: 122 start-page: 85 year: 2004 ident: 4229_CR8 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2003.09.002 – volume: 411 start-page: 57 year: 2017 ident: 4229_CR12 publication-title: Plant Soil doi: 10.1007/s11104-016-2996-9 – volume: 58 start-page: 993 issue: 5 year: 2007 ident: 4229_CR227 publication-title: J Exp Bot doi: 10.1093/jxb/erl259 – volume: 133 start-page: 1307 year: 2012 ident: 4229_CR59 publication-title: Food Chem doi: 10.1016/j.foodchem.2012.01.105 – volume: 283 start-page: 20152578 year: 2016 ident: 4229_CR99 publication-title: P Roy Soc B-Biol Sci doi: 10.1098/rspb.2015.2578 – volume: 188 start-page: 545 year: 2016 ident: 4229_CR40 publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5563-1 – volume: 32 start-page: 237 year: 2013 ident: 4229_CR178 publication-title: Crit Rev Plant Sci doi: 10.1080/07352689.2013.758544 – volume: 410 start-page: 41 year: 2017 ident: 4229_CR211 publication-title: Plant Soil doi: 10.1007/s11104-016-2979-x – volume: 510 start-page: 139 year: 2014 ident: 4229_CR129 publication-title: Nature doi: 10.1038/nature13179 – volume: 1 start-page: 441 issue: 8 year: 2018 ident: 4229_CR159 publication-title: Nature Sustainability doi: 10.1038/s41893-018-0114-0 – volume: 25 start-page: 87 year: 1998 ident: 4229_CR17 publication-title: Funct Plant Biol doi: 10.1071/PP97045 – volume: 93 start-page: 1 year: 2007 ident: 4229_CR103 publication-title: Soil Tillage Res doi: 10.1016/j.still.2006.11.004 – volume: 133 start-page: 692 year: 2008 ident: 4229_CR35 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2007.01042.x – volume: 150 start-page: 272 year: 2009 ident: 4229_CR87 publication-title: Plant Physiol doi: 10.1104/pp.109.136721 – volume: 246-247 start-page: 19 year: 2018 ident: 4229_CR203 publication-title: Flora doi: 10.1016/j.flora.2018.07.001 – volume: 658 start-page: 405 year: 2019 ident: 4229_CR62 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.181 – volume: 43 start-page: 1803 year: 2010 ident: 4229_CR75 publication-title: Food Res Int doi: 10.1016/j.foodres.2009.07.033 – volume: 69 start-page: 172 year: 2018 ident: 4229_CR36 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12437 – volume: 28 start-page: 1021 year: 2014 ident: 4229_CR10 publication-title: Trees doi: 10.1007/s00468-014-1015-0 – volume: 69 start-page: 182 year: 2016 ident: 4229_CR196 publication-title: J Cereal Sci doi: 10.1016/j.jcs.2016.03.006 – volume: 161 start-page: 257 year: 2017 ident: 4229_CR151 publication-title: Physiol Plant doi: 10.1111/ppl.12590 – volume: 44 start-page: 8 year: 2017 ident: 4229_CR195 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.10.001 – ident: 4229_CR84 – volume: 175 start-page: 607 year: 2007 ident: 4229_CR225 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02180.x – volume: 15 start-page: 238 year: 2012 ident: 4229_CR179 publication-title: Plant Prod Sci doi: 10.1626/pps.15.238 – volume: 20 start-page: 33 year: 2015 ident: 4229_CR26 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2014.07.005 – volume: 50 start-page: 181 year: 1995 ident: 4229_CR106 publication-title: Aquat Bot doi: 10.1016/0304-3770(95)00453-7 – volume: 166 start-page: 375 issue: 4 year: 2009 ident: 4229_CR115 publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2008.06.011 – volume: 33 start-page: 238 year: 2014 ident: 4229_CR58 publication-title: Crit Rev Plant Sci doi: 10.1080/07352689.2014.870421 – start-page: 191 volume-title: Marschner’s mineral nutrition of higher plants year: 2012 ident: 4229_CR27 doi: 10.1016/B978-0-12-384905-2.00007-8 – volume: 149 start-page: 88 year: 2009 ident: 4229_CR133 publication-title: Plant Physiol doi: 10.1104/pp.108.129791 – volume: 93 start-page: 385 year: 2018 ident: 4229_CR165 publication-title: J Hortic Sci Biotechnol doi: 10.1080/14620316.2017.1373037 – volume: 20 start-page: 2301 year: 2014 ident: 4229_CR18 publication-title: Glob Chang Biol doi: 10.1111/gcb.12520 – volume-title: Iron Nutrition in Plants and Rizospheric Microorganisms year: 2006 ident: 4229_CR226 – ident: 4229_CR83 – ident: 4229_CR124 doi: 10.3389/fpls.2018.01361 – volume: 327 start-page: 812 year: 2010 ident: 4229_CR63 publication-title: Science doi: 10.1126/science.1185383 – volume: 10 start-page: 1 year: 2010 ident: 4229_CR166 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-10-120 – volume: 44 start-page: 309 year: 1993 ident: 4229_CR25 publication-title: Annu Rev Plant Physiol doi: 10.1146/annurev.pp.44.060193.001521 – volume: 7 start-page: 1720 year: 2016 ident: 4229_CR127 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01720 – volume: 27 start-page: 846 year: 2017 ident: 4229_CR214 publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60458-2 – volume: 16 start-page: 188 year: 2012 ident: 4229_CR171 publication-title: Omics doi: 10.1089/omi.2011.0109 – volume: 20 start-page: 472 year: 1997 ident: 4229_CR157 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1997.d01-84.x – volume: 278 start-page: 92 year: 2019 ident: 4229_CR205 publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.11.035 – volume: 128 start-page: 219 year: 2008 ident: 4229_CR30 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2008.06.003 – volume: 66 start-page: 3511 year: 2015 ident: 4229_CR156 publication-title: J Exp Bot doi: 10.1093/jxb/eru539 – volume: 479 start-page: 19 year: 2000 ident: 4229_CR116 publication-title: FEBS Lett doi: 10.1016/S0014-5793(00)01873-1 – volume: 140 start-page: 1 year: 2016 ident: 4229_CR168 publication-title: J Proteome doi: 10.1016/j.jprot.2016.03.017 – volume: 25 start-page: 142 year: 2018 ident: 4229_CR94 publication-title: Rice Sci doi: 10.1016/j.rsci.2018.04.002 – volume: 99 start-page: 1730 year: 2002 ident: 4229_CR23 publication-title: P Natl Acad Sc doi: 10.1073/pnas.022627299 – volume: 2 start-page: 150036 year: 2015 ident: 4229_CR47 publication-title: Scientific Data doi: 10.1038/sdata.2015.36 – ident: 4229_CR4 doi: 10.3389/fevo.2017.00051 – volume: 115 start-page: 269 year: 2017 ident: 4229_CR176 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.04.006 – volume: 168 start-page: 521 year: 2005 ident: 4229_CR34 publication-title: J Plant Nutr Soil Sc doi: 10.1002/jpln.200420485 – volume: 8 start-page: 1348 year: 2017 ident: 4229_CR145 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01348 – volume: 76 start-page: H122 year: 2011 ident: 4229_CR9 publication-title: J Food Sci doi: 10.1111/j.1750-3841.2011.02135.x – volume: 630 start-page: 1544 year: 2018 ident: 4229_CR118 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.02.322 – volume: 170 start-page: 801 year: 2013 ident: 4229_CR184 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2013.01.001 – volume: 9 start-page: 1115 year: 2018 ident: 4229_CR93 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01115 – volume: 169 start-page: 2021 year: 2015 ident: 4229_CR100 publication-title: Plant Physiol doi: 10.1104/pp.15.00980 – volume: 650 start-page: 2032 year: 2019 ident: 4229_CR101 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.332 – volume-title: Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability year: 2012 ident: 4229_CR72 – volume: 104 start-page: 284 year: 2016 ident: 4229_CR164 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.04.053 – volume: 58 start-page: 9092 year: 2010 ident: 4229_CR37 publication-title: J Agric Food Chem doi: 10.1021/jf101197h – volume: 33 start-page: 303 year: 2015 ident: 4229_CR144 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2015.03.011 – volume: 101 start-page: 146 year: 2014 ident: 4229_CR102 publication-title: Ecotox Environ Safe doi: 10.1016/j.ecoenv.2013.12.021 – volume: 180 start-page: 474 year: 2017 ident: 4229_CR13 publication-title: J Plant Nutr Soil Sc doi: 10.1002/jpln.201600616 – volume: 231 start-page: 1 year: 2015 ident: 4229_CR3 publication-title: Plant Sci doi: 10.1016/j.plantsci.2014.11.001 – volume: 244 start-page: 322 year: 2019 ident: 4229_CR152 publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.09.072 – volume: 177 start-page: 892 issue: 6 year: 2014 ident: 4229_CR182 publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.201400117 – volume: 115 start-page: 20 year: 2015 ident: 4229_CR213 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2015.02.003 – volume: 17 start-page: 47 year: 2012 ident: 4229_CR128 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2011.10.003 – volume: 17 start-page: 457 year: 2002 ident: 4229_CR111 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(02)02587-9 – volume: 63 start-page: 1927 year: 2017 ident: 4229_CR46 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2017.1315105 – volume: 67 start-page: 6173 year: 2016 ident: 4229_CR86 publication-title: J Exp Bot doi: 10.1093/jxb/erw383 – volume: 40 start-page: 192 year: 2018 ident: 4229_CR197 publication-title: New Biotechnol doi: 10.1016/j.nbt.2017.08.003 – volume: 19 start-page: 724 year: 2014 ident: 4229_CR204 publication-title: Environ Dev Econ doi: 10.1017/S1355770X1300065X – volume: 17 start-page: 2438 year: 2018 ident: 4229_CR48 publication-title: J Integr Agric doi: 10.1016/S2095-3119(18)62005-2 – ident: 4229_CR189 – ident: 4229_CR67 doi: 10.1038/npg.els.0001306 – volume: 37 start-page: 1 year: 2014 ident: 4229_CR135 publication-title: J Food Qual doi: 10.1111/jfq.12066 – volume: 63 start-page: 3843 year: 2012 ident: 4229_CR119 publication-title: J Exp Bot doi: 10.1093/jxb/ers077 – volume-title: Encyclopedia of Food Security and Sustainability year: 2019 ident: 4229_CR193 – volume: 4 start-page: 177 year: 2010 ident: 4229_CR91 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-177 – volume: 179 start-page: 3 year: 2011 ident: 4229_CR136 publication-title: Euphytica doi: 10.1007/s10681-011-0359-4 – volume: 58 start-page: 982 year: 2011 ident: 4229_CR55 publication-title: Russ J Plant Physl doi: 10.1134/S1021443711050074 – volume: 138 start-page: 2534 year: 2008 ident: 4229_CR20 publication-title: J Nutr doi: 10.1093/jn/138.12.2534 – volume: 117 start-page: 363 year: 2016 ident: 4229_CR208 publication-title: Ann Bot-London doi: 10.1093/aob/mcv182 – volume: 46 start-page: 1028 year: 2017 ident: 4229_CR44 publication-title: J Environ Qual doi: 10.2134/jeq2017.03.0121 – volume: 97 start-page: 872 year: 2018 ident: 4229_CR97 publication-title: Plant J doi: 10.1111/tpj.14166 – volume: 3 start-page: e639 year: 2015 ident: 4229_CR130 publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(15)00093-5 – volume: 5 start-page: 9212 year: 2015 ident: 4229_CR138 publication-title: Sci Rep doi: 10.1038/srep09212 – volume: 280 start-page: 283 year: 2019 ident: 4229_CR22 publication-title: Plant Sci doi: 10.1016/j.plantsci.2018.12.021 – ident: 4229_CR71 – volume: 651 start-page: 2641 year: 2019 ident: 4229_CR90 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.10.170 – volume: 434 start-page: 231 year: 2019 ident: 4229_CR15 publication-title: Plant Soil doi: 10.1007/s11104-018-3808-1 – volume: 53 start-page: 182 year: 2018 ident: 4229_CR120 publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2018.09.010 – volume: 17 start-page: 299 year: 2015 ident: 4229_CR177 publication-title: J Agric Sci Technol – volume: 650 start-page: 2863 year: 2018 ident: 4229_CR148 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.10.019 – volume: 141 start-page: 30 year: 2019 ident: 4229_CR154 publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2019.05.012 – volume: 3 start-page: e02245 year: 2014 ident: 4229_CR112 publication-title: Elife doi: 10.7554/eLife.02245 – volume: 24 start-page: 21797 year: 2017 ident: 4229_CR163 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-017-9813-8 – volume: 116 start-page: 975 year: 2014 ident: 4229_CR88 publication-title: Ann Bot-London doi: 10.1093/aob/mcu209 – volume: 127 start-page: 1030 year: 2001 ident: 4229_CR191 publication-title: Plant Physiol doi: 10.1104/pp.010191 – volume: 209 start-page: 132 year: 2015 ident: 4229_CR73 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2015.04.007 – volume-title: Responses of agricultural crops to free-air CO2 enrichment year: 2002 ident: 4229_CR95 doi: 10.1016/S0065-2113(02)77017-X – volume: 51 start-page: 545 issue: No. 12 year: 2011 ident: 4229_CR186 publication-title: Plant, Soil and Environment doi: 10.17221/3630-PSE – volume: 77 start-page: 73 year: 2019 ident: 4229_CR202 publication-title: Symbiosis doi: 10.1007/s13199-018-0573-0 – ident: 4229_CR11 doi: 10.5897/AJARX11.084 – volume: 54 start-page: 961 year: 2013 ident: 4229_CR38 publication-title: Food Res Int doi: 10.1016/j.foodres.2012.12.021 – volume: 206 start-page: 149 year: 2017 ident: 4229_CR39 publication-title: Field Crop Res doi: 10.1016/j.fcr.2017.02.018 – volume: 56 start-page: 1943 year: 2005 ident: 4229_CR206 publication-title: J Exp Bot doi: 10.1093/jxb/eri189 – volume: 169 start-page: 274 year: 2006 ident: 4229_CR140 publication-title: J Plant Nutr Soil Sc doi: 10.1002/jpln.200520558 – volume: 666 start-page: 405 year: 2019 ident: 4229_CR161 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.149 – ident: 4229_CR162 doi: 10.1007/s13205-018-1179-1 – ident: 4229_CR57 – volume: 4 start-page: 11 year: 2018 ident: 4229_CR187 publication-title: Hortic doi: 10.3390/horticulturae4020011 – volume: 22 start-page: 1372 year: 2016 ident: 4229_CR220 publication-title: Glob Chang Biol doi: 10.1111/gcb.13185 – volume: 9 start-page: 1249 year: 2018 ident: 4229_CR52 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01249 – ident: 4229_CR121 – volume: 102 start-page: 128 year: 2007 ident: 4229_CR209 publication-title: Field Crop Res doi: 10.1016/j.fcr.2007.03.006 – volume: 79 start-page: 334 year: 2014 ident: 4229_CR158 publication-title: Plant J doi: 10.1111/tpj.12550 – volume: 15 start-page: 664 year: 2010 ident: 4229_CR5 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.08.002 – volume: 213 start-page: 178 year: 2017 ident: 4229_CR150 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2017.03.011 – volume: 9 start-page: 617 year: 2018 ident: 4229_CR74 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00617 – volume: 137 start-page: 183 year: 2018 ident: 4229_CR183 publication-title: Photosynth Res doi: 10.1007/s11120-018-0490-3 – volume: 70 start-page: 244 year: 2019 ident: 4229_CR149 publication-title: Crop Pasture Science doi: 10.1071/CP18421 – volume: 45 start-page: 248 year: 2018 ident: 4229_CR147 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2018.05.012 – volume: 18 start-page: 1202 year: 2017 ident: 4229_CR188 publication-title: Int J Mol Sci doi: 10.3390/ijms18061202 – volume: 419 start-page: 64 year: 2016 ident: 4229_CR65 publication-title: Dev Biol doi: 10.1016/j.ydbio.2016.07.023 – volume: 60 start-page: 268 year: 2007 ident: 4229_CR81 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2006.11.003 – volume: 124 start-page: 873 issue: 2 year: 2000 ident: 4229_CR114 publication-title: Plant Physiology doi: 10.1104/pp.124.2.873 – volume: 36 start-page: 697 year: 2013 ident: 4229_CR122 publication-title: Plant Cell Environ doi: 10.1111/pce.12007 – volume: 127 start-page: 119 year: 2019 ident: 4229_CR175 publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2018.10.048 – volume: 187 start-page: 431 year: 2015 ident: 4229_CR172 publication-title: Food Chem doi: 10.1016/j.foodchem.2015.04.116 – volume: 95 start-page: 73 year: 2015 ident: 4229_CR66 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.05.006 – volume: 136 start-page: 483 year: 2017 ident: 4229_CR125 publication-title: Plant Breed doi: 10.1111/pbr.12501 – volume: 57 start-page: 98 year: 2006 ident: 4229_CR146 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2005.04.004 – volume: 59 start-page: 137 year: 2014 ident: 4229_CR61 publication-title: J Cereal Sci doi: 10.1016/j.jcs.2013.12.002 – volume: 28 start-page: e2841831 issue: 4 year: 2018 ident: 4229_CR160 publication-title: Public Health Res Pract doi: 10.17061/phrp2841831 – volume: 275 start-page: 610 year: 2019 ident: 4229_CR143 publication-title: Food Chem doi: 10.1016/j.foodchem.2018.09.052 – volume: 368 start-page: 584 year: 2019 ident: 4229_CR42 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.01.058 – volume: 195 start-page: 56 year: 2015 ident: 4229_CR153 publication-title: Sci Hortic doi: 10.1016/j.scienta.2015.08.034 – volume: 18 start-page: 12 year: 2018 ident: 4229_CR56 publication-title: Glob Food Secur doi: 10.1016/j.gfs.2018.06.001 – volume: 219 start-page: 12 year: 2018 ident: 4229_CR110 publication-title: Microbiol Res doi: 10.1016/j.micres.2018.10.012 – volume: 8 start-page: 2299 issue: 11 year: 2008 ident: 4229_CR107 publication-title: PROTEOMICS doi: 10.1002/pmic.200700942 – volume: 2013 start-page: 1 year: 2013 ident: 4229_CR137 publication-title: The Scientific World Journal doi: 10.1155/2013/610721 – volume: 13 year: 2018 ident: 4229_CR174 publication-title: PLoS One doi: 10.1371/journal.pone.0206388 – ident: 4229_CR109 doi: 10.3389/fpls.2018.01413 – volume: 55 start-page: 591 year: 2004 ident: 4229_CR113 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.55.031903.141610 – volume: 337 start-page: 1084 year: 2012 ident: 4229_CR41 publication-title: Science doi: 10.1126/science.1224304 – volume: 426 start-page: 153 year: 2018 ident: 4229_CR14 publication-title: Plant Soil doi: 10.1007/s11104-018-3603-z – volume: 54 start-page: 1167 year: 2011 ident: 4229_CR77 publication-title: Math Comput Model doi: 10.1016/j.mcm.2010.11.050 – volume: 50 start-page: 1365 year: 2008 ident: 4229_CR190 publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2008.00754.x – volume: 9 start-page: 936 year: 2018 ident: 4229_CR221 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00936 – volume: 649 start-page: 610 year: 2019 ident: 4229_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.257 – volume: 10 year: 2017 ident: 4229_CR105 publication-title: Ecohydrology doi: 10.1002/eco.1803 – volume: 13 start-page: 73 year: 2014 ident: 4229_CR228 publication-title: J Integr Agric doi: 10.1016/S2095-3119(13)60349-4 – volume: 33 start-page: 1811 year: 2010 ident: 4229_CR43 publication-title: J Plant Nutr doi: 10.1080/01904167.2010.503829 – volume: 123 start-page: 461 year: 2018 ident: 4229_CR50 publication-title: Ann Bot-London doi: 10.1093/aob/mcy171 – volume: 56 start-page: 684 year: 2012 ident: 4229_CR60 publication-title: J Cereal Sci doi: 10.1016/j.jcs.2012.07.010 – volume: 559 start-page: 71 year: 2018 ident: 4229_CR108 publication-title: Anal Biochem doi: 10.1016/j.ab.2018.08.020 – volume: 611 start-page: 3 year: 2016 ident: 4229_CR98 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2016.04.010 – volume: 11 start-page: 60 year: 2009 ident: 4229_CR79 publication-title: Plant Biol doi: 10.1111/j.1438-8677.2009.00230.x – volume: 132 start-page: 660 year: 2018 ident: 4229_CR199 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2018.10.016 – volume: 33 start-page: 197 year: 2017 ident: 4229_CR141 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-017-2364-9 – volume: 144 start-page: 238 year: 2012 ident: 4229_CR180 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2011.01555.x – volume: 166 start-page: 1141 year: 2009 ident: 4229_CR198 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2009.01.003 – volume: 8 start-page: 281 year: 2016 ident: 4229_CR64 publication-title: Sustainability doi: 10.3390/su8030281 – volume: 660 start-page: 120 year: 2018 ident: 4229_CR218 publication-title: Gene doi: 10.1016/j.gene.2018.03.057 – volume: 43 start-page: 1548 year: 2003 ident: 4229_CR192 publication-title: Crop Sci doi: 10.2135/cropsci2003.1548 – volume: 156 start-page: 9 year: 2002 ident: 4229_CR85 publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00494.x – volume: 1 start-page: 525 issue: 4 year: 2010 ident: 4229_CR224 publication-title: Wiley Interdisciplinary Reviews: Climate Change doi: 10.1002/wcc.56 – volume: 190 start-page: 79 year: 2018 ident: 4229_CR54 publication-title: Environ Monit Assess doi: 10.1007/s10661-017-6441-1 – ident: 4229_CR134 – volume: 47 start-page: 25 year: 2011 ident: 4229_CR45 publication-title: Biol Fertil Soils doi: 10.1007/s00374-010-0496-2 – volume: 13 year: 2018 ident: 4229_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0196439 – start-page: 196 volume-title: Encyclopedia of Food Chemistry year: 2019 ident: 4229_CR33 doi: 10.1016/B978-0-08-100596-5.22333-0 – volume: 125 year: 2017 ident: 4229_CR123 publication-title: Environ Health Perspect doi: 10.1289/ehp41 – volume: 241 start-page: 75 issue: 1 year: 2002 ident: 4229_CR1 publication-title: Plant and Soil doi: 10.1023/A:1016093317898 – volume: 6 start-page: 319 year: 2015 ident: 4229_CR53 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00319 – volume: 7 start-page: 283 year: 2006 ident: 4229_CR219 publication-title: J Zhejiang Univ Sci B doi: 10.1631/jzus.2006.B0283 – volume: 7 year: 2012 ident: 4229_CR92 publication-title: PLoS One doi: 10.1371/journal.pone.0043583 – volume: 167 start-page: 255 issue: 4 year: 2010 ident: 4229_CR104 publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2009.09.007 – volume: 118 start-page: 342 year: 2017 ident: 4229_CR169 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.06.031 – volume: 252 start-page: 72 year: 2018 ident: 4229_CR173 publication-title: Food Chem doi: 10.1016/j.foodchem.2018.01.097 – ident: 4229_CR194 doi: 10.3389/fpls.2014.00112 – volume: 95 start-page: 15 year: 2013 ident: 4229_CR215 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2013.07.003 – volume: 98 start-page: 4659 year: 2018 ident: 4229_CR200 publication-title: J Sci Food Agric doi: 10.1002/jsfa.8996 – volume: 12 start-page: 49 year: 2017 ident: 4229_CR24 publication-title: Glob Food Sec doi: 10.1016/j.gfs.2017.01.009 – volume-title: Encyclopedia of Agriculture and Food Systems year: 2014 ident: 4229_CR76 – volume: 137 start-page: 26 year: 2017 ident: 4229_CR210 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2017.01.012 – volume: 165 start-page: 80 year: 2014 ident: 4229_CR32 publication-title: Field Crop Res doi: 10.1016/j.fcr.2014.05.003 – volume: 6 start-page: 292045 year: 2009 ident: 4229_CR2 publication-title: IOP Conference Series: Earth and Environmental Science doi: 10.1088/1755-1307/6/29/292045 – volume: 244 start-page: 61 year: 2019 ident: 4229_CR170 publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.09.035 – volume: 571 start-page: 763 year: 2016 ident: 4229_CR216 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.07.048 – volume: 63 start-page: 131 year: 2012 ident: 4229_CR96 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042811-105522 – volume: 26 start-page: 1515 issue: 9 year: 2003 ident: 4229_CR201 publication-title: Plant, Cell and Environment doi: 10.1046/j.1365-3040.2003.01074.x – volume: 64 start-page: 355 year: 2012 ident: 4229_CR139 publication-title: J Exp Bot doi: 10.1093/jxb/ers341 – volume: 38 start-page: 259 year: 2017 ident: 4229_CR131 publication-title: Annu Rev Public Health doi: 10.1146/annurev-publhealth-031816-044356 – ident: 4229_CR21 doi: 10.5147/ajpb.2016.0157 – volume: 37 start-page: 1254 year: 2008 ident: 4229_CR70 publication-title: J Environ Qual doi: 10.2134/jeq2006.0136 – volume: 214 start-page: 129 year: 2017 ident: 4229_CR155 publication-title: Food Chem doi: 10.1016/j.foodchem.2016.07.080 – volume: 58 start-page: 177 year: 1994 ident: 4229_CR126 publication-title: Sci Hortic doi: 10.1016/0304-4238(94)90149-X – volume: 165 start-page: 351 year: 2005 ident: 4229_CR7 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01224.x – volume: 137 start-page: 221 issue: 4 year: 2012 ident: 4229_CR212 publication-title: Journal of the American Society for Horticultural Science doi: 10.21273/JASHS.137.4.221 – volume: 34 start-page: 186 year: 2018 ident: 4229_CR181 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-018-2568-7 – volume: 39 start-page: 2208 year: 2007 ident: 4229_CR69 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.03.014 – volume: 57 start-page: 7722 year: 2018 ident: 4229_CR222 publication-title: Appl Opt doi: 10.1364/AO.57.007722 – volume: 14 start-page: 50 year: 2015 ident: 4229_CR68 publication-title: J Integr Agric doi: 10.1016/S2095-3119(14)60846-7 – volume: 54 start-page: 321 year: 2008 ident: 4229_CR29 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03421.x – volume: 110 start-page: 1263 year: 2012 ident: 4229_CR142 publication-title: Ann Bot doi: 10.1093/aob/mcs209 – volume: 181 start-page: 836 year: 2018 ident: 4229_CR223 publication-title: J Plant Nutr Soil Sc doi: 10.1002/jpln.201700575 – volume: 104 start-page: 493 year: 2004 ident: 4229_CR207 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2004.01.018 – volume: 7 start-page: 32 year: 2017 ident: 4229_CR28 publication-title: Agron doi: 10.3390/agronomy7020032 – volume: 25 start-page: 1016 year: 2018 ident: 4229_CR19 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-017-9268-y – volume: 20 start-page: 1359 year: 2019 ident: 4229_CR217 publication-title: Int J Mol Sci doi: 10.3390/ijms20061359 – volume: 270 start-page: 31 year: 2005 ident: 4229_CR185 publication-title: Plant Soil doi: 10.1007/s11104-004-1082-x – volume: 88 start-page: 11 year: 2013 ident: 4229_CR80 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2011.12.007 – volume: 116 start-page: 987 year: 2015 ident: 4229_CR89 publication-title: Ann Bot-London doi: 10.1093/aob/mcv088 – volume: 48 start-page: 580 year: 2008 ident: 4229_CR78 publication-title: J Cereal Sci doi: 10.1016/j.jcs.2008.01.006 – volume: 28 start-page: 422 issue: 3 year: 2018 ident: 4229_CR117 publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60420-X – volume-title: Chapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and Nutrition year: 2008 ident: 4229_CR167 doi: 10.1016/S0065-2113(08)00404-5 – volume: 55 start-page: 339 year: 2015 ident: 4229_CR31 publication-title: Crop Sci doi: 10.2135/cropsci2014.04.0273 – ident: 4229_CR49 doi: 10.3389/fpls.2018.00924 – volume: 8 start-page: 16187 year: 2018 ident: 4229_CR82 publication-title: Sci Rep doi: 10.1038/s41598-018-33952-4 |
SSID | ssj0003216 |
Score | 2.655808 |
SecondaryResourceType | review_article |
Snippet | Background
Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects... Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects... BackgroundGlobal climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects... BACKGROUND: Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Agricultural practices Availability Beans Biomedical and Life Sciences Carbon dioxide climate Climate change Climate effects Cropping systems Crops Developmental stages Drought Ecology Endangered species Environmental impact Farm management Fertilizer industry Food Food composition Food plants genotype Genotypes Global climate Global temperature changes High temperature Iron Legumes Life Sciences MARSCHNER REVIEW Microorganisms Mimosaceae Minerals Nitrogen Nutrient availability nutrient content Nutrient utilization Nutrients Nutrition Nutritive value phosphorus Plant growth Plant Physiology Plant Sciences potassium Salinity soil Soil Science & Conservation temperature Waterlogging |
Subtitle | importance and strategies |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB60KtgH0dNibJUVBB80mOyv9Hw7j5Yi6JOFe1t2N7OlcM2Vu-vD_ffO7CVXWlTwJQSyGZbMzO432ZlvAD4kn-qQKEz1KlWlpi2vDFrrMmm08hhNjZm34MdPe3auv8_MrKfJ4VqYe-f3X1bkizlPgn_hS0nXh_DI1KrhNg1TO92tukrmNqd8U1bNeNYXyPxZxp1NqF-Kt-mId4DmvbPRvOWcPodnPVYUk61yX8AD7EawP7lY9nwZOILH3xaE7jYjeHKS6ac3LwE5q4JXgO5CELoT3cC3T6K2JZQbsUiCW3eJ6zmnwQguJFsKL3IVML8X55eEZPGruLzK-JwsQ_iuFav1wCzxCs5PT35Nz8q-mUIZjZFr9oa6Qkl4Jx4Ha3yoDSHW0HjUUscqJhnQY5RJqiAr5ZHBBeqQ0NukMKoD2OsWHb4GEYK1OhI0ayk2xJZixLFux7KRbWisaU0B9fB1XeyZxrnhxdzdciSzRhxpxGWNuKqAT7t3rrc8G_8c_ZGV5tgJSXL0fS0BzY_prNzEMlJVtdIFHGS97oRSgMY0Z7KAo0HRrnfblSMsyvz-FGMV8H73mByOT1F8h4sbGqMUgSSlDc3i82AgtyL-Puk3_zf8EJ5KNtmcOHgEe-vlDb4lALQO77Ll_wbVzPjl priority: 102 providerName: Springer Nature |
Title | Preserving the nutritional quality of crop plants under a changing climate |
URI | https://www.jstor.org/stable/48704302 https://link.springer.com/article/10.1007/s11104-019-04229-0 https://www.proquest.com/docview/2267578974 https://www.proquest.com/docview/2335123450 |
Volume | 443 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xlgd4QDCYFhiVkZB4gIjEP9KWF5SWlgnEhBCVylNkO_Y0qSSl7R7233OXOK2GxF6SSLEdK3c-f7bvvgN47bVPjcdlqhY-iSVOebGRUsZeuoyPnEpdw1vw7SI7X8gvS7UMG27b4FbZ2cTGUJe1pT3y9wgTiHod4e_H9Z-YskbR6WpIoXEEfTTBo1EP-pPZxfcfe1sseJP8lB7iZDhehrCZNngOZz7ywKDDAc7xemtqCga6dVK8BT__OTFtJqL5Y3gUECTLW5E_gXuuOoaH-eUmsGi4Y7g_qRHz3TwFRx4WZA2qS4ZIj1Ud9z420IZT3rDaM0rjxdYrcolhFFS2YZo1EcFUz66uENW6D-zqd4PVUUuYrkq23XUsE89gMZ_9nJ7HIbFCbJXiOxoZaeI4Yh87MpnSJlWIXs1QO8mlTaznxmlnuefC8ERoR0DDSeOdzrxwVpxAr6ordwrMmCyTFmFaietEV-J6cSzLMR_y0gwzVaoI0u6fFjawjlPyi1Vx4EsmORQoh6KRQ5FE8HZfZ91ybtxZ-g2JqqABiS1bHeIKsH9EbVXkGaFWkQoZwUkjzX2juFgjyjMewVkn3iIM4W1xULgIXu1f4-CjExVdufoaywiBgElIhb1416nFoYn_d_r53V98AQ84KWbjNHgGvd3m2r1E8LMzA-jnk0-TOd0___o6GwSNH8DRNJvidcHzv9_5A6c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7qVdA-iFaLqVVXUHzQYLK7yfUEkau2XG17iLRwb9vdzaQUzuS8uyL3T_k3OpMfd1Swb305ApdMlsxk5pvszDcAr3Obxy6nNNWqPAo1hbzQaa3DXGMqdzGJseItOBmmgzP9bZSM1uBP2wvDZZWtT6wcdVZ6_kb-gWACU68T_P08-RXy1CjeXW1HaNRmcYSL35SyzT4dfiX9vpHyYP_0yyBspgqEPknknM0ijlBS4Pe7Lk2sixOCbq5rUUvtI59Lhxa9zKVyMlIWOcqidjnaNFfoFcm9A-tapZHswPre_vD7j6XvV7IatsoHYdTtjZo2nbpZjyItV3zwZoSU9HstFDYBoS6KvAZ3_9mhrQLfwUN40CBW0a9N7BGsYbEJG_2LacPagZtwd68kjLl4DMgVHex9igtByFIULdc_CajbNxeizAWPDROTMZfgCG5imworqg5kvs6PLwlF40dx-bPKDcgqhS0yMZu3rBZP4OxWHvkWdIqywKcgnEtT7QkWZpSXYkb5aU9nPdmVmeumSZYEELfP1PiG5ZyHbYzNip-Z9WBID6bSg4kCeLe8ZlJzfNx49ltWlWEHQJK9bfoYaH1MpWX6KaNkFSsdwFalzaVQSg6ZYk0GsNOq1zQuY2ZWBh7Aq-Xf9LLzDo4tsLyic5QigKZ0Qqt435rFSsT_F7198x1fwr3B6cmxOT4cHj2D-5KNtCpY3IHOfHqFzwl4zd2LxtoFnN_2C_YXkgI86g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RaxNBEB5qKqIPRavF06orKD7o0bvdvUsjiKS2obUailjI23Z3b7cU4l1MUiR_rb_Ombu9hAr2rS8hkLvJcjM7883tzDcAb7z2qfGYpmrhk1hiyIuNlDL20uV812Wpq3kLvg_zw1P5dZSN1uCq7YWhssrWJ9aOuqgsvSPfQZhA1OsIf3d8KIs42R98nvyOaYIUnbS24zQaEzl2iz-Yvs0-He2jrt9yPjj4-eUwDhMGYptlfE4mkiaOIwiwuybPtEkzhHGmq53k0ibWc-O0s9xzYXgitKOI66TxTudeOCtQ7h1Y71JW1IH1vYPhyY9lHBC8HrxKX-Kk2xuFlp2mcQ-jLlV_0MEE5_h5LSyG4NAUSF6Dvv-c1tZBcPAQNgJ6Zf3G3B7Bmis34UH_fBoYPNwm3N2rEG8uHoOj6g7yROU5Q5TJypb3HwU0rZwLVnlGI8TYZEzlOIwa2qZMs7obme6z4wtE1O4ju_hV5wlooUyXBZvNW4aLJ3B6K498CzplVbqnwIzJc2kRIhaYo7oCc9WeLHq8ywvTzbMiiyBtn6mygfGcBm-M1YqrmfSgUA-q1oNKIni_vGfS8H3cePU7UpUiZ4CSrQ49Dbg-otVS_ZwQs0iFjGCr1uZSKCaKRLfGI9hu1auC-5iplbFH8Hr5M258Os3Rpasu8RohEKwJmeEqPrRmsRLx_0U_u_kfX8E93Fjq29Hw-Dnc52Sjde3iNnTm00v3AjHY3LwMxs7g7Lb3119ze0Ef |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preserving+the+nutritional+quality+of+crop+plants+under+a+changing+climate%3A+importance+and+strategies&rft.jtitle=Plant+and+soil&rft.au=Soares%2C+Jos%C3%A9+C.&rft.au=Santos%2C+Carla+S.&rft.au=Carvalho%2C+Susana+M.+P.&rft.au=Pintado%2C+Manuela+M.&rft.date=2019-10-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=443&rft.issue=1-2&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1007%2Fs11104-019-04229-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_019_04229_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |