High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification
•Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using EMG.•Use of prior knowledge with the spectrogram enhances the classification structure.•This approach can aid the control of assistive devices i...
Saved in:
Published in | Medical engineering & physics Vol. 37; no. 5; pp. 518 - 524 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using EMG.•Use of prior knowledge with the spectrogram enhances the classification structure.•This approach can aid the control of assistive devices in multi-mode control.
Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification can be performed using discriminant functions or if-else rule sets, using learning algorithms derived from training examples. In the present work, a spectrogram based approach was developed to classify (EMG) signals for locomotion mode. Spectrograms for each muscle were calculated and summed to develop a histogram. If-else rules were used to classify test data based on a matching score. Prior knowledge of locomotion type reduced class space to exclusive locomotion modes. The EMG data were collected from seven leg muscles in a sample of able-bodied subjects while walking over ground (W), ascending stairs (SA) and the transition between (W-SA). Three muscles with least discriminating power were removed from the original data set to examine the effect on classification accuracy. Initial classification error was <20% across all modes, using leave one out cross validation. Use of prior knowledge reduced the average classification error to <11%. Removing three EMG channels decreased the classification accuracy by 10.8%, 24.3%, and 8.1% for W, W-SA, and SA respectively, and reduced computation time by 42.8%. This approach may be useful in the control of multi-mode assistive devices. |
---|---|
AbstractList | Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification can be performed using discriminant functions or if-else rule sets, using learning algorithms derived from training examples. In the present work, a spectrogram based approach was developed to classify (EMG) signals for locomotion mode. Spectrograms for each muscle were calculated and summed to develop a histogram. If-else rules were used to classify test data based on a matching score. Prior knowledge of locomotion type reduced class space to exclusive locomotion modes. The EMG data were collected from seven leg muscles in a sample of able-bodied subjects while walking over ground (W), ascending stairs (SA) and the transition between (W-SA). Three muscles with least discriminating power were removed from the original data set to examine the effect on classification accuracy. Initial classification error was <20% across all modes, using leave one out cross validation. Use of prior knowledge reduced the average classification error to <11%. Removing three EMG channels decreased the classification accuracy by 10.8%, 24.3%, and 8.1% for W, W-SA, and SA respectively, and reduced computation time by 42.8%. This approach may be useful in the control of multi-mode assistive devices. •Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using EMG.•Use of prior knowledge with the spectrogram enhances the classification structure.•This approach can aid the control of assistive devices in multi-mode control. Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification can be performed using discriminant functions or if-else rule sets, using learning algorithms derived from training examples. In the present work, a spectrogram based approach was developed to classify (EMG) signals for locomotion mode. Spectrograms for each muscle were calculated and summed to develop a histogram. If-else rules were used to classify test data based on a matching score. Prior knowledge of locomotion type reduced class space to exclusive locomotion modes. The EMG data were collected from seven leg muscles in a sample of able-bodied subjects while walking over ground (W), ascending stairs (SA) and the transition between (W-SA). Three muscles with least discriminating power were removed from the original data set to examine the effect on classification accuracy. Initial classification error was <20% across all modes, using leave one out cross validation. Use of prior knowledge reduced the average classification error to <11%. Removing three EMG channels decreased the classification accuracy by 10.8%, 24.3%, and 8.1% for W, W-SA, and SA respectively, and reduced computation time by 42.8%. This approach may be useful in the control of multi-mode assistive devices. Highlights • Transition between locomotion modes is critical to activities of daily living. • A spectrogram approach is used to classify locomotion and transitions using EMG. • Use of prior knowledge with the spectrogram enhances the classification structure. • This approach can aid the control of assistive devices in multi-mode control. |
Author | Joshi, Deepak Nakamura, Bryson H. Hahn, Michael E. |
Author_xml | – sequence: 1 givenname: Deepak surname: Joshi fullname: Joshi, Deepak email: joshideepak2004@yahoo.co.in – sequence: 2 givenname: Bryson H. surname: Nakamura fullname: Nakamura, Bryson H. email: bnakamur@uoregon.edu – sequence: 3 givenname: Michael E. surname: Hahn fullname: Hahn, Michael E. email: mhahn@uoregon.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25862333$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URF_8BciSTYKfSWYBqKr6kopYQNeW49xkPHXswfa0mn9fh2m7qIQ0K_vK5xz5fvceowPnHSD0meCKYFJ_XVUT9ODG9XJbUUxEhVmFMXmHjkjbsJJjhg_ynQlccsHYITqOcYUx5rxmH9AhFW1NGWNHSF6bcVmAgzBui7gGnYIfg5qKR5OWhXEJcpWgL9bB-FDcO_9ooR-hGHJ18fOq7FTMr9ZrP_lkvCu0VTGawWg1l6fo_aBshI_P5wm6u7z4c35d3v66ujk_uy21EDSVpOaKaE11w1nX61Zw1WHQbUPbXi061hFGYVCUY6IWjYahh3YQQ7vAnGiABTtBX3a56-D_biAmOZmowVrlwG-iJHVTs4ylJVn66Vm66TJFmTubVNjKFyhZ0OwEOvgYAwyvEoLljF-u5Ct-OeOXmMmMPzu_vXFqk_5xSEEZu4f_bOeHjOrBQJBRG3AaehPyaGTvzR4Z399kaGtcHoe9hy3Eld8ElychiYxUYvl7XpJ5R4jI-1E3c_s__h-w1xeeABC00uU |
CitedBy_id | crossref_primary_10_1109_JSEN_2020_2994956 crossref_primary_10_1007_s42835_019_00083_3 crossref_primary_10_1109_TBME_2017_2721300 crossref_primary_10_34133_2021_9863761 crossref_primary_10_1109_TNSRE_2018_2870152 crossref_primary_10_3389_fnbot_2020_00047 crossref_primary_10_4015_S1016237216500411 crossref_primary_10_1016_j_apmr_2016_12_003 crossref_primary_10_1007_s40747_020_00172_1 crossref_primary_10_3390_bioengineering10050531 crossref_primary_10_3233_WOR_203404 crossref_primary_10_1088_2058_8585_ac6a96 crossref_primary_10_1016_j_eswa_2023_121635 crossref_primary_10_1016_j_measurement_2019_04_009 crossref_primary_10_1155_2018_5712108 crossref_primary_10_1109_TMRB_2023_3282325 crossref_primary_10_1109_JBHI_2022_3173968 crossref_primary_10_1109_ACCESS_2018_2884773 crossref_primary_10_2174_1874120701610010101 crossref_primary_10_3390_electronics9122176 crossref_primary_10_1177_1729881420925291 crossref_primary_10_1109_THMS_2021_3107256 crossref_primary_10_1109_THMS_2018_2860598 crossref_primary_10_1155_2020_8810663 crossref_primary_10_3390_computers7040058 crossref_primary_10_1109_LRA_2022_3185380 crossref_primary_10_1080_08839514_2021_1990525 crossref_primary_10_3390_app12115483 crossref_primary_10_3389_fnins_2021_621885 crossref_primary_10_1109_TNSRE_2023_3237181 crossref_primary_10_1007_s42235_019_0052_1 crossref_primary_10_1007_s13042_022_01687_4 crossref_primary_10_1109_JBHI_2020_3015317 crossref_primary_10_1080_01691864_2023_2197966 crossref_primary_10_1109_JBHI_2024_3462826 crossref_primary_10_3390_s16091408 |
Cites_doi | 10.1016/j.apmr.2007.11.005 10.1109/TII.2011.2166770 10.1109/TBME.2008.2003293 10.1016/S1050-6411(02)00111-6 10.1109/TMECH.2014.2309708 10.3390/s130912431 10.1016/j.apergo.2011.07.004 10.1249/MSS.0b013e31829736d6 10.1115/1.3426266 10.1109/TSP.2002.805489 10.1242/jeb.01042 10.1109/JBHI.2012.2236563 10.1109/TBME.2008.2006190 10.1109/TBME.2013.2264466 10.1109/41.847906 10.1109/78.157221 10.1016/0141-5425(85)90004-4 10.1109/TBME.2011.2161671 10.2340/1650197719973742 10.1109/TNSRE.2010.2100828 10.1093/bioinformatics/btn145 10.1023/A:1013200319198 10.3758/BF03200815 10.1109/TBME.1986.325697 10.1109/TBME.2005.856295 10.1109/10.1370 10.1016/0141-5425(82)90021-8 |
ContentType | Journal Article |
Copyright | 2015 IPEM IPEM Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 IPEM – notice: IPEM – notice: Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.medengphy.2015.03.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 524 |
ExternalDocumentID | 25862333 10_1016_j_medengphy_2015_03_001 S1350453315000673 1_s2_0_S1350453315000673 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c552t-164a1cc2c743bdc854ab0ec8728da9b3b132efa2401a97cefde8f5f89041cee93 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 |
IngestDate | Tue Aug 05 09:34:38 EDT 2025 Thu Apr 03 07:06:18 EDT 2025 Sun Jul 06 05:02:25 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Fri Feb 23 02:29:21 EST 2024 Sun Feb 23 10:20:00 EST 2025 Tue Aug 26 16:31:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Myoelectric control Locomotion Time-frequency Electromyography Gait cycle Spectrogram |
Language | English |
License | Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-164a1cc2c743bdc854ab0ec8728da9b3b132efa2401a97cefde8f5f89041cee93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25862333 |
PQID | 1676340381 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1676340381 pubmed_primary_25862333 crossref_primary_10_1016_j_medengphy_2015_03_001 crossref_citationtrail_10_1016_j_medengphy_2015_03_001 elsevier_sciencedirect_doi_10_1016_j_medengphy_2015_03_001 elsevier_clinicalkeyesjournals_1_s2_0_S1350453315000673 elsevier_clinicalkey_doi_10_1016_j_medengphy_2015_03_001 |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Huang (bib0024) 2013; 17 Valens (bib0019) 1999 Cooper, McGillem (bib0032) 1999 Bedard S., Roy P. Actuated leg prosthesis for above-knee amputees. U.S. patent 7,314,490; 2003. Sheehan, Gottschall (bib0038) 2012; 43 Vetterli, Herley (bib0037) 1992; 40 Huang, Zhang, Hargrove, Dou, Rogers, Englehart (bib0010) 2011; 58 Huang, Kuiken, Lipschutz (bib0023) 2009; 56 Hefftner, Zucchini, Jaros (bib0031) 1988; 35 Xiao, Huang, Sun, Yang (bib0017) 2009 Chen, Zheng, Fan, Liang, Wang, Wei (bib0004) 2013; vol. 21 Huang, Englehart, Hudgins, Chan (bib0008) 2005; 52 Ziegler-Graham, MacKenzie, Ephraim, Travison, Brookmeyer (bib0001) 2008; 89 Smith, Hargrove, Lock, Kuiken (bib0029) 2011; 19 Yen, Lin (bib0020) 2000; 47 Yuan, Wang, Wang (bib0036) 2015; 20 Zhang, Liu, Zhang, Ren, Sun, Yang (bib0009) 2012; 8 Tkach, Hargrove (bib0035) 2013 Hory, Martin, Chehikian (bib0021) 2002; 50 Childress, Weir (bib0030) 2004 Liu, Ranka, Kahveci (bib0033) 2008; 24 Flowers, Mann (bib0003) 1977; 99 Foerster, Fahrenberg (bib0012) 2000; 32 Preece, Goulermas, Kenney, Howard (bib0016) 2009; 56 Miller, Beazer, Hahn (bib0025) 2013; 60 Fernandes, Spaendonck, Burrus (bib0018) 2001 Bao, Intille (bib0011) 2004; vol. 3001 Graupe, Salahi, Zhang (bib0007) 1985; 7 Mannini, Intille, Rosenberger, Sabatini, Haskell (bib0026) 2013; 45 Cha (bib0034) 2007; 1 Wakeling, Rozitis (bib0014) 2004; 207 Jones, Rehg (bib0028) 2002; 46 Graupe, Salahi, Kohn (bib0006) 1982; 4 Sugimoto, Hara, Findley, Yoncmoto (bib0013) 1997; 29 Chowdhury, Reaz, Ali, Bakar, Chellappan, Chang (bib0005) 2013; 13 von Tscharner, Goepfert (bib0015) 2003; 13 Hannaford, Lehman (bib0022) 1986; 33 Wang, Ambikairajah, Lovell, Celler (bib0027) 2007 Miller (10.1016/j.medengphy.2015.03.001_bib0025) 2013; 60 Liu (10.1016/j.medengphy.2015.03.001_bib0033) 2008; 24 Zhang (10.1016/j.medengphy.2015.03.001_bib0024) 2013; 17 Wakeling (10.1016/j.medengphy.2015.03.001_bib0014) 2004; 207 Sugimoto (10.1016/j.medengphy.2015.03.001_bib0013) 1997; 29 Flowers (10.1016/j.medengphy.2015.03.001_bib0003) 1977; 99 Wang (10.1016/j.medengphy.2015.03.001_bib0027) 2007 Mannini (10.1016/j.medengphy.2015.03.001_bib0026) 2013; 45 von Tscharner (10.1016/j.medengphy.2015.03.001_bib0015) 2003; 13 Huang (10.1016/j.medengphy.2015.03.001_bib0023) 2009; 56 Foerster (10.1016/j.medengphy.2015.03.001_bib0012) 2000; 32 Xiao (10.1016/j.medengphy.2015.03.001_bib0017) 2009 Smith (10.1016/j.medengphy.2015.03.001_bib0029) 2011; 19 Valens (10.1016/j.medengphy.2015.03.001_bib0019) 1999 Cooper (10.1016/j.medengphy.2015.03.001_bib0032) 1999 Hefftner (10.1016/j.medengphy.2015.03.001_bib0031) 1988; 35 Graupe (10.1016/j.medengphy.2015.03.001_bib0007) 1985; 7 Chen (10.1016/j.medengphy.2015.03.001_bib0004) 2013; vol. 21 Chowdhury (10.1016/j.medengphy.2015.03.001_bib0005) 2013; 13 Yuan (10.1016/j.medengphy.2015.03.001_bib0036) 2015; 20 Cha (10.1016/j.medengphy.2015.03.001_bib0034) 2007; 1 Jones (10.1016/j.medengphy.2015.03.001_bib0028) 2002; 46 Ziegler-Graham (10.1016/j.medengphy.2015.03.001_bib0001) 2008; 89 Huang (10.1016/j.medengphy.2015.03.001_bib0010) 2011; 58 Tkach (10.1016/j.medengphy.2015.03.001_bib0035) 2013 10.1016/j.medengphy.2015.03.001_bib0002 Preece (10.1016/j.medengphy.2015.03.001_bib0016) 2009; 56 Sheehan (10.1016/j.medengphy.2015.03.001_bib0038) 2012; 43 Graupe (10.1016/j.medengphy.2015.03.001_bib0006) 1982; 4 Childress (10.1016/j.medengphy.2015.03.001_bib0030) 2004 Zhang (10.1016/j.medengphy.2015.03.001_bib0009) 2012; 8 Hannaford (10.1016/j.medengphy.2015.03.001_bib0022) 1986; 33 Yen (10.1016/j.medengphy.2015.03.001_bib0020) 2000; 47 Huang (10.1016/j.medengphy.2015.03.001_bib0008) 2005; 52 Bao (10.1016/j.medengphy.2015.03.001_bib0011) 2004; vol. 3001 Fernandes (10.1016/j.medengphy.2015.03.001_bib0018) 2001 Vetterli (10.1016/j.medengphy.2015.03.001_bib0037) 1992; 40 Hory (10.1016/j.medengphy.2015.03.001_bib0021) 2002; 50 |
References_xml | – start-page: 3653 year: 2001 end-page: 3656 ident: bib0018 article-title: A directional, shift-insensitive, low-redundancy, wavelet transform publication-title: IEEE proceedings international conference on image processing – volume: 29 start-page: 37 year: 1997 end-page: 42 ident: bib0013 article-title: A useful method for measuring daily physical activity by a three-direction monitor publication-title: Scand J Rehabil Med – volume: 56 start-page: 65 year: 2009 end-page: 73 ident: bib0023 article-title: A strategy for identifying locomotion modes using surface electromyography publication-title: IEEE Trans Biomed Eng – volume: 24 start-page: i86 year: 2008 end-page: i95 ident: bib0033 article-title: Classification and feature selection algorithms for multi-class CGH data publication-title: Bioinformatics – volume: 52 start-page: 1801 year: 2005 end-page: 1811 ident: bib0008 article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses publication-title: IEEE Trans Biomed Eng – start-page: 173 year: 2004 end-page: 196 ident: bib0030 article-title: Control of limb prosthesis publication-title: Atlas of amputations and limb deficiencies – volume: 13 start-page: 12431 year: 2013 end-page: 12466 ident: bib0005 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors – volume: 13 start-page: 253 year: 2003 end-page: 272 ident: bib0015 article-title: Gender dependent EMGs of runners resolved by time/frequency and principal pattern analysis publication-title: J Electromyogr Kinesiol – volume: 35 start-page: 230 year: 1988 end-page: 237 ident: bib0031 article-title: The electromyogram (EMG) as a control signal for functional neuromuscular stimulation–Part I: autoregressive modeling as a means of EMG signature discrimination publication-title: IEEE Trans Biomed Eng – reference: Bedard S., Roy P. Actuated leg prosthesis for above-knee amputees. U.S. patent 7,314,490; 2003. – volume: 43 start-page: 473 year: 2012 end-page: 478 ident: bib0038 article-title: At similar angles, slope walking has a greater fall risk than stair walking publication-title: Appl Ergon – volume: 60 start-page: 2745 year: 2013 end-page: 2750 ident: bib0025 article-title: Myoelectric walking mode classification for transtibial amputees publication-title: IEEE Trans Biomed Eng – volume: vol. 3001 start-page: 1 year: 2004 end-page: 17 ident: bib0011 article-title: Activity recognition from user annotated acceleration data publication-title: Pervasive computing, Lecture notes in computer science – year: 1999 ident: bib0032 article-title: Probabilistic methods of signal and system analysis – year: 1999 ident: bib0019 article-title: Really friendly guide to wavelets – volume: 19 start-page: 186 year: 2011 end-page: 192 ident: bib0029 article-title: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 1 start-page: 300 year: 2007 end-page: 307 ident: bib0034 article-title: Comprehensive survey on distance/similarity measures between probability density functions publication-title: Int J Math Models Methods Appl Sci – volume: 40 start-page: 2207 year: 1992 end-page: 2232 ident: bib0037 article-title: Wavelets and filter banks: theory and design publication-title: IEEE Trans Signal Process – volume: 32 start-page: 450 year: 2000 end-page: 457 ident: bib0012 article-title: Motion pattern and posture: correctly assessed by calibrated accelerometers publication-title: Behav Res Methods Instrum Comput – volume: 99 start-page: 3 year: 1977 end-page: 8 ident: bib0003 article-title: An electrohydraulic knee-torque controller for a prosthesis simulator publication-title: J Biomech Eng – volume: 46 start-page: 81 year: 2002 end-page: 96 ident: bib0028 article-title: Statistical color models with application to skin detection publication-title: Int J Comput Vision – volume: 58 start-page: 2867 year: 2011 end-page: 2875 ident: bib0010 article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion publication-title: IEEE Trans Biomed Eng – volume: 20 start-page: 618 year: 2015 end-page: 630 ident: bib0036 article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees publication-title: IEEE/ASME Trans Mechatron – volume: 56 start-page: 871 year: 2009 end-page: 879 ident: bib0016 article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data publication-title: IEEE Trans. Biomed. Eng – volume: 50 start-page: 2915 year: 2002 end-page: 2925 ident: bib0021 article-title: Spectrogram segmentation by means of statistical features for non-stationary signal interpretation publication-title: IEEE Trans Signal Process – volume: 8 start-page: 418 year: 2012 end-page: 429 ident: bib0009 article-title: On design and implementation of neural-machine interface for artificial legs publication-title: IEEE Trans Ind Inf – volume: 207 start-page: 2519 year: 2004 end-page: 2528 ident: bib0014 article-title: Spectral properties of myoelectric signals from different motor units in the leg extensor muscles publication-title: J Exp Biol – volume: 47 start-page: 650 year: 2000 end-page: 667 ident: bib0020 article-title: Wavelet packet feature extraction for vibration monitoring publication-title: IEEE Trans Ind Electron – volume: 17 start-page: 907 year: 2013 end-page: 914 ident: bib0024 article-title: Source selection for real-time user intent recognition toward volitional control of artificial legs publication-title: IEEE J Biomed Health Inf – volume: 7 start-page: 18 year: 1985 end-page: 29 ident: bib0007 article-title: Stochastic analysis of myoelectric temporal signatures for multifunctional single-site activation of prostheses and orthoses publication-title: J Biomed Eng – start-page: 6926 year: 2009 end-page: 6929 ident: bib0017 article-title: Promise of embedded system with GPU in artificial leg control: enabling time-frequency feature extraction from electromyography publication-title: IEEE annual EMBS conference – volume: 33 start-page: 1173 year: 1986 end-page: 1181 ident: bib0022 article-title: Short time Fourier analysis of the electromyogram: fast movements and constant contraction publication-title: IEEE Trans Biomed Eng – volume: vol. 21 start-page: 744 year: 2013 end-page: 755 ident: bib0004 article-title: Locomotion mode classification using a wearable capacitive sensing system publication-title: IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society – year: 2013 ident: bib0035 article-title: Neuromuscular sensor fusion yields highest accuracies in predicting ambulation mode transition for trans-tibial amputees publication-title: 35th annual international conference of the IEEE EMBS, Osaka, Japan – volume: 89 start-page: 422 year: 2008 end-page: 429 ident: bib0001 article-title: Estimating the prevalence of limb loss in the United States: 2005 to 2050 publication-title: Arch Phys Med Rehabil – volume: 4 start-page: 17 year: 1982 end-page: 22 ident: bib0006 article-title: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals publication-title: J Biomed Eng – volume: 45 start-page: 2193 year: 2013 end-page: 2203 ident: bib0026 article-title: Activity recognition using a single accelerometer placed at the wrist or ankle publication-title: Med Sci Sports Exercise – start-page: 4899 year: 2007 end-page: 4902 ident: bib0027 article-title: Accelerometry based classification of walking patterns using time-frequency analysis publication-title: Conference proceedings: IEEE Engineering in Medicine and Biology Society – volume: 89 start-page: 422 year: 2008 ident: 10.1016/j.medengphy.2015.03.001_bib0001 article-title: Estimating the prevalence of limb loss in the United States: 2005 to 2050 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2007.11.005 – volume: 8 start-page: 418 issue: 2 year: 2012 ident: 10.1016/j.medengphy.2015.03.001_bib0009 article-title: On design and implementation of neural-machine interface for artificial legs publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2011.2166770 – ident: 10.1016/j.medengphy.2015.03.001_bib0002 – volume: 56 start-page: 65 year: 2009 ident: 10.1016/j.medengphy.2015.03.001_bib0023 article-title: A strategy for identifying locomotion modes using surface electromyography publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2003293 – year: 1999 ident: 10.1016/j.medengphy.2015.03.001_bib0032 – volume: vol. 21 start-page: 744 year: 2013 ident: 10.1016/j.medengphy.2015.03.001_bib0004 article-title: Locomotion mode classification using a wearable capacitive sensing system – volume: 13 start-page: 253 year: 2003 ident: 10.1016/j.medengphy.2015.03.001_bib0015 article-title: Gender dependent EMGs of runners resolved by time/frequency and principal pattern analysis publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(02)00111-6 – volume: 20 start-page: 618 year: 2015 ident: 10.1016/j.medengphy.2015.03.001_bib0036 article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2014.2309708 – volume: 13 start-page: 12431 year: 2013 ident: 10.1016/j.medengphy.2015.03.001_bib0005 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors doi: 10.3390/s130912431 – volume: 1 start-page: 300 issue: 4 year: 2007 ident: 10.1016/j.medengphy.2015.03.001_bib0034 article-title: Comprehensive survey on distance/similarity measures between probability density functions publication-title: Int J Math Models Methods Appl Sci – volume: 43 start-page: 473 year: 2012 ident: 10.1016/j.medengphy.2015.03.001_bib0038 article-title: At similar angles, slope walking has a greater fall risk than stair walking publication-title: Appl Ergon doi: 10.1016/j.apergo.2011.07.004 – volume: 45 start-page: 2193 year: 2013 ident: 10.1016/j.medengphy.2015.03.001_bib0026 article-title: Activity recognition using a single accelerometer placed at the wrist or ankle publication-title: Med Sci Sports Exercise doi: 10.1249/MSS.0b013e31829736d6 – volume: 99 start-page: 3 year: 1977 ident: 10.1016/j.medengphy.2015.03.001_bib0003 article-title: An electrohydraulic knee-torque controller for a prosthesis simulator publication-title: J Biomech Eng doi: 10.1115/1.3426266 – volume: 50 start-page: 2915 issue: 12 year: 2002 ident: 10.1016/j.medengphy.2015.03.001_bib0021 article-title: Spectrogram segmentation by means of statistical features for non-stationary signal interpretation publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2002.805489 – start-page: 173 year: 2004 ident: 10.1016/j.medengphy.2015.03.001_bib0030 article-title: Control of limb prosthesis – volume: 207 start-page: 2519 year: 2004 ident: 10.1016/j.medengphy.2015.03.001_bib0014 article-title: Spectral properties of myoelectric signals from different motor units in the leg extensor muscles publication-title: J Exp Biol doi: 10.1242/jeb.01042 – volume: 17 start-page: 907 year: 2013 ident: 10.1016/j.medengphy.2015.03.001_bib0024 article-title: Source selection for real-time user intent recognition toward volitional control of artificial legs publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2012.2236563 – volume: 56 start-page: 871 year: 2009 ident: 10.1016/j.medengphy.2015.03.001_bib0016 article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2008.2006190 – volume: 60 start-page: 2745 year: 2013 ident: 10.1016/j.medengphy.2015.03.001_bib0025 article-title: Myoelectric walking mode classification for transtibial amputees publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2264466 – volume: 47 start-page: 650 issue: 3 year: 2000 ident: 10.1016/j.medengphy.2015.03.001_bib0020 article-title: Wavelet packet feature extraction for vibration monitoring publication-title: IEEE Trans Ind Electron doi: 10.1109/41.847906 – volume: 40 start-page: 2207 year: 1992 ident: 10.1016/j.medengphy.2015.03.001_bib0037 article-title: Wavelets and filter banks: theory and design publication-title: IEEE Trans Signal Process doi: 10.1109/78.157221 – volume: 7 start-page: 18 year: 1985 ident: 10.1016/j.medengphy.2015.03.001_bib0007 article-title: Stochastic analysis of myoelectric temporal signatures for multifunctional single-site activation of prostheses and orthoses publication-title: J Biomed Eng doi: 10.1016/0141-5425(85)90004-4 – volume: 58 start-page: 2867 year: 2011 ident: 10.1016/j.medengphy.2015.03.001_bib0010 article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2161671 – volume: 29 start-page: 37 year: 1997 ident: 10.1016/j.medengphy.2015.03.001_bib0013 article-title: A useful method for measuring daily physical activity by a three-direction monitor publication-title: Scand J Rehabil Med doi: 10.2340/1650197719973742 – volume: 19 start-page: 186 year: 2011 ident: 10.1016/j.medengphy.2015.03.001_bib0029 article-title: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2010.2100828 – start-page: 6926 year: 2009 ident: 10.1016/j.medengphy.2015.03.001_bib0017 article-title: Promise of embedded system with GPU in artificial leg control: enabling time-frequency feature extraction from electromyography – volume: 24 start-page: i86 year: 2008 ident: 10.1016/j.medengphy.2015.03.001_bib0033 article-title: Classification and feature selection algorithms for multi-class CGH data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn145 – volume: 46 start-page: 81 year: 2002 ident: 10.1016/j.medengphy.2015.03.001_bib0028 article-title: Statistical color models with application to skin detection publication-title: Int J Comput Vision doi: 10.1023/A:1013200319198 – volume: 32 start-page: 450 year: 2000 ident: 10.1016/j.medengphy.2015.03.001_bib0012 article-title: Motion pattern and posture: correctly assessed by calibrated accelerometers publication-title: Behav Res Methods Instrum Comput doi: 10.3758/BF03200815 – volume: 33 start-page: 1173 year: 1986 ident: 10.1016/j.medengphy.2015.03.001_bib0022 article-title: Short time Fourier analysis of the electromyogram: fast movements and constant contraction publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1986.325697 – year: 2013 ident: 10.1016/j.medengphy.2015.03.001_bib0035 article-title: Neuromuscular sensor fusion yields highest accuracies in predicting ambulation mode transition for trans-tibial amputees – start-page: 4899 year: 2007 ident: 10.1016/j.medengphy.2015.03.001_bib0027 article-title: Accelerometry based classification of walking patterns using time-frequency analysis – volume: 52 start-page: 1801 year: 2005 ident: 10.1016/j.medengphy.2015.03.001_bib0008 article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.856295 – volume: 35 start-page: 230 year: 1988 ident: 10.1016/j.medengphy.2015.03.001_bib0031 article-title: The electromyogram (EMG) as a control signal for functional neuromuscular stimulation–Part I: autoregressive modeling as a means of EMG signature discrimination publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.1370 – volume: 4 start-page: 17 year: 1982 ident: 10.1016/j.medengphy.2015.03.001_bib0006 article-title: Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals publication-title: J Biomed Eng doi: 10.1016/0141-5425(82)90021-8 – year: 1999 ident: 10.1016/j.medengphy.2015.03.001_bib0019 – volume: vol. 3001 start-page: 1 year: 2004 ident: 10.1016/j.medengphy.2015.03.001_bib0011 article-title: Activity recognition from user annotated acceleration data – start-page: 3653 year: 2001 ident: 10.1016/j.medengphy.2015.03.001_bib0018 article-title: A directional, shift-insensitive, low-redundancy, wavelet transform |
SSID | ssj0004463 |
Score | 2.3143847 |
Snippet | •Transition between locomotion modes is critical to activities of daily living.•A spectrogram approach is used to classify locomotion and transitions using... Highlights • Transition between locomotion modes is critical to activities of daily living. • A spectrogram approach is used to classify locomotion and... Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 518 |
SubjectTerms | Accelerometry - methods Algorithms Electromyography Electromyography - methods Female Gait cycle Humans Leg - physiology Locomotion Locomotion - physiology Male Muscle, Skeletal - physiology Myoelectric control Radiology Signal Processing, Computer-Assisted Spectrogram Time Factors Time-frequency Young Adult |
Title | High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453315000673 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453315000673 https://dx.doi.org/10.1016/j.medengphy.2015.03.001 https://www.ncbi.nlm.nih.gov/pubmed/25862333 https://www.proquest.com/docview/1676340381 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQLC8tkBlJK5m7dhOHG7VqmUBtReo1JsVv9AilF3tbq_89o6dB1RQFYljIo-c2OP5PtufxwBvI_M8FCLSMpaOytrXtInSUeeZDUgvKumyyvesXJzLTxfqYg_mw1mYJKvsY38X03O07t_M-tacrZfL2RcuFPIRIbjKMTdl_JSySl7-7ucvmQdOd7LIHgvTVPqaxgsBJ7Tf8H-Sxkt12U75TQh1EwPNSHTyCB72FJIcdV_5GPZCO4F78-Hmtgk8-C3J4ATunvbb50_AJFUHCfm4H8lnLDt1FkmrsWTMHOHJerNcbci43kaQ2ZLj0w80YZ4niH-r7vYf4hL5Tmqj3MFP4fzk-Ot8QfsbFqhTqthRnCs13LnCIY-w3mklG8uC01WhfVNbYXGuGmKDqM-bunIh-qCjirpmkiO61uIZ7LerNrwAUnJvFfPRS4-URisbmK61ldIL1wThp1AOrWpcn3483YLxwww6s-9m7A6TusMwkRR3U2Cj4brLwHG7iR66zQwHTDEkGkSJ202rv5mGbT-0t4abbWGY-cP9pvB-tLzmwf9W7ZvBuww6S9q0adqwusTqSkQAmfZzp_C8c7uxGQqF81EhxMH_VP0S7qenTsT5CvZ3m8vwGonWzh7mkXQId44-fl6cXQGEUiql |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRaJwQBBe4WkkOJrYa3vjReKASktKm15opd7M-rEoCG2iJBXiwp_iDzL2PqCCqkio112NbI3H883Yn2cAnlfM85CJiuZV7qgsfEHLSjrqPLMBw4uxdInle5hPjuX7E3WyAT-6tzCRVtn6_sanJ2_dfhm12hwtZrPRBy4UxiNCcJV8btfBej98-4p52-r13ltc5BdZtrtztD2hbWsB6pTK1hSThJI7lzkEUOudVrK0LDg9zrQvCyssJmmhKhHueFmMXah80JWqdMEkR1iJFZjQ71_B4XVsm_Dy-y9eCeZXidWPs6NxemdIZYhwof6ECoykMtWUV-XnQeJ5IW-Cvt2bcKONWcmbRi23YCPUA9ja7lrFDeD6b1UNB3B12t7X3wYTaSQkpPeFJD3qbOhgJB7_kr5UhSeL5Wy-JP0BH8FQmuxM39EIsp4g4M6bdkPExWg_0puSRd2B40vR-13YrOd1uA8k594q5isvPcZQWtnAdKGtlF64Mgg_hLzTqnFtvfPYduOL6Yhtn02_HCYuh2EiUvyGwHrBRVPy42IR3S2b6V60og82CEsXi47_JhpWrS9ZGW5WmWHmD3sfwqte8syW-bdhn3XWZdBY4i1RWYf5KQ6XI-TIeIE8hHuN2fVqyBQmwEKIB_8z9FPYmhxND8zB3uH-Q7gW_zQM0kewuV6ehscY5a3tk7SrCHy87G38Ew4MZ98 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+energy+spectrogram+with+integrated+prior+knowledge+for+EMG-based+locomotion+classification&rft.jtitle=Medical+engineering+%26+physics&rft.au=Joshi%2C+Deepak&rft.au=Nakamura%2C+Bryson+H&rft.au=Hahn%2C+Michael+E&rft.date=2015-05-01&rft.eissn=1873-4030&rft.volume=37&rft.issue=5&rft.spage=518&rft.epage=524&rft_id=info:doi/10.1016%2Fj.medengphy.2015.03.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453315X00051%2Fcov150h.gif |