High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification

•Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using EMG.•Use of prior knowledge with the spectrogram enhances the classification structure.•This approach can aid the control of assistive devices i...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 37; no. 5; pp. 518 - 524
Main Authors Joshi, Deepak, Nakamura, Bryson H., Hahn, Michael E.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using EMG.•Use of prior knowledge with the spectrogram enhances the classification structure.•This approach can aid the control of assistive devices in multi-mode control. Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification can be performed using discriminant functions or if-else rule sets, using learning algorithms derived from training examples. In the present work, a spectrogram based approach was developed to classify (EMG) signals for locomotion mode. Spectrograms for each muscle were calculated and summed to develop a histogram. If-else rules were used to classify test data based on a matching score. Prior knowledge of locomotion type reduced class space to exclusive locomotion modes. The EMG data were collected from seven leg muscles in a sample of able-bodied subjects while walking over ground (W), ascending stairs (SA) and the transition between (W-SA). Three muscles with least discriminating power were removed from the original data set to examine the effect on classification accuracy. Initial classification error was <20% across all modes, using leave one out cross validation. Use of prior knowledge reduced the average classification error to <11%. Removing three EMG channels decreased the classification accuracy by 10.8%, 24.3%, and 8.1% for W, W-SA, and SA respectively, and reduced computation time by 42.8%. This approach may be useful in the control of multi-mode assistive devices.
AbstractList Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification can be performed using discriminant functions or if-else rule sets, using learning algorithms derived from training examples. In the present work, a spectrogram based approach was developed to classify (EMG) signals for locomotion mode. Spectrograms for each muscle were calculated and summed to develop a histogram. If-else rules were used to classify test data based on a matching score. Prior knowledge of locomotion type reduced class space to exclusive locomotion modes. The EMG data were collected from seven leg muscles in a sample of able-bodied subjects while walking over ground (W), ascending stairs (SA) and the transition between (W-SA). Three muscles with least discriminating power were removed from the original data set to examine the effect on classification accuracy. Initial classification error was <20% across all modes, using leave one out cross validation. Use of prior knowledge reduced the average classification error to <11%. Removing three EMG channels decreased the classification accuracy by 10.8%, 24.3%, and 8.1% for W, W-SA, and SA respectively, and reduced computation time by 42.8%. This approach may be useful in the control of multi-mode assistive devices.
•Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using EMG.•Use of prior knowledge with the spectrogram enhances the classification structure.•This approach can aid the control of assistive devices in multi-mode control. Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification can be performed using discriminant functions or if-else rule sets, using learning algorithms derived from training examples. In the present work, a spectrogram based approach was developed to classify (EMG) signals for locomotion mode. Spectrograms for each muscle were calculated and summed to develop a histogram. If-else rules were used to classify test data based on a matching score. Prior knowledge of locomotion type reduced class space to exclusive locomotion modes. The EMG data were collected from seven leg muscles in a sample of able-bodied subjects while walking over ground (W), ascending stairs (SA) and the transition between (W-SA). Three muscles with least discriminating power were removed from the original data set to examine the effect on classification accuracy. Initial classification error was <20% across all modes, using leave one out cross validation. Use of prior knowledge reduced the average classification error to <11%. Removing three EMG channels decreased the classification accuracy by 10.8%, 24.3%, and 8.1% for W, W-SA, and SA respectively, and reduced computation time by 42.8%. This approach may be useful in the control of multi-mode assistive devices.
Highlights • Transition between locomotion modes is critical to activities of daily living. • A spectrogram approach is used to classify locomotion and transitions using EMG. • Use of prior knowledge with the spectrogram enhances the classification structure. • This approach can aid the control of assistive devices in multi-mode control.
Author Joshi, Deepak
Nakamura, Bryson H.
Hahn, Michael E.
Author_xml – sequence: 1
  givenname: Deepak
  surname: Joshi
  fullname: Joshi, Deepak
  email: joshideepak2004@yahoo.co.in
– sequence: 2
  givenname: Bryson H.
  surname: Nakamura
  fullname: Nakamura, Bryson H.
  email: bnakamur@uoregon.edu
– sequence: 3
  givenname: Michael E.
  surname: Hahn
  fullname: Hahn, Michael E.
  email: mhahn@uoregon.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25862333$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URF_8BciSTYKfSWYBqKr6kopYQNeW49xkPHXswfa0mn9fh2m7qIQ0K_vK5xz5fvceowPnHSD0meCKYFJ_XVUT9ODG9XJbUUxEhVmFMXmHjkjbsJJjhg_ynQlccsHYITqOcYUx5rxmH9AhFW1NGWNHSF6bcVmAgzBui7gGnYIfg5qKR5OWhXEJcpWgL9bB-FDcO_9ooR-hGHJ18fOq7FTMr9ZrP_lkvCu0VTGawWg1l6fo_aBshI_P5wm6u7z4c35d3v66ujk_uy21EDSVpOaKaE11w1nX61Zw1WHQbUPbXi061hFGYVCUY6IWjYahh3YQQ7vAnGiABTtBX3a56-D_biAmOZmowVrlwG-iJHVTs4ylJVn66Vm66TJFmTubVNjKFyhZ0OwEOvgYAwyvEoLljF-u5Ct-OeOXmMmMPzu_vXFqk_5xSEEZu4f_bOeHjOrBQJBRG3AaehPyaGTvzR4Z399kaGtcHoe9hy3Eld8ElychiYxUYvl7XpJ5R4jI-1E3c_s__h-w1xeeABC00uU
CitedBy_id crossref_primary_10_1109_JSEN_2020_2994956
crossref_primary_10_1007_s42835_019_00083_3
crossref_primary_10_1109_TBME_2017_2721300
crossref_primary_10_34133_2021_9863761
crossref_primary_10_1109_TNSRE_2018_2870152
crossref_primary_10_3389_fnbot_2020_00047
crossref_primary_10_4015_S1016237216500411
crossref_primary_10_1016_j_apmr_2016_12_003
crossref_primary_10_1007_s40747_020_00172_1
crossref_primary_10_3390_bioengineering10050531
crossref_primary_10_3233_WOR_203404
crossref_primary_10_1088_2058_8585_ac6a96
crossref_primary_10_1016_j_eswa_2023_121635
crossref_primary_10_1016_j_measurement_2019_04_009
crossref_primary_10_1155_2018_5712108
crossref_primary_10_1109_TMRB_2023_3282325
crossref_primary_10_1109_JBHI_2022_3173968
crossref_primary_10_1109_ACCESS_2018_2884773
crossref_primary_10_2174_1874120701610010101
crossref_primary_10_3390_electronics9122176
crossref_primary_10_1177_1729881420925291
crossref_primary_10_1109_THMS_2021_3107256
crossref_primary_10_1109_THMS_2018_2860598
crossref_primary_10_1155_2020_8810663
crossref_primary_10_3390_computers7040058
crossref_primary_10_1109_LRA_2022_3185380
crossref_primary_10_1080_08839514_2021_1990525
crossref_primary_10_3390_app12115483
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_1109_TNSRE_2023_3237181
crossref_primary_10_1007_s42235_019_0052_1
crossref_primary_10_1007_s13042_022_01687_4
crossref_primary_10_1109_JBHI_2020_3015317
crossref_primary_10_1080_01691864_2023_2197966
crossref_primary_10_1109_JBHI_2024_3462826
crossref_primary_10_3390_s16091408
Cites_doi 10.1016/j.apmr.2007.11.005
10.1109/TII.2011.2166770
10.1109/TBME.2008.2003293
10.1016/S1050-6411(02)00111-6
10.1109/TMECH.2014.2309708
10.3390/s130912431
10.1016/j.apergo.2011.07.004
10.1249/MSS.0b013e31829736d6
10.1115/1.3426266
10.1109/TSP.2002.805489
10.1242/jeb.01042
10.1109/JBHI.2012.2236563
10.1109/TBME.2008.2006190
10.1109/TBME.2013.2264466
10.1109/41.847906
10.1109/78.157221
10.1016/0141-5425(85)90004-4
10.1109/TBME.2011.2161671
10.2340/1650197719973742
10.1109/TNSRE.2010.2100828
10.1093/bioinformatics/btn145
10.1023/A:1013200319198
10.3758/BF03200815
10.1109/TBME.1986.325697
10.1109/TBME.2005.856295
10.1109/10.1370
10.1016/0141-5425(82)90021-8
ContentType Journal Article
Copyright 2015 IPEM
IPEM
Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 IPEM
– notice: IPEM
– notice: Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.medengphy.2015.03.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 524
ExternalDocumentID 25862333
10_1016_j_medengphy_2015_03_001
S1350453315000673
1_s2_0_S1350453315000673
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c552t-164a1cc2c743bdc854ab0ec8728da9b3b132efa2401a97cefde8f5f89041cee93
IEDL.DBID .~1
ISSN 1350-4533
IngestDate Tue Aug 05 09:34:38 EDT 2025
Thu Apr 03 07:06:18 EDT 2025
Sun Jul 06 05:02:25 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 23 02:29:21 EST 2024
Sun Feb 23 10:20:00 EST 2025
Tue Aug 26 16:31:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Myoelectric control
Locomotion
Time-frequency
Electromyography
Gait cycle
Spectrogram
Language English
License Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-164a1cc2c743bdc854ab0ec8728da9b3b132efa2401a97cefde8f5f89041cee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25862333
PQID 1676340381
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1676340381
pubmed_primary_25862333
crossref_primary_10_1016_j_medengphy_2015_03_001
crossref_citationtrail_10_1016_j_medengphy_2015_03_001
elsevier_sciencedirect_doi_10_1016_j_medengphy_2015_03_001
elsevier_clinicalkeyesjournals_1_s2_0_S1350453315000673
elsevier_clinicalkey_doi_10_1016_j_medengphy_2015_03_001
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Huang (bib0024) 2013; 17
Valens (bib0019) 1999
Cooper, McGillem (bib0032) 1999
Bedard S., Roy P. Actuated leg prosthesis for above-knee amputees. U.S. patent 7,314,490; 2003.
Sheehan, Gottschall (bib0038) 2012; 43
Vetterli, Herley (bib0037) 1992; 40
Huang, Zhang, Hargrove, Dou, Rogers, Englehart (bib0010) 2011; 58
Huang, Kuiken, Lipschutz (bib0023) 2009; 56
Hefftner, Zucchini, Jaros (bib0031) 1988; 35
Xiao, Huang, Sun, Yang (bib0017) 2009
Chen, Zheng, Fan, Liang, Wang, Wei (bib0004) 2013; vol. 21
Huang, Englehart, Hudgins, Chan (bib0008) 2005; 52
Ziegler-Graham, MacKenzie, Ephraim, Travison, Brookmeyer (bib0001) 2008; 89
Smith, Hargrove, Lock, Kuiken (bib0029) 2011; 19
Yen, Lin (bib0020) 2000; 47
Yuan, Wang, Wang (bib0036) 2015; 20
Zhang, Liu, Zhang, Ren, Sun, Yang (bib0009) 2012; 8
Tkach, Hargrove (bib0035) 2013
Hory, Martin, Chehikian (bib0021) 2002; 50
Childress, Weir (bib0030) 2004
Liu, Ranka, Kahveci (bib0033) 2008; 24
Flowers, Mann (bib0003) 1977; 99
Foerster, Fahrenberg (bib0012) 2000; 32
Preece, Goulermas, Kenney, Howard (bib0016) 2009; 56
Miller, Beazer, Hahn (bib0025) 2013; 60
Fernandes, Spaendonck, Burrus (bib0018) 2001
Bao, Intille (bib0011) 2004; vol. 3001
Graupe, Salahi, Zhang (bib0007) 1985; 7
Mannini, Intille, Rosenberger, Sabatini, Haskell (bib0026) 2013; 45
Cha (bib0034) 2007; 1
Wakeling, Rozitis (bib0014) 2004; 207
Jones, Rehg (bib0028) 2002; 46
Graupe, Salahi, Kohn (bib0006) 1982; 4
Sugimoto, Hara, Findley, Yoncmoto (bib0013) 1997; 29
Chowdhury, Reaz, Ali, Bakar, Chellappan, Chang (bib0005) 2013; 13
von Tscharner, Goepfert (bib0015) 2003; 13
Hannaford, Lehman (bib0022) 1986; 33
Wang, Ambikairajah, Lovell, Celler (bib0027) 2007
Miller (10.1016/j.medengphy.2015.03.001_bib0025) 2013; 60
Liu (10.1016/j.medengphy.2015.03.001_bib0033) 2008; 24
Zhang (10.1016/j.medengphy.2015.03.001_bib0024) 2013; 17
Wakeling (10.1016/j.medengphy.2015.03.001_bib0014) 2004; 207
Sugimoto (10.1016/j.medengphy.2015.03.001_bib0013) 1997; 29
Flowers (10.1016/j.medengphy.2015.03.001_bib0003) 1977; 99
Wang (10.1016/j.medengphy.2015.03.001_bib0027) 2007
Mannini (10.1016/j.medengphy.2015.03.001_bib0026) 2013; 45
von Tscharner (10.1016/j.medengphy.2015.03.001_bib0015) 2003; 13
Huang (10.1016/j.medengphy.2015.03.001_bib0023) 2009; 56
Foerster (10.1016/j.medengphy.2015.03.001_bib0012) 2000; 32
Xiao (10.1016/j.medengphy.2015.03.001_bib0017) 2009
Smith (10.1016/j.medengphy.2015.03.001_bib0029) 2011; 19
Valens (10.1016/j.medengphy.2015.03.001_bib0019) 1999
Cooper (10.1016/j.medengphy.2015.03.001_bib0032) 1999
Hefftner (10.1016/j.medengphy.2015.03.001_bib0031) 1988; 35
Graupe (10.1016/j.medengphy.2015.03.001_bib0007) 1985; 7
Chen (10.1016/j.medengphy.2015.03.001_bib0004) 2013; vol. 21
Chowdhury (10.1016/j.medengphy.2015.03.001_bib0005) 2013; 13
Yuan (10.1016/j.medengphy.2015.03.001_bib0036) 2015; 20
Cha (10.1016/j.medengphy.2015.03.001_bib0034) 2007; 1
Jones (10.1016/j.medengphy.2015.03.001_bib0028) 2002; 46
Ziegler-Graham (10.1016/j.medengphy.2015.03.001_bib0001) 2008; 89
Huang (10.1016/j.medengphy.2015.03.001_bib0010) 2011; 58
Tkach (10.1016/j.medengphy.2015.03.001_bib0035) 2013
10.1016/j.medengphy.2015.03.001_bib0002
Preece (10.1016/j.medengphy.2015.03.001_bib0016) 2009; 56
Sheehan (10.1016/j.medengphy.2015.03.001_bib0038) 2012; 43
Graupe (10.1016/j.medengphy.2015.03.001_bib0006) 1982; 4
Childress (10.1016/j.medengphy.2015.03.001_bib0030) 2004
Zhang (10.1016/j.medengphy.2015.03.001_bib0009) 2012; 8
Hannaford (10.1016/j.medengphy.2015.03.001_bib0022) 1986; 33
Yen (10.1016/j.medengphy.2015.03.001_bib0020) 2000; 47
Huang (10.1016/j.medengphy.2015.03.001_bib0008) 2005; 52
Bao (10.1016/j.medengphy.2015.03.001_bib0011) 2004; vol. 3001
Fernandes (10.1016/j.medengphy.2015.03.001_bib0018) 2001
Vetterli (10.1016/j.medengphy.2015.03.001_bib0037) 1992; 40
Hory (10.1016/j.medengphy.2015.03.001_bib0021) 2002; 50
References_xml – start-page: 3653
  year: 2001
  end-page: 3656
  ident: bib0018
  article-title: A directional, shift-insensitive, low-redundancy, wavelet transform
  publication-title: IEEE proceedings international conference on image processing
– volume: 29
  start-page: 37
  year: 1997
  end-page: 42
  ident: bib0013
  article-title: A useful method for measuring daily physical activity by a three-direction monitor
  publication-title: Scand J Rehabil Med
– volume: 56
  start-page: 65
  year: 2009
  end-page: 73
  ident: bib0023
  article-title: A strategy for identifying locomotion modes using surface electromyography
  publication-title: IEEE Trans Biomed Eng
– volume: 24
  start-page: i86
  year: 2008
  end-page: i95
  ident: bib0033
  article-title: Classification and feature selection algorithms for multi-class CGH data
  publication-title: Bioinformatics
– volume: 52
  start-page: 1801
  year: 2005
  end-page: 1811
  ident: bib0008
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Trans Biomed Eng
– start-page: 173
  year: 2004
  end-page: 196
  ident: bib0030
  article-title: Control of limb prosthesis
  publication-title: Atlas of amputations and limb deficiencies
– volume: 13
  start-page: 12431
  year: 2013
  end-page: 12466
  ident: bib0005
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors
– volume: 13
  start-page: 253
  year: 2003
  end-page: 272
  ident: bib0015
  article-title: Gender dependent EMGs of runners resolved by time/frequency and principal pattern analysis
  publication-title: J Electromyogr Kinesiol
– volume: 35
  start-page: 230
  year: 1988
  end-page: 237
  ident: bib0031
  article-title: The electromyogram (EMG) as a control signal for functional neuromuscular stimulation–Part I: autoregressive modeling as a means of EMG signature discrimination
  publication-title: IEEE Trans Biomed Eng
– reference: Bedard S., Roy P. Actuated leg prosthesis for above-knee amputees. U.S. patent 7,314,490; 2003.
– volume: 43
  start-page: 473
  year: 2012
  end-page: 478
  ident: bib0038
  article-title: At similar angles, slope walking has a greater fall risk than stair walking
  publication-title: Appl Ergon
– volume: 60
  start-page: 2745
  year: 2013
  end-page: 2750
  ident: bib0025
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: IEEE Trans Biomed Eng
– volume: vol. 3001
  start-page: 1
  year: 2004
  end-page: 17
  ident: bib0011
  article-title: Activity recognition from user annotated acceleration data
  publication-title: Pervasive computing, Lecture notes in computer science
– year: 1999
  ident: bib0032
  article-title: Probabilistic methods of signal and system analysis
– year: 1999
  ident: bib0019
  article-title: Really friendly guide to wavelets
– volume: 19
  start-page: 186
  year: 2011
  end-page: 192
  ident: bib0029
  article-title: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 1
  start-page: 300
  year: 2007
  end-page: 307
  ident: bib0034
  article-title: Comprehensive survey on distance/similarity measures between probability density functions
  publication-title: Int J Math Models Methods Appl Sci
– volume: 40
  start-page: 2207
  year: 1992
  end-page: 2232
  ident: bib0037
  article-title: Wavelets and filter banks: theory and design
  publication-title: IEEE Trans Signal Process
– volume: 32
  start-page: 450
  year: 2000
  end-page: 457
  ident: bib0012
  article-title: Motion pattern and posture: correctly assessed by calibrated accelerometers
  publication-title: Behav Res Methods Instrum Comput
– volume: 99
  start-page: 3
  year: 1977
  end-page: 8
  ident: bib0003
  article-title: An electrohydraulic knee-torque controller for a prosthesis simulator
  publication-title: J Biomech Eng
– volume: 46
  start-page: 81
  year: 2002
  end-page: 96
  ident: bib0028
  article-title: Statistical color models with application to skin detection
  publication-title: Int J Comput Vision
– volume: 58
  start-page: 2867
  year: 2011
  end-page: 2875
  ident: bib0010
  article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion
  publication-title: IEEE Trans Biomed Eng
– volume: 20
  start-page: 618
  year: 2015
  end-page: 630
  ident: bib0036
  article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees
  publication-title: IEEE/ASME Trans Mechatron
– volume: 56
  start-page: 871
  year: 2009
  end-page: 879
  ident: bib0016
  article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
  publication-title: IEEE Trans. Biomed. Eng
– volume: 50
  start-page: 2915
  year: 2002
  end-page: 2925
  ident: bib0021
  article-title: Spectrogram segmentation by means of statistical features for non-stationary signal interpretation
  publication-title: IEEE Trans Signal Process
– volume: 8
  start-page: 418
  year: 2012
  end-page: 429
  ident: bib0009
  article-title: On design and implementation of neural-machine interface for artificial legs
  publication-title: IEEE Trans Ind Inf
– volume: 207
  start-page: 2519
  year: 2004
  end-page: 2528
  ident: bib0014
  article-title: Spectral properties of myoelectric signals from different motor units in the leg extensor muscles
  publication-title: J Exp Biol
– volume: 47
  start-page: 650
  year: 2000
  end-page: 667
  ident: bib0020
  article-title: Wavelet packet feature extraction for vibration monitoring
  publication-title: IEEE Trans Ind Electron
– volume: 17
  start-page: 907
  year: 2013
  end-page: 914
  ident: bib0024
  article-title: Source selection for real-time user intent recognition toward volitional control of artificial legs
  publication-title: IEEE J Biomed Health Inf
– volume: 7
  start-page: 18
  year: 1985
  end-page: 29
  ident: bib0007
  article-title: Stochastic analysis of myoelectric temporal signatures for multifunctional single-site activation of prostheses and orthoses
  publication-title: J Biomed Eng
– start-page: 6926
  year: 2009
  end-page: 6929
  ident: bib0017
  article-title: Promise of embedded system with GPU in artificial leg control: enabling time-frequency feature extraction from electromyography
  publication-title: IEEE annual EMBS conference
– volume: 33
  start-page: 1173
  year: 1986
  end-page: 1181
  ident: bib0022
  article-title: Short time Fourier analysis of the electromyogram: fast movements and constant contraction
  publication-title: IEEE Trans Biomed Eng
– volume: vol. 21
  start-page: 744
  year: 2013
  end-page: 755
  ident: bib0004
  article-title: Locomotion mode classification using a wearable capacitive sensing system
  publication-title: IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society
– year: 2013
  ident: bib0035
  article-title: Neuromuscular sensor fusion yields highest accuracies in predicting ambulation mode transition for trans-tibial amputees
  publication-title: 35th annual international conference of the IEEE EMBS, Osaka, Japan
– volume: 89
  start-page: 422
  year: 2008
  end-page: 429
  ident: bib0001
  article-title: Estimating the prevalence of limb loss in the United States: 2005 to 2050
  publication-title: Arch Phys Med Rehabil
– volume: 4
  start-page: 17
  year: 1982
  end-page: 22
  ident: bib0006
  article-title: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals
  publication-title: J Biomed Eng
– volume: 45
  start-page: 2193
  year: 2013
  end-page: 2203
  ident: bib0026
  article-title: Activity recognition using a single accelerometer placed at the wrist or ankle
  publication-title: Med Sci Sports Exercise
– start-page: 4899
  year: 2007
  end-page: 4902
  ident: bib0027
  article-title: Accelerometry based classification of walking patterns using time-frequency analysis
  publication-title: Conference proceedings: IEEE Engineering in Medicine and Biology Society
– volume: 89
  start-page: 422
  year: 2008
  ident: 10.1016/j.medengphy.2015.03.001_bib0001
  article-title: Estimating the prevalence of limb loss in the United States: 2005 to 2050
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2007.11.005
– volume: 8
  start-page: 418
  issue: 2
  year: 2012
  ident: 10.1016/j.medengphy.2015.03.001_bib0009
  article-title: On design and implementation of neural-machine interface for artificial legs
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2011.2166770
– ident: 10.1016/j.medengphy.2015.03.001_bib0002
– volume: 56
  start-page: 65
  year: 2009
  ident: 10.1016/j.medengphy.2015.03.001_bib0023
  article-title: A strategy for identifying locomotion modes using surface electromyography
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2003293
– year: 1999
  ident: 10.1016/j.medengphy.2015.03.001_bib0032
– volume: vol. 21
  start-page: 744
  year: 2013
  ident: 10.1016/j.medengphy.2015.03.001_bib0004
  article-title: Locomotion mode classification using a wearable capacitive sensing system
– volume: 13
  start-page: 253
  year: 2003
  ident: 10.1016/j.medengphy.2015.03.001_bib0015
  article-title: Gender dependent EMGs of runners resolved by time/frequency and principal pattern analysis
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(02)00111-6
– volume: 20
  start-page: 618
  year: 2015
  ident: 10.1016/j.medengphy.2015.03.001_bib0036
  article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2014.2309708
– volume: 13
  start-page: 12431
  year: 2013
  ident: 10.1016/j.medengphy.2015.03.001_bib0005
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors
  doi: 10.3390/s130912431
– volume: 1
  start-page: 300
  issue: 4
  year: 2007
  ident: 10.1016/j.medengphy.2015.03.001_bib0034
  article-title: Comprehensive survey on distance/similarity measures between probability density functions
  publication-title: Int J Math Models Methods Appl Sci
– volume: 43
  start-page: 473
  year: 2012
  ident: 10.1016/j.medengphy.2015.03.001_bib0038
  article-title: At similar angles, slope walking has a greater fall risk than stair walking
  publication-title: Appl Ergon
  doi: 10.1016/j.apergo.2011.07.004
– volume: 45
  start-page: 2193
  year: 2013
  ident: 10.1016/j.medengphy.2015.03.001_bib0026
  article-title: Activity recognition using a single accelerometer placed at the wrist or ankle
  publication-title: Med Sci Sports Exercise
  doi: 10.1249/MSS.0b013e31829736d6
– volume: 99
  start-page: 3
  year: 1977
  ident: 10.1016/j.medengphy.2015.03.001_bib0003
  article-title: An electrohydraulic knee-torque controller for a prosthesis simulator
  publication-title: J Biomech Eng
  doi: 10.1115/1.3426266
– volume: 50
  start-page: 2915
  issue: 12
  year: 2002
  ident: 10.1016/j.medengphy.2015.03.001_bib0021
  article-title: Spectrogram segmentation by means of statistical features for non-stationary signal interpretation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2002.805489
– start-page: 173
  year: 2004
  ident: 10.1016/j.medengphy.2015.03.001_bib0030
  article-title: Control of limb prosthesis
– volume: 207
  start-page: 2519
  year: 2004
  ident: 10.1016/j.medengphy.2015.03.001_bib0014
  article-title: Spectral properties of myoelectric signals from different motor units in the leg extensor muscles
  publication-title: J Exp Biol
  doi: 10.1242/jeb.01042
– volume: 17
  start-page: 907
  year: 2013
  ident: 10.1016/j.medengphy.2015.03.001_bib0024
  article-title: Source selection for real-time user intent recognition toward volitional control of artificial legs
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2012.2236563
– volume: 56
  start-page: 871
  year: 2009
  ident: 10.1016/j.medengphy.2015.03.001_bib0016
  article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2008.2006190
– volume: 60
  start-page: 2745
  year: 2013
  ident: 10.1016/j.medengphy.2015.03.001_bib0025
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2264466
– volume: 47
  start-page: 650
  issue: 3
  year: 2000
  ident: 10.1016/j.medengphy.2015.03.001_bib0020
  article-title: Wavelet packet feature extraction for vibration monitoring
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/41.847906
– volume: 40
  start-page: 2207
  year: 1992
  ident: 10.1016/j.medengphy.2015.03.001_bib0037
  article-title: Wavelets and filter banks: theory and design
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.157221
– volume: 7
  start-page: 18
  year: 1985
  ident: 10.1016/j.medengphy.2015.03.001_bib0007
  article-title: Stochastic analysis of myoelectric temporal signatures for multifunctional single-site activation of prostheses and orthoses
  publication-title: J Biomed Eng
  doi: 10.1016/0141-5425(85)90004-4
– volume: 58
  start-page: 2867
  year: 2011
  ident: 10.1016/j.medengphy.2015.03.001_bib0010
  article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2161671
– volume: 29
  start-page: 37
  year: 1997
  ident: 10.1016/j.medengphy.2015.03.001_bib0013
  article-title: A useful method for measuring daily physical activity by a three-direction monitor
  publication-title: Scand J Rehabil Med
  doi: 10.2340/1650197719973742
– volume: 19
  start-page: 186
  year: 2011
  ident: 10.1016/j.medengphy.2015.03.001_bib0029
  article-title: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2010.2100828
– start-page: 6926
  year: 2009
  ident: 10.1016/j.medengphy.2015.03.001_bib0017
  article-title: Promise of embedded system with GPU in artificial leg control: enabling time-frequency feature extraction from electromyography
– volume: 24
  start-page: i86
  year: 2008
  ident: 10.1016/j.medengphy.2015.03.001_bib0033
  article-title: Classification and feature selection algorithms for multi-class CGH data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn145
– volume: 46
  start-page: 81
  year: 2002
  ident: 10.1016/j.medengphy.2015.03.001_bib0028
  article-title: Statistical color models with application to skin detection
  publication-title: Int J Comput Vision
  doi: 10.1023/A:1013200319198
– volume: 32
  start-page: 450
  year: 2000
  ident: 10.1016/j.medengphy.2015.03.001_bib0012
  article-title: Motion pattern and posture: correctly assessed by calibrated accelerometers
  publication-title: Behav Res Methods Instrum Comput
  doi: 10.3758/BF03200815
– volume: 33
  start-page: 1173
  year: 1986
  ident: 10.1016/j.medengphy.2015.03.001_bib0022
  article-title: Short time Fourier analysis of the electromyogram: fast movements and constant contraction
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1986.325697
– year: 2013
  ident: 10.1016/j.medengphy.2015.03.001_bib0035
  article-title: Neuromuscular sensor fusion yields highest accuracies in predicting ambulation mode transition for trans-tibial amputees
– start-page: 4899
  year: 2007
  ident: 10.1016/j.medengphy.2015.03.001_bib0027
  article-title: Accelerometry based classification of walking patterns using time-frequency analysis
– volume: 52
  start-page: 1801
  year: 2005
  ident: 10.1016/j.medengphy.2015.03.001_bib0008
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.856295
– volume: 35
  start-page: 230
  year: 1988
  ident: 10.1016/j.medengphy.2015.03.001_bib0031
  article-title: The electromyogram (EMG) as a control signal for functional neuromuscular stimulation–Part I: autoregressive modeling as a means of EMG signature discrimination
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.1370
– volume: 4
  start-page: 17
  year: 1982
  ident: 10.1016/j.medengphy.2015.03.001_bib0006
  article-title: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals
  publication-title: J Biomed Eng
  doi: 10.1016/0141-5425(82)90021-8
– year: 1999
  ident: 10.1016/j.medengphy.2015.03.001_bib0019
– volume: vol. 3001
  start-page: 1
  year: 2004
  ident: 10.1016/j.medengphy.2015.03.001_bib0011
  article-title: Activity recognition from user annotated acceleration data
– start-page: 3653
  year: 2001
  ident: 10.1016/j.medengphy.2015.03.001_bib0018
  article-title: A directional, shift-insensitive, low-redundancy, wavelet transform
SSID ssj0004463
Score 2.3143847
Snippet •Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using...
Highlights • Transition between locomotion modes is critical to activities of daily living. • A spectrogram approach is used to classify locomotion and...
Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 518
SubjectTerms Accelerometry - methods
Algorithms
Electromyography
Electromyography - methods
Female
Gait cycle
Humans
Leg - physiology
Locomotion
Locomotion - physiology
Male
Muscle, Skeletal - physiology
Myoelectric control
Radiology
Signal Processing, Computer-Assisted
Spectrogram
Time Factors
Time-frequency
Young Adult
Title High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453315000673
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453315000673
https://dx.doi.org/10.1016/j.medengphy.2015.03.001
https://www.ncbi.nlm.nih.gov/pubmed/25862333
https://www.proquest.com/docview/1676340381
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQLC8tkBlJK5m7dhOHG7VqmUBtReo1JsVv9AilF3tbq_89o6dB1RQFYljIo-c2OP5PtufxwBvI_M8FCLSMpaOytrXtInSUeeZDUgvKumyyvesXJzLTxfqYg_mw1mYJKvsY38X03O07t_M-tacrZfL2RcuFPIRIbjKMTdl_JSySl7-7ucvmQdOd7LIHgvTVPqaxgsBJ7Tf8H-Sxkt12U75TQh1EwPNSHTyCB72FJIcdV_5GPZCO4F78-Hmtgk8-C3J4ATunvbb50_AJFUHCfm4H8lnLDt1FkmrsWTMHOHJerNcbci43kaQ2ZLj0w80YZ4niH-r7vYf4hL5Tmqj3MFP4fzk-Ot8QfsbFqhTqthRnCs13LnCIY-w3mklG8uC01WhfVNbYXGuGmKDqM-bunIh-qCjirpmkiO61uIZ7LerNrwAUnJvFfPRS4-URisbmK61ldIL1wThp1AOrWpcn3483YLxwww6s-9m7A6TusMwkRR3U2Cj4brLwHG7iR66zQwHTDEkGkSJ202rv5mGbT-0t4abbWGY-cP9pvB-tLzmwf9W7ZvBuww6S9q0adqwusTqSkQAmfZzp_C8c7uxGQqF81EhxMH_VP0S7qenTsT5CvZ3m8vwGonWzh7mkXQId44-fl6cXQGEUiql
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRaJwQBBe4WkkOJrYa3vjReKASktKm15opd7M-rEoCG2iJBXiwp_iDzL2PqCCqkio112NbI3H883Yn2cAnlfM85CJiuZV7qgsfEHLSjrqPLMBw4uxdInle5hPjuX7E3WyAT-6tzCRVtn6_sanJ2_dfhm12hwtZrPRBy4UxiNCcJV8btfBej98-4p52-r13ltc5BdZtrtztD2hbWsB6pTK1hSThJI7lzkEUOudVrK0LDg9zrQvCyssJmmhKhHueFmMXah80JWqdMEkR1iJFZjQ71_B4XVsm_Dy-y9eCeZXidWPs6NxemdIZYhwof6ECoykMtWUV-XnQeJ5IW-Cvt2bcKONWcmbRi23YCPUA9ja7lrFDeD6b1UNB3B12t7X3wYTaSQkpPeFJD3qbOhgJB7_kr5UhSeL5Wy-JP0BH8FQmuxM39EIsp4g4M6bdkPExWg_0puSRd2B40vR-13YrOd1uA8k594q5isvPcZQWtnAdKGtlF64Mgg_hLzTqnFtvfPYduOL6Yhtn02_HCYuh2EiUvyGwHrBRVPy42IR3S2b6V60og82CEsXi47_JhpWrS9ZGW5WmWHmD3sfwqte8syW-bdhn3XWZdBY4i1RWYf5KQ6XI-TIeIE8hHuN2fVqyBQmwEKIB_8z9FPYmhxND8zB3uH-Q7gW_zQM0kewuV6ehscY5a3tk7SrCHy87G38Ew4MZ98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+energy+spectrogram+with+integrated+prior+knowledge+for+EMG-based+locomotion+classification&rft.jtitle=Medical+engineering+%26+physics&rft.au=Joshi%2C+Deepak&rft.au=Nakamura%2C+Bryson+H&rft.au=Hahn%2C+Michael+E&rft.date=2015-05-01&rft.eissn=1873-4030&rft.volume=37&rft.issue=5&rft.spage=518&rft.epage=524&rft_id=info:doi/10.1016%2Fj.medengphy.2015.03.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453315X00051%2Fcov150h.gif