Antiplatelet effects of dietary nitrate in healthy volunteers: Involvement of cGMP and influence of sex

Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platel...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 65; pp. 1521 - 1532
Main Authors Velmurugan, Shanti, Kapil, Vikas, Ghosh, Suborno M, Davies, Sheridan, McKnight, Andrew, Aboud, Zainab, Khambata, Rayomand S, Webb, Andrew J, Poole, Alastair, Ahluwalia, Amrita
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2013
Elsevier Science
Subjects
Online AccessGet full text
ISSN0891-5849
1873-4596
1873-4596
DOI10.1016/j.freeradbiomed.2013.06.031

Cover

Loading…
Abstract Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250ml beetroot juice) or potassium nitrate capsules (KNO₃, 8mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.
AbstractList Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250ml beetroot juice) or potassium nitrate capsules (KNO₃, 8mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.
Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.
Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO 3 , 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential. • Dietary nitrate or nitrate salt supplementation attenuates platelet activation in healthy male but not female volunteers. • These effects of nitrate relate to its bioactivation via the enterosalivary circuit to nitrite and then NO. • Nitrite attenuates platelet activation following reduction to NO at least in part at the level of the erythrocyte. • The antiplatelet effects of inorganic nitrate or nitrite in males are due to elevation of cGMP: an effect not evident in females. • Our findings intimate moderate antiplatelet effects of inorganic nitrate that might prove useful in therapeutics.
Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.
Author Velmurugan, Shanti
Khambata, Rayomand S
Poole, Alastair
Ahluwalia, Amrita
Kapil, Vikas
Davies, Sheridan
McKnight, Andrew
Webb, Andrew J
Ghosh, Suborno M
Aboud, Zainab
AuthorAffiliation a Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
b School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
AuthorAffiliation_xml – name: b School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
– name: a Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
Author_xml – sequence: 1
  fullname: Velmurugan, Shanti
– sequence: 2
  fullname: Kapil, Vikas
– sequence: 3
  fullname: Ghosh, Suborno M
– sequence: 4
  fullname: Davies, Sheridan
– sequence: 5
  fullname: McKnight, Andrew
– sequence: 6
  fullname: Aboud, Zainab
– sequence: 7
  fullname: Khambata, Rayomand S
– sequence: 8
  fullname: Webb, Andrew J
– sequence: 9
  fullname: Poole, Alastair
– sequence: 10
  fullname: Ahluwalia, Amrita
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23806384$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6FXTAF19mTDZ_R6GwFK2FioL2OWQyN7tZZpN1klnstzfDtmJ90aeQ3N8999ycM3QSYgCEXhPcEEzE223jRoDR9J2PO-ibJSa0waLBlDxBC6IkrRlvxQlaYNWSmivWnqKzlLYYY8apeoZOl1RhQRVboPUqZL8fTIYBcgXOgc2piq7qPWQz3lXB57FUKx-qDZghb-6qQxymkIuF9K66DuV2gB2EPHfZq89fKxP6grthgmBhfk3w8zl66syQ4MX9eY5uP374fvmpvvlydX25uqkt58tcEy5wr4yVtKVWOSZ76DDtyt6dA0GpdcaAE8A61XVCip71VrVlm2VPDWsJPUcXR9391JXPscXXaAa9H_2ubKOj8fpxJfiNXseDpkoqqmaBN_cCY_wxQcp655OFYTAB4pQ0EVJxoSTh_0aZkFgwLGlBX_5p67efhyAKsDoCdowpjeC09dlkH2eXftAE6zl8vdWPwtdz-BoLXcIvGu__0ngY83_dr47dzkRt1qNP-vZbATgukOSU01_DE8co
CitedBy_id crossref_primary_10_1016_j_niox_2017_02_008
crossref_primary_10_1371_journal_pone_0249816
crossref_primary_10_1093_cvr_cvy087
crossref_primary_10_1080_10408398_2020_1746629
crossref_primary_10_1016_j_niox_2016_01_001
crossref_primary_10_1002_pmrj_13320
crossref_primary_10_1016_j_cpcardiol_2023_102206
crossref_primary_10_1136_bmjopen_2016_012728
crossref_primary_10_1371_journal_pone_0101626
crossref_primary_10_3390_biom8040134
crossref_primary_10_3390_ijms232415454
crossref_primary_10_3945_ajcn_114_091223
crossref_primary_10_1016_j_niox_2014_03_162
crossref_primary_10_1111_bcp_12918
crossref_primary_10_1124_pr_120_019240
crossref_primary_10_3109_1354750X_2014_981293
crossref_primary_10_1152_japplphysiol_01116_2018
crossref_primary_10_1016_j_redox_2016_04_004
crossref_primary_10_1111_apha_13080
crossref_primary_10_1177_1074248413518971
crossref_primary_10_1186_s12964_016_0139_9
crossref_primary_10_1152_ajplung_00079_2014
crossref_primary_10_1161_CIRCRESAHA_116_305082
crossref_primary_10_1017_S0029665116002871
crossref_primary_10_1111_bph_16276
crossref_primary_10_1016_j_pharmthera_2014_06_009
crossref_primary_10_1515_hsz_2019_0349
crossref_primary_10_1016_j_eclinm_2024_102885
crossref_primary_10_3390_nu11050954
crossref_primary_10_1152_physrev_00036_2017
crossref_primary_10_1016_j_niox_2015_04_006
crossref_primary_10_1016_j_freeradbiomed_2013_09_020
crossref_primary_10_1016_j_freeradbiomed_2016_08_009
crossref_primary_10_1038_jhh_2014_16
crossref_primary_10_1161_HYPERTENSIONAHA_116_08081
crossref_primary_10_1016_j_niox_2015_04_002
crossref_primary_10_1161_JAHA_116_003402
crossref_primary_10_1016_j_niox_2021_08_002
crossref_primary_10_1093_ajcn_nqx046
crossref_primary_10_2174_1871525719666210427130511
crossref_primary_10_1152_ajpcell_00315_2016
crossref_primary_10_1016_j_freeradbiomed_2024_02_011
crossref_primary_10_1016_j_niox_2017_04_001
crossref_primary_10_1155_2018_1729653
crossref_primary_10_1007_s11906_015_0623_4
crossref_primary_10_1183_13993003_02353_2022
crossref_primary_10_1080_19390211_2022_2137269
crossref_primary_10_1093_nutrit_nuz025
crossref_primary_10_1371_journal_pone_0193747
crossref_primary_10_1161_HYPERTENSIONAHA_114_04675
crossref_primary_10_1016_j_niox_2022_02_002
crossref_primary_10_1038_nrcardio_2017_224
crossref_primary_10_1016_j_niox_2021_11_001
crossref_primary_10_1016_j_niox_2022_11_005
crossref_primary_10_1186_s13102_021_00292_2
crossref_primary_10_1016_j_mam_2017_08_001
crossref_primary_10_1016_j_niox_2020_01_006
crossref_primary_10_1007_s40620_015_0229_6
crossref_primary_10_1016_j_phrs_2023_106931
crossref_primary_10_1136_heartjnl_2016_309748
crossref_primary_10_1093_nutrit_nuy005
crossref_primary_10_1039_D2FO02403A
crossref_primary_10_1021_bi501196k
crossref_primary_10_3390_foods13050691
crossref_primary_10_1073_pnas_1522670113
crossref_primary_10_3945_ajcn_115_116244
crossref_primary_10_3390_nu9111270
crossref_primary_10_1172_JCI89429
crossref_primary_10_1016_j_bbadis_2018_07_027
crossref_primary_10_1161_HYPERTENSIONAHA_117_09016
crossref_primary_10_1016_j_niox_2014_05_003
crossref_primary_10_1111_joim_12441
crossref_primary_10_1016_j_niox_2020_12_001
crossref_primary_10_1096_fasebj_30_1_supplement_1177_19
crossref_primary_10_3389_fneur_2022_735181
crossref_primary_10_1089_ars_2015_6254
crossref_primary_10_3945_jn_116_229807
crossref_primary_10_1021_acs_jproteome_6b00733
crossref_primary_10_1111_jth_12711
crossref_primary_10_1186_s12906_016_1255_1
crossref_primary_10_14814_phy2_15755
crossref_primary_10_1016_j_ijcard_2016_11_074
crossref_primary_10_1152_ajpheart_00081_2021
crossref_primary_10_1016_j_freeradbiomed_2024_11_010
crossref_primary_10_1111_bph_15636
crossref_primary_10_1007_s00394_023_03265_y
crossref_primary_10_1096_fj_201900067R
Cites_doi 10.1093/eurheartj/ehs254
10.1001/jama.282.13.1233
10.1016/S0140-6736(06)68148-8
10.1111/j.1538-7836.2010.03806.x
10.1074/jbc.M506518200
10.1056/NEJMoa0706482
10.1182/blood.V78.4.1033.1033
10.1073/pnas.0509397103
10.1016/S0140-6736(12)60738-7
10.1161/ATVBAHA.110.207522
10.1182/blood-2011-03-341107
10.1073/pnas.87.13.5193
10.1016/j.ahj.2003.12.035
10.7326/0003-4819-134-12-200106190-00010
10.1136/bmj.328.7440.634
10.1136/hrt.2005.079988
10.1016/S0015-6264(76)80006-5
10.1136/bmj.326.7404.1419
10.1161/CIRCRESAHA.108.175810
10.1136/hrt.2009.180372
10.1073/pnas.0408310102
10.1038/nature02168
10.1016/S0140-6736(09)60503-1
10.1248/bpb.32.161
10.1111/j.1476-5381.1992.tb12781.x
10.1016/S0140-6736(87)91481-4
10.1016/S1089-8603(02)00010-1
10.1001/jama.2012.5034
10.1016/j.cmet.2011.01.004
10.1111/j.1600-0773.1991.tb01209.x
10.1182/blood.V74.6.2001.2001
10.1160/TH09-04-0215
10.1056/NEJMc062800
10.1093/cvr/cvn068
10.1160/TH11-05-0319
10.1016/j.freeradbiomed.2012.11.013
10.1161/hh0801.089861
10.1152/ajpheart.1996.270.5.H1640
10.7326/0003-4819-150-6-200903170-00008
10.1073/pnas.90.17.8103
10.1161/01.CIR.0000020190.45892.75
10.1016/S0006-291X(87)80299-1
10.1006/bbrc.2000.3976
10.1016/S0015-6264(76)80005-3
10.1038/nm954
10.1073/pnas.93.4.1480
10.1161/HYPERTENSIONAHA.110.153536
10.1161/01.CIR.97.3.263
10.1371/journal.pone.0030380
10.1074/jbc.M512378200
10.1161/HYPERTENSIONAHA.107.103523
10.1111/j.1476-5381.2012.02012.x
10.1016/j.niox.2012.01.004
ContentType Journal Article
Copyright Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
2013 Elsevier Inc. 2013
Copyright_xml – notice: Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
– notice: 2013 Elsevier Inc. 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.freeradbiomed.2013.06.031
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 1532
ExternalDocumentID PMC3878381
23806384
10_1016_j_freeradbiomed_2013_06_031
US201500137535
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
– fundername: British Heart Foundation
  grantid: FS/11/41/28749
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABPIF
ABPTK
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FBQ
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c552t-1560d8ac7393c8f47deb03b101bfe633cfaaef6e4b8bb676d4dc893802d3a4913
ISSN 0891-5849
1873-4596
IngestDate Thu Aug 21 14:11:32 EDT 2025
Fri Jul 11 09:16:21 EDT 2025
Thu Jul 10 17:55:57 EDT 2025
Mon Jul 21 06:05:08 EDT 2025
Tue Jul 01 03:37:57 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Wed Dec 27 19:15:06 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PBS
Inorganic nitrate
blood pressure
Sper-NO
light transmission aggregometry
IBMX
cGMP
Nitrite
phosphate-buffered saline
platelet-rich plasma
BP
3-isobutyl-1-methylxanthine
PRP
PPP
Platelet
LTA
spermine-NONOate
platelet-poor plasma
Language English
License Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Open Access under CC BY-NC-ND 3.0 license
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c552t-1560d8ac7393c8f47deb03b101bfe633cfaaef6e4b8bb676d4dc893802d3a4913
Notes http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.031
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3878381
PMID 23806384
PQID 1467064073
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3878381
proquest_miscellaneous_1678568715
proquest_miscellaneous_1467064073
pubmed_primary_23806384
crossref_citationtrail_10_1016_j_freeradbiomed_2013_06_031
crossref_primary_10_1016_j_freeradbiomed_2013_06_031
fao_agris_US201500137535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2013
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References Richardson (10.1016/j.freeradbiomed.2013.06.031_bib38) 2002; 7
Dangel (10.1016/j.freeradbiomed.2013.06.031_bib12) 2010; 8
Webb (10.1016/j.freeradbiomed.2013.06.031_bib51) 2008; 103
Radomski (10.1016/j.freeradbiomed.2013.06.031_bib35) 1990; 87
Loscalzo (10.1016/j.freeradbiomed.2013.06.031_bib26) 2001; 88
De Berardis (10.1016/j.freeradbiomed.2013.06.031_bib13) 2012; 307
(10.1016/j.freeradbiomed.2013.06.031_bib34) 2005; 91
Cosby (10.1016/j.freeradbiomed.2013.06.031_bib11) 2003; 9
Williams (10.1016/j.freeradbiomed.2013.06.031_bib53) 2004; 328
Srihirun (10.1016/j.freeradbiomed.2013.06.031_bib44) 2012; 7
Buys (10.1016/j.freeradbiomed.2013.06.031_bib9) 2008; 79
Joshipura (10.1016/j.freeradbiomed.2013.06.031_bib16) 1999; 282
Marjanovic (10.1016/j.freeradbiomed.2013.06.031_bib28) 2005; 280
Pawloski (10.1016/j.freeradbiomed.2013.06.031_bib32) 1998; 97
Larsen (10.1016/j.freeradbiomed.2013.06.031_bib23) 2011; 13
Broekman (10.1016/j.freeradbiomed.2013.06.031_bib8) 1991; 78
Pearson (10.1016/j.freeradbiomed.2013.06.031_bib33) 2002; 106
Radomski (10.1016/j.freeradbiomed.2013.06.031_bib37) 1987; 148
Bevan (10.1016/j.freeradbiomed.2013.06.031_bib7) 1992; 107
Wald (10.1016/j.freeradbiomed.2013.06.031_bib48) 2003; 326
Ignarro (10.1016/j.freeradbiomed.2013.06.031_bib14) 1993; 90
Armstrong (10.1016/j.freeradbiomed.2013.06.031_bib3) 2009; 102
Keeley (10.1016/j.freeradbiomed.2013.06.031_bib21) 2006; 367
Wiviott (10.1016/j.freeradbiomed.2013.06.031_bib54) 2007; 357
Webb (10.1016/j.freeradbiomed.2013.06.031_bib50) 2010
Kapil (10.1016/j.freeradbiomed.2013.06.031_bib19) 2010; 56
Laustiola (10.1016/j.freeradbiomed.2013.06.031_bib24) 1991; 68
Stojanovic (10.1016/j.freeradbiomed.2013.06.031_bib45) 2006; 281
Radomski (10.1016/j.freeradbiomed.2013.06.031_bib36) 1987; 330
Joshipura (10.1016/j.freeradbiomed.2013.06.031_bib17) 2001; 134
Sogo (10.1016/j.freeradbiomed.2013.06.031_bib42) 2000; 279
(10.1016/j.freeradbiomed.2013.06.031_bib1) 2003; 426
Bahra (10.1016/j.freeradbiomed.2013.06.031_bib5) 2012; 26
Spiegelhalder (10.1016/j.freeradbiomed.2013.06.031_bib43) 1976; 14
Morrell (10.1016/j.freeradbiomed.2013.06.031_bib31) 2005; 102
Kapil (10.1016/j.freeradbiomed.2013.06.031_bib18) 2013; 55
Li (10.1016/j.freeradbiomed.2013.06.031_bib25) 2010; 30
Zhang (10.1016/j.freeradbiomed.2013.06.031_bib55) 2011; 118
Tannenbaum (10.1016/j.freeradbiomed.2013.06.031_bib46) 1976; 14
10.1016/j.freeradbiomed.2013.06.031_bib47
Michelson (10.1016/j.freeradbiomed.2013.06.031_bib29) 1996; 270
Moro (10.1016/j.freeradbiomed.2013.06.031_bib30) 1996; 93
Webb (10.1016/j.freeradbiomed.2013.06.031_bib52) 2008; 51
Kapil (10.1016/j.freeradbiomed.2013.06.031_bib20) 2010; 96
Saitoh (10.1016/j.freeradbiomed.2013.06.031_bib40) 1989; 74
Rukoyatkina (10.1016/j.freeradbiomed.2013.06.031_bib39) 2011; 106
(10.1016/j.freeradbiomed.2013.06.031_bib2) 2009; 150
Jones (10.1016/j.freeradbiomed.2013.06.031_bib15) 2012
Sidhu (10.1016/j.freeradbiomed.2013.06.031_bib41) 2004; 147
Wardlaw (10.1016/j.freeradbiomed.2013.06.031_bib49) 1923; 379
Baigent (10.1016/j.freeradbiomed.2013.06.031_bib6) 2009; 373
Larsen (10.1016/j.freeradbiomed.2013.06.031_bib22) 2006; 355
Arora (10.1016/j.freeradbiomed.2013.06.031_bib4) 2009; 32
Chan (10.1016/j.freeradbiomed.2013.06.031_bib10) 2012; 167
Marcondes (10.1016/j.freeradbiomed.2013.06.031_bib27) 2006; 103
Free Radic Biol Med. 2015 Jul;84:385
24100230 - Free Radic Biol Med. 2013 Dec;65:1518-1520. doi: 10.1016/j.freeradbiomed.2013.09.020.
28830618 - Free Radic Biol Med. 2015 Jul;84:385. doi: 10.1016/j.freeradbiomed.2015.03.015.
References_xml – ident: 10.1016/j.freeradbiomed.2013.06.031_bib47
  doi: 10.1093/eurheartj/ehs254
– volume: 282
  start-page: 1233
  year: 1999
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib16
  article-title: Fruit and vegetable intake in relation to risk of ischemic stroke
  publication-title: JAMA
  doi: 10.1001/jama.282.13.1233
– volume: 367
  start-page: 579
  year: 2006
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib21
  article-title: Comparison of primary and facilitated percutaneous coronary interventions for ST-elevation myocardial infarction: quantitative review of randomised trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68148-8
– volume: 8
  start-page: 1343
  year: 2010
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib12
  article-title: Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/j.1538-7836.2010.03806.x
– volume: 280
  start-page: 37430
  year: 2005
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib28
  article-title: Stimulatory roles of nitric-oxide synthase 3 and guanylyl cyclase in platelet activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M506518200
– volume: 357
  start-page: 2001
  year: 2007
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib54
  article-title: Prasugrel versus clopidogrel in patients with acute coronary syndromes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0706482
– start-page: 341
  year: 2012
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib15
  article-title: Endogenous inhibitory mechanisms and the regulation of platelet function
– volume: 78
  start-page: 1033
  year: 1991
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib8
  article-title: Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothelial cells in suspension: blockade of aggregation and secretion by an aspirin-insensitive mechanism
  publication-title: Blood
  doi: 10.1182/blood.V78.4.1033.1033
– volume: 103
  start-page: 3434
  year: 2006
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib27
  article-title: Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: A role for α-actinin nitration
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0509397103
– volume: 379
  start-page: 2364
  year: 1923
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib49
  article-title: Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60738-7
– volume: 30
  start-page: 2341
  year: 2010
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib25
  article-title: Signaling during platelet adhesion and activation
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.110.207522
– volume: 118
  start-page: 3670
  year: 2011
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib55
  article-title: Biphasic roles for soluble guanylyl cyclase (sGC) in platelet activation
  publication-title: Blood
  doi: 10.1182/blood-2011-03-341107
– volume: 87
  start-page: 5193
  year: 1990
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib35
  article-title: An L-arginine/nitric oxide pathway present in human platelets regulates aggregation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.13.5193
– volume: 147
  start-page: 1032
  year: 2004
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib41
  article-title: Peroxisome proliferator-activated receptor-+¦ agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease
  publication-title: Am. Heart J
  doi: 10.1016/j.ahj.2003.12.035
– volume: 134
  start-page: 1106
  year: 2001
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib17
  article-title: The effect of fruit and vegetable intake on risk for coronary heart disease
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-134-12-200106190-00010
– volume: 328
  start-page: 634
  year: 2004
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib53
  article-title: British Hypertension Society guidelines for hypertension management 2004 (BHS-IV): summary
  publication-title: BMJ
  doi: 10.1136/bmj.328.7440.634
– volume: 91
  start-page: v1
  year: 2005
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib34
  article-title: Joint British Societies' guidelines on prevention of cardiovascular disease in clinical practice
  publication-title: Heart
  doi: 10.1136/hrt.2005.079988
– volume: 14
  start-page: 549
  year: 1976
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib46
  article-title: The effect of nitrate intake on nitrite formation in human saliva
  publication-title: Food Cosmet. Toxicol
  doi: 10.1016/S0015-6264(76)80006-5
– volume: 326
  year: 2003
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib48
  article-title: A strategy to reduce cardiovascular disease by more than 80%
  publication-title: BMJ
  doi: 10.1136/bmj.326.7404.1419
– volume: 103
  start-page: 957
  year: 2008
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib51
  article-title: Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.175810
– volume: 96
  start-page: 1703
  year: 2010
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib20
  article-title: Inorganic nitrate and the cardiovascular system
  publication-title: Heart
  doi: 10.1136/hrt.2009.180372
– volume: 102
  start-page: 3782
  year: 2005
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib31
  article-title: Regulation of platelet granule exocytosis by S-nitrosylation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0408310102
– volume: 426
  start-page: 789
  year: 2003
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib1
  publication-title: Nature
  doi: 10.1038/nature02168
– volume: 373
  start-page: 1849
  year: 2009
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib6
  article-title: Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)60503-1
– volume: 32
  start-page: 161
  year: 2009
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib4
  article-title: The role of calreticulin transacetylase in the activation of human platelet nitrite reductase by polyphenolic acetates
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.32.161
– start-page: 555
  year: 2010
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib50
  article-title: Mechanisms of nitrite reduction in ischemia in the cardiovascular system
– volume: 107
  start-page: 544
  year: 1992
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib7
  article-title: Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1992.tb12781.x
– volume: 330
  start-page: 1057
  year: 1987
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib36
  article-title: Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium
  publication-title: Lancet
  doi: 10.1016/S0140-6736(87)91481-4
– volume: 7
  start-page: 24
  year: 2002
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib38
  article-title: The ingestion of inorganic nitrate increases gastric S-nitrosothiol levels and inhibits platelet function in humans
  publication-title: Nitric Oxide
  doi: 10.1016/S1089-8603(02)00010-1
– volume: 307
  start-page: 2286
  year: 2012
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib13
  article-title: ASsociation of aspirin use with major bleeding in patients with and without diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2012.5034
– volume: 13
  start-page: 149
  year: 2011
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib23
  article-title: Dietary inorganic nitrate improves mitochondrial efficiency in humans
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.01.004
– volume: 68
  start-page: 60
  year: 1991
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib24
  article-title: Exogenous GTP enhances the effects of sodium nitrite on cyclic GMP accumulation, vascular smooth muscle relaxation and platelet aggregation
  publication-title: Pharmacol. Toxicol.
  doi: 10.1111/j.1600-0773.1991.tb01209.x
– volume: 74
  start-page: 2001
  year: 1989
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib40
  article-title: Activation of protein kinase C in platelets by epinephrine and A23187: correlation with fibrinogen binding
  publication-title: Blood
  doi: 10.1182/blood.V74.6.2001.2001
– volume: 102
  start-page: 772
  year: 2009
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib3
  article-title: Utility of 96-well plate aggregometry and measurement of thrombi adhesion to determine aspirin and clopidogrel effectiveness
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH09-04-0215
– volume: 355
  start-page: 2792
  year: 2006
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib22
  article-title: Effects of dietary nitrate on blood pressure in healthy volunteers
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc062800
– volume: 79
  start-page: 179
  year: 2008
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib9
  article-title: Gender-specific hypertension and responsiveness to nitric oxide in sGCα1 knockout mice
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvn068
– volume: 106
  start-page: 922
  year: 2011
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib39
  article-title: Differentiation of cGMP-dependent and -independent nitric oxide effects on platelet apoptosis and reactive oxygen species production using platelets lacking soluble guanylyl cyclase
  publication-title: Thromb. Haemost
  doi: 10.1160/TH11-05-0319
– volume: 55
  start-page: 93
  year: 2013
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib18
  article-title: Physiological role for nitrate-reducing oral bacteria in blood pressure control
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.11.013
– volume: 88
  start-page: 756
  year: 2001
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib26
  article-title: Nitric oxide insufficiency, platelet activation, and arterial thrombosis
  publication-title: Circ. Res.
  doi: 10.1161/hh0801.089861
– volume: 270
  start-page: H1640
  year: 1996
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib29
  article-title: Effects of nitric oxide/EDRF on platelet surface glycoproteins
  publication-title: Am. J. Physiol. Heart Circ. Physiol
  doi: 10.1152/ajpheart.1996.270.5.H1640
– volume: 150
  start-page: 396
  year: 2009
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib2
  article-title: preventive services task force recommendation statement
  publication-title: Ann. Intern. Med
  doi: 10.7326/0003-4819-150-6-200903170-00008
– volume: 90
  start-page: 8103
  year: 1993
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib14
  article-title: Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.17.8103
– volume: 106
  start-page: 388
  year: 2002
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib33
  article-title: AHA Guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000020190.45892.75
– volume: 148
  start-page: 1482
  year: 1987
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib37
  article-title: The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(87)80299-1
– volume: 279
  start-page: 412
  year: 2000
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib42
  article-title: Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cGMP-independent mechanisms
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3976
– volume: 14
  start-page: 545
  year: 1976
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib43
  article-title: Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds
  publication-title: Food Cosmet. Toxicol
  doi: 10.1016/S0015-6264(76)80005-3
– volume: 9
  start-page: 1498
  year: 2003
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib11
  article-title: Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation
  publication-title: Nat. Med
  doi: 10.1038/nm954
– volume: 93
  start-page: 1480
  year: 1996
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib30
  article-title: cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.4.1480
– volume: 56
  start-page: 274
  year: 2010
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib19
  article-title: Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.110.153536
– volume: 97
  start-page: 263
  year: 1998
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib32
  article-title: Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation
  publication-title: Circulation
  doi: 10.1161/01.CIR.97.3.263
– volume: 7
  start-page: e30380
  year: 2012
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib44
  article-title: Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030380
– volume: 281
  start-page: 16333
  year: 2006
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib45
  article-title: A Phosphoinositide 3-kinase-AKT-nitric oxide-cGMP signaling pathway in stimulating platelet secretion and aggregation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M512378200
– volume: 51
  start-page: 784
  year: 2008
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib52
  article-title: Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.107.103523
– volume: 167
  start-page: 805
  year: 2012
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib10
  article-title: Distinct endothelial pathways underlie sexual dimorphism in vascular auto-regulation
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2012.02012.x
– volume: 26
  start-page: 197
  year: 2012
  ident: 10.1016/j.freeradbiomed.2013.06.031_bib5
  article-title: Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2012.01.004
– reference: - Free Radic Biol Med. 2015 Jul;84:385
– reference: 24100230 - Free Radic Biol Med. 2013 Dec;65:1518-1520. doi: 10.1016/j.freeradbiomed.2013.09.020.
– reference: 28830618 - Free Radic Biol Med. 2015 Jul;84:385. doi: 10.1016/j.freeradbiomed.2015.03.015.
SSID ssj0004538
Score 2.433089
Snippet Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1521
SubjectTerms acute effects
adenosine diphosphate
Adolescent
Adult
beets
Beta vulgaris
Blood Platelets - metabolism
Cardiovascular Diseases - drug therapy
clinical trials
collagen
Collagen - pharmacology
Cross-Over Studies
cyclic GMP
Cyclic GMP - biosynthesis
Diet
Dietary Supplements
epinephrine
Epinephrine - pharmacology
erythrocytes
Erythrocytes - metabolism
Female
females
guanylate cyclase
Guanylate Cyclase - metabolism
Humans
ingestion
juices
Male
males
Middle Aged
Nitrates - administration & dosage
Nitrates - pharmacology
nitric oxide
Nitric Oxide - metabolism
nitrites
Original Contribution
P-Selectin - biosynthesis
platelet aggregation
Platelet Aggregation - drug effects
Platelet Aggregation Inhibitors - administration & dosage
Platelet Aggregation Inhibitors - pharmacology
Potassium Compounds - administration & dosage
Potassium Compounds - pharmacology
potassium nitrate
Sex Factors
sexual dimorphism
Vegetables
volunteers
Young Adult
Title Antiplatelet effects of dietary nitrate in healthy volunteers: Involvement of cGMP and influence of sex
URI https://www.ncbi.nlm.nih.gov/pubmed/23806384
https://www.proquest.com/docview/1467064073
https://www.proquest.com/docview/1678568715
https://pubmed.ncbi.nlm.nih.gov/PMC3878381
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6IRAvE2zAOi4yAvFSpWriXNy9VYhtQhpCYp32FtmO03Z0ydSmEuWBn8Jv5ZzYTZOqQ4OXqHJzk8-X4-Pjz98h5L1gQrmyrx0teerAeM0drgRzIggdAg3jTchxN_L5l_Bs6H--Cq5ard811tKikF31c-u-kv-xKrSBXXGX7D9YtropNMBvsC8cwcJwvJeNBxmSASFahM6vMzOSiS6QDQefKypBYE7D7HdcdtAbQV9ipQc2QJWNfFoqhpeEAHV6_tXKMdnSJdg61z_qIezJTOvOTJj1nZWGEwJoc5n-Uk9vFrPFyKZYx2DDSeXfxa1JPl9OvosqrD8d5_Ox4QoBNLO8U0ukw_g9N_eBnk0spm26wmUb1I9qH02D5tnjfdeBUMg4T21cMY-Y4wem3u3KV4dBzdli6FEbuMF3e1sHBZOfuO6m0D9IUCh1DZDVx0rpVjsKNVW3h988zAWhIGPAgh3ywINpCFbI6P5ya2r0ZaX06u0fkXdr_uCdT2tEQDupyLdNbjY5urWg5-IJ2bOzFTow0HtKWjrbJweDTBT5zZJ-oCV_uETAPnloypouD8iojktqcUnzlFpcUotLOsmoxSVd4_KY1lCJVyEqKaCSVqjEVkDlMzI8-XTx8cyxBT0cFQRe4eCu_YQLhSqMiqd-lGjZYxI6TKY6ZEylQug01L7kUoZRmPiJgnia97yECb_vsudkN8szfUio58NprtQ80cpXmB5OpJQsDZIyCmZtcrzq5FhZtXssujKNV7TG67hhoRgtFCPJk7lt4lcX3xrRl_tddgjWjMUIhue4CaA2ebsycQz-GxflRKbzxRyn3lG5ms7-cg5ElEHIIxfu88LAonov8K446_DbJGoApjoB9eOb_2STcakjz3jEIWA_uvu1X5LH62_4FdktZgv9GoLwQr4pv4Q_Kgnflg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antiplatelet+effects+of+dietary+nitrate+in+healthy+volunteers%3A+Involvement+of+cGMP+and+influence+of+sex&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Velmurugan%2C+Shanti&rft.au=Kapil%2C+Vikas&rft.au=Ghosh%2C+Suborno+M&rft.au=Davies%2C+Sheridan&rft.date=2013-12-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=65&rft.spage=1521&rft.epage=1532&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2013.06.031&rft.externalDocID=US201500137535
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon