Preserving the nutritional quality of crop plants under a changing climate importance and strategies

Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. Scope This review focuses on the global impact of climate change on the nutritional value of...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 443; no. 1/2; pp. 1 - 26
Main Authors Soares, José C., Santos, Carla S., Carvalho, Susana M. P., Pintado, Manuela M., Vasconcelos, Marta W.
Format Journal Article
LanguageEnglish
Published Cham Springer Science + Business Media 01.10.2019
Springer International Publishing
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. Scope This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO 2 (eCO 2 ), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates. Conclusions Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO 2 being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability.
AbstractList BackgroundGlobal climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients.ScopeThis review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO2 (eCO2), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates.ConclusionsClimate change has an impact on the accumulation of minerals and protein in crop plants, with eCO2 being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability.
BACKGROUND: Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. SCOPE: This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO₂ (eCO₂), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates. CONCLUSIONS: Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO₂ being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability.
Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. Scope This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO.sub.2 (eCO.sub.2), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates. Conclusions Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO.sub.2 being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability.
Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects on the quality and quantity of plant nutrients. Scope This review focuses on the global impact of climate change on the nutritional value of plant foods. It showcases the existing evidence linking the effects of climate change factors on crop nutrition and the concentration of nutrients in edible plant parts. It focuses on the effect of elevated CO 2 (eCO 2 ), elevated temperature (eT), salinity, waterlogging and drought stresses, and what is known regarding their direct and indirect influence on nutrient availability. Furthermore, it provides possible strategies to preserve the nutritional composition of plant foods under changing climates. Conclusions Climate change has an impact on the accumulation of minerals and protein in crop plants, with eCO 2 being the underlying factor of most of the reported changes. The effects are clearly dependent on the type, intensity and duration of the imposed stress, plant genotype and developmental stage. Strong interactions (both positive and negative) can be found between individual climatic factors and soil availability of nitrogen (N), potassium (K), iron (Fe) and phosphorous (P). The development of future interventions to ensure that the world's population has access to plentiful, safe and nutritious food may need to rely on breeding for nutrients under the context of climate change, including legumes in cropping systems, better farm management practices and utilization of microbial inoculants that enhance nutrient availability.
Audience Academic
Author Carvalho, Susana M. P.
Santos, Carla S.
Vasconcelos, Marta W.
Pintado, Manuela M.
Soares, José C.
Author_xml – sequence: 1
  givenname: José C.
  surname: Soares
  fullname: Soares, José C.
– sequence: 2
  givenname: Carla S.
  surname: Santos
  fullname: Santos, Carla S.
– sequence: 3
  givenname: Susana M. P.
  surname: Carvalho
  fullname: Carvalho, Susana M. P.
– sequence: 4
  givenname: Manuela M.
  surname: Pintado
  fullname: Pintado, Manuela M.
– sequence: 5
  givenname: Marta W.
  surname: Vasconcelos
  fullname: Vasconcelos, Marta W.
BookMark eNp9kUtr3DAUhUVJoZNp_0AhIMgmG6dXL9uzDCHpg0C7aKE7IStXEw0eaSLJgfn3kevSQhZBICFxPt17zj0lJyEGJOQjg0sG0H3KjDGQDbBNA5Lzur8hK6Y60SgQ7QlZAQjeQLf5_Y6c5ryD-c7aFfn2I2HG9OTDlpYHpGEqyRcfgxnp42RGX440OmpTPNDDaELJdAr3mKih9sGE7czZ0e9NwffkrTNjxg9_zzX5dXvz8_pLc_f989frq7vGKsVLwwEYIAfV2n5olRmY6tkwdAYllxas4wMatNxxMXAQBqs_iXJwaFon0Io1uVj-PaT4OGEueu-zxbF2h3HKmguhGBeyOl-T8xfSXZxS9VZVvO1U1286WVWXi2prRtQ-uFiSsXXd497bGrTz9f2qBalawcQM8AWoseSc0OlDqhGko2ag53noZR66zkP_mYeee-lfQNYXM0ddq_nxdVQsaK51whbTfxuvUmcLtcslpn8tyr4DKYCLZ84aqls
CitedBy_id crossref_primary_10_1007_s10343_021_00615_w
crossref_primary_10_1016_j_jafr_2024_101592
crossref_primary_10_3389_fsufs_2021_685801
crossref_primary_10_1016_j_scitotenv_2020_137808
crossref_primary_10_1007_s00344_024_11355_2
crossref_primary_10_1016_j_phyplu_2021_100079
crossref_primary_10_1016_j_jfca_2023_105961
crossref_primary_10_3389_fpls_2023_1119148
crossref_primary_10_2525_shita_32_191
crossref_primary_10_3389_fnut_2022_955231
crossref_primary_10_3390_horticulturae7080251
crossref_primary_10_1371_journal_pone_0232699
crossref_primary_10_1016_j_indcrop_2022_115599
crossref_primary_10_1038_s41598_025_85606_x
crossref_primary_10_1007_s42729_024_01772_3
crossref_primary_10_1016_j_heliyon_2020_e05390
crossref_primary_10_3390_su17052298
crossref_primary_10_1016_j_jhazmat_2021_126193
crossref_primary_10_1111_aab_12651
crossref_primary_10_3390_f15112016
crossref_primary_10_3390_agronomy13020398
crossref_primary_10_3390_agronomy12040888
crossref_primary_10_1016_j_jfca_2023_105332
crossref_primary_10_1111_ppl_13160
crossref_primary_10_1080_07352689_2024_2410145
crossref_primary_10_3389_fpls_2023_1221466
crossref_primary_10_1186_s43014_022_00096_y
crossref_primary_10_3390_molecules26133895
crossref_primary_10_1007_s12011_022_03158_x
crossref_primary_10_3390_plants14070981
crossref_primary_10_1016_j_resourpol_2023_103970
crossref_primary_10_1093_ajcn_nqac220
crossref_primary_10_1007_s40124_024_00332_8
crossref_primary_10_3390_agriculture15050568
crossref_primary_10_1007_s11104_024_07072_0
crossref_primary_10_1016_j_envexpbot_2024_105670
crossref_primary_10_1016_j_plana_2024_100129
crossref_primary_10_3390_agronomy12112617
crossref_primary_10_1088_1748_9326_ac3401
crossref_primary_10_1007_s11356_020_11903_9
crossref_primary_10_1016_j_scitotenv_2023_162321
crossref_primary_10_3389_fpls_2023_1324184
crossref_primary_10_1002_pld3_402
crossref_primary_10_1016_j_chemosphere_2022_137575
crossref_primary_10_1007_s10722_024_02259_x
crossref_primary_10_3390_agronomy13020561
crossref_primary_10_3390_agronomy12123008
crossref_primary_10_3390_nano12213915
crossref_primary_10_1002_ppp3_10174
crossref_primary_10_3389_fgene_2023_1193780
crossref_primary_10_1007_s00299_021_02738_w
crossref_primary_10_1038_s41598_024_80798_0
crossref_primary_10_1093_plphys_kiab197
crossref_primary_10_1111_tpj_16506
crossref_primary_10_1007_s42729_024_02138_5
crossref_primary_10_1016_j_ajcnut_2023_08_024
crossref_primary_10_1016_j_indcrop_2024_118808
crossref_primary_10_1016_j_onehlt_2024_100748
crossref_primary_10_1038_s41598_025_92250_y
crossref_primary_10_1111_pce_14532
crossref_primary_10_3390_agronomy14010064
crossref_primary_10_1080_19315260_2021_1925384
crossref_primary_10_1007_s42729_020_00388_7
crossref_primary_10_1186_s12870_020_02688_7
crossref_primary_10_1002_pei3_10065
crossref_primary_10_1007_s10725_020_00661_w
crossref_primary_10_1007_s12355_020_00917_9
crossref_primary_10_1002_ajpa_24438
crossref_primary_10_1007_s42729_024_02098_w
crossref_primary_10_1007_s42835_022_01254_5
crossref_primary_10_3389_fenvs_2021_599814
crossref_primary_10_3390_environments8110122
crossref_primary_10_1088_1748_9326_abafd4
crossref_primary_10_3389_fpls_2021_641678
crossref_primary_10_3390_agronomy10081097
crossref_primary_10_1007_s10646_020_02168_6
crossref_primary_10_3389_fclim_2022_941842
crossref_primary_10_1080_10408398_2024_2402998
crossref_primary_10_1007_s11157_023_09653_4
crossref_primary_10_1007_s11356_022_20549_8
crossref_primary_10_3390_ijms23020781
crossref_primary_10_1080_15427528_2021_1872754
crossref_primary_10_1111_ppl_13624
crossref_primary_10_1016_j_scitotenv_2020_141763
crossref_primary_10_15835_nbha50212677
crossref_primary_10_1016_j_fcr_2022_108662
crossref_primary_10_3390_agronomy14061164
crossref_primary_10_1016_j_biocon_2020_108575
crossref_primary_10_3389_fmicb_2020_01677
crossref_primary_10_3390_plants13101291
crossref_primary_10_3390_cli10030040
crossref_primary_10_1016_j_agrformet_2023_109454
crossref_primary_10_1007_s00344_023_11016_w
crossref_primary_10_1016_j_apsoil_2024_105607
crossref_primary_10_1016_j_spc_2021_05_004
crossref_primary_10_1016_j_seh_2025_100130
crossref_primary_10_3390_agronomy14122752
crossref_primary_10_1111_pbr_12871
crossref_primary_10_1016_j_tjnut_2023_07_017
crossref_primary_10_1038_s41598_025_87047_y
crossref_primary_10_1002_ppp3_10544
crossref_primary_10_1111_ppl_14561
crossref_primary_10_3390_plants12040839
crossref_primary_10_1080_01904167_2024_2315969
crossref_primary_10_1016_j_gloplacha_2024_104586
crossref_primary_10_4236_as_2023_143026
crossref_primary_10_3390_agriculture13050984
crossref_primary_10_3390_plants12183182
crossref_primary_10_1515_opag_2022_0185
crossref_primary_10_3390_plants11233393
crossref_primary_10_3389_fpls_2023_1166720
crossref_primary_10_1002_agr_21971
crossref_primary_10_1016_j_bbabio_2023_149018
crossref_primary_10_1111_aab_12866
crossref_primary_10_3390_agronomy14030420
crossref_primary_10_1093_aob_mcac015
crossref_primary_10_1007_s40003_024_00749_z
crossref_primary_10_1016_j_sajb_2023_09_044
crossref_primary_10_1016_j_still_2020_104767
crossref_primary_10_3390_su14137932
crossref_primary_10_1016_j_jafr_2021_100197
crossref_primary_10_1088_1748_9326_ad8cf0
crossref_primary_10_3390_foods13060877
crossref_primary_10_7769_gesec_v15i9_4161
crossref_primary_10_1016_j_fcr_2024_109338
crossref_primary_10_3390_agronomy15010186
crossref_primary_10_3389_fsufs_2021_692137
crossref_primary_10_3390_agronomy14071415
crossref_primary_10_1016_j_gfs_2022_100636
crossref_primary_10_1007_s10725_024_01120_6
crossref_primary_10_3390_agronomy10030435
crossref_primary_10_3390_plants9040541
crossref_primary_10_1007_s10886_023_01449_8
crossref_primary_10_14258_jcprm_2021027543
crossref_primary_10_3389_fvets_2023_1234872
crossref_primary_10_3390_agronomy12040967
crossref_primary_10_1007_s00122_021_03854_7
crossref_primary_10_1080_19315260_2021_1957052
crossref_primary_10_1016_j_scitotenv_2023_169023
crossref_primary_10_1007_s00344_024_11604_4
crossref_primary_10_1016_j_scienta_2022_111136
crossref_primary_10_3389_fpls_2022_807844
crossref_primary_10_1016_j_molp_2023_09_003
crossref_primary_10_1016_j_tplants_2022_09_002
crossref_primary_10_3390_plants11131620
crossref_primary_10_1177_0021955X20948560
crossref_primary_10_1093_jmammal_gyad086
crossref_primary_10_3390_su14020914
crossref_primary_10_3390_su15043336
crossref_primary_10_13080_z_a_2021_108_003
crossref_primary_10_1016_j_compag_2024_109474
crossref_primary_10_1016_j_foodres_2024_114855
crossref_primary_10_1016_j_farsys_2024_100098
crossref_primary_10_3390_horticulturae8111032
crossref_primary_10_1080_01904167_2024_2416075
crossref_primary_10_18006_2020_8_2__84_89
crossref_primary_10_3389_fpls_2020_576718
crossref_primary_10_1007_s11104_024_07074_y
crossref_primary_10_3389_fpls_2024_1444436
crossref_primary_10_1002_jsfa_11743
crossref_primary_10_3390_su14148329
crossref_primary_10_1016_j_plaphy_2020_08_010
crossref_primary_10_56946_jspae_v3i1_371
crossref_primary_10_3390_nu15184045
crossref_primary_10_1002_pld3_384
crossref_primary_10_3390_agronomy12051117
crossref_primary_10_1016_j_fbio_2020_100601
crossref_primary_10_1016_j_fcr_2022_108624
crossref_primary_10_1016_S2542_5196_24_00332_2
crossref_primary_10_1016_j_apsoil_2025_106033
crossref_primary_10_1016_j_envexpbot_2023_105633
crossref_primary_10_3389_fagro_2022_825087
Cites_doi 10.1007/s11258-011-9998-8
10.1016/B978-0-12-812104-7.00015-0
10.1016/j.agrformet.2003.09.002
10.1007/s11104-016-2996-9
10.1093/jxb/erl259
10.1016/j.foodchem.2012.01.105
10.1098/rspb.2015.2578
10.1007/s10661-016-5563-1
10.1080/07352689.2013.758544
10.1007/s11104-016-2979-x
10.1038/nature13179
10.1038/s41893-018-0114-0
10.1071/PP97045
10.1016/j.still.2006.11.004
10.1111/j.1399-3054.2007.01042.x
10.1104/pp.109.136721
10.1016/j.flora.2018.07.001
10.1016/j.scitotenv.2018.12.181
10.1016/j.foodres.2009.07.033
10.1111/ejss.12437
10.1007/s00468-014-1015-0
10.1016/j.jcs.2016.03.006
10.1111/ppl.12590
10.1016/j.copbio.2016.10.001
10.1111/j.1469-8137.2007.02180.x
10.1626/pps.15.238
10.1016/j.tplants.2014.07.005
10.1016/0304-3770(95)00453-7
10.1016/j.jplph.2008.06.011
10.1080/07352689.2014.870421
10.1016/B978-0-12-384905-2.00007-8
10.1104/pp.108.129791
10.1080/14620316.2017.1373037
10.1111/gcb.12520
10.3389/fpls.2018.01361
10.1126/science.1185383
10.1186/1471-2229-10-120
10.1146/annurev.pp.44.060193.001521
10.3389/fpls.2016.01720
10.1016/S1002-0160(17)60458-2
10.1089/omi.2011.0109
10.1046/j.1365-3040.1997.d01-84.x
10.1016/j.foodchem.2018.11.035
10.1016/j.agee.2008.06.003
10.1093/jxb/eru539
10.1016/S0014-5793(00)01873-1
10.1016/j.jprot.2016.03.017
10.1016/j.rsci.2018.04.002
10.1073/pnas.022627299
10.1038/sdata.2015.36
10.3389/fevo.2017.00051
10.1016/j.plaphy.2017.04.006
10.1002/jpln.200420485
10.3389/fpls.2017.01348
10.1111/j.1750-3841.2011.02135.x
10.1016/j.scitotenv.2018.02.322
10.1016/j.jplph.2013.01.001
10.3389/fpls.2018.01115
10.1104/pp.15.00980
10.1016/j.scitotenv.2018.09.332
10.1016/j.plaphy.2016.04.053
10.1021/jf101197h
10.1016/j.biotechadv.2015.03.011
10.1016/j.ecoenv.2013.12.021
10.1002/jpln.201600616
10.1016/j.plantsci.2014.11.001
10.1016/j.scienta.2018.09.072
10.1002/jpln.201400117
10.1016/j.envexpbot.2015.02.003
10.1016/j.tplants.2011.10.003
10.1016/S0169-5347(02)02587-9
10.1080/03650340.2017.1315105
10.1093/jxb/erw383
10.1016/j.nbt.2017.08.003
10.1017/S1355770X1300065X
10.1016/S2095-3119(18)62005-2
10.1038/npg.els.0001306
10.1111/jfq.12066
10.1093/jxb/ers077
10.1186/1752-0509-4-177
10.1007/s10681-011-0359-4
10.1134/S1021443711050074
10.1093/jn/138.12.2534
10.1093/aob/mcv182
10.2134/jeq2017.03.0121
10.1111/tpj.14166
10.1016/S2214-109X(15)00093-5
10.1038/srep09212
10.1016/j.plantsci.2018.12.021
10.1016/j.scitotenv.2018.10.170
10.1007/s11104-018-3808-1
10.1016/j.gloenvcha.2018.09.010
10.1016/j.scitotenv.2018.10.019
10.1016/j.plaphy.2019.05.012
10.7554/eLife.02245
10.1007/s11356-017-9813-8
10.1093/aob/mcu209
10.1104/pp.010191
10.1016/j.agee.2015.04.007
10.1016/S0065-2113(02)77017-X
10.17221/3630-PSE
10.1007/s13199-018-0573-0
10.5897/AJARX11.084
10.1016/j.foodres.2012.12.021
10.1016/j.fcr.2017.02.018
10.1093/jxb/eri189
10.1002/jpln.200520558
10.1016/j.scitotenv.2019.02.149
10.1007/s13205-018-1179-1
10.3390/horticulturae4020011
10.1111/gcb.13185
10.3389/fpls.2018.01249
10.1016/j.fcr.2007.03.006
10.1111/tpj.12550
10.1016/j.tplants.2010.08.002
10.1016/j.jplph.2017.03.011
10.3389/fpls.2018.00617
10.1007/s11120-018-0490-3
10.1071/CP18421
10.1016/j.pbi.2018.05.012
10.3390/ijms18061202
10.1016/j.ydbio.2016.07.023
10.1016/j.envexpbot.2006.11.003
10.1104/pp.124.2.873
10.1111/pce.12007
10.1016/j.indcrop.2018.10.048
10.1016/j.foodchem.2015.04.116
10.1016/j.apsoil.2015.05.006
10.1111/pbr.12501
10.1016/j.envexpbot.2005.04.004
10.1016/j.jcs.2013.12.002
10.17061/phrp2841831
10.1016/j.foodchem.2018.09.052
10.1016/j.jhazmat.2019.01.058
10.1016/j.scienta.2015.08.034
10.1016/j.gfs.2018.06.001
10.1016/j.micres.2018.10.012
10.1002/pmic.200700942
10.1155/2013/610721
10.1371/journal.pone.0206388
10.3389/fpls.2018.01413
10.1146/annurev.arplant.55.031903.141610
10.1126/science.1224304
10.1007/s11104-018-3603-z
10.1016/j.mcm.2010.11.050
10.1111/j.1744-7909.2008.00754.x
10.3389/fpls.2018.00936
10.1016/j.scitotenv.2018.08.257
10.1002/eco.1803
10.1016/S2095-3119(13)60349-4
10.1080/01904167.2010.503829
10.1093/aob/mcy171
10.1016/j.jcs.2012.07.010
10.1016/j.ab.2018.08.020
10.1016/j.abb.2016.04.010
10.1111/j.1438-8677.2009.00230.x
10.1016/j.plaphy.2018.10.016
10.1007/s11274-017-2364-9
10.1111/j.1399-3054.2011.01555.x
10.1016/j.jplph.2009.01.003
10.3390/su8030281
10.1016/j.gene.2018.03.057
10.2135/cropsci2003.1548
10.1046/j.1469-8137.2002.00494.x
10.1002/wcc.56
10.1007/s10661-017-6441-1
10.1007/s00374-010-0496-2
10.1371/journal.pone.0196439
10.1016/B978-0-08-100596-5.22333-0
10.1289/ehp41
10.1023/A:1016093317898
10.3389/fpls.2015.00319
10.1631/jzus.2006.B0283
10.1371/journal.pone.0043583
10.1016/j.jplph.2009.09.007
10.1016/j.plaphy.2017.06.031
10.1016/j.foodchem.2018.01.097
10.3389/fpls.2014.00112
10.1016/j.envexpbot.2013.07.003
10.1002/jsfa.8996
10.1016/j.gfs.2017.01.009
10.1016/j.envexpbot.2017.01.012
10.1016/j.fcr.2014.05.003
10.1088/1755-1307/6/29/292045
10.1016/j.scienta.2018.09.035
10.1016/j.scitotenv.2016.07.048
10.1146/annurev-arplant-042811-105522
10.1046/j.1365-3040.2003.01074.x
10.1093/jxb/ers341
10.1146/annurev-publhealth-031816-044356
10.5147/ajpb.2016.0157
10.2134/jeq2006.0136
10.1016/j.foodchem.2016.07.080
10.1016/0304-4238(94)90149-X
10.1111/j.1469-8137.2004.01224.x
10.21273/JASHS.137.4.221
10.1007/s11274-018-2568-7
10.1016/j.soilbio.2007.03.014
10.1364/AO.57.007722
10.1016/S2095-3119(14)60846-7
10.1111/j.1365-313X.2008.03421.x
10.1093/aob/mcs209
10.1002/jpln.201700575
10.1016/j.agee.2004.01.018
10.3390/agronomy7020032
10.1007/s11356-017-9268-y
10.3390/ijms20061359
10.1007/s11104-004-1082-x
10.1016/j.envexpbot.2011.12.007
10.1093/aob/mcv088
10.1016/j.jcs.2008.01.006
10.1016/S1002-0160(17)60420-X
10.1016/S0065-2113(08)00404-5
10.2135/cropsci2014.04.0273
10.3389/fpls.2018.00924
10.1038/s41598-018-33952-4
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 Springer
Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 Springer
– notice: Plant and Soil is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-019-04229-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 26
ExternalDocumentID A604563134
10_1007_s11104_019_04229_0
48704302
GeographicLocations Canada
United Kingdom
GeographicLocations_xml – name: United Kingdom
– name: Canada
GrantInformation_xml – fundername: European Social Fund through the Northern Operational Program-Norte2020
  grantid: NORTE-08-5369-FSE-000007
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: UID/Multi/50016/2019, PTDC/AGRPRO/3972/2014
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ACBXY
ACKIV
ADINQ
ADULT
ADYPR
AEBTG
AEFIE
AEKMD
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
BBWZM
C6C
CAG
COF
EJD
EN4
GQ6
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c552t-20010e2056c8b65ab1581bb7ae424c0cf2beaec2f23b203ae0074e4bfea6f3ec3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Fri Jul 11 03:33:03 EDT 2025
Fri Jul 25 19:08:12 EDT 2025
Tue Jun 10 20:44:36 EDT 2025
Tue Jul 01 01:47:06 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Fri Feb 21 02:33:29 EST 2025
Thu Jun 19 22:18:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Climate change
Environmental factors
Minerals
Nutrient concentration
Elevated carbon dioxide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-20010e2056c8b65ab1581bb7ae424c0cf2beaec2f23b203ae0074e4bfea6f3ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5110-7006
OpenAccessLink https://doi.org/10.1007/s11104-019-04229-0
PQID 2267578974
PQPubID 54098
PageCount 26
ParticipantIDs proquest_miscellaneous_2335123450
proquest_journals_2267578974
gale_infotracacademiconefile_A604563134
crossref_primary_10_1007_s11104_019_04229_0
crossref_citationtrail_10_1007_s11104_019_04229_0
springer_journals_10_1007_s11104_019_04229_0
jstor_primary_48704302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2019
Publisher Springer Science + Business Media
Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References KobayashiTNishizawaNKIron Uptake, Translocation, and Regulation in Higher PlantsAnnu Rev Plant Biol2012631311521:CAS:528:DC%2BC38Xos1ams78%3D10.1146/annurev-arplant-042811-10552222404471
YilmazOKahramanKOzgurRUzildayBTurkanIOzturkLGrowth performance and antioxidative response in bread and durum wheat plants grown with varied potassium treatments under ambient and elevated carbon dioxideEnviron Exp Bot201713726351:CAS:528:DC%2BC2sXisVCntL8%3D10.1016/j.envexpbot.2017.01.012
Pérez-LópezUMiranda-ApodacaJLacuestaMMena-PetiteAMuñoz-RuedaAGrowth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinitySci Hortic201519556661:CAS:528:DC%2BC2MXhsV2gurzE10.1016/j.scienta.2015.08.034
FischerSHilgerTPiephoH-PJordanICadischGDo we need more drought for better nutrition? The effect of precipitation on nutrient concentration in East African food cropsSci Total Environ20196584054151:CAS:528:DC%2BC1cXisFOkt7jP10.1016/j.scitotenv.2018.12.18130579198
HögyPFangmeierAEffects of elevated atmospheric CO2 on grain quality of wheatJ Cereal Sci2008485805911:CAS:528:DC%2BD1cXhtlagtbjK10.1016/j.jcs.2008.01.006
PetropoulosSALevizouENtatsiGFernandesÂPetrotosKAkoumianakisKBarrosLFerreiraICSalinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum LFood Chem20172141291361:CAS:528:DC%2BC28XhtFOksr%2FO10.1016/j.foodchem.2016.07.08027507457
AbdelgawadHFarfan-VignoloERVosDAsardHElevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumesPlant Sci20152311101:CAS:528:DC%2BC2cXitVWku73L10.1016/j.plantsci.2014.11.00125575986
MurgiaIArosioPTarantinoDSoaveCBiofortification for combating 'hidden hunger' for ironTrends Plant Sci20121747551:CAS:528:DC%2BC38XptVSnsA%3D%3D10.1016/j.tplants.2011.10.00322093370
AsifMYilmazOOzturkLElevated carbon dioxide ameliorates the effect of Zn deficiency and terminal drought on wheat grain yield but compromises nutritional qualityPlant Soil201741157671:CAS:528:DC%2BC28Xht1Krt73P10.1007/s11104-016-2996-9
PrettyJulesBentonTim G.BharuchaZareen PervezDicksLynn V.FloraCornelia ButlerGodfrayH. Charles J.GoulsonDaveHartleySueLampkinNicMorrisCarolPierzynskiGaryPrasadP. V. VaraReganoldJohnRockströmJohanSmithPeteThornePeterWrattenSteveGlobal assessment of agricultural system redesign for sustainable intensificationNature Sustainability20181844144610.1038/s41893-018-0114-0
Da GeTSuiFGSaNSunNBHaXTongCLDifferential responses of yield and selected nutritional compositions to drought stress in summer maize grainsJ Plant Nutr201033181118181:CAS:528:DC%2BC3cXhtVCnt7fI10.1080/01904167.2010.503829
JinJTangCSalePThe impact of elevated carbon dioxide on the phosphorus nutrition of plants: a reviewAnn Bot-London20151169879991:CAS:528:DC%2BC1cXkt1yltbc%3D10.1093/aob/mcv088
VeluGGuzmanCMondalSAutriqueJEHuertaJSinghRPEffect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheatJ Cereal Sci2016691821861:CAS:528:DC%2BC28XltFGltL4%3D10.1016/j.jcs.2016.03.006
KaplanFZhaoWRichardsJTWheelerRMGuyCLLevineLHTranscriptional and metabolic insights into the differential physiological responses of Arabidopsis to optimal and supraoptimal atmospheric CO2PLoS One201271:CAS:528:DC%2BC38Xht1Ggu7nE10.1371/journal.pone.0043583229162803423350
RustioniLGrossiDBrancadoroLFaillaOCharacterization of iron deficiency symptoms in grapevine (Vitis spp.) leaves by reflectance spectroscopyPlant Physiol Biochem20171183423471:CAS:528:DC%2BC2sXhtFart73M10.1016/j.plaphy.2017.06.03128688348
PalaciosCJGrandisACarvalhoVJSalatinoABuckeridgeMSIsolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seedsFood Chem20192756106171:CAS:528:DC%2BC1cXhvVamurrE10.1016/j.foodchem.2018.09.05230724240
KumagaiEAokiNMasuyaYShimonoHPhenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 ConcentrationPlant Physiol2015169202120291:CAS:528:DC%2BC28Xjs1Kgtrs%3D10.1104/pp.15.00980263736584634073
WissuwaMGamatGIsmailAMIs root growth under phosphorus deficiency affected by source or sink limitations?J Exp Bot200556194319501:CAS:528:DC%2BD2MXpvFKntb0%3D10.1093/jxb/eri18915911558
Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2009) Climate Change Impact on Agriculture and Costs of Adaptation. International Food Policy Research Institute, Washington, DC.
BowesGFacing the inevitable: plants and increasing atmospheric CO2Annu Rev Plant Physiol1993443093321:CAS:528:DyaK3sXlsFKisbs%3D10.1146/annurev.pp.44.060193.001521
López-MillánAna FlorMoralesFermı́nAbadı́aAnunciaciónAbadı́aJavierEffects of Iron Deficiency on the Composition of the Leaf Apoplastic Fluid and Xylem Sap in Sugar Beet. Implications for Iron and Carbon TransportPlant Physiology2000124287388410.1104/pp.124.2.873
BrobergMHögyPPleijelHCO2-induced changes in wheat grain composition: meta-analysis and response functionsAgron20177321:CAS:528:DC%2BC1cXitFGlurfM10.3390/agronomy7020032
KarkanisANtatsiGNLepseLFernándezJAVågenIMRewaldBAlsiņaIKronbergaABalliuAOlleMFaba bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systemsFront Plant Sci20189111510.3389/fpls.2018.01115301162516083270
Watts-WilliamsSJAndrew SmithFJakobsenISoil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonisationSymbiosis201977738210.1007/s13199-018-0573-0
Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: Recent advances, challenges, and future implications. Front Plant Sci, 9. https://doi.org/10.3389/fpls.2018.01361
JablonskiLMWangXCurtisPSPlant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild speciesNew Phytol200215692610.1046/j.1469-8137.2002.00494.x
ParajuliRThomaGMatlockMDEnvironmental sustainability of fruit and vegetable production supply chains in the face of climate change: A reviewSci Total Environ2018650286328791:CAS:528:DC%2BC1cXhvVyhur%2FJ10.1016/j.scitotenv.2018.10.01930373063
ZhaoXLiuSLPuCZhangXQXueJFZhangRWangYQLalRZhangHLChenFMethane and nitrous oxide emissions under no-till farming in China: a meta-analysisGlob Chang Biol2016221372138410.1111/gcb.1318526661415
ShimonoHKonnoTSakaiHSameshimaRInteractive Effects of Elevated Atmospheric CO2 and Waterlogging on Vegetative Growth of Soybean (Glycine max (L.) Merr.)Plant Prod Sci2012152382451:CAS:528:DC%2BC38Xht1GisLvE10.1626/pps.15.238
CarvalhoSMPVasconcelosMWProducing more with less: Strategies and novel technologies for plant-based food biofortificationFood Res Int2013549619711:CAS:528:DC%2BC3sXovFWruw%3D%3D10.1016/j.foodres.2012.12.021
NezhadahmadiArashProdhanZakaria HossainFaruqGolamDrought Tolerance in WheatThe Scientific World Journal2013201311210.1155/2013/610721
WeiXLiuMWangSJiangMSeed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitationFlora2018246-247192510.1016/j.flora.2018.07.001
BavorovaMImamverdiyevNPonkinaEFarm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian SiberiaEnviron Sci Pollut R2018251016103210.1007/s11356-017-9268-y
LarbiAjmiMoralesFermínAbadíaAnunciaciónAbadíaJavierChanges in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupplyJournal of Plant Physiology201016742552601:CAS:528:DC%2BC3cXktFOnsbs%3D10.1016/j.jplph.2009.09.007
FengG-QLiYChengZ-MPlant Molecular and Genomic Responses to Stresses in Projected Future CO2 EnvironmentCrit Rev Plant Sci2014332382491:CAS:528:DC%2BC2cXkt1aiu7w%3D10.1080/07352689.2014.870421
JakobsenISmithSESmithFAWatts-WilliamsSJClausenSSGrønlundMPlant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizasJ Exp Bot201667617361861:CAS:528:DC%2BC2sXht1CqsrnM10.1093/jxb/erw383278110845100028
AbbasSSharmilaPUpretyDSaradhiPEffects of elevated CO2 on soil physicochemical characteristics under Free Air CO2 Enrichment (FACE) technologyIOP Conference Series: Earth and Environmental Science2009629204510.1088/1755-1307/6/29/292045
HajibolandRAhmadPPrasadMNVEffect of Micronutrient Deficiencies on Plants Stress ResponsesAbiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability2012New York, NYSpringer New York
YuJingjinDuHongmeiXuMingHuangBingruMetabolic Responses to Heat Stress under Elevated Atmospheric CO2 Concentration in a Cool-season Grass SpeciesJournal of the American Society for Horticultural Science201213742212281:CAS:528:DC%2BC38Xhtlehtb3L10.21273/JASHS.137.4.221
MaYSchwenkeGSunLLi LiuDWangBYangBModeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenariosSci Total Environ2018630154415521:CAS:528:DC%2BC1cXktV2iurY%3D10.1016/j.scitotenv.2018.02.32229554771
ZengNYangZZhangZHuLChenLComparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (Medicago sativa) Response to Waterlogging StressInt J Mol Sci201920135910.3390/ijms200613596471898
Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X (2018b) Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. FRONT PLANT SCI 9. https://doi.org/10.3389/fpls.2018.01413
MannersRvan EttenJAre agricultural researchers working on the right crops to enable food and nutrition security under future climates?Glob Environ Chang20185318219410.1016/j.gloenvcha.2018.09.010
HögyPBrunnbauerMKoehlerPSchwadorfKBreuerJFranzaringJZhunusbayevaDFangmeierAGrain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichmentEnviron Exp Bot20138811181:
A Wang (4229_CR199) 2018; 132
M Wissuwa (4229_CR206) 2005; 56
R Manners (4229_CR120) 2018; 53
B Kimball (4229_CR95) 2002
M Shahbaz (4229_CR178) 2013; 32
J Jin (4229_CR89) 2015; 116
H Poorter (4229_CR157) 1997; 20
A Kumar (4229_CR101) 2019; 650
JA Bunce (4229_CR30) 2008; 128
M Saeed (4229_CR171) 2012; 16
G Zocchi (4229_CR226) 2006
JL Beard (4229_CR20) 2008; 138
P Högy (4229_CR78) 2008; 48
Y Niu (4229_CR139) 2012; 64
T Gomiero (4229_CR64) 2016; 8
N Fernando (4229_CR59) 2012; 133
J Fanzo (4229_CR56) 2018; 18
RC Sicher (4229_CR180) 2012; 144
M Nie (4229_CR138) 2015; 5
J Pang (4229_CR146) 2006; 57
D. Steffens (4229_CR186) 2011; 51
W Sublett (4229_CR187) 2018; 4
H Zhu (4229_CR222) 2018; 57
D Neocleous (4229_CR135) 2014; 37
Javier Abadía (4229_CR1) 2002; 241
R Lal (4229_CR103) 2007; 93
P Pandey (4229_CR145) 2017; 8
M Asif (4229_CR15) 2019; 434
CB Lobo (4229_CR110) 2018; 219
MW Vasconcelos (4229_CR195) 2017; 44
J Prior (4229_CR160) 2018; 28
JF Silva (4229_CR181) 2018; 34
Gina Ziervogel (4229_CR224) 2010; 1
A Chrysargyris (4229_CR42) 2019; 368
Shardendu K. Singh (4229_CR182) 2014; 177
A Elia (4229_CR53) 2015; 6
S Saha (4229_CR172) 2015; 187
LM Mungai (4229_CR127) 2016; 7
S Kumari (4229_CR102) 2014; 101
C Zaghdoud (4229_CR215) 2013; 95
Chathurika Wijewardana (4229_CR205) 2019; 278
F Ludewig (4229_CR116) 2000; 479
Y Ma (4229_CR118) 2018; 630
E Mitterbauer (4229_CR125) 2017; 136
Y Xue (4229_CR208) 2016; 117
J-F Briat (4229_CR26) 2015; 20
JR Lawson (4229_CR105) 2017; 10
SB Gray (4229_CR65) 2016; 419
4229_CR124
M Bencke-Malato (4229_CR22) 2019; 280
Ajmi Larbi (4229_CR104) 2010; 167
S Bassu (4229_CR18) 2014; 20
4229_CR49
4229_CR121
H Shimono (4229_CR179) 2012; 15
M Asif (4229_CR12) 2017; 411
L Cheng (4229_CR41) 2012; 337
DJ Burritt (4229_CR33) 2019
R Hajiboland (4229_CR72) 2012
J Rodríguez-Celma (4229_CR168) 2016; 140
J Pang (4229_CR147) 2018; 45
AC Newton (4229_CR136) 2011; 179
OS Olanrewaju (4229_CR141) 2017; 33
A Sabir (4229_CR170) 2019; 244
DE Medek (4229_CR123) 2017; 125
W Yuhui (4229_CR214) 2017; 27
DJ Pilbeam (4229_CR156) 2015; 66
J Jin (4229_CR90) 2019; 651
O Yilmaz (4229_CR210) 2017; 137
G Zhang (4229_CR218) 2018; 660
4229_CR109
X-z Zhao (4229_CR219) 2006; 7
T Da Ge (4229_CR43) 2010; 33
C Zaghdoud (4229_CR216) 2016; 571
N Zeng (4229_CR217) 2019; 20
LH Ziska (4229_CR225) 2007; 175
BC Arenque (4229_CR10) 2014; 28
M Broberg (4229_CR28) 2017; 7
Z Chen (4229_CR40) 2016; 188
Arash Nezhadahmadi (4229_CR137) 2013; 2013
4229_CR21
I Cakmak (4229_CR36) 2018; 69
O Yilmaz (4229_CR211) 2017; 410
P Madan (4229_CR119) 2012; 63
C Sgherri (4229_CR176) 2017; 115
Y Hu (4229_CR81) 2007; 60
I Loladze (4229_CR112) 2014; 3
N Fernando (4229_CR61) 2014; 59
H Kanani (4229_CR91) 2010; 4
U Sarker (4229_CR174) 2018; 13
GM Lenssen (4229_CR106) 1995; 50
M Li (4229_CR108) 2018; 559
Ana Flor López-Millán (4229_CR115) 2009; 166
AK Chaturvedi (4229_CR39) 2017; 206
S Fischer (4229_CR62) 2019; 658
PMA Ramzani (4229_CR164) 2016; 104
4229_CR4
JC Vu (4229_CR198) 2009; 166
4229_CR11
X Han (4229_CR73) 2015; 209
M Asif (4229_CR14) 2018; 426
O Thimm (4229_CR191) 2001; 127
SMP Carvalho (4229_CR38) 2013; 54
JL Hatfield (4229_CR76) 2014
AJ Bloom (4229_CR23) 2002; 99
S Kazemi (4229_CR94) 2018; 25
U Pérez-López (4229_CR153) 2015; 195
4229_CR84
4229_CR83
SP Long (4229_CR113) 2004; 55
HCJ Godfray (4229_CR63) 2010; 327
LM Jablonski (4229_CR85) 2002; 156
JM McGrath (4229_CR122) 2013; 36
CJ Palacios (4229_CR143) 2019; 275
SK Singh (4229_CR183) 2018; 137
P Högy (4229_CR79) 2009; 11
4229_CR162
D-X Wu (4229_CR207) 2004; 104
EA Ainsworth (4229_CR8) 2004; 122
P Burgess (4229_CR32) 2014; 165
R Parajuli (4229_CR148) 2018; 650
J Wesseler (4229_CR204) 2014; 19
CF Scagel (4229_CR175) 2019; 127
S Haase (4229_CR69) 2007; 39
MH Rafiq (4229_CR163) 2017; 24
J Kromdijk (4229_CR99) 2016; 283
F Ai (4229_CR6) 2018; 13
M Pérez-Jiménez (4229_CR152) 2019; 244
Y Qiao (4229_CR161) 2019; 666
P Högy (4229_CR80) 2013; 88
Giacomo Luigi Petretto (4229_CR154) 2019; 141
4229_CR71
N Fernando (4229_CR60) 2012; 56
D Elias (4229_CR54) 2018; 190
M Grover (4229_CR66) 2015; 95
I Cakmak (4229_CR34) 2005; 168
J Guo (4229_CR68) 2015; 14
IH Köhler (4229_CR97) 2018; 97
I Jakobsen (4229_CR86) 2016; 67
CF Smethurst (4229_CR185) 2005; 270
A Hashiguchi (4229_CR75) 2010; 43
T Brumbarova (4229_CR29) 2008; 54
S Haase (4229_CR70) 2008; 37
A Toreti (4229_CR193) 2019
4229_CR67
X Wei (4229_CR203) 2018; 246-247
A Robin (4229_CR167) 2008
EA Ainsworth (4229_CR7) 2005; 165
J He (4229_CR77) 2011; 54
J. WASAKI (4229_CR201) 2003; 26
G-Q Feng (4229_CR58) 2014; 33
E Tani (4229_CR188) 2017; 18
X Zhao (4229_CR220) 2016; 22
4229_CR134
J Yu (4229_CR213) 2015; 115
A Krężel (4229_CR98) 2016; 611
Jules Pretty (4229_CR159) 2018; 1
Ana Flor López-Millán (4229_CR114) 2000; 124
HE Bouis (4229_CR24) 2017; 12
M Norisada (4229_CR140) 2006; 169
4229_CR57
4229_CR132
S Abbas (4229_CR2) 2009; 6
SS Myers (4229_CR131) 2017; 38
LM Mortensen (4229_CR126) 1994; 58
Y Wang (4229_CR200) 2018; 98
FP O'Mara (4229_CR142) 2012; 110
H Zheng (4229_CR221) 2018; 9
H Abdelgawad (4229_CR3) 2015; 231
DJ Barrett (4229_CR17) 1998; 25
JMG Thomas (4229_CR192) 2003; 43
SS Myers (4229_CR130) 2015; 3
F Kaplan (4229_CR92) 2012; 7
I Murgia (4229_CR128) 2012; 17
S Daryanto (4229_CR44) 2017; 46
I Ahuja (4229_CR5) 2010; 15
A Anandan (4229_CR9) 2011; 76
J Jin (4229_CR88) 2014; 116
JA Bunce (4229_CR31) 2015; 55
T Kobayashi (4229_CR96) 2012; 63
M Hummel (4229_CR82) 2018; 8
E Kumagai (4229_CR100) 2015; 169
M Broadley (4229_CR27) 2012
Jingjin Yu (4229_CR212) 2012; 137
L Rustioni (4229_CR169) 2017; 118
G Shabani (4229_CR177) 2015; 17
SK Singh (4229_CR184) 2013; 170
4229_CR194
SJ Watts-Williams (4229_CR202) 2019; 77
J-l Dong (4229_CR48) 2018; 17
U Sarker (4229_CR173) 2018; 252
J Dong (4229_CR50) 2018; 123
R Vicente (4229_CR197) 2018; 40
A Karkanis (4229_CR93) 2018; 9
G Bowes (4229_CR25) 1993; 44
4229_CR189
L Yang (4229_CR209) 2007; 102
SA Petropoulos (4229_CR155) 2017; 214
G Velu (4229_CR196) 2016; 69
R Rasheed (4229_CR165) 2018; 93
I Cakmak (4229_CR35) 2008; 133
CW Jin (4229_CR87) 2009; 150
R Pandey (4229_CR144) 2015; 33
SK Dey (4229_CR46) 2017; 63
S Parvin (4229_CR149) 2019; 70
Zhong MA (4229_CR117) 2018; 28
K Nakashima (4229_CR133) 2009; 149
S Das (4229_CR45) 2011; 47
E Haque (4229_CR74) 2018; 9
M Asif (4229_CR13) 2017; 180
M Pérez-Jiménez (4229_CR150) 2017; 213
BD Duval (4229_CR51) 2012; 213
LH Dietterich (4229_CR47) 2015; 2
Y-Z Zong (4229_CR228) 2014; 13
Jie Li (4229_CR107) 2008; 8
R Rellán-Álvarez (4229_CR166) 2010; 10
M Pérez-Jiménez (4229_CR151) 2017; 161
DR Taub (4229_CR190) 2008; 50
SL Dwivedi (4229_CR52) 2018; 9
A Ershova (4229_CR55) 2011; 58
SS Myers (4229_CR129) 2014; 510
N Poursarebani (4229_CR158) 2014; 79
I Cakmak (4229_CR37) 2010; 58
M Bavorova (4229_CR19) 2018; 25
G Zocchi (4229_CR227) 2007; 58
X Zhu (4229_CR223) 2018; 181
L Barão (4229_CR16) 2019; 649
I Loladze (4229_CR111) 2002; 17
References_xml – reference: TaubDRWangXWhy are Nitrogen Concentrations in Plant Tissues Lower under Elevated CO2? A Critical Examination of the HypothesesJ Integr Plant Biol200850136513741:CAS:528:DC%2BD1cXhsVyltb7M10.1111/j.1744-7909.2008.00754.x19017124
– reference: KobayashiTNishizawaNKIron Uptake, Translocation, and Regulation in Higher PlantsAnnu Rev Plant Biol2012631311521:CAS:528:DC%2BC38Xos1ams78%3D10.1146/annurev-arplant-042811-10552222404471
– reference: RustioniLGrossiDBrancadoroLFaillaOCharacterization of iron deficiency symptoms in grapevine (Vitis spp.) leaves by reflectance spectroscopyPlant Physiol Biochem20171183423471:CAS:528:DC%2BC2sXhtFart73M10.1016/j.plaphy.2017.06.03128688348
– reference: SinghSKReddyVRCo-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: mechanisms of limitations and adaptationsPhotosynth Res20181371832001:CAS:528:DC%2BC1cXjtlyhtbk%3D10.1007/s11120-018-0490-329478203
– reference: ZhangGZhangTLiuJZhangJHeCComprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO2 levels in two sea buckthorn cultivarsGene20186601201271:CAS:528:DC%2BC1cXmsF2lsrc%3D10.1016/j.gene.2018.03.05729574192
– reference: FernandoNPanozzoJTauszMNortonRMFitzgeraldGJMyersSWalkerCStangoulisJSeneweeraSWheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping systemJ Cereal Sci2012566846901:CAS:528:DC%2BC38Xht1yqu7zP10.1016/j.jcs.2012.07.010
– reference: SabirASariGZinc pulverization alleviates the adverse effect of water deficit on plant growth, yield and nutrient acquisition in grapevines (Vitis vinifera L.)Sci Hortic201924461671:CAS:528:DC%2BC1cXhslOgs7vI10.1016/j.scienta.2018.09.035
– reference: ParvinSUddinSTausz-PoschSArmstrongRFitzgeraldGTauszMGrain mineral quality of dryland legumes as affected by elevated CO2 and drought: a FACE study on lentil (Lens culinaris) and faba bean (Vicia faba)Crop Pasture Science2019702442531:CAS:528:DC%2BC1MXls1Kltrg%3D10.1071/CP18421
– reference: BeardJLWhy iron deficiency is important in infant developmentJ Nutr2008138253425361:CAS:528:DC%2BD1cXhsVClsbrF10.1093/jn/138.12.2534190229853415871
– reference: BriatJ-FDubosCGaymardFIron nutrition, biomass production, and plant product qualityTrends Plant Sci20152033401:CAS:528:DC%2BC2cXhtlamsb%2FO10.1016/j.tplants.2014.07.00525153038
– reference: SilvaJFSilvaTREscobarIECFraizACRdos SantosJWMdo NascimentoTRdos SantosJMRSJWPde MeloRFSignorDScreening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylandsWorld J Microbiol Biotechnol2018341861:CAS:528:DC%2BC1cXisVakt7nP10.1007/s11274-018-2568-730506306
– reference: FernandoNPanozzoJTauszMNortonRFitzgeraldGSeneweeraSRising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grainFood Chem2012133130713111:CAS:528:DC%2BC38XjtF2hurk%3D10.1016/j.foodchem.2012.01.105
– reference: JinJTangCSalePThe impact of elevated carbon dioxide on the phosphorus nutrition of plants: a reviewAnn Bot-London20151169879991:CAS:528:DC%2BC1cXkt1yltbc%3D10.1093/aob/mcv088
– reference: SmethurstCFGarnettTShabalaSNutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recoveryPlant Soil200527031451:CAS:528:DC%2BD2MXks1ektr0%3D10.1007/s11104-004-1082-x
– reference: GuoJZhangM-qWangX-wW-jZA possible mechanism of mineral responses to elevated atmospheric CO2 in rice grainsJ Integr Agric20151450571:CAS:528:DC%2BC2MXksF2gs7c%3D10.1016/S2095-3119(14)60846-7
– reference: HatfieldJLWalthallCLVan AlfenNKClimate Change: Cropping System Changes and AdaptationsEncyclopedia of Agriculture and Food Systems2014OxfordAcademic Press
– reference: DasSBhattacharyyaPAdhyaTImpact of elevated CO 2, flooding, and temperature interaction on heterotrophic nitrogen fixation in tropical rice soilsBiol Fertil Soils20114725301:CAS:528:DC%2BC3MXisFChurs%3D10.1007/s00374-010-0496-2
– reference: PoursarebaniNNussbaumerTSimkovaHSafarJWitsenboerHvan OeverenJDolezelJMayerKFSteinNSchnurbuschTWhole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6APlant J2014793343471:CAS:528:DC%2BC2cXhtFWjtL3K10.1111/tpj.12550248130604241024
– reference: YilmazOKahramanKOzgurRUzildayBTurkanIOzturkLGrowth performance and antioxidative response in bread and durum wheat plants grown with varied potassium treatments under ambient and elevated carbon dioxideEnviron Exp Bot201713726351:CAS:528:DC%2BC2sXisVCntL8%3D10.1016/j.envexpbot.2017.01.012
– reference: PrettyJulesBentonTim G.BharuchaZareen PervezDicksLynn V.FloraCornelia ButlerGodfrayH. Charles J.GoulsonDaveHartleySueLampkinNicMorrisCarolPierzynskiGaryPrasadP. V. VaraReganoldJohnRockströmJohanSmithPeteThornePeterWrattenSteveGlobal assessment of agricultural system redesign for sustainable intensificationNature Sustainability20181844144610.1038/s41893-018-0114-0
– reference: SinghSKBadgujarGReddyVRFleisherDHBunceJACarbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cottonJ Plant Physiol20131708018131:CAS:528:DC%2BC3sXhvFaht7c%3D10.1016/j.jplph.2013.01.00123384758
– reference: ZhengHChengTLiDYaoXTianYCaoWZhuYCombining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in RiceFront Plant Sci2018993610.3389/fpls.2018.00936300344056043795
– reference: BloomAJSmartDRNguyenDTSearlesPSNitrogen assimilation and growth of wheat under elevated carbon dioxideP Natl Acad Sc200299173017351:CAS:528:DC%2BD38Xht1Cltb0%3D10.1073/pnas.022627299
– reference: AiFEisenhauerNXieYZhuJJoussetADuWYinYZhangXJiRGuoHElevated CO2 accelerates polycyclic aromatic hydrocarbon accumulation in a paddy soil grown with ricePLoS One2018131:CAS:528:DC%2BC1cXhsl2itLvM10.1371/journal.pone.0196439296890895916858
– reference: EliasDWangLJacintheP-AA meta-analysis of pesticide loss in runoff under conventional tillage and no-till managementEnviron Monit Assess2018190791:CAS:528:DC%2BC1cXovFCrsQ%3D%3D10.1007/s10661-017-6441-129330590
– reference: SarkerUObaSResponse of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water contentFood Chem201825272831:CAS:528:DC%2BC1cXhtlyjtbk%3D10.1016/j.foodchem.2018.01.09729478565
– reference: SinghShardendu K.ReddyVangimalla R.Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis, and nutrient efficiency of cottonJournal of Plant Nutrition and Soil Science201417768929021:CAS:528:DC%2BC2cXitVaktr3N10.1002/jpln.201400117
– reference: ZaghdoudCCarvajalMFerchichiAdel CarmenM-BMWater balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2Sci Total Environ20165717637711:CAS:528:DC%2BC28Xht1SgsLbF10.1016/j.scitotenv.2016.07.04827450252
– reference: DuvalBDBlankinshipJCDijkstraPHungateBARETRACTED ARTICLE:CO2 effects on plant nutrient concentration depend on plantfunctional group and available nitrogen: a meta-analysisPlant Ecol201221350552110.1007/s11258-011-9998-8
– reference: JakobsenISmithSESmithFAWatts-WilliamsSJClausenSSGrønlundMPlant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizasJ Exp Bot201667617361861:CAS:528:DC%2BC2sXht1CqsrnM10.1093/jxb/erw383278110845100028
– reference: Pérez-LópezUMiranda-ApodacaJLacuestaMMena-PetiteAMuñoz-RuedaAGrowth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinitySci Hortic201519556661:CAS:528:DC%2BC2MXhsV2gurzE10.1016/j.scienta.2015.08.034
– reference: IPCC (2018) IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.
– reference: PetropoulosSALevizouENtatsiGFernandesÂPetrotosKAkoumianakisKBarrosLFerreiraICSalinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum LFood Chem20172141291361:CAS:528:DC%2BC28XhtFOksr%2FO10.1016/j.foodchem.2016.07.08027507457
– reference: Rodríguez-CelmaJLattanzioGVillarroyaDGutierrez-CarbonellECeballos-LaitaLRencoretJGutiérrezAdel RíoJCGrusakMAAbadíaAAbadíaJLópez-MillánA-FEffects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonateJ Proteome20161401121:CAS:528:DC%2BC28XlvVartro%3D10.1016/j.jprot.2016.03.017
– reference: PoorterHVan BerkelYBaxterRDen HertogJDijkstraPGiffordRMGriffinKLRoumetCRoyJWongSCThe effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 speciesPlant Cell Environ1997204724821:CAS:528:DyaK2sXjtVOgsrY%3D10.1046/j.1365-3040.1997.d01-84.x
– reference: Radhapriya P, Ramachandran A, Palani P (2018) Indigenous plant growth-promoting bacteria enhance plant growth, biomass, and nutrient uptake in degraded forest plants. 3 Biotech 8: 154 https://doi.org/10.1007/s13205-018-1179-1.
– reference: BavorovaMImamverdiyevNPonkinaEFarm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian SiberiaEnviron Sci Pollut R2018251016103210.1007/s11356-017-9268-y
– reference: QiaoYMiaoSLiQJinJLuoXTangCElevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate regionSci Total Environ20196664054131:CAS:528:DC%2BC1MXjs1Oks7o%3D10.1016/j.scitotenv.2019.02.14930802656
– reference: MungaiLMSnappSMessinaJPChikowoRSmithAAndersERichardsonRBLiGSmallholder farms and the potential for sustainable intensificationFront Plant Sci20167172010.3389/fpls.2016.01720279094445113132
– reference: Ahmed M, Stöckle CO, Nelson R, Higgins S (2017) Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble. Front Ecol Environ 5. https://doi.org/10.3389/fevo.2017.00051
– reference: LarbiAjmiMoralesFermínAbadíaAnunciaciónAbadíaJavierChanges in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupplyJournal of Plant Physiology201016742552601:CAS:528:DC%2BC3cXktFOnsbs%3D10.1016/j.jplph.2009.09.007
– reference: SublettWBarickmanTSamsCEffects of elevated temperature and potassium on biomass and quality of dark red ‘Lollo Rosso’lettuceHortic201841110.3390/horticulturae4020011
– reference: AhujaIde VosRCBonesAMHallRDPlant molecular stress responses face climate changeTrends Plant Sci2010156646741:CAS:528:DC%2BC3cXhsVyht73I10.1016/j.tplants.2010.08.00220846898
– reference: ChenZWangBWangJPanGXiongZContrasting effects of elevated CO 2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy fieldEnviron Monit Assess20161885451:CAS:528:DC%2BC28XhsVymtr7J10.1007/s10661-016-5563-1
– reference: ZhaoX-zWangG-xShenZ-xZhangHM-qQImpact of elevated CO 2 concentration under three soil water levels on growth of Cinnamomum camphoraJ Zhejiang Univ Sci B200672832901:CAS:528:DC%2BD28XjslOjtbc%3D10.1631/jzus.2006.B0283
– reference: BrumbarovaTMatrosAMockH-PBauerPA proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FERPlant J2008543213341:CAS:528:DC%2BD1cXlsVWhs78%3D10.1111/j.1365-313X.2008.03421.x18221364
– reference: HögyPBrunnbauerMKoehlerPSchwadorfKBreuerJFranzaringJZhunusbayevaDFangmeierAGrain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichmentEnviron Exp Bot20138811181:CAS:528:DC%2BC3sXjslajsr0%3D10.1016/j.envexpbot.2011.12.007
– reference: DongJ-lLiXNazimGZ-qDInteractive effects of elevated carbon dioxide and nitrogen availability on fruit quality of cucumber (Cucumis sativus L.)J Integr Agric201817243824461:CAS:528:DC%2BC1MXmtVCgtrw%3D10.1016/S2095-3119(18)62005-2
– reference: HögyPWieserHKöhlerPSchwadorfKBreuerJFranzaringJMuntiferingRFangmeierAEffects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experimentPlant Biol20091160691:CAS:528:DC%2BC3cXlslajsrw%3D10.1111/j.1438-8677.2009.00230.x19778369
– reference: WASAKIJ.YONETANIR.KURODAS.SHINANOT.YAZAKIJ.FUJIIF.SHIMBOK.YAMAMOTOK.SAKATAK.SASAKIT.KISHIMOTON.KIKUCHIS.YAMAGISHIM.OSAKIM.Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant rootsPlant, Cell and Environment2003269151515231:CAS:528:DC%2BD3sXotFyqsr8%3D10.1046/j.1365-3040.2003.01074.x
– reference: Rellán-ÁlvarezRAndaluzSRodríguez-CelmaJWohlgemuthGZocchiGÁlvarez-FernándezAFiehnOLópez-MillánAFAbadíaJChanges in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupplyBMC Plant Biol2010101151:CAS:528:DC%2BC3cXosVanu7w%3D10.1186/1471-2229-10-120
– reference: JinCWDuSTChenWWLiGXZhangYSZhengSJElevated Carbon Dioxide Improves Plant Iron Nutrition through Enhancing the Iron-Deficiency-Induced Responses under Iron-Limited Conditions in TomatoPlant Physiol20091502722801:CAS:528:DC%2BD1MXlvFahs7s%3D10.1104/pp.109.136721193295652675727
– reference: Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2009) Climate Change Impact on Agriculture and Costs of Adaptation. International Food Policy Research Institute, Washington, DC.
– reference: PandeyPGeYStoergerVSchnableJCHigh throughput in vivo analysis of plant leaf chemical properties using hyperspectral imagingFront Plant Sci20178134810.3389/fpls.2017.01348288246835540889
– reference: KrężelAMaretWThe biological inorganic chemistry of zinc ionsArch Biochem Biophys20166113191:CAS:528:DC%2BC28XnslGrtLs%3D10.1016/j.abb.2016.04.010271172345120989
– reference: YuhuiWDenghuaYJunfengWYiDXinshanSEffects of elevated CO2 and drought on plant physiology, soil carbon and soil enzyme activitiesPedosphere20172784685510.1016/S1002-0160(17)60458-2
– reference: SgherriCPérez-LópezUMicaelliFMiranda-ApodacaJMena-PetiteAMuñoz-RuedaAQuartacciMFElevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettucesPlant Physiol Biochem20171152692781:CAS:528:DC%2BC2sXmtVyntLk%3D10.1016/j.plaphy.2017.04.00628411511
– reference: ZiskaLHBunceJAPredicting the impact of changing CO2 on crop yields: some thoughts on foodNew Phytol20071756076181:CAS:528:DC%2BD2sXhtVKgsLzF10.1111/j.1469-8137.2007.02180.x17688578
– reference: MyersSSSmithMRGuthSGoldenCDVaitlaBMuellerNDDangourADHuybersPClimate Change and Global Food Systems: Potential Impacts on Food Security and UndernutritionAnnu Rev Public Health20173825927710.1146/annurev-publhealth-031816-04435628125383
– reference: WeiXLiuMWangSJiangMSeed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitationFlora2018246-247192510.1016/j.flora.2018.07.001
– reference: NiuYChaiRDongHWangHTangCZhangYEffect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen formsJ Exp Bot2012643553671:CAS:528:DC%2BC38XhvV2gsbrE10.1093/jxb/ers341231832553528041
– reference: PandeyRZintaGAbdElgawadHAhmadAJainVJanssensIAPhysiological and molecular alterations in plants exposed to high [CO2] under phosphorus stressBiotechnol Adv2015333033161:CAS:528:DC%2BC2MXlsV2gsbs%3D10.1016/j.biotechadv.2015.03.01125797341
– reference: RasheedRIqbalMAshrafMAHussainIShafiqFYousafAZaheerAGlycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomatoJ Hortic Sci Biotechnol2018933853911:CAS:528:DC%2BC2sXhsFWgtb3N10.1080/14620316.2017.1373037
– reference: PalaciosCJGrandisACarvalhoVJSalatinoABuckeridgeMSIsolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seedsFood Chem20192756106171:CAS:528:DC%2BC1cXhvVamurrE10.1016/j.foodchem.2018.09.05230724240
– reference: AbadíaJavierLópez-MillánAna-FlorRombolàAdamoAbadíaAnunciaciónPlant and Soil20022411758610.1023/A:1016093317898
– reference: LoladzeIRising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?Trends Ecol Evol20021745746110.1016/S0169-5347(02)02587-9
– reference: BrobergMHögyPPleijelHCO2-induced changes in wheat grain composition: meta-analysis and response functionsAgron20177321:CAS:528:DC%2BC1cXitFGlurfM10.3390/agronomy7020032
– reference: CakmakIThe role of potassium in alleviating detrimental effects of abiotic stresses in plantsJ Plant Nutr Soil Sc20051685215301:CAS:528:DC%2BD2MXpsFCntL8%3D10.1002/jpln.200420485
– reference: KromdijkJLongSPOne crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviationP Roy Soc B-Biol Sci2016283201525781:CAS:528:DC%2BC2sXosl2qtw%3D%3D10.1098/rspb.2015.2578
– reference: MyersSSZanobettiAKloogIHuybersPLeakeyADBBloomAJCarlisleEDietterichLHFitzgeraldGHasegawaTHolbrookNMNelsonRLOttmanMJRaboyVSakaiHSartorKASchwartzJSeneweeraSTauszMUsuiYIncreasing CO2 threatens human nutritionNature20145101391421:CAS:528:DC%2BC2cXhtFygsrfE10.1038/nature13179248052314810679
– reference: DeySKChakrabartiBPrasannaRPratapDSinghSDPurakayasthaTJPathakHElevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea cropArch Agron Soil Sci201763192719371:CAS:528:DC%2BC2sXmtVGjt74%3D10.1080/03650340.2017.1315105
– reference: KumariSAgrawalMGrowth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactionsEcotox Environ Safe20141011461561:CAS:528:DC%2BC2cXitV2ltb8%3D10.1016/j.ecoenv.2013.12.021
– reference: Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: Recent advances, challenges, and future implications. Front Plant Sci, 9. https://doi.org/10.3389/fpls.2018.01361
– reference: McGrathJMLobellDBReduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrationsPlant Cell Environ2013366977051:CAS:528:DC%2BC3sXhs1ais7s%3D10.1111/pce.1200722943419
– reference: RamzaniPMAKhalidMNaveedMAhmadRShahidMIron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soilPlant Physiol Biochem20161042842931:CAS:528:DC%2BC28XnslKhuro%3D10.1016/j.plaphy.2016.04.05327179316
– reference: ZhaoXLiuSLPuCZhangXQXueJFZhangRWangYQLalRZhangHLChenFMethane and nitrous oxide emissions under no-till farming in China: a meta-analysisGlob Chang Biol2016221372138410.1111/gcb.1318526661415
– reference: Pérez-JiménezMPiñeroMCdel AmorFMHeat shock, high CO2 and nitrogen fertilization effects in pepper plants submitted to elevated temperaturesSci Hortic20192443223291:CAS:528:DC%2BC1cXhvVeqtLbO10.1016/j.scienta.2018.09.072
– reference: WuD-XWangG-XBaiY-FLiaoJ-XEffects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levelsAgric Ecosyst Environ200410449350710.1016/j.agee.2004.01.018
– reference: VicenteRMartínez-CarrascoRPérezPMorcuendeRNew insights into the impacts of elevated CO2, nitrogen, and temperature levels on the regulation of C and N metabolism in durum wheat using network analysisNew Biotechnol2018401921991:CAS:528:DC%2BC2sXhtl2gtbjE10.1016/j.nbt.2017.08.003
– reference: YangLWangYDongGGuHHuangJZhuJYangHLiuGHanYThe impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of riceField Crop Res200710212814010.1016/j.fcr.2007.03.006
– reference: YilmazOKahramanKOzturkLElevated carbon dioxide exacerbates adverse effects of Mg deficiency in durum wheatPlant Soil201741041501:CAS:528:DC%2BC28XhtFerurzF10.1007/s11104-016-2979-x
– reference: RafiqMHAhmadRJabbarAMunirHHussainMWheat productivity responses in the rice-based system under different no-till techniques and nitrogen sourcesEnviron Sci Pollut R20172421797218061:CAS:528:DC%2BC2sXhtlakur%2FL10.1007/s11356-017-9813-8
– reference: MyersSSWessellsKRKloogIZanobettiASchwartzJEffect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling studyLancet Glob Health20153e639e64510.1016/S2214-109X(15)00093-5
– reference: NewtonACJohnsonSNGregoryPJImplications of climate change for diseases, crop yields and food securityEuphytica201117931810.1007/s10681-011-0359-4
– reference: SahaSChakrabortyDSehgalVKPalMPotential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.)Food Chem20151874314361:CAS:528:DC%2BC2MXnt1Wgtbw%3D10.1016/j.foodchem.2015.04.11625977047
– reference: HanXHaoXLamSKWangHLiYWheelerTJuHLinEYield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experimentAgric Ecosyst Environ20152091321371:CAS:528:DC%2BC2MXmtlenur0%3D10.1016/j.agee.2015.04.007
– reference: MAZhongFLYNNJenniferLIBRAGrantSHIZechuanElevated CO 2 Accelerates Phosphorus Depletion by Common Bean ( Phaseolus vulgaris ) in Association with Altered Leaf Biochemical PropertiesPedosphere201828342242910.1016/S1002-0160(17)60420-X
– reference: IPCC (2014) IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
– reference: FanzoJDavisCMcLarenRChoufaniJThe effect of climate change across food systems: Implications for nutrition outcomesGlob Food Secur201818121910.1016/j.gfs.2018.06.001
– reference: BassuSBrissonNDurandJLBooteKLizasoJJonesJWRosenzweigCRuaneACAdamMBaronCHow do various maize crop models vary in their responses to climate change factors?Glob Chang Biol2014202301232010.1111/gcb.1252024395589
– reference: BurrittDJMeltonLShahidiFVarelisPCrop Plant Adaption to Climate Change and Extreme EnvironmentsEncyclopedia of Food Chemistry2019OxfordAcademic Press19620110.1016/B978-0-08-100596-5.22333-0
– reference: BunceJAElevated Carbon Dioxide Effects on Reproductive Phenology and Seed Yield among Soybean CultivarsCrop Sci2015553393431:CAS:528:DC%2BC2MXntFOqtg%3D%3D10.2135/cropsci2014.04.0273
– reference: López-MillánAna FlorMoralesFermı́nAbadı́aAnunciaciónAbadı́aJavierEffects of Iron Deficiency on the Composition of the Leaf Apoplastic Fluid and Xylem Sap in Sugar Beet. Implications for Iron and Carbon TransportPlant Physiology2000124287388410.1104/pp.124.2.873
– reference: OlanrewajuOSGlickBRBabalolaOOMechanisms of action of plant growth promoting bacteriaWorld J Microbiol Biotechnol2017331971:CAS:528:DC%2BC2sXhs1amu7bL10.1007/s11274-017-2364-9289866765686270
– reference: WangYHuXHouZNingJZhangZDiscrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imagingJ Sci Food Agric201898465946641:CAS:528:DC%2BC1cXntVOntrs%3D10.1002/jsfa.899629607500
– reference: ParajuliRThomaGMatlockMDEnvironmental sustainability of fruit and vegetable production supply chains in the face of climate change: A reviewSci Total Environ2018650286328791:CAS:528:DC%2BC1cXhvVyhur%2FJ10.1016/j.scitotenv.2018.10.01930373063
– reference: BunceJAContrasting responses of seed yield to elevated carbon dioxide under field conditions within Phaseolus vulgarisAgric Ecosyst Environ20081282192241:CAS:528:DC%2BD1cXhtVKlsLzE10.1016/j.agee.2008.06.003
– reference: JinJArmstrongRTangCImpact of elevated CO2 on grain nutrient concentration varies with crops and soils – A long-term FACE studySci Total Environ2019651264126471:CAS:528:DC%2BC1cXhvFKltLbF10.1016/j.scitotenv.2018.10.17030463119
– reference: ShabaniGArdakaniMChaichiMFriedelJKhavaziKEffect of Different Fertilizing Treatments on Nutrient Uptake in Annual Medic (Medicago scutellata cv. Robinson) under Irrigated and Dry Farming SystemsJ Agric Sci Technol201517299310
– reference: NeocleousDKoukounarasASiomosAVasilakakisMAssessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuceJ Food Qual201437181:CAS:528:DC%2BC2cXitFaiur4%3D10.1111/jfq.12066
– reference: KumagaiEAokiNMasuyaYShimonoHPhenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 ConcentrationPlant Physiol2015169202120291:CAS:528:DC%2BC28Xjs1Kgtrs%3D10.1104/pp.15.00980263736584634073
– reference: Ashraf MA (2012) Waterlogging stress in plants: A review. Afr J Agric Res Vol 7(13). https://doi.org/10.5897/AJARX11.084
– reference: WesselerJZilbermanDThe economic power of the Golden Rice oppositionEnviron Dev Econ20141972474210.1017/S1355770X1300065X
– reference: NorisadaMMotoshigeTKojimaKTangeTEffects of phosphate supply and elevated CO2 on root acid phosphatase activity in Pinus densiflora seedlingsJ Plant Nutr Soil Sc20061692742791:CAS:528:DC%2BD28XjvFGlt7g%3D10.1002/jpln.200520558
– reference: DongJGryllsSHuntJArmstrongRDelhaizeETangCElevated CO2 (free-air CO2 enrichment) increases grain yield of aluminium-resistant but not aluminium-sensitive wheat (Triticum aestivum) grown in an acid soilAnn Bot-London201812346146810.1093/aob/mcy171
– reference: PilbeamDJBreeding crops for improved mineral nutrition under climate change conditionsJ Exp Bot201566351135211:CAS:528:DC%2BC2MXitVCqu7zJ10.1093/jxb/eru53925614661
– reference: HaqueETaniguchiHHassanMMBhowmikPKarimMRŚmiechMZhaoKRahmanMIslamTApplication of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and ChallengesFront Plant Sci2018961710.3389/fpls.2018.00617298680735952327
– reference: ZocchiGBartonLLAbadíaJMetabolic changes in iron stressed dicotiledoneus plantsIron Nutrition in Plants and Rizospheric Microorganisms2006Dordrecht, The NetherlandsSpringer
– reference: Pérez-JiménezMHernández-MunueraMPiñero ZapataMCLópez-OrtegaGdel AmorFMTwo minuses can make a plus: waterlogging and elevated CO2 interactions in sweet cherry (Prunus avium) cultivarsPhysiol Plant20171612572721:CAS:528:DC%2BC2sXhtVOisrrI10.1111/ppl.1259028568609
– reference: ChaturvediAKBahugunaRNPalMShahDMauryaSJagadishKSElevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditionsField Crop Res201720614915710.1016/j.fcr.2017.02.018
– reference: Marschner H (2012) Marschner's Mineral Nutrition of Higher Plants.(Ed.): Marschner, P. Academic press.
– reference: SarkerUIslamMTObaSSalinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leavesPLoS One2018131:CAS:528:DC%2BC1MXmvFagtbo%3D10.1371/journal.pone.0206388303837796211690
– reference: MadanPJagadishSCraufurdPFitzgeraldMLafargeTWheelerTEffect of elevated CO2 and high temperature on seed-set and grain quality of riceJ Exp Bot201263384338521:CAS:528:DC%2BC38XhtVShtL7M10.1093/jxb/ers077224383023388820
– reference: VeluGGuzmanCMondalSAutriqueJEHuertaJSinghRPEffect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheatJ Cereal Sci2016691821861:CAS:528:DC%2BC28XltFGltL4%3D10.1016/j.jcs.2016.03.006
– reference: HögyPFangmeierAEffects of elevated atmospheric CO2 on grain quality of wheatJ Cereal Sci2008485805911:CAS:528:DC%2BD1cXhtlagtbjK10.1016/j.jcs.2008.01.006
– reference: AnandanARajivGEswaranRPrakashMGenotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypesJ Food Sci201176H122H1301:CAS:528:DC%2BC3MXmslOhsb4%3D10.1111/j.1750-3841.2011.02135.x22417360
– reference: FAO (2017) The future of food and agriculture – Trends and challenges. Roeme.
– reference: HummelMHallahanBFBrychkovaGRamirez-VillegasJGuwelaVChataikaBCurleyEMcKeownPCMorrisonLTalsmaEFBeebeSJarvisAChirwaRSpillaneCReduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in AfricaSci Rep20188161871:CAS:528:DC%2BC1MXht1Cqt7s%3D10.1038/s41598-018-33952-4303857666212502
– reference: MortensenLMEffects of elevated CO2 concentrations on growth and yield of eight vegetable species in a cool climateSci Hortic19945817718510.1016/0304-4238(94)90149-X
– reference: AsifMTuncCEOzturkLChanges in yield attributes and K allocation in wheat as affected by K deficiency and elevated CO2Plant Soil20184261531621:CAS:528:DC%2BC1cXltVygtbw%3D10.1007/s11104-018-3603-z
– reference: CakmakIKirkbyEARole of magnesium in carbon partitioning and alleviating photooxidative damagePhysiol Plant20081336927041:CAS:528:DC%2BD1cXps1Oit7g%3D10.1111/j.1399-3054.2007.01042.x18724409
– reference: MaYSchwenkeGSunLLi LiuDWangBYangBModeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenariosSci Total Environ2018630154415521:CAS:528:DC%2BC1cXktV2iurY%3D10.1016/j.scitotenv.2018.02.32229554771
– reference: Watts-WilliamsSJAndrew SmithFJakobsenISoil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonisationSymbiosis201977738210.1007/s13199-018-0573-0
– reference: BarrettDJRichardsonAEGiffordRMElevated atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorusFunct Plant Biol19982587941:CAS:528:DyaK1cXisl2qt7s%3D10.1071/PP97045
– reference: KimballBKobayashiKBindiMResponses of agricultural crops to free-air CO2 enrichment2002ADV AGRONElsevier10.1016/S0065-2113(02)77017-X
– reference: HaaseSRotheAKaniaAWasakiJRömheldVEngelsCKandelerENeumannGResponses to Iron Limitation in Hordeum vulgare L. as Affected by the Atmospheric CO2 ConcentrationJ Environ Qual200837125412621:CAS:528:DC%2BD1cXmtlahurY%3D10.2134/jeq2006.013618453445
– reference: HajibolandRAhmadPPrasadMNVEffect of Micronutrient Deficiencies on Plants Stress ResponsesAbiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability2012New York, NYSpringer New York
– reference: GomieroTSoil degradation, land scarcity and food security: Reviewing a complex challengeSustainability2016828110.3390/su8030281
– reference: HaaseSNeumannGKaniaAKuzyakovYRömheldVKandelerEElevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris LSoil Biol Biochem200739220822211:CAS:528:DC%2BD2sXmsFKrsr8%3D10.1016/j.soilbio.2007.03.014
– reference: KumarANayakAKDasBSPanigrahiNDasguptaPMohantySKumarUPanneerselvamPPathakHEffects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2Sci Total Environ2019650203220501:CAS:528:DC%2BC1cXhvVKlu7jF10.1016/j.scitotenv.2018.09.33230290346
– reference: YuJingjinDuHongmeiXuMingHuangBingruMetabolic Responses to Heat Stress under Elevated Atmospheric CO2 Concentration in a Cool-season Grass SpeciesJournal of the American Society for Horticultural Science201213742212281:CAS:528:DC%2BC38Xhtlehtb3L10.21273/JASHS.137.4.221
– reference: SaeedMDahabAAWangzhenGTianzhenZA cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plantsOmics2012161881991:CAS:528:DC%2BC38XltVKhsbo%3D10.1089/omi.2011.010922433075
– reference: PangJZhuJ-GXieZ-BLiuGZhangY-LChenG-PZengQChengLA new explanation of the N concentration decrease in tissues of rice (Oryza sativa L.) exposed to elevated atmospheric CO2Environ Exp Bot200657981051:CAS:528:DC%2BD28XkslSks7Y%3D10.1016/j.envexpbot.2005.04.004
– reference: AbbasSSharmilaPUpretyDSaradhiPEffects of elevated CO2 on soil physicochemical characteristics under Free Air CO2 Enrichment (FACE) technologyIOP Conference Series: Earth and Environmental Science2009629204510.1088/1755-1307/6/29/292045
– reference: AsifMYilmazOOzturkLElevated carbon dioxide ameliorates the effect of Zn deficiency and terminal drought on wheat grain yield but compromises nutritional qualityPlant Soil201741157671:CAS:528:DC%2BC28Xht1Krt73P10.1007/s11104-016-2996-9
– reference: ZocchiGDe NisiPDell'OrtoMEspenLGallinaPMIron deficiency differently affects metabolic responses in soybean rootsJ Exp Bot200758599310001:CAS:528:DC%2BD2sXktlWjs7o%3D10.1093/jxb/erl25917229758
– reference: DaryantoSWangLJacinthePAMeta-analysis of phosphorus loss from no-till soilsJ Environ Qual201746102810371:CAS:528:DC%2BC1cXitFWjt74%3D10.2134/jeq2017.03.012128991965
– reference: EliaAConversaGA decision support system (GesCoN) for managing fertigation in open field vegetable crops. Part I—methodological approach and description of the softwareFront Plant Sci2015631910.3389/fpls.2015.00319260421284438600
– reference: NakashimaKItoYYamaguchi-ShinozakiKTranscriptional regulatory networks in response to abiotic stresses in Arabidopsis and grassesPlant Physiol200914988951:CAS:528:DC%2BD1MXjt1WqsLs%3D10.1104/pp.108.129791191266992613698
– reference: MedekDESchwartzJMyersSSEstimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and RegionEnviron Health Perspect20171251:CAS:528:DC%2BC1MXlsFOisb8%3D10.1289/ehp41288859775783645
– reference: WangALamSKHaoXLiFYZongYWangHLiPElevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max (L.) Merr.) cultivar by increasing water use efficiencyPlant Physiol Biochem20181326606651:CAS:528:DC%2BC1cXhvFKksbrI10.1016/j.plaphy.2018.10.01630347376
– reference: Tarekegne A, Bennie A, Labuschagne M (2000) Effects of soil waterlogging on the concentration and uptake of selected nutrients in wheat genotypes differing in tolerance. The eleventh regional wheat workshop for eastern, central and southern Africa, Addis Abeba, Ethiopia, Addis Ababa.
– reference: MurgiaIArosioPTarantinoDSoaveCBiofortification for combating 'hidden hunger' for ironTrends Plant Sci20121747551:CAS:528:DC%2BC38XptVSnsA%3D%3D10.1016/j.tplants.2011.10.00322093370
– reference: O'MaraFPThe role of grasslands in food security and climate changeAnn Bot2012110126312701:STN:280:DC%2BC38bptlClsQ%3D%3D10.1093/aob/mcs209230022703478061
– reference: AinsworthEARogersANelsonRLongSPTesting the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine maxAgric For Meteorol2004122859410.1016/j.agrformet.2003.09.002
– reference: WijewardanaChathurikaReddyK. RajaBellalouiNacerSoybean seed physiology, quality, and chemical composition under soil moisture stressFood Chemistry2019278921001:CAS:528:DC%2BC1cXit1Whs7jP10.1016/j.foodchem.2018.11.035
– reference: LoboCBTomásMSJViruelEFerreroMALuccaMEDevelopment of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologiesMicrobiol Res201821912251:CAS:528:DC%2BC1cXitFOisL7P10.1016/j.micres.2018.10.01230642462
– reference: López-MillánAna FlorMoralesFermínGogorcenaYolandaAbadíaAnunciaciónAbadíaJavierMetabolic responses in iron deficient tomato plantsJournal of Plant Physiology2009166437538410.1016/j.jplph.2008.06.011
– reference: NezhadahmadiArashProdhanZakaria HossainFaruqGolamDrought Tolerance in WheatThe Scientific World Journal2013201311210.1155/2013/610721
– reference: AsifMYilmazOOzturkLPotassium deficiency impedes elevated carbon dioxide-induced biomass enhancement in well watered or drought-stressed bread wheatJ Plant Nutr Soil Sc20171804744811:CAS:528:DC%2BC2sXhtFaqtb%2FP10.1002/jpln.201600616
– reference: SicherRCBarnabyJYImpact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stressPhysiol Plant20121442382531:CAS:528:DC%2BC38Xjt12gt7c%3D10.1111/j.1399-3054.2011.01555.x22150442
– reference: Bencke-MalatoMDe SouzaAPRibeiro-AlvesMSchmitzJFBuckeridgeMSAlves-FerreiraMShort-term responses of soybean roots to individual and combinatorial effects of elevated [CO2] and water deficitPlant Sci20192802832961:CAS:528:DC%2BC1MXktFeqsw%3D%3D10.1016/j.plantsci.2018.12.02130824006
– reference: NieMBellCWallensteinMDPendallEIncreased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2Sci Rep2015592121:CAS:528:DC%2BC2MXhtFKkur7J10.1038/srep09212257846474363858
– reference: ScagelCFLeeJMitchellJNSalinity from NaCl changes the nutrient and polyphenolic composition of basil leavesInd Crop Prod20191271191281:CAS:528:DC%2BC1cXitVCkurvK10.1016/j.indcrop.2018.10.048
– reference: Grusak MA (2001) Plant Macro- and Micronutrient Minerals. eLS In: Encyclopedia of Life Sciences. Nature Publishing Group, London.
– reference: PangJRyanMHLambersHSiddiqueKHPhosphorus acquisition and utilisation in crop legumes under global changeCurr Opin Plant Biol2018452482541:CAS:528:DC%2BC1cXhtVeit7%2FL10.1016/j.pbi.2018.05.01229853281
– reference: ZhuHLiuHXuYGuijunYUAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheatAppl Opt201857772277321:CAS:528:DC%2BC1cXisVejtbjL10.1364/AO.57.00772230462034
– reference: TaniEAbrahamEChachalisDTravlosIMolecular, genetic and agronomic approaches to utilizing pulses as cover crops and green manure into cropping systemsInt J Mol Sci20171812021:CAS:528:DC%2BC1cXhvFOjtrzE10.3390/ijms180612025486025
– reference: Bellaloui N, Hu Y, Mengistu A, Abbas HK, Kassem MA, Tigabu M (2016) Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments. Atlas J Plant Biol: 56-65 https://doi.org/10.5147/ajpb.2016.0157.
– reference: Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X (2018b) Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. FRONT PLANT SCI 9. https://doi.org/10.3389/fpls.2018.01413
– reference: FernandoNPanozzoJTauszMNortonRMFitzgeraldGJMyersSNicolasMESeneweeraSIntra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatmentsJ Cereal Sci2014591371441:CAS:528:DC%2BC2cXhsVyntr4%3D10.1016/j.jcs.2013.12.002
– reference: HuYBurucsZvon TucherSSchmidhalterUShort-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlingsEnviron Exp Bot2007602682751:CAS:528:DC%2BD2sXislWgtLo%3D10.1016/j.envexpbot.2006.11.003
– reference: LawsonJRFryirsKALeishmanMRInteractive effects of waterlogging and atmospheric CO2 concentration on gas exchange, growth and functional traits of Australian riparian tree seedlingsEcohydrology2017101:CAS:528:DC%2BC2sXmtlOis74%3D10.1002/eco.1803
– reference: AinsworthEALongSPWhat have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2New Phytol200516535137210.1111/j.1469-8137.2004.01224.x15720649
– reference: GodfrayHCJBeddingtonJRCruteIRHaddadLLawrenceDMuirJFPrettyJRobinsonSThomasSMToulminCFood Security: The Challenge of Feeding 9 Billion PeopleScience20103278128181:CAS:528:DC%2BC3cXhslWisLo%3D10.1126/science.118538320110467
– reference: GraySBBradySMPlant developmental responses to climate changeDev Biol201641964771:CAS:528:DC%2BC28Xhtlyjtb%2FN10.1016/j.ydbio.2016.07.02327521050
– reference: LudewigFSonnewaldUHigh CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulationFEBS Lett200047919241:CAS:528:DC%2BD3cXlsFCit7g%3D10.1016/S0014-5793(00)01873-110940381
– reference: FengG-QLiYChengZ-MPlant Molecular and Genomic Responses to Stresses in Projected Future CO2 EnvironmentCrit Rev Plant Sci2014332382491:CAS:528:DC%2BC2cXkt1aiu7w%3D10.1080/07352689.2014.870421
– reference: MannersRvan EttenJAre agricultural researchers working on the right crops to enable food and nutrition security under future climates?Glob Environ Chang20185318219410.1016/j.gloenvcha.2018.09.010
– reference: CarvalhoSMPVasconcelosMWProducing more with less: Strategies and novel technologies for plant-based food biofortificationFood Res Int2013549619711:CAS:528:DC%2BC3sXovFWruw%3D%3D10.1016/j.foodres.2012.12.021
– reference: FischerSHilgerTPiephoH-PJordanICadischGDo we need more drought for better nutrition? The effect of precipitation on nutrient concentration in East African food cropsSci Total Environ20196584054151:CAS:528:DC%2BC1cXisFOkt7jP10.1016/j.scitotenv.2018.12.18130579198
– reference: VuJCAllenLHJStem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperatureJ Plant Physiol2009166114111511:CAS:528:DC%2BD1MXosFelsL8%3D10.1016/j.jplph.2009.01.00319217687
– reference: HeJWangJHeDDongJWangYThe design and implementation of an integrated optimal fertilization decision support systemMath Comput Model2011541167117410.1016/j.mcm.2010.11.050
– reference: Nakandalage N, Seneweera S (2018) Chapter 12 - Micronutrients Use Efficiency of Crop-Plants Under Changing Climate. In: Hossain MA, Kamiya T, Burritt DJ, Phan Tran L-S, Fujiwara T (eds) Plant Micronutrient Use Efficiency. Academic Press
– reference: ErshovaAPopovaNBerdnikovaOProduction of reactive oxygen species and antioxidant enzymes of pea and soybean plants under hypoxia and high CO 2 concentration in mediumRuss J Plant Physl2011589821:CAS:528:DC%2BC3MXht12qsrfE10.1134/S1021443711050074
– reference: Dong J, Gruda N, Lam SK, Li X, Duan Z (2018b) Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00924
– reference: BroadleyMBrownPCakmakIRengelZZhaoFFunction of nutrients: micronutrientsMarschner’s mineral nutrition of higher plants2012London ppElsevier Ltd19124810.1016/B978-0-12-384905-2.00007-8
– reference: ShahbazMAshrafMImproving salinity tolerance in cerealsCrit Rev Plant Sci20133223724910.1080/07352689.2013.758544
– reference: XueYXiaHChristiePZhangZLiLTangCCrop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical reviewAnn Bot-London20161173633771:CAS:528:DC%2BC1cXlvV2hs70%3D10.1093/aob/mcv182
– reference: ZhuXSongFLiuSLiuFLiXArbuscular mycorrhiza enhances nutrient accumulation in wheat exposed to elevated CO2 and soil salinityJ Plant Nutr Soil Sc20181818368461:CAS:528:DC%2BC1cXhslSrsL%2FE10.1002/jpln.201700575
– reference: ZiervogelGinaEricksenPolly J.Adapting to climate change to sustain food securityWiley Interdisciplinary Reviews: Climate Change201014525540
– reference: RobinAVansuytGHinsingerPMeyerJMBriatJFLemanceauPChapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and Nutrition2008ADV AGRONAcademic Press10.1016/S0065-2113(08)00404-5
– reference: KananiHDuttaBKlapaMIIndividual vs. combinatorial effect of elevated CO 2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecuelar response using time-series transcriptomic and metabolomic analysesBMC Syst Biol201041771:CAS:528:DC%2BC3MXlvVSgug%3D%3D10.1186/1752-0509-4-177211905703027597
– reference: ArenqueBCGrandisAPociusOde SouzaAPBuckeridgeMSResponses of Senna reticulata, a legume tree from the Amazonian floodplains, to elevated atmospheric CO2 concentration and waterloggingTrees201428102110341:CAS:528:DC%2BC2cXmsFamsrw%3D10.1007/s00468-014-1015-0
– reference: Vasconcelos M, Clemente T, Grusak M (2014) Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L). Front Plant Sci 5 https://doi.org/10.3389/fpls.2014.00112.
– reference: KöhlerIHHuberSCBernacchiCJBaxterIRIncreased temperatures may safeguard the nutritional quality of crops under future elevated CO2 concentrationsPlant J2018978728861:CAS:528:DC%2BC1MXht12lsLw%3D10.1111/tpj.14166
– reference: GroverMMaheswariMDesaiSGopinathKAVenkateswarluBElevated CO2: Plant associated microorganisms and carbon sequestrationAppl Soil Ecol201595738510.1016/j.apsoil.2015.05.006
– reference: ZengNYangZZhangZHuLChenLComparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (Medicago sativa) Response to Waterlogging StressInt J Mol Sci201920135910.3390/ijms200613596471898
– reference: ThomasJMGBooteKJAllenLHGallo-MeagherMDavisJMElevated Temperature and Carbon Dioxide Effects on Soybean Seed Composition and Transcript AbundanceCrop Sci2003431548155710.2135/cropsci2003.1548
– reference: LenssenGMvan DuinWEJakPRozemaJThe response of Aster tripolium and Puccinellia maritima to atmospheric carbon dioxide enrichment and their interactions with flooding and salinityAquat Bot19955018119210.1016/0304-3770(95)00453-7
– reference: ChengLBookerFLTuCBurkeyKOZhouLShewHDRuftyTWHuSArbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2Science2012337108410871:CAS:528:DC%2BC38Xht1GrsbfL10.1126/science.122430422936776
– reference: ChrysargyrisAPapakyriakouEPetropoulosSATzortzakisNThe combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plantsJ Hazard Mater20193685845931:CAS:528:DC%2BC1MXitlGgsLY%3D10.1016/j.jhazmat.2019.01.05830716568
– reference: KazemiSEshghizadehHRZahediMResponses of Four Rice Varieties to Elevated CO2 and Different Salinity LevelsRice Sci20182514215110.1016/j.rsci.2018.04.002
– reference: LiJieWuXu-DongHaoShan-TingWangXiu-JieLingHong-QingProteomic response to iron deficiency in tomato rootPROTEOMICS2008811229923111:CAS:528:DC%2BD1cXotVeitbg%3D10.1002/pmic.200700942
– reference: CakmakIKalayciMKayaYTorunAAydinNWangYArisoyZErdemHYaziciAGokmenOBiofortification and localization of zinc in wheat grainJ Agric Food Chem201058909291021:CAS:528:DC%2BC3cXptlWgt7w%3D10.1021/jf101197h23654236
– reference: AbdelgawadHFarfan-VignoloERVosDAsardHElevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumesPlant Sci20152311101:CAS:528:DC%2BC2cXitVWku73L10.1016/j.plantsci.2014.11.00125575986
– reference: JablonskiLMWangXCurtisPSPlant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild speciesNew Phytol200215692610.1046/j.1469-8137.2002.00494.x
– reference: CakmakIKutmanUBAgronomic biofortification of cereals with zinc: a reviewEur J Soil Sci20186917218010.1111/ejss.12437
– reference: LiMLiYZhangWLiSGaoYAiXZhangDLiuBLiQMetabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leavesAnal Biochem201855971851:CAS:528:DC%2BC1cXhs1eitLrM10.1016/j.ab.2018.08.02030149025
– reference: AsifMTuncCEYaziciMATutusYRehmanRRehmanAOzturkLEffect of predicted climate change on growth and yield performance of wheat under varied nitrogen and zinc supplyPlant Soil20194342312441:CAS:528:DC%2BC1cXhslSnt7bN10.1007/s11104-018-3808-1
– reference: ZaghdoudCMota-CadenasCCarvajalMMuriesBFerchichiAMartínez-BallestaMCElevated CO2 alleviates negative effects of salinity on broccoli (Brassica oleracea L. var Italica) plants by modulating water balance through aquaporins abundanceEnviron Exp Bot20139515241:CAS:528:DC%2BC3sXhsV2murrF10.1016/j.envexpbot.2013.07.003
– reference: PetrettoGiacomo LuigiUrgeghePietro PaoloMassaDanieleMelitoSaraEffect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypesPlant Physiology and Biochemistry201914130391:CAS:528:DC%2BC1MXhtVWksLjP10.1016/j.plaphy.2019.05.012
– reference: PriorJConnonIMcIntyreEAdamsJCaponTKentJRisselCThomasLThompsonSWestcottHBuilt environment interventions for human and planetary health: integrating health in climate change adaption and mitigationPublic Health Res Pract2018284e284183110.17061/phrp2841831
– reference: WissuwaMGamatGIsmailAMIs root growth under phosphorus deficiency affected by source or sink limitations?J Exp Bot200556194319501:CAS:528:DC%2BD2MXpvFKntb0%3D10.1093/jxb/eri18915911558
– reference: BowesGFacing the inevitable: plants and increasing atmospheric CO2Annu Rev Plant Physiol1993443093321:CAS:528:DyaK3sXlsFKisbs%3D10.1146/annurev.pp.44.060193.001521
– reference: LoladzeIHidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutritionElife20143e02245e022451:CAS:528:DC%2BC2cXhs1SmtLbI10.7554/eLife.02245248676394034684
– reference: Da GeTSuiFGSaNSunNBHaXTongCLDifferential responses of yield and selected nutritional compositions to drought stress in summer maize grainsJ Plant Nutr201033181118181:CAS:528:DC%2BC3cXhtVCnt7fI10.1080/01904167.2010.503829
– reference: ToretiABassuSCeglarAZampieriMFerrantiPBerryEMAndersonJRClimate Change and Crop YieldsEncyclopedia of Food Security and Sustainability2019OxfordElsevier
– reference: BouisHESaltzmanAImproving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016Glob Food Sec201712495810.1016/j.gfs.2017.01.009285802395439484
– reference: DwivediSLSiddiqueKHFarooqMThorntonPKOrtizRUsing Biotechnology-Led Approaches to Uplift Cereal and Food Legume Yields in Dryland EnvironmentsFront Plant Sci20189124910.3389/fpls.2018.01249302105196120061
– reference: ShimonoHKonnoTSakaiHSameshimaRInteractive Effects of Elevated Atmospheric CO2 and Waterlogging on Vegetative Growth of Soybean (Glycine max (L.) Merr.)Plant Prod Sci2012152382451:CAS:528:DC%2BC38Xht1GisLvE10.1626/pps.15.238
– reference: BarãoLAlaouiAFerreiraCBaschGSchwilchGGeissenVSukkelWLemesleJGarcia-OrenesFMorugán-CoronadoAAssessment of promising agricultural management practicesSci Total Environ20196496106191:CAS:528:DC%2BC1cXhs1ektL3E10.1016/j.scitotenv.2018.08.25730176472
– reference: JinJLauricellaDArmstrongRSalePTangCPhosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisolAnn Bot-London20141169759851:CAS:528:DC%2BC1cXkt1yksr8%3D10.1093/aob/mcu209
– reference: KaplanFZhaoWRichardsJTWheelerRMGuyCLLevineLHTranscriptional and metabolic insights into the differential physiological responses of Arabidopsis to optimal and supraoptimal atmospheric CO2PLoS One201271:CAS:528:DC%2BC38Xht1Ggu7nE10.1371/journal.pone.0043583229162803423350
– reference: HashiguchiAAhsanNKomatsuSProteomics application of crops in the context of climatic changesFood Res Int201043180318131:CAS:528:DC%2BC3cXhtFCkt7vK10.1016/j.foodres.2009.07.033
– reference: ThimmOEssigmannBKloskaSAltmannTBuckhoutTJResponse of Arabidopsis to Iron Deficiency Stress as Revealed by Microarray AnalysisPlant Physiol2001127103010431:CAS:528:DC%2BD3MXos1Kms7g%3D10.1104/pp.01019111706184129273
– reference: YuJSunLFanNYangZHuangBPhysiological factors involved in positive effects of elevated carbon dioxide concentration on Bermudagrass tolerance to salinity stressEnviron Exp Bot201511520271:CAS:528:DC%2BC2MXisF2rsrs%3D10.1016/j.envexpbot.2015.02.003
– reference: BurgessPHuangBRoot protein metabolism in association with improved root growth and drought tolerance by elevated carbon dioxide in creeping bentgrassField Crop Res2014165809110.1016/j.fcr.2014.05.003
– reference: SteffensD.HütschB.W.EschholzT.LošákT.SchubertS.Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicityPlant, Soil and Environment201151No. 1254555210.17221/3630-PSE
– reference: KarkanisANtatsiGNLepseLFernándezJAVågenIMRewaldBAlsiņaIKronbergaABalliuAOlleMFaba bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systemsFront Plant Sci20189111510.3389/fpls.2018.01115301162516083270
– reference: Pérez-JiménezMHernández-MunueraMPiñeroMCLópez-OrtegaGdel AmorFMCO2 effects on the waterlogging response of ‘Gisela 5’ and ‘Gisela 6’ (Prunus cerasusxPrunus canescens) sweet cherry (Prunus avium) rootstocksJ Plant Physiol20172131781871:CAS:528:DC%2BC2sXlvVOhs7w%3D10.1016/j.jplph.2017.03.01128407490
– reference: MitterbauerEEndersMBenderJErbsMHabekußAKilianBOrdonFWeigelH-JGrowth response of 98 barley (Hordeum vulgare L.) genotypes to elevated CO2 and identification of related quantitative trait loci using genome-wide association studiesPlant Breed20171364834971:CAS:528:DC%2BC2sXhtlWnsrfF10.1111/pbr.12501
– reference: VasconcelosMWGruissemWBhullarNKIron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutritionCurr Opin Biotechnol2017448151:CAS:528:DC%2BC28XhslSit7rP10.1016/j.copbio.2016.10.00127780080
– reference: ZongY-ZShangguanZ-PNitrogen Deficiency Limited the Improvement of Photosynthesis in Maize by Elevated CO2 Under DroughtJ Integr Agric20141373811:CAS:528:DC%2BC2MXhtF2jtbk%3D10.1016/S2095-3119(13)60349-4
– reference: LongSPAinsworthEARogersAOrtDRRising atmospheric carbon dioxide: plants FACE the futureAnnu Rev Plant Biol2004555916281:CAS:528:DC%2BD2cXlvFeisb8%3D10.1146/annurev.arplant.55.031903.14161015377233
– reference: LalRReicoskyDHansonJEvolution of the plow over 10,000 years and the rationale for no-till farmingSoil Tillage Res20079311210.1016/j.still.2006.11.004
– reference: DietterichLHZanobettiAKloogIHuybersPLeakeyADBBloomAJCarlisleEFernandoNFitzgeraldGHasegawaTHolbrookNMNelsonRLNortonROttmanMJRaboyVSakaiHSartorKASchwartzJSeneweeraSUsuiYYoshinagaSMyersSSImpacts of elevated atmospheric CO2 on nutrient content of important food cropsScientific Data201521500361:CAS:528:DC%2BC2MXhtlKlt7jJ10.1038/sdata.2015.36262174904508823
– reference: Haddad LJ, Hawkes C, Achadi E, Ahuja A, Ag Bendech M, Bhatia K, Bhutta Z, Blossner M, Borghi E, Eriksen K (2015) Global Nutrition Report 2015: Actions and accountability to advance nutrition and sustainable development. Intl Food Policy Res Inst.
– volume: 213
  start-page: 505
  year: 2012
  ident: 4229_CR51
  publication-title: Plant Ecol
  doi: 10.1007/s11258-011-9998-8
– ident: 4229_CR132
  doi: 10.1016/B978-0-12-812104-7.00015-0
– volume: 122
  start-page: 85
  year: 2004
  ident: 4229_CR8
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2003.09.002
– volume: 411
  start-page: 57
  year: 2017
  ident: 4229_CR12
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2996-9
– volume: 58
  start-page: 993
  issue: 5
  year: 2007
  ident: 4229_CR227
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl259
– volume: 133
  start-page: 1307
  year: 2012
  ident: 4229_CR59
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2012.01.105
– volume: 283
  start-page: 20152578
  year: 2016
  ident: 4229_CR99
  publication-title: P Roy Soc B-Biol Sci
  doi: 10.1098/rspb.2015.2578
– volume: 188
  start-page: 545
  year: 2016
  ident: 4229_CR40
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5563-1
– volume: 32
  start-page: 237
  year: 2013
  ident: 4229_CR178
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/07352689.2013.758544
– volume: 410
  start-page: 41
  year: 2017
  ident: 4229_CR211
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2979-x
– volume: 510
  start-page: 139
  year: 2014
  ident: 4229_CR129
  publication-title: Nature
  doi: 10.1038/nature13179
– volume: 1
  start-page: 441
  issue: 8
  year: 2018
  ident: 4229_CR159
  publication-title: Nature Sustainability
  doi: 10.1038/s41893-018-0114-0
– volume: 25
  start-page: 87
  year: 1998
  ident: 4229_CR17
  publication-title: Funct Plant Biol
  doi: 10.1071/PP97045
– volume: 93
  start-page: 1
  year: 2007
  ident: 4229_CR103
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2006.11.004
– volume: 133
  start-page: 692
  year: 2008
  ident: 4229_CR35
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2007.01042.x
– volume: 150
  start-page: 272
  year: 2009
  ident: 4229_CR87
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.136721
– volume: 246-247
  start-page: 19
  year: 2018
  ident: 4229_CR203
  publication-title: Flora
  doi: 10.1016/j.flora.2018.07.001
– volume: 658
  start-page: 405
  year: 2019
  ident: 4229_CR62
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.181
– volume: 43
  start-page: 1803
  year: 2010
  ident: 4229_CR75
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2009.07.033
– volume: 69
  start-page: 172
  year: 2018
  ident: 4229_CR36
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12437
– volume: 28
  start-page: 1021
  year: 2014
  ident: 4229_CR10
  publication-title: Trees
  doi: 10.1007/s00468-014-1015-0
– volume: 69
  start-page: 182
  year: 2016
  ident: 4229_CR196
  publication-title: J Cereal Sci
  doi: 10.1016/j.jcs.2016.03.006
– volume: 161
  start-page: 257
  year: 2017
  ident: 4229_CR151
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12590
– volume: 44
  start-page: 8
  year: 2017
  ident: 4229_CR195
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2016.10.001
– ident: 4229_CR84
– volume: 175
  start-page: 607
  year: 2007
  ident: 4229_CR225
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02180.x
– volume: 15
  start-page: 238
  year: 2012
  ident: 4229_CR179
  publication-title: Plant Prod Sci
  doi: 10.1626/pps.15.238
– volume: 20
  start-page: 33
  year: 2015
  ident: 4229_CR26
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.07.005
– volume: 50
  start-page: 181
  year: 1995
  ident: 4229_CR106
  publication-title: Aquat Bot
  doi: 10.1016/0304-3770(95)00453-7
– volume: 166
  start-page: 375
  issue: 4
  year: 2009
  ident: 4229_CR115
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2008.06.011
– volume: 33
  start-page: 238
  year: 2014
  ident: 4229_CR58
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/07352689.2014.870421
– start-page: 191
  volume-title: Marschner’s mineral nutrition of higher plants
  year: 2012
  ident: 4229_CR27
  doi: 10.1016/B978-0-12-384905-2.00007-8
– volume: 149
  start-page: 88
  year: 2009
  ident: 4229_CR133
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.129791
– volume: 93
  start-page: 385
  year: 2018
  ident: 4229_CR165
  publication-title: J Hortic Sci Biotechnol
  doi: 10.1080/14620316.2017.1373037
– volume: 20
  start-page: 2301
  year: 2014
  ident: 4229_CR18
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12520
– volume-title: Iron Nutrition in Plants and Rizospheric Microorganisms
  year: 2006
  ident: 4229_CR226
– ident: 4229_CR83
– ident: 4229_CR124
  doi: 10.3389/fpls.2018.01361
– volume: 327
  start-page: 812
  year: 2010
  ident: 4229_CR63
  publication-title: Science
  doi: 10.1126/science.1185383
– volume: 10
  start-page: 1
  year: 2010
  ident: 4229_CR166
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-120
– volume: 44
  start-page: 309
  year: 1993
  ident: 4229_CR25
  publication-title: Annu Rev Plant Physiol
  doi: 10.1146/annurev.pp.44.060193.001521
– volume: 7
  start-page: 1720
  year: 2016
  ident: 4229_CR127
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01720
– volume: 27
  start-page: 846
  year: 2017
  ident: 4229_CR214
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60458-2
– volume: 16
  start-page: 188
  year: 2012
  ident: 4229_CR171
  publication-title: Omics
  doi: 10.1089/omi.2011.0109
– volume: 20
  start-page: 472
  year: 1997
  ident: 4229_CR157
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1997.d01-84.x
– volume: 278
  start-page: 92
  year: 2019
  ident: 4229_CR205
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.11.035
– volume: 128
  start-page: 219
  year: 2008
  ident: 4229_CR30
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2008.06.003
– volume: 66
  start-page: 3511
  year: 2015
  ident: 4229_CR156
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru539
– volume: 479
  start-page: 19
  year: 2000
  ident: 4229_CR116
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(00)01873-1
– volume: 140
  start-page: 1
  year: 2016
  ident: 4229_CR168
  publication-title: J Proteome
  doi: 10.1016/j.jprot.2016.03.017
– volume: 25
  start-page: 142
  year: 2018
  ident: 4229_CR94
  publication-title: Rice Sci
  doi: 10.1016/j.rsci.2018.04.002
– volume: 99
  start-page: 1730
  year: 2002
  ident: 4229_CR23
  publication-title: P Natl Acad Sc
  doi: 10.1073/pnas.022627299
– volume: 2
  start-page: 150036
  year: 2015
  ident: 4229_CR47
  publication-title: Scientific Data
  doi: 10.1038/sdata.2015.36
– ident: 4229_CR4
  doi: 10.3389/fevo.2017.00051
– volume: 115
  start-page: 269
  year: 2017
  ident: 4229_CR176
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.04.006
– volume: 168
  start-page: 521
  year: 2005
  ident: 4229_CR34
  publication-title: J Plant Nutr Soil Sc
  doi: 10.1002/jpln.200420485
– volume: 8
  start-page: 1348
  year: 2017
  ident: 4229_CR145
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01348
– volume: 76
  start-page: H122
  year: 2011
  ident: 4229_CR9
  publication-title: J Food Sci
  doi: 10.1111/j.1750-3841.2011.02135.x
– volume: 630
  start-page: 1544
  year: 2018
  ident: 4229_CR118
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.02.322
– volume: 170
  start-page: 801
  year: 2013
  ident: 4229_CR184
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2013.01.001
– volume: 9
  start-page: 1115
  year: 2018
  ident: 4229_CR93
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01115
– volume: 169
  start-page: 2021
  year: 2015
  ident: 4229_CR100
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00980
– volume: 650
  start-page: 2032
  year: 2019
  ident: 4229_CR101
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.332
– volume-title: Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability
  year: 2012
  ident: 4229_CR72
– volume: 104
  start-page: 284
  year: 2016
  ident: 4229_CR164
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2016.04.053
– volume: 58
  start-page: 9092
  year: 2010
  ident: 4229_CR37
  publication-title: J Agric Food Chem
  doi: 10.1021/jf101197h
– volume: 33
  start-page: 303
  year: 2015
  ident: 4229_CR144
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2015.03.011
– volume: 101
  start-page: 146
  year: 2014
  ident: 4229_CR102
  publication-title: Ecotox Environ Safe
  doi: 10.1016/j.ecoenv.2013.12.021
– volume: 180
  start-page: 474
  year: 2017
  ident: 4229_CR13
  publication-title: J Plant Nutr Soil Sc
  doi: 10.1002/jpln.201600616
– volume: 231
  start-page: 1
  year: 2015
  ident: 4229_CR3
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2014.11.001
– volume: 244
  start-page: 322
  year: 2019
  ident: 4229_CR152
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.09.072
– volume: 177
  start-page: 892
  issue: 6
  year: 2014
  ident: 4229_CR182
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/jpln.201400117
– volume: 115
  start-page: 20
  year: 2015
  ident: 4229_CR213
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2015.02.003
– volume: 17
  start-page: 47
  year: 2012
  ident: 4229_CR128
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2011.10.003
– volume: 17
  start-page: 457
  year: 2002
  ident: 4229_CR111
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(02)02587-9
– volume: 63
  start-page: 1927
  year: 2017
  ident: 4229_CR46
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2017.1315105
– volume: 67
  start-page: 6173
  year: 2016
  ident: 4229_CR86
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw383
– volume: 40
  start-page: 192
  year: 2018
  ident: 4229_CR197
  publication-title: New Biotechnol
  doi: 10.1016/j.nbt.2017.08.003
– volume: 19
  start-page: 724
  year: 2014
  ident: 4229_CR204
  publication-title: Environ Dev Econ
  doi: 10.1017/S1355770X1300065X
– volume: 17
  start-page: 2438
  year: 2018
  ident: 4229_CR48
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(18)62005-2
– ident: 4229_CR189
– ident: 4229_CR67
  doi: 10.1038/npg.els.0001306
– volume: 37
  start-page: 1
  year: 2014
  ident: 4229_CR135
  publication-title: J Food Qual
  doi: 10.1111/jfq.12066
– volume: 63
  start-page: 3843
  year: 2012
  ident: 4229_CR119
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers077
– volume-title: Encyclopedia of Food Security and Sustainability
  year: 2019
  ident: 4229_CR193
– volume: 4
  start-page: 177
  year: 2010
  ident: 4229_CR91
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-177
– volume: 179
  start-page: 3
  year: 2011
  ident: 4229_CR136
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0359-4
– volume: 58
  start-page: 982
  year: 2011
  ident: 4229_CR55
  publication-title: Russ J Plant Physl
  doi: 10.1134/S1021443711050074
– volume: 138
  start-page: 2534
  year: 2008
  ident: 4229_CR20
  publication-title: J Nutr
  doi: 10.1093/jn/138.12.2534
– volume: 117
  start-page: 363
  year: 2016
  ident: 4229_CR208
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mcv182
– volume: 46
  start-page: 1028
  year: 2017
  ident: 4229_CR44
  publication-title: J Environ Qual
  doi: 10.2134/jeq2017.03.0121
– volume: 97
  start-page: 872
  year: 2018
  ident: 4229_CR97
  publication-title: Plant J
  doi: 10.1111/tpj.14166
– volume: 3
  start-page: e639
  year: 2015
  ident: 4229_CR130
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(15)00093-5
– volume: 5
  start-page: 9212
  year: 2015
  ident: 4229_CR138
  publication-title: Sci Rep
  doi: 10.1038/srep09212
– volume: 280
  start-page: 283
  year: 2019
  ident: 4229_CR22
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2018.12.021
– ident: 4229_CR71
– volume: 651
  start-page: 2641
  year: 2019
  ident: 4229_CR90
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.170
– volume: 434
  start-page: 231
  year: 2019
  ident: 4229_CR15
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3808-1
– volume: 53
  start-page: 182
  year: 2018
  ident: 4229_CR120
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2018.09.010
– volume: 17
  start-page: 299
  year: 2015
  ident: 4229_CR177
  publication-title: J Agric Sci Technol
– volume: 650
  start-page: 2863
  year: 2018
  ident: 4229_CR148
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.019
– volume: 141
  start-page: 30
  year: 2019
  ident: 4229_CR154
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2019.05.012
– volume: 3
  start-page: e02245
  year: 2014
  ident: 4229_CR112
  publication-title: Elife
  doi: 10.7554/eLife.02245
– volume: 24
  start-page: 21797
  year: 2017
  ident: 4229_CR163
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-017-9813-8
– volume: 116
  start-page: 975
  year: 2014
  ident: 4229_CR88
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mcu209
– volume: 127
  start-page: 1030
  year: 2001
  ident: 4229_CR191
  publication-title: Plant Physiol
  doi: 10.1104/pp.010191
– volume: 209
  start-page: 132
  year: 2015
  ident: 4229_CR73
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2015.04.007
– volume-title: Responses of agricultural crops to free-air CO2 enrichment
  year: 2002
  ident: 4229_CR95
  doi: 10.1016/S0065-2113(02)77017-X
– volume: 51
  start-page: 545
  issue: No. 12
  year: 2011
  ident: 4229_CR186
  publication-title: Plant, Soil and Environment
  doi: 10.17221/3630-PSE
– volume: 77
  start-page: 73
  year: 2019
  ident: 4229_CR202
  publication-title: Symbiosis
  doi: 10.1007/s13199-018-0573-0
– ident: 4229_CR11
  doi: 10.5897/AJARX11.084
– volume: 54
  start-page: 961
  year: 2013
  ident: 4229_CR38
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2012.12.021
– volume: 206
  start-page: 149
  year: 2017
  ident: 4229_CR39
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2017.02.018
– volume: 56
  start-page: 1943
  year: 2005
  ident: 4229_CR206
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eri189
– volume: 169
  start-page: 274
  year: 2006
  ident: 4229_CR140
  publication-title: J Plant Nutr Soil Sc
  doi: 10.1002/jpln.200520558
– volume: 666
  start-page: 405
  year: 2019
  ident: 4229_CR161
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.149
– ident: 4229_CR162
  doi: 10.1007/s13205-018-1179-1
– ident: 4229_CR57
– volume: 4
  start-page: 11
  year: 2018
  ident: 4229_CR187
  publication-title: Hortic
  doi: 10.3390/horticulturae4020011
– volume: 22
  start-page: 1372
  year: 2016
  ident: 4229_CR220
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13185
– volume: 9
  start-page: 1249
  year: 2018
  ident: 4229_CR52
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01249
– ident: 4229_CR121
– volume: 102
  start-page: 128
  year: 2007
  ident: 4229_CR209
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2007.03.006
– volume: 79
  start-page: 334
  year: 2014
  ident: 4229_CR158
  publication-title: Plant J
  doi: 10.1111/tpj.12550
– volume: 15
  start-page: 664
  year: 2010
  ident: 4229_CR5
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2010.08.002
– volume: 213
  start-page: 178
  year: 2017
  ident: 4229_CR150
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2017.03.011
– volume: 9
  start-page: 617
  year: 2018
  ident: 4229_CR74
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00617
– volume: 137
  start-page: 183
  year: 2018
  ident: 4229_CR183
  publication-title: Photosynth Res
  doi: 10.1007/s11120-018-0490-3
– volume: 70
  start-page: 244
  year: 2019
  ident: 4229_CR149
  publication-title: Crop Pasture Science
  doi: 10.1071/CP18421
– volume: 45
  start-page: 248
  year: 2018
  ident: 4229_CR147
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2018.05.012
– volume: 18
  start-page: 1202
  year: 2017
  ident: 4229_CR188
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18061202
– volume: 419
  start-page: 64
  year: 2016
  ident: 4229_CR65
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2016.07.023
– volume: 60
  start-page: 268
  year: 2007
  ident: 4229_CR81
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2006.11.003
– volume: 124
  start-page: 873
  issue: 2
  year: 2000
  ident: 4229_CR114
  publication-title: Plant Physiology
  doi: 10.1104/pp.124.2.873
– volume: 36
  start-page: 697
  year: 2013
  ident: 4229_CR122
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12007
– volume: 127
  start-page: 119
  year: 2019
  ident: 4229_CR175
  publication-title: Ind Crop Prod
  doi: 10.1016/j.indcrop.2018.10.048
– volume: 187
  start-page: 431
  year: 2015
  ident: 4229_CR172
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2015.04.116
– volume: 95
  start-page: 73
  year: 2015
  ident: 4229_CR66
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2015.05.006
– volume: 136
  start-page: 483
  year: 2017
  ident: 4229_CR125
  publication-title: Plant Breed
  doi: 10.1111/pbr.12501
– volume: 57
  start-page: 98
  year: 2006
  ident: 4229_CR146
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2005.04.004
– volume: 59
  start-page: 137
  year: 2014
  ident: 4229_CR61
  publication-title: J Cereal Sci
  doi: 10.1016/j.jcs.2013.12.002
– volume: 28
  start-page: e2841831
  issue: 4
  year: 2018
  ident: 4229_CR160
  publication-title: Public Health Res Pract
  doi: 10.17061/phrp2841831
– volume: 275
  start-page: 610
  year: 2019
  ident: 4229_CR143
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2018.09.052
– volume: 368
  start-page: 584
  year: 2019
  ident: 4229_CR42
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.01.058
– volume: 195
  start-page: 56
  year: 2015
  ident: 4229_CR153
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2015.08.034
– volume: 18
  start-page: 12
  year: 2018
  ident: 4229_CR56
  publication-title: Glob Food Secur
  doi: 10.1016/j.gfs.2018.06.001
– volume: 219
  start-page: 12
  year: 2018
  ident: 4229_CR110
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2018.10.012
– volume: 8
  start-page: 2299
  issue: 11
  year: 2008
  ident: 4229_CR107
  publication-title: PROTEOMICS
  doi: 10.1002/pmic.200700942
– volume: 2013
  start-page: 1
  year: 2013
  ident: 4229_CR137
  publication-title: The Scientific World Journal
  doi: 10.1155/2013/610721
– volume: 13
  year: 2018
  ident: 4229_CR174
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0206388
– ident: 4229_CR109
  doi: 10.3389/fpls.2018.01413
– volume: 55
  start-page: 591
  year: 2004
  ident: 4229_CR113
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.55.031903.141610
– volume: 337
  start-page: 1084
  year: 2012
  ident: 4229_CR41
  publication-title: Science
  doi: 10.1126/science.1224304
– volume: 426
  start-page: 153
  year: 2018
  ident: 4229_CR14
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3603-z
– volume: 54
  start-page: 1167
  year: 2011
  ident: 4229_CR77
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2010.11.050
– volume: 50
  start-page: 1365
  year: 2008
  ident: 4229_CR190
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2008.00754.x
– volume: 9
  start-page: 936
  year: 2018
  ident: 4229_CR221
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00936
– volume: 649
  start-page: 610
  year: 2019
  ident: 4229_CR16
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.257
– volume: 10
  year: 2017
  ident: 4229_CR105
  publication-title: Ecohydrology
  doi: 10.1002/eco.1803
– volume: 13
  start-page: 73
  year: 2014
  ident: 4229_CR228
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(13)60349-4
– volume: 33
  start-page: 1811
  year: 2010
  ident: 4229_CR43
  publication-title: J Plant Nutr
  doi: 10.1080/01904167.2010.503829
– volume: 123
  start-page: 461
  year: 2018
  ident: 4229_CR50
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mcy171
– volume: 56
  start-page: 684
  year: 2012
  ident: 4229_CR60
  publication-title: J Cereal Sci
  doi: 10.1016/j.jcs.2012.07.010
– volume: 559
  start-page: 71
  year: 2018
  ident: 4229_CR108
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2018.08.020
– volume: 611
  start-page: 3
  year: 2016
  ident: 4229_CR98
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2016.04.010
– volume: 11
  start-page: 60
  year: 2009
  ident: 4229_CR79
  publication-title: Plant Biol
  doi: 10.1111/j.1438-8677.2009.00230.x
– volume: 132
  start-page: 660
  year: 2018
  ident: 4229_CR199
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2018.10.016
– volume: 33
  start-page: 197
  year: 2017
  ident: 4229_CR141
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-017-2364-9
– volume: 144
  start-page: 238
  year: 2012
  ident: 4229_CR180
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2011.01555.x
– volume: 166
  start-page: 1141
  year: 2009
  ident: 4229_CR198
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2009.01.003
– volume: 8
  start-page: 281
  year: 2016
  ident: 4229_CR64
  publication-title: Sustainability
  doi: 10.3390/su8030281
– volume: 660
  start-page: 120
  year: 2018
  ident: 4229_CR218
  publication-title: Gene
  doi: 10.1016/j.gene.2018.03.057
– volume: 43
  start-page: 1548
  year: 2003
  ident: 4229_CR192
  publication-title: Crop Sci
  doi: 10.2135/cropsci2003.1548
– volume: 156
  start-page: 9
  year: 2002
  ident: 4229_CR85
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2002.00494.x
– volume: 1
  start-page: 525
  issue: 4
  year: 2010
  ident: 4229_CR224
  publication-title: Wiley Interdisciplinary Reviews: Climate Change
  doi: 10.1002/wcc.56
– volume: 190
  start-page: 79
  year: 2018
  ident: 4229_CR54
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-017-6441-1
– ident: 4229_CR134
– volume: 47
  start-page: 25
  year: 2011
  ident: 4229_CR45
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-010-0496-2
– volume: 13
  year: 2018
  ident: 4229_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0196439
– start-page: 196
  volume-title: Encyclopedia of Food Chemistry
  year: 2019
  ident: 4229_CR33
  doi: 10.1016/B978-0-08-100596-5.22333-0
– volume: 125
  year: 2017
  ident: 4229_CR123
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp41
– volume: 241
  start-page: 75
  issue: 1
  year: 2002
  ident: 4229_CR1
  publication-title: Plant and Soil
  doi: 10.1023/A:1016093317898
– volume: 6
  start-page: 319
  year: 2015
  ident: 4229_CR53
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00319
– volume: 7
  start-page: 283
  year: 2006
  ident: 4229_CR219
  publication-title: J Zhejiang Univ Sci B
  doi: 10.1631/jzus.2006.B0283
– volume: 7
  year: 2012
  ident: 4229_CR92
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043583
– volume: 167
  start-page: 255
  issue: 4
  year: 2010
  ident: 4229_CR104
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2009.09.007
– volume: 118
  start-page: 342
  year: 2017
  ident: 4229_CR169
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.06.031
– volume: 252
  start-page: 72
  year: 2018
  ident: 4229_CR173
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2018.01.097
– ident: 4229_CR194
  doi: 10.3389/fpls.2014.00112
– volume: 95
  start-page: 15
  year: 2013
  ident: 4229_CR215
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2013.07.003
– volume: 98
  start-page: 4659
  year: 2018
  ident: 4229_CR200
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.8996
– volume: 12
  start-page: 49
  year: 2017
  ident: 4229_CR24
  publication-title: Glob Food Sec
  doi: 10.1016/j.gfs.2017.01.009
– volume-title: Encyclopedia of Agriculture and Food Systems
  year: 2014
  ident: 4229_CR76
– volume: 137
  start-page: 26
  year: 2017
  ident: 4229_CR210
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2017.01.012
– volume: 165
  start-page: 80
  year: 2014
  ident: 4229_CR32
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2014.05.003
– volume: 6
  start-page: 292045
  year: 2009
  ident: 4229_CR2
  publication-title: IOP Conference Series: Earth and Environmental Science
  doi: 10.1088/1755-1307/6/29/292045
– volume: 244
  start-page: 61
  year: 2019
  ident: 4229_CR170
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.09.035
– volume: 571
  start-page: 763
  year: 2016
  ident: 4229_CR216
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.07.048
– volume: 63
  start-page: 131
  year: 2012
  ident: 4229_CR96
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042811-105522
– volume: 26
  start-page: 1515
  issue: 9
  year: 2003
  ident: 4229_CR201
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.1365-3040.2003.01074.x
– volume: 64
  start-page: 355
  year: 2012
  ident: 4229_CR139
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers341
– volume: 38
  start-page: 259
  year: 2017
  ident: 4229_CR131
  publication-title: Annu Rev Public Health
  doi: 10.1146/annurev-publhealth-031816-044356
– ident: 4229_CR21
  doi: 10.5147/ajpb.2016.0157
– volume: 37
  start-page: 1254
  year: 2008
  ident: 4229_CR70
  publication-title: J Environ Qual
  doi: 10.2134/jeq2006.0136
– volume: 214
  start-page: 129
  year: 2017
  ident: 4229_CR155
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2016.07.080
– volume: 58
  start-page: 177
  year: 1994
  ident: 4229_CR126
  publication-title: Sci Hortic
  doi: 10.1016/0304-4238(94)90149-X
– volume: 165
  start-page: 351
  year: 2005
  ident: 4229_CR7
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01224.x
– volume: 137
  start-page: 221
  issue: 4
  year: 2012
  ident: 4229_CR212
  publication-title: Journal of the American Society for Horticultural Science
  doi: 10.21273/JASHS.137.4.221
– volume: 34
  start-page: 186
  year: 2018
  ident: 4229_CR181
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-018-2568-7
– volume: 39
  start-page: 2208
  year: 2007
  ident: 4229_CR69
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.03.014
– volume: 57
  start-page: 7722
  year: 2018
  ident: 4229_CR222
  publication-title: Appl Opt
  doi: 10.1364/AO.57.007722
– volume: 14
  start-page: 50
  year: 2015
  ident: 4229_CR68
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(14)60846-7
– volume: 54
  start-page: 321
  year: 2008
  ident: 4229_CR29
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03421.x
– volume: 110
  start-page: 1263
  year: 2012
  ident: 4229_CR142
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs209
– volume: 181
  start-page: 836
  year: 2018
  ident: 4229_CR223
  publication-title: J Plant Nutr Soil Sc
  doi: 10.1002/jpln.201700575
– volume: 104
  start-page: 493
  year: 2004
  ident: 4229_CR207
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2004.01.018
– volume: 7
  start-page: 32
  year: 2017
  ident: 4229_CR28
  publication-title: Agron
  doi: 10.3390/agronomy7020032
– volume: 25
  start-page: 1016
  year: 2018
  ident: 4229_CR19
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-017-9268-y
– volume: 20
  start-page: 1359
  year: 2019
  ident: 4229_CR217
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20061359
– volume: 270
  start-page: 31
  year: 2005
  ident: 4229_CR185
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1082-x
– volume: 88
  start-page: 11
  year: 2013
  ident: 4229_CR80
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2011.12.007
– volume: 116
  start-page: 987
  year: 2015
  ident: 4229_CR89
  publication-title: Ann Bot-London
  doi: 10.1093/aob/mcv088
– volume: 48
  start-page: 580
  year: 2008
  ident: 4229_CR78
  publication-title: J Cereal Sci
  doi: 10.1016/j.jcs.2008.01.006
– volume: 28
  start-page: 422
  issue: 3
  year: 2018
  ident: 4229_CR117
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60420-X
– volume-title: Chapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and Nutrition
  year: 2008
  ident: 4229_CR167
  doi: 10.1016/S0065-2113(08)00404-5
– volume: 55
  start-page: 339
  year: 2015
  ident: 4229_CR31
  publication-title: Crop Sci
  doi: 10.2135/cropsci2014.04.0273
– ident: 4229_CR49
  doi: 10.3389/fpls.2018.00924
– volume: 8
  start-page: 16187
  year: 2018
  ident: 4229_CR82
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33952-4
SSID ssj0003216
Score 2.655808
SecondaryResourceType review_article
Snippet Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects...
Background Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects...
BackgroundGlobal climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect effects...
BACKGROUND: Global climate is changing more rapidly than ever, threatening plant growth and productivity while exerting considerable direct and indirect...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agricultural practices
Availability
Beans
Biomedical and Life Sciences
Carbon dioxide
climate
Climate change
Climate effects
Cropping systems
Crops
Developmental stages
Drought
Ecology
Endangered species
Environmental impact
Farm management
Fertilizer industry
Food
Food composition
Food plants
genotype
Genotypes
Global climate
Global temperature changes
High temperature
Iron
Legumes
Life Sciences
MARSCHNER REVIEW
Microorganisms
Mimosaceae
Minerals
Nitrogen
Nutrient availability
nutrient content
Nutrient utilization
Nutrients
Nutrition
Nutritive value
phosphorus
Plant growth
Plant Physiology
Plant Sciences
potassium
Salinity
soil
Soil Science & Conservation
temperature
Waterlogging
Subtitle importance and strategies
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB60KtgH0dNibJUVBB80mOyv9Hw7j5Yi6JOFe1t2N7OlcM2Vu-vD_ffO7CVXWlTwJQSyGZbMzO432ZlvAD4kn-qQKEz1KlWlpi2vDFrrMmm08hhNjZm34MdPe3auv8_MrKfJ4VqYe-f3X1bkizlPgn_hS0nXh_DI1KrhNg1TO92tukrmNqd8U1bNeNYXyPxZxp1NqF-Kt-mId4DmvbPRvOWcPodnPVYUk61yX8AD7EawP7lY9nwZOILH3xaE7jYjeHKS6ac3LwE5q4JXgO5CELoT3cC3T6K2JZQbsUiCW3eJ6zmnwQguJFsKL3IVML8X55eEZPGruLzK-JwsQ_iuFav1wCzxCs5PT35Nz8q-mUIZjZFr9oa6Qkl4Jx4Ha3yoDSHW0HjUUscqJhnQY5RJqiAr5ZHBBeqQ0NukMKoD2OsWHb4GEYK1OhI0ayk2xJZixLFux7KRbWisaU0B9fB1XeyZxrnhxdzdciSzRhxpxGWNuKqAT7t3rrc8G_8c_ZGV5tgJSXL0fS0BzY_prNzEMlJVtdIFHGS97oRSgMY0Z7KAo0HRrnfblSMsyvz-FGMV8H73mByOT1F8h4sbGqMUgSSlDc3i82AgtyL-Puk3_zf8EJ5KNtmcOHgEe-vlDb4lALQO77Ll_wbVzPjl
  priority: 102
  providerName: Springer Nature
Title Preserving the nutritional quality of crop plants under a changing climate
URI https://www.jstor.org/stable/48704302
https://link.springer.com/article/10.1007/s11104-019-04229-0
https://www.proquest.com/docview/2267578974
https://www.proquest.com/docview/2335123450
Volume 443
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xlgd4QDCYFhiVkZB4gIjEP9KWF5SWlgnEhBCVylNkO_Y0qSSl7R7233OXOK2GxF6SSLEdK3c-f7bvvgN47bVPjcdlqhY-iSVOebGRUsZeuoyPnEpdw1vw7SI7X8gvS7UMG27b4FbZ2cTGUJe1pT3y9wgTiHod4e_H9Z-YskbR6WpIoXEEfTTBo1EP-pPZxfcfe1sseJP8lB7iZDhehrCZNngOZz7ywKDDAc7xemtqCga6dVK8BT__OTFtJqL5Y3gUECTLW5E_gXuuOoaH-eUmsGi4Y7g_qRHz3TwFRx4WZA2qS4ZIj1Ud9z420IZT3rDaM0rjxdYrcolhFFS2YZo1EcFUz66uENW6D-zqd4PVUUuYrkq23XUsE89gMZ_9nJ7HIbFCbJXiOxoZaeI4Yh87MpnSJlWIXs1QO8mlTaznxmlnuefC8ERoR0DDSeOdzrxwVpxAr6ordwrMmCyTFmFaietEV-J6cSzLMR_y0gwzVaoI0u6fFjawjlPyi1Vx4EsmORQoh6KRQ5FE8HZfZ91ybtxZ-g2JqqABiS1bHeIKsH9EbVXkGaFWkQoZwUkjzX2juFgjyjMewVkn3iIM4W1xULgIXu1f4-CjExVdufoaywiBgElIhb1416nFoYn_d_r53V98AQ84KWbjNHgGvd3m2r1E8LMzA-jnk0-TOd0___o6GwSNH8DRNJvidcHzv9_5A6c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7qVdA-iFaLqVVXUHzQYLK7yfUEkau2XG17iLRwb9vdzaQUzuS8uyL3T_k3OpMfd1Swb305ApdMlsxk5pvszDcAr3Obxy6nNNWqPAo1hbzQaa3DXGMqdzGJseItOBmmgzP9bZSM1uBP2wvDZZWtT6wcdVZ6_kb-gWACU68T_P08-RXy1CjeXW1HaNRmcYSL35SyzT4dfiX9vpHyYP_0yyBspgqEPknknM0ijlBS4Pe7Lk2sixOCbq5rUUvtI59Lhxa9zKVyMlIWOcqidjnaNFfoFcm9A-tapZHswPre_vD7j6XvV7IatsoHYdTtjZo2nbpZjyItV3zwZoSU9HstFDYBoS6KvAZ3_9mhrQLfwUN40CBW0a9N7BGsYbEJG_2LacPagZtwd68kjLl4DMgVHex9igtByFIULdc_CajbNxeizAWPDROTMZfgCG5imworqg5kvs6PLwlF40dx-bPKDcgqhS0yMZu3rBZP4OxWHvkWdIqywKcgnEtT7QkWZpSXYkb5aU9nPdmVmeumSZYEELfP1PiG5ZyHbYzNip-Z9WBID6bSg4kCeLe8ZlJzfNx49ltWlWEHQJK9bfoYaH1MpWX6KaNkFSsdwFalzaVQSg6ZYk0GsNOq1zQuY2ZWBh7Aq-Xf9LLzDo4tsLyic5QigKZ0Qqt435rFSsT_F7198x1fwr3B6cmxOT4cHj2D-5KNtCpY3IHOfHqFzwl4zd2LxtoFnN_2C_YXkgI86g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RaxNBEB5qKqIPRavF06orKD7o0bvdvUsjiKS2obUailjI23Z3b7cU4l1MUiR_rb_Ombu9hAr2rS8hkLvJcjM7883tzDcAb7z2qfGYpmrhk1hiyIuNlDL20uV812Wpq3kLvg_zw1P5dZSN1uCq7YWhssrWJ9aOuqgsvSPfQZhA1OsIf3d8KIs42R98nvyOaYIUnbS24zQaEzl2iz-Yvs0-He2jrt9yPjj4-eUwDhMGYptlfE4mkiaOIwiwuybPtEkzhHGmq53k0ibWc-O0s9xzYXgitKOI66TxTudeOCtQ7h1Y71JW1IH1vYPhyY9lHBC8HrxKX-Kk2xuFlp2mcQ-jLlV_0MEE5_h5LSyG4NAUSF6Dvv-c1tZBcPAQNgJ6Zf3G3B7Bmis34UH_fBoYPNwm3N2rEG8uHoOj6g7yROU5Q5TJypb3HwU0rZwLVnlGI8TYZEzlOIwa2qZMs7obme6z4wtE1O4ju_hV5wlooUyXBZvNW4aLJ3B6K498CzplVbqnwIzJc2kRIhaYo7oCc9WeLHq8ywvTzbMiiyBtn6mygfGcBm-M1YqrmfSgUA-q1oNKIni_vGfS8H3cePU7UpUiZ4CSrQ49Dbg-otVS_ZwQs0iFjGCr1uZSKCaKRLfGI9hu1auC-5iplbFH8Hr5M258Os3Rpasu8RohEKwJmeEqPrRmsRLx_0U_u_kfX8E93Fjq29Hw-Dnc52Sjde3iNnTm00v3AjHY3LwMxs7g7Lb3119ze0Ef
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preserving+the+nutritional+quality+of+crop+plants+under+a+changing+climate%3A+importance+and+strategies&rft.jtitle=Plant+and+soil&rft.au=Soares%2C+Jos%C3%A9+C.&rft.au=Santos%2C+Carla+S.&rft.au=Carvalho%2C+Susana+M.+P.&rft.au=Pintado%2C+Manuela+M.&rft.date=2019-10-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=443&rft.issue=1-2&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1007%2Fs11104-019-04229-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_019_04229_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon