Complex Inhibitory Effects of Nitric Oxide on Autophagy
Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular...
Saved in:
Published in | Molecular cell Vol. 43; no. 1; pp. 19 - 32 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.07.2011
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.
[Display omitted]
► NO inhibits autophagy by independently inhibiting JNK1 and IKKβ ► NO inhibits autophagic flux via mTOR and mTOR-independent routes ► NOS overexpression impairs autophagosome synthesis via JNK1–Bcl-2 pathway ► NOS inhibition induces autophagy and protects against neurodegeneration |
---|---|
AbstractList | Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.
[Display omitted]
► NO inhibits autophagy by independently inhibiting JNK1 and IKKβ ► NO inhibits autophagic flux via mTOR and mTOR-independent routes ► NOS overexpression impairs autophagosome synthesis via JNK1–Bcl-2 pathway ► NOS inhibition induces autophagy and protects against neurodegeneration Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S -nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition. Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2–Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1–Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition. |
Author | Sarkar, Sovan Luo, Shouqing O'Kane, Cahir J. Williams, Andrea Fleming, Angeleen Rose, Claudia Imarisio, Sara Korolchuk, Viktor I. Rubinsztein, David C. Garcia-Arencibia, Moises Underwood, Benjamin R. Kroemer, Guido Renna, Maurizio |
AuthorAffiliation | 2 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK 3 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK 7 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France 8 Université Paris Descartes, Paris 5, Paris, France 1 Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK 5 Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France 6 Centre de Recherche des Cordeliers, 75006 Paris, France 4 INSERM, U848, Villejuif F-94805, France |
AuthorAffiliation_xml | – name: 7 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France – name: 5 Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France – name: 2 Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK – name: 3 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK – name: 6 Centre de Recherche des Cordeliers, 75006 Paris, France – name: 1 Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – name: 8 Université Paris Descartes, Paris 5, Paris, France – name: 4 INSERM, U848, Villejuif F-94805, France |
Author_xml | – sequence: 1 givenname: Sovan surname: Sarkar fullname: Sarkar, Sovan organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 2 givenname: Viktor I. surname: Korolchuk fullname: Korolchuk, Viktor I. organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 3 givenname: Maurizio surname: Renna fullname: Renna, Maurizio organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 4 givenname: Sara surname: Imarisio fullname: Imarisio, Sara organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 5 givenname: Angeleen surname: Fleming fullname: Fleming, Angeleen organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 6 givenname: Andrea surname: Williams fullname: Williams, Andrea organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 7 givenname: Moises surname: Garcia-Arencibia fullname: Garcia-Arencibia, Moises organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 8 givenname: Claudia surname: Rose fullname: Rose, Claudia organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 9 givenname: Shouqing surname: Luo fullname: Luo, Shouqing organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 10 givenname: Benjamin R. surname: Underwood fullname: Underwood, Benjamin R. organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK – sequence: 11 givenname: Guido surname: Kroemer fullname: Kroemer, Guido organization: INSERM, U848, Villejuif F-94805, France – sequence: 12 givenname: Cahir J. surname: O'Kane fullname: O'Kane, Cahir J. organization: Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK – sequence: 13 givenname: David C. surname: Rubinsztein fullname: Rubinsztein, David C. email: dcr1000@cam.ac.uk organization: Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21726807$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v2zAMhoWhw_qx_YNh822neKSjD-syoAjarkCxHtqeBVmmEgW2lUlO0fz7OUhWdJedSIAvX5IPz9nJEAdi7DNCiYDy-7rsY-eoKytALIGXUOl37AxBqxlHyU-OeaWkOGXnOa8BkItaf2CnFapK1qDOmFrEftPRS3E7rEITxph2xZX35MZcRF_8CmMKrrh_CS0VcSgut2PcrOxy95G997bL9OkYL9jT9dXj4ufs7v7mdnF5N3NCVOMMufdagkaSSjTotKNGga1d3fgKpBUO21YJtABcU4utlJYqrvxc8MYqPb9gPw6-m23TU-toGJPtzCaF3qadiTaYfytDWJllfDZz5FpKnAy-HQ1S_L2lPJo-5AlbZweK22xqJYAD1vtR_KB0KeacyL9OQTB75GZtDsjNHrkBbibkU9uXtxu-Nv1lPAm-HgTeRmOXKWTz9DA5SJgeUqF8cyRNJJ8DJZNdoMFRG9L0CdPG8P8d_gAPJ5-N |
CitedBy_id | crossref_primary_10_1016_j_exger_2016_09_016 crossref_primary_10_1016_j_lfs_2022_121153 crossref_primary_10_1515_jbcpp_2021_0285 crossref_primary_10_1016_j_bbrc_2014_01_117 crossref_primary_10_1016_j_mcn_2017_04_006 crossref_primary_10_1155_2019_4745067 crossref_primary_10_3390_toxins7082918 crossref_primary_10_1186_s13287_018_1102_z crossref_primary_10_1161_CIRCRESAHA_116_303804 crossref_primary_10_1016_j_actbio_2022_08_011 crossref_primary_10_1111_cas_13945 crossref_primary_10_1038_s41598_019_45470_y crossref_primary_10_3389_fcell_2019_00038 crossref_primary_10_1016_j_redox_2017_07_011 crossref_primary_10_1016_j_phrs_2020_105069 crossref_primary_10_1093_glycob_cwab126 crossref_primary_10_1038_cddis_2013_50 crossref_primary_10_1042_BJ20111451 crossref_primary_10_1155_2012_361872 crossref_primary_10_3389_fphys_2021_638983 crossref_primary_10_1039_D3TB02920D crossref_primary_10_3390_cells8070693 crossref_primary_10_1016_j_jmb_2020_01_024 crossref_primary_10_1038_srep34326 crossref_primary_10_1007_s00294_016_0628_9 crossref_primary_10_1016_j_cellsig_2013_07_026 crossref_primary_10_1186_s12974_024_03038_2 crossref_primary_10_1186_1471_2180_13_218 crossref_primary_10_3389_fmicb_2020_614313 crossref_primary_10_3389_fendo_2024_1360499 crossref_primary_10_1016_j_biopha_2018_05_093 crossref_primary_10_3389_fcvm_2022_831847 crossref_primary_10_1186_bcr3366 crossref_primary_10_1016_j_bbcan_2023_189012 crossref_primary_10_1155_2015_183469 crossref_primary_10_1016_j_arr_2021_101336 crossref_primary_10_1016_j_scib_2017_06_010 crossref_primary_10_1016_j_jmb_2020_01_017 crossref_primary_10_1016_j_redox_2015_07_003 crossref_primary_10_1002_advs_201801122 crossref_primary_10_1016_j_jconrel_2022_03_001 crossref_primary_10_1016_j_niox_2014_07_002 crossref_primary_10_1093_micmic_ozac037 crossref_primary_10_1161_ATVBAHA_121_315957 crossref_primary_10_3109_10715762_2012_700515 crossref_primary_10_1093_femsle_fnw161 crossref_primary_10_3389_fcell_2015_00006 crossref_primary_10_1016_j_lfs_2020_117551 crossref_primary_10_1016_j_it_2015_01_003 crossref_primary_10_1007_s12272_017_0998_7 crossref_primary_10_1093_hmg_dds040 crossref_primary_10_1523_JNEUROSCI_1508_21_2022 crossref_primary_10_1016_j_biocel_2015_07_010 crossref_primary_10_1016_j_isci_2022_103771 crossref_primary_10_1016_j_bbadis_2018_10_013 crossref_primary_10_4161_auto_19496 crossref_primary_10_3389_fnmol_2022_1001382 crossref_primary_10_1038_s41598_018_30991_9 crossref_primary_10_3390_ijms222111847 crossref_primary_10_1002_asia_201501333 crossref_primary_10_1016_j_freeradbiomed_2021_08_237 crossref_primary_10_1016_j_bbadis_2014_06_030 crossref_primary_10_1016_j_jchemneu_2021_101999 crossref_primary_10_1016_j_neuron_2013_05_005 crossref_primary_10_1021_acs_analchem_3c05981 crossref_primary_10_1039_d0pp00280a crossref_primary_10_1080_15548627_2019_1569298 crossref_primary_10_1021_acs_analchem_9b02415 crossref_primary_10_1177_1947603520976768 crossref_primary_10_1016_j_molcel_2013_12_006 crossref_primary_10_4103_1673_5374_276322 crossref_primary_10_4161_auto_26452 crossref_primary_10_1016_j_jtherbio_2021_102900 crossref_primary_10_1080_01616412_2019_1709744 crossref_primary_10_1021_acschemneuro_1c00198 crossref_primary_10_1016_j_bioactmat_2024_05_032 crossref_primary_10_1002_ange_202007673 crossref_primary_10_1021_acs_jproteome_7b00724 crossref_primary_10_1073_pnas_1722452115 crossref_primary_10_3390_nano12060922 crossref_primary_10_1080_15548627_2016_1179410 crossref_primary_10_1016_j_bbadis_2014_06_027 crossref_primary_10_1111_php_13777 crossref_primary_10_1073_pnas_1307736110 crossref_primary_10_1155_2012_829207 crossref_primary_10_3390_molecules26123546 crossref_primary_10_1016_j_aca_2024_342303 crossref_primary_10_1080_15548627_2021_1975914 crossref_primary_10_1089_ars_2016_6925 crossref_primary_10_1007_s12035_018_1141_6 crossref_primary_10_1089_ars_2019_7872 crossref_primary_10_1371_journal_pone_0116165 crossref_primary_10_1155_2021_6662225 crossref_primary_10_1021_ac403226h crossref_primary_10_1038_s41418_022_01004_0 crossref_primary_10_3390_ani10020248 crossref_primary_10_1021_acschemneuro_1c00523 crossref_primary_10_1084_jem_20150956 crossref_primary_10_1016_j_neurobiolaging_2013_11_019 crossref_primary_10_1016_j_cellsig_2019_109411 crossref_primary_10_1039_C9NR03060C crossref_primary_10_1038_s41467_021_22305_x crossref_primary_10_2119_molmed_2011_00282 crossref_primary_10_1016_j_pneurobio_2013_06_002 crossref_primary_10_1089_sur_2015_262 crossref_primary_10_1016_j_neuroscience_2014_09_043 crossref_primary_10_1039_C8TB03240H crossref_primary_10_1093_hmg_ddt300 crossref_primary_10_1002_art_37730 crossref_primary_10_1016_j_mad_2013_04_004 crossref_primary_10_18632_oncotarget_21317 crossref_primary_10_3390_biomedicines10102570 crossref_primary_10_1016_j_molcel_2013_10_024 crossref_primary_10_1007_s12012_023_09823_4 crossref_primary_10_1016_j_bbrep_2021_101158 crossref_primary_10_1016_j_aca_2019_03_048 crossref_primary_10_1016_j_bcp_2019_113740 crossref_primary_10_1038_nbt_2614 crossref_primary_10_1002_smll_202107732 crossref_primary_10_1007_s12035_024_04257_7 crossref_primary_10_1161_ATVBAHA_117_309560 crossref_primary_10_1242_jcs_253781 crossref_primary_10_3389_fimmu_2024_1322842 crossref_primary_10_3390_cimb44050144 crossref_primary_10_1039_C5RA05127D crossref_primary_10_3389_fncel_2023_1307636 crossref_primary_10_1089_ars_2013_5359 crossref_primary_10_1016_j_febslet_2013_06_007 crossref_primary_10_1152_ajplung_00072_2013 crossref_primary_10_1016_j_bbadis_2017_03_016 crossref_primary_10_1038_s41598_020_77347_w crossref_primary_10_3390_v9070176 crossref_primary_10_1371_journal_pone_0194078 crossref_primary_10_4161_15548627_2014_984270 crossref_primary_10_1007_s12264_015_1545_5 crossref_primary_10_1002_advs_202308346 crossref_primary_10_1016_j_ejmech_2020_113067 crossref_primary_10_1016_j_yhbeh_2015_11_010 crossref_primary_10_18632_oncotarget_5036 crossref_primary_10_1016_j_fct_2014_06_007 crossref_primary_10_15252_embr_201439076 crossref_primary_10_1134_S1990747823050069 crossref_primary_10_1096_fj_13_235051 crossref_primary_10_1016_j_lfs_2015_10_014 crossref_primary_10_4155_fmc_12_112 crossref_primary_10_1134_S0006297913040044 crossref_primary_10_1021_acs_analchem_8b00612 crossref_primary_10_1038_ncomms13821 crossref_primary_10_1002_jcb_25303 crossref_primary_10_1007_s12035_012_8318_1 crossref_primary_10_1016_j_cellsig_2017_04_012 crossref_primary_10_1016_j_jinorgbio_2021_111383 crossref_primary_10_3390_e14122492 crossref_primary_10_1016_j_brainresbull_2017_05_008 crossref_primary_10_1016_j_npep_2019_03_005 crossref_primary_10_1039_D4CC02133A crossref_primary_10_3390_life13010098 crossref_primary_10_3390_ijms14010191 crossref_primary_10_1016_j_snb_2023_135167 crossref_primary_10_1021_acsami_3c04404 crossref_primary_10_1007_s11010_020_03832_5 crossref_primary_10_1089_ars_2013_5696 crossref_primary_10_1152_ajpcell_00341_2018 crossref_primary_10_1186_s13041_014_0056_z crossref_primary_10_1080_10715762_2018_1449210 crossref_primary_10_2337_db17_0223 crossref_primary_10_1007_s12035_013_8477_8 crossref_primary_10_3390_cells11081330 crossref_primary_10_1089_ten_tec_2022_0123 crossref_primary_10_1016_j_freeradbiomed_2021_07_002 crossref_primary_10_1038_nrd3802 crossref_primary_10_1111_cas_12577 crossref_primary_10_1080_03009734_2020_1785063 crossref_primary_10_1089_can_2020_0109 crossref_primary_10_1186_s10020_022_00511_7 crossref_primary_10_1002_wrna_1325 crossref_primary_10_1016_j_nbd_2015_04_020 crossref_primary_10_4161_15548627_2014_981789 crossref_primary_10_37349_emed_2020_00026 crossref_primary_10_1002_iub_1483 crossref_primary_10_3390_antiox10030387 crossref_primary_10_1021_acsnano_6b07808 crossref_primary_10_18632_oncotarget_19277 crossref_primary_10_1002_anie_202007673 crossref_primary_10_1155_2012_849541 crossref_primary_10_1016_j_arr_2012_11_004 crossref_primary_10_1002_anie_201510721 crossref_primary_10_1016_j_bcp_2020_113792 crossref_primary_10_1016_j_prostaglandins_2024_106819 crossref_primary_10_1016_j_bbadis_2018_11_007 crossref_primary_10_1038_cddiscovery_2017_11 crossref_primary_10_1155_2016_4856431 crossref_primary_10_1016_j_celrep_2017_10_068 crossref_primary_10_1089_ars_2019_7788 crossref_primary_10_31857_S0233475523050067 crossref_primary_10_1002_anie_202103015 crossref_primary_10_1038_s41467_018_05388_x crossref_primary_10_1007_s12031_015_0619_1 crossref_primary_10_3390_ijms14023834 crossref_primary_10_1039_C9FO02283J crossref_primary_10_1111_1462_2920_15109 crossref_primary_10_1042_BCJ20200064 crossref_primary_10_1016_j_fct_2024_114571 crossref_primary_10_3390_ijms20123010 crossref_primary_10_1155_2014_360153 crossref_primary_10_1016_j_nbd_2015_03_002 crossref_primary_10_1042_BST20130134 crossref_primary_10_1002_tox_22457 crossref_primary_10_1007_s00044_017_1868_z crossref_primary_10_1002_1873_3468_14352 crossref_primary_10_1016_j_jmb_2019_12_035 crossref_primary_10_3390_life13102024 crossref_primary_10_1002_chem_201505054 crossref_primary_10_1038_s41419_020_2399_y crossref_primary_10_1038_cdd_2014_150 crossref_primary_10_1089_ars_2015_6306 crossref_primary_10_1016_j_toxlet_2017_11_018 crossref_primary_10_1111_fcp_12196 crossref_primary_10_1016_j_freeradbiomed_2013_09_006 crossref_primary_10_1038_s41419_019_1542_0 crossref_primary_10_3389_fphar_2022_945206 crossref_primary_10_1002_0471143030_cb1516s54 crossref_primary_10_1016_j_mito_2020_12_013 crossref_primary_10_1016_j_ijcard_2016_02_128 crossref_primary_10_1111_brv_13042 crossref_primary_10_3390_cells11010168 crossref_primary_10_1146_annurev_genom_091212_153415 crossref_primary_10_1039_C5RA01030F crossref_primary_10_1021_ja308967u crossref_primary_10_1007_s12035_014_8738_1 crossref_primary_10_1038_nri3532 crossref_primary_10_3389_fpls_2020_00772 crossref_primary_10_3390_ijms18030614 crossref_primary_10_1016_j_redox_2020_101567 crossref_primary_10_1021_acsami_2c16693 crossref_primary_10_1124_pharmrev_121_000500 crossref_primary_10_4161_auto_25082 crossref_primary_10_1016_j_dci_2016_01_010 crossref_primary_10_1016_j_scib_2022_01_014 crossref_primary_10_1242_jcs_095216 crossref_primary_10_1038_srep23340 crossref_primary_10_1089_ars_2019_7916 crossref_primary_10_1016_j_cellsig_2018_10_019 crossref_primary_10_1074_jbc_M111_238014 crossref_primary_10_1016_j_tips_2015_05_001 crossref_primary_10_1016_j_freeradbiomed_2013_05_014 crossref_primary_10_1248_yakushi_15_00227_1 crossref_primary_10_1021_acs_analchem_2c04896 crossref_primary_10_1155_2018_2450748 crossref_primary_10_3390_biomedicines8120598 crossref_primary_10_14814_phy2_15425 crossref_primary_10_1155_2018_8602041 crossref_primary_10_1016_j_canlet_2014_07_031 crossref_primary_10_1021_acsami_2c12823 crossref_primary_10_1111_febs_13736 crossref_primary_10_1515_revneuro_2014_0041 crossref_primary_10_1111_nan_12877 crossref_primary_10_1007_s11064_017_2303_z crossref_primary_10_1074_jbc_M113_462671 crossref_primary_10_1155_2017_5930639 crossref_primary_10_1016_j_jmb_2016_06_011 crossref_primary_10_1111_jphp_12191 crossref_primary_10_1007_s00726_014_1775_2 crossref_primary_10_1016_j_tips_2014_09_002 crossref_primary_10_1002_ange_201510721 crossref_primary_10_1007_s12035_020_02059_1 crossref_primary_10_1111_jnc_14308 crossref_primary_10_3390_antiox10111742 crossref_primary_10_1002_bies_202100224 crossref_primary_10_1007_s13238_014_0077_5 crossref_primary_10_1021_acsami_2c22523 crossref_primary_10_1111_liv_13476 crossref_primary_10_1016_j_fsi_2019_12_039 crossref_primary_10_1158_1535_7163_MCT_12_0863 crossref_primary_10_1016_j_ijcard_2015_03_221 crossref_primary_10_1007_s00018_024_05199_y crossref_primary_10_1016_j_cej_2022_136379 crossref_primary_10_1089_ars_2014_5837 crossref_primary_10_1039_C6NR06421C crossref_primary_10_1016_j_molcel_2018_05_024 crossref_primary_10_3389_fcell_2019_00179 crossref_primary_10_1002_ange_202103015 crossref_primary_10_1038_s41419_018_0567_0 crossref_primary_10_1128_iai_00323_22 crossref_primary_10_1152_ajpendo_00176_2012 crossref_primary_10_1080_14728222_2017_1281250 crossref_primary_10_1016_j_redox_2018_10_002 crossref_primary_10_1016_j_biocel_2014_10_022 crossref_primary_10_1016_j_jds_2023_08_023 crossref_primary_10_1371_journal_pone_0137958 crossref_primary_10_3109_10715762_2014_953494 crossref_primary_10_1089_ars_2013_5746 crossref_primary_10_1124_pr_112_007120 crossref_primary_10_1007_s11011_018_0214_6 crossref_primary_10_1080_15548627_2017_1320467 crossref_primary_10_1016_j_molcel_2011_06_014 crossref_primary_10_1007_s00044_014_1214_7 crossref_primary_10_1016_j_niox_2016_05_007 crossref_primary_10_1042_CS20140336 crossref_primary_10_1016_j_freeradbiomed_2022_07_016 crossref_primary_10_1152_ajpendo_00078_2013 crossref_primary_10_1016_j_phrs_2016_06_024 crossref_primary_10_1016_j_ddtec_2012_09_010 crossref_primary_10_1177_09727531231191661 |
Cites_doi | 10.1126/scisignal.267pe24 10.1016/j.biochi.2007.08.014 10.1126/science.1157535 10.1073/pnas.89.3.1031 10.1007/s12035-010-8113-9 10.1073/pnas.0400588101 10.4161/auto.5.5.8823 10.1080/10715760802112791 10.1093/emboj/19.21.5720 10.1074/jbc.273.7.3963 10.1038/cdd.2008.110 10.1016/S0896-6273(00)80573-5 10.1016/j.cell.2007.05.058 10.1152/ajpheart.2001.281.5.H2053 10.1016/j.molmed.2009.06.007 10.1126/science.288.5467.870 10.1038/emboj.2009.364 10.1016/j.ceb.2009.12.004 10.1016/S0076-6879(08)04005-6 10.1038/ng1591 10.1021/bi961720e 10.4161/auto.5.3.7664 10.1242/jcs.00381 10.1074/jbc.M602551200 10.1016/j.cell.2005.07.002 10.1073/pnas.0903621106 10.1016/j.mam.2006.08.002 10.1093/hmg/ddl036 10.1038/nrm1569 10.1038/sj.emboj.7601623 10.1038/cdd.2009.49 10.1016/S0092-8674(03)00929-2 10.1038/ng1362 10.1038/nchembio883 10.1073/pnas.0810968106 10.1101/gad.298004 10.1038/nchembio.79 10.1172/JCI200317222 10.4161/auto.4451 10.1038/ncb2114 10.1016/j.ceb.2005.02.008 10.1038/nrd2272 10.1016/S0076-6879(96)68030-6 10.1038/nature06639 10.1016/S0005-2728(99)00024-9 10.1074/jbc.M105066200 10.1073/pnas.97.26.14382 10.1128/MCB.25.3.1025-1040.2005 10.1016/j.molcel.2008.06.001 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. 2011 ELL & Excerpta Medica. 2011 Elsevier Inc. |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: 2011 ELL & Excerpta Medica. 2011 Elsevier Inc. |
DBID | 6I. AAFTH FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.molcel.2011.04.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 32 |
ExternalDocumentID | 10_1016_j_molcel_2011_04_029 21726807 US201600012169 S1097276511003789 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0901339 – fundername: Wellcome Trust – fundername: Medical Research Council – fundername: Medical Research Council grantid: G0600194 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF HZ~ IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAQFI AAQXK ABPTK ADMUD AEQTP FBQ FGOYB OZT R2- UHS X7M ZGI ZXP 0SF AAHBH AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM AAYXX ACRPL ADNMO CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c552t-14ff96091e675b1c9ceb70a8c8bf206a5c1dd751a0049ed1d66ae247f354ba793 |
IEDL.DBID | ABVKL |
ISSN | 1097-2765 |
IngestDate | Tue Sep 17 21:25:37 EDT 2024 Sat Oct 26 01:19:14 EDT 2024 Fri Dec 06 03:24:07 EST 2024 Sat Sep 28 07:48:53 EDT 2024 Wed Dec 27 19:16:52 EST 2023 Fri Feb 23 02:19:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 Copyright © 2011 Elsevier Inc. All rights reserved. https://www.elsevier.com/tdm/userlicense/1.0 Open Access under CC BY 3.0 license |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-14ff96091e675b1c9ceb70a8c8bf206a5c1dd751a0049ed1d66ae247f354ba793 |
Notes | http://dx.doi.org/10.1016/j.molcel.2011.04.029 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work Present address: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276511003789 |
PMID | 21726807 |
PQID | 875040189 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3149661 proquest_miscellaneous_875040189 crossref_primary_10_1016_j_molcel_2011_04_029 pubmed_primary_21726807 fao_agris_US201600012169 elsevier_sciencedirect_doi_10_1016_j_molcel_2011_04_029 |
PublicationCentury | 2000 |
PublicationDate | 2011-07-08 |
PublicationDateYYYYMMDD | 2011-07-08 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2011 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Sarkar, Perlstein, Imarisio, Pineau, Cordenier, Maglathlin, Webster, Lewis, O'Kane, Schreiber, Rubinsztein (bib36) 2007; 3 Sarkar, Ravikumar, Floto, Rubinsztein (bib38) 2009; 16 Sarkar, Ravikumar, Rubinsztein (bib39) 2009; 453 Tournier, Hess, Yang, Xu, Turner, Nimnual, Bar-Sagi, Jones, Flavell, Davis (bib44) 2000; 288 Kornberg, Sen, Hara, Juluri, Nguyen, Snowman, Law, Hester, Snyder (bib16) 2010; 12 Park, Huh, Kim, Lee, Choi (bib26) 2000; 97 Rubinsztein, Cuervo, Ravikumar, Sarkar, Korolchuk, Kaushik, Klionsky (bib33) 2009; 5 Guertin, Sabatini (bib9) 2009; 2 Kabeya, Mizushima, Ueno, Yamamoto, Kirisako, Noda, Kominami, Ohsumi, Yoshimori (bib13) 2000; 19 Criollo, Senovilla, Authier, Maiuri, Morselli, Vitale, Kepp, Tasdemir, Galluzzi, Shen (bib4) 2010; 29 Geiger, Nolte, Butt, Sage, Walter (bib7) 1992; 89 Sarkar, Korolchuk, Renna, Winslow, Rubinsztein (bib37) 2009; 5 Scherz-Shouval, Shvets, Fass, Shorer, Gil, Elazar (bib40) 2007; 26 Lee, Kuo, Chen, Hsu, Chou, Wei, Sun, Li, Ping, Huang (bib17) 2007; 130 Stasiv, Regulski, Kuzin, Tully, Enikolopov (bib42) 2001; 276 Zhang, Cicchetti, Onda, Koon, Asrican, Bajraszewski, Vazquez, Carpenter, Kwiatkowski (bib48) 2003; 112 Liu, Garcia-Cardena, Sessa (bib18) 1996; 35 Wei, Pattingre, Sinha, Bassik, Levine (bib45) 2008; 30 Yang, Wu, Tashino, Onodera, Ikejima (bib47) 2008; 42 Keefer, Nims, Davies, Wink (bib14) 1996; 268 Mizushima, Levine, Cuervo, Klionsky (bib23) 2008; 451 Foster, Hess, Stamler (bib6) 2009; 15 Martin, Hall (bib19) 2005; 17 Schmidt, Andrew, Schrammel, Groschner, Schmitz, Kojda, Mayer (bib41) 2001; 281 Gu, Nakamura, Lipton (bib8) 2010; 41 Hess, Matsumoto, Kim, Marshall, Stamler (bib10) 2005; 6 Kimura, Noda, Yoshimori (bib15) 2007; 3 Denninger, Marletta (bib5) 1999; 1411 Stasiv, Kuzin, Regulski, Tully, Enikolopov (bib43) 2004; 18 Rubinsztein, Gestwicki, Murphy, Klionsky (bib34) 2007; 6 Meijer, Codogno (bib20) 2006; 27 Ravikumar, Berger, Vacher, O'Kane, Rubinsztein (bib31) 2006; 15 Chen, Azad, Gibson (bib3) 2009; 16 Zhou, Ikenoue, Chen, Li, Inoki, Guan (bib49) 2009; 106 Inoki, Zhu, Guan (bib11) 2003; 115 Pattingre, Tassa, Qu, Garuti, Liang, Mizushima, Packer, Schneider, Levine (bib28) 2005; 122 Azad, Vallyathan, Wang, Tantishaiyakul, Stehlik, Leonard, Rojanasakul (bib1) 2006; 281 Boya, Gonzalez-Polo, Casares, Perfettini, Dessen, Larochette, Metivier, Meley, Souquere, Yoshimori (bib2) 2005; 25 Mizushima, Kuma, Kobayashi, Yamamoto, Matsubae, Takao, Natsume, Ohsumi, Yoshimori (bib22) 2003; 116 Pandit, Kolodziejska, Zeng, Eissa (bib25) 2009; 106 Mizushima (bib21) 2010; 22 Ravikumar, Acevedo-Arozena, Imarisio, Berger, Vacher, O'Kane, Brown, Rubinsztein (bib30) 2005; 37 Williams, Sarkar, Cuddon, Ttofi, Saiki, Siddiqi, Jahreiss, Fleming, Pask, Goldsmith (bib46) 2008; 4 Sancak, Peterson, Shaul, Lindquist, Thoreen, Bar-Peled, Sabatini (bib35) 2008; 320 Pattingre, Espert, Biard-Piechaczyk, Codogno (bib27) 2008; 90 Noda, Ohsumi (bib24) 1998; 273 Reynaert, Ckless, Korn, Vos, Guala, Wouters, van der Vliet, Janssen-Heininger (bib32) 2004; 101 Ravikumar, Vacher, Berger, Davies, Luo, Oroz, Scaravilli, Easton, Duden, O'Kane, Rubinsztein (bib29) 2004; 36 Jackson, Salecker, Dong, Yao, Arnheim, Faber, MacDonald, Zipursky (bib12) 1998; 21 10320667 - Biochim Biophys Acta. 1999 May 5;1411(2-3):334-50 11060023 - EMBO J. 2000 Nov 1;19(21):5720-8 19407826 - Cell Death Differ. 2009 Jul;16(7):1040-52 15657430 - Mol Cell Biol. 2005 Feb;25(3):1025-40 19182529 - Autophagy. 2009 Apr;5(3):307-13 12665549 - J Cell Sci. 2003 May 1;116(Pt 9):1679-88 17534139 - Autophagy. 2007 Sep-Oct;3(5):452-60 19139419 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1211-5 16980304 - J Biol Chem. 2006 Nov 10;281(45):34124-34 17693255 - Cell. 2007 Aug 10;130(3):440-55 14561707 - J Clin Invest. 2003 Oct;112(8):1223-33 20056399 - Curr Opin Cell Biol. 2010 Apr;22(2):132-9 16973212 - Mol Aspects Med. 2006 Oct-Dec;27(5-6):411-25 11526108 - J Biol Chem. 2001 Nov 9;276(45):42241-51 19726230 - Trends Mol Med. 2009 Sep;15(9):391-404 17347651 - EMBO J. 2007 Apr 4;26(7):1749-60 15688001 - Nat Rev Mol Cell Biol. 2005 Feb;6(2):150-66 16497721 - Hum Mol Genet. 2006 Apr 1;15(7):1209-16 15146184 - Nat Genet. 2004 Jun;36(6):585-95 18497260 - Science. 2008 Jun 13;320(5882):1496-501 19216903 - Methods Enzymol. 2009;453:83-110 17928127 - Biochimie. 2008 Feb;90(2):313-23 19959994 - EMBO J. 2010 Feb 3;29(3):619-31 18484413 - Free Radic Res. 2008 May;42(5):492-504 20333559 - Mol Neurobiol. 2010 Jun;41(2-3):55-72 8873592 - Biochemistry. 1996 Oct 15;35(41):13277-81 15184672 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8945-50 8782594 - Methods Enzymol. 1996;268:281-93 14651849 - Cell. 2003 Nov 26;115(5):577-90 11668066 - Am J Physiol Heart Circ Physiol. 2001 Nov;281(5):H2053-61 11121042 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14382-7 16179260 - Cell. 2005 Sep 23;122(6):927-39 15256486 - Genes Dev. 2004 Aug 1;18(15):1812-23 19458266 - Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8923-8 15780592 - Curr Opin Cell Biol. 2005 Apr;17(2):158-66 1310537 - Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1031-5 17396135 - Nat Rev Drug Discov. 2007 Apr;6(4):304-12 18391949 - Nat Chem Biol. 2008 May;4(5):295-305 19383975 - Sci Signal. 2009;2(67):pe24 15980862 - Nat Genet. 2005 Jul;37(7):771-6 18636076 - Cell Death Differ. 2009 Jan;16(1):46-56 21726803 - Mol Cell. 2011 Jul 8;43(1):1-3 18570871 - Mol Cell. 2008 Jun 20;30(6):678-88 19411822 - Autophagy. 2009 Jul;5(5):585-9 17486044 - Nat Chem Biol. 2007 Jun;3(6):331-8 18305538 - Nature. 2008 Feb 28;451(7182):1069-75 10797012 - Science. 2000 May 5;288(5467):870-4 9461583 - J Biol Chem. 1998 Feb 13;273(7):3963-6 9768849 - Neuron. 1998 Sep;21(3):633-42 20972425 - Nat Cell Biol. 2010 Nov;12(11):1094-100 Rubinsztein (10.1016/j.molcel.2011.04.029_bib33) 2009; 5 Ravikumar (10.1016/j.molcel.2011.04.029_bib30) 2005; 37 Sancak (10.1016/j.molcel.2011.04.029_bib35) 2008; 320 Keefer (10.1016/j.molcel.2011.04.029_bib14) 1996; 268 Sarkar (10.1016/j.molcel.2011.04.029_bib37) 2009; 5 Azad (10.1016/j.molcel.2011.04.029_bib1) 2006; 281 Gu (10.1016/j.molcel.2011.04.029_bib8) 2010; 41 Kornberg (10.1016/j.molcel.2011.04.029_bib16) 2010; 12 Yang (10.1016/j.molcel.2011.04.029_bib47) 2008; 42 Meijer (10.1016/j.molcel.2011.04.029_bib20) 2006; 27 Mizushima (10.1016/j.molcel.2011.04.029_bib22) 2003; 116 Rubinsztein (10.1016/j.molcel.2011.04.029_bib34) 2007; 6 Guertin (10.1016/j.molcel.2011.04.029_bib9) 2009; 2 Pattingre (10.1016/j.molcel.2011.04.029_bib28) 2005; 122 Reynaert (10.1016/j.molcel.2011.04.029_bib32) 2004; 101 Pattingre (10.1016/j.molcel.2011.04.029_bib27) 2008; 90 Kabeya (10.1016/j.molcel.2011.04.029_bib13) 2000; 19 Zhang (10.1016/j.molcel.2011.04.029_bib48) 2003; 112 Ravikumar (10.1016/j.molcel.2011.04.029_bib31) 2006; 15 Mizushima (10.1016/j.molcel.2011.04.029_bib23) 2008; 451 Zhou (10.1016/j.molcel.2011.04.029_bib49) 2009; 106 Schmidt (10.1016/j.molcel.2011.04.029_bib41) 2001; 281 Liu (10.1016/j.molcel.2011.04.029_bib18) 1996; 35 Sarkar (10.1016/j.molcel.2011.04.029_bib38) 2009; 16 Mizushima (10.1016/j.molcel.2011.04.029_bib21) 2010; 22 Hess (10.1016/j.molcel.2011.04.029_bib10) 2005; 6 Inoki (10.1016/j.molcel.2011.04.029_bib11) 2003; 115 Scherz-Shouval (10.1016/j.molcel.2011.04.029_bib40) 2007; 26 Noda (10.1016/j.molcel.2011.04.029_bib24) 1998; 273 Stasiv (10.1016/j.molcel.2011.04.029_bib43) 2004; 18 Boya (10.1016/j.molcel.2011.04.029_bib2) 2005; 25 Martin (10.1016/j.molcel.2011.04.029_bib19) 2005; 17 Criollo (10.1016/j.molcel.2011.04.029_bib4) 2010; 29 Geiger (10.1016/j.molcel.2011.04.029_bib7) 1992; 89 Pandit (10.1016/j.molcel.2011.04.029_bib25) 2009; 106 Sarkar (10.1016/j.molcel.2011.04.029_bib39) 2009; 453 Stasiv (10.1016/j.molcel.2011.04.029_bib42) 2001; 276 Tournier (10.1016/j.molcel.2011.04.029_bib44) 2000; 288 Ravikumar (10.1016/j.molcel.2011.04.029_bib29) 2004; 36 Sarkar (10.1016/j.molcel.2011.04.029_bib36) 2007; 3 Park (10.1016/j.molcel.2011.04.029_bib26) 2000; 97 Williams (10.1016/j.molcel.2011.04.029_bib46) 2008; 4 Foster (10.1016/j.molcel.2011.04.029_bib6) 2009; 15 Jackson (10.1016/j.molcel.2011.04.029_bib12) 1998; 21 Kimura (10.1016/j.molcel.2011.04.029_bib15) 2007; 3 Wei (10.1016/j.molcel.2011.04.029_bib45) 2008; 30 Lee (10.1016/j.molcel.2011.04.029_bib17) 2007; 130 Denninger (10.1016/j.molcel.2011.04.029_bib5) 1999; 1411 Chen (10.1016/j.molcel.2011.04.029_bib3) 2009; 16 |
References_xml | – volume: 35 start-page: 13277 year: 1996 end-page: 13281 ident: bib18 article-title: Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization publication-title: Biochemistry contributor: fullname: Sessa – volume: 273 start-page: 3963 year: 1998 end-page: 3966 ident: bib24 article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast publication-title: J. Biol. Chem. contributor: fullname: Ohsumi – volume: 130 start-page: 440 year: 2007 end-page: 455 ident: bib17 article-title: IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway publication-title: Cell contributor: fullname: Huang – volume: 101 start-page: 8945 year: 2004 end-page: 8950 ident: bib32 article-title: Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Janssen-Heininger – volume: 17 start-page: 158 year: 2005 end-page: 166 ident: bib19 article-title: The expanding TOR signaling network publication-title: Curr. Opin. Cell Biol. contributor: fullname: Hall – volume: 36 start-page: 585 year: 2004 end-page: 595 ident: bib29 article-title: Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease publication-title: Nat. Genet. contributor: fullname: Rubinsztein – volume: 37 start-page: 771 year: 2005 end-page: 776 ident: bib30 article-title: Dynein mutations impair autophagic clearance of aggregate-prone proteins publication-title: Nat. Genet. contributor: fullname: Rubinsztein – volume: 15 start-page: 391 year: 2009 end-page: 404 ident: bib6 article-title: Protein S-nitrosylation in health and disease: a current perspective publication-title: Trends Mol. Med. contributor: fullname: Stamler – volume: 6 start-page: 304 year: 2007 end-page: 312 ident: bib34 article-title: Potential therapeutic applications of autophagy publication-title: Nat. Rev. Drug Discov. contributor: fullname: Klionsky – volume: 276 start-page: 42241 year: 2001 end-page: 42251 ident: bib42 article-title: The Drosophila nitric-oxide synthase gene (dNOS) encodes a family of proteins that can modulate NOS activity by acting as dominant negative regulators publication-title: J. Biol. Chem. contributor: fullname: Enikolopov – volume: 30 start-page: 678 year: 2008 end-page: 688 ident: bib45 article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy publication-title: Mol. Cell contributor: fullname: Levine – volume: 2 start-page: pe24 year: 2009 ident: bib9 article-title: The pharmacology of mTOR inhibition publication-title: Sci. Signal. contributor: fullname: Sabatini – volume: 22 start-page: 132 year: 2010 end-page: 139 ident: bib21 article-title: The role of the Atg1/ULK1 complex in autophagy regulation publication-title: Curr. Opin. Cell Biol. contributor: fullname: Mizushima – volume: 5 start-page: 307 year: 2009 end-page: 313 ident: bib37 article-title: Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates publication-title: Autophagy contributor: fullname: Rubinsztein – volume: 122 start-page: 927 year: 2005 end-page: 939 ident: bib28 article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy publication-title: Cell contributor: fullname: Levine – volume: 453 start-page: 83 year: 2009 end-page: 110 ident: bib39 article-title: Autophagic clearance of aggregate-prone proteins associated with neurodegeneration publication-title: Methods Enzymol. contributor: fullname: Rubinsztein – volume: 12 start-page: 1094 year: 2010 end-page: 1100 ident: bib16 article-title: GAPDH mediates nitrosylation of nuclear proteins publication-title: Nat. Cell Biol. contributor: fullname: Snyder – volume: 27 start-page: 411 year: 2006 end-page: 425 ident: bib20 article-title: Signaling and autophagy regulation in health, aging and disease publication-title: Mol. Aspects Med. contributor: fullname: Codogno – volume: 15 start-page: 1209 year: 2006 end-page: 1216 ident: bib31 article-title: Rapamycin pre-treatment protects against apoptosis publication-title: Hum. Mol. Genet. contributor: fullname: Rubinsztein – volume: 19 start-page: 5720 year: 2000 end-page: 5728 ident: bib13 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J. contributor: fullname: Yoshimori – volume: 97 start-page: 14382 year: 2000 end-page: 14387 ident: bib26 article-title: Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Choi – volume: 3 start-page: 452 year: 2007 end-page: 460 ident: bib15 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy contributor: fullname: Yoshimori – volume: 281 start-page: H2053 year: 2001 end-page: H2061 ident: bib41 article-title: Comparison of neuronal and endothelial isoforms of nitric oxide synthase in stably transfected HEK 293 cells publication-title: Am. J. Physiol. Heart Circ. Physiol. contributor: fullname: Mayer – volume: 106 start-page: 1211 year: 2009 end-page: 1215 ident: bib25 article-title: The physiologic aggresome mediates cellular inactivation of iNOS publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Eissa – volume: 16 start-page: 46 year: 2009 end-page: 56 ident: bib38 article-title: Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies publication-title: Cell Death Differ. contributor: fullname: Rubinsztein – volume: 29 start-page: 619 year: 2010 end-page: 631 ident: bib4 article-title: The IKK complex contributes to the induction of autophagy publication-title: EMBO J. contributor: fullname: Shen – volume: 1411 start-page: 334 year: 1999 end-page: 350 ident: bib5 article-title: Guanylate cyclase and the NO/cGMP signaling pathway publication-title: Biochim. Biophys. Acta contributor: fullname: Marletta – volume: 26 start-page: 1749 year: 2007 end-page: 1760 ident: bib40 article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 publication-title: EMBO J. contributor: fullname: Elazar – volume: 268 start-page: 281 year: 1996 end-page: 293 ident: bib14 article-title: “NONOates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms publication-title: Methods Enzymol. contributor: fullname: Wink – volume: 281 start-page: 34124 year: 2006 end-page: 34134 ident: bib1 article-title: S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis publication-title: J. Biol. Chem. contributor: fullname: Rojanasakul – volume: 288 start-page: 870 year: 2000 end-page: 874 ident: bib44 article-title: Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway publication-title: Science contributor: fullname: Davis – volume: 90 start-page: 313 year: 2008 end-page: 323 ident: bib27 article-title: Regulation of macroautophagy by mTOR and Beclin 1 complexes publication-title: Biochimie contributor: fullname: Codogno – volume: 4 start-page: 295 year: 2008 end-page: 305 ident: bib46 article-title: Novel targets for Huntington's disease in an mTOR-independent autophagy pathway publication-title: Nat. Chem. Biol. contributor: fullname: Goldsmith – volume: 3 start-page: 331 year: 2007 end-page: 338 ident: bib36 article-title: Small molecules enhance autophagy and reduce toxicity in Huntington's disease models publication-title: Nat. Chem. Biol. contributor: fullname: Rubinsztein – volume: 6 start-page: 150 year: 2005 end-page: 166 ident: bib10 article-title: Protein S-nitrosylation: purview and parameters publication-title: Nat. Rev. Mol. Cell Biol. contributor: fullname: Stamler – volume: 5 start-page: 585 year: 2009 end-page: 589 ident: bib33 article-title: In search of an “autophagomometer” publication-title: Autophagy contributor: fullname: Klionsky – volume: 116 start-page: 1679 year: 2003 end-page: 1688 ident: bib22 article-title: Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate publication-title: J. Cell Sci. contributor: fullname: Yoshimori – volume: 115 start-page: 577 year: 2003 end-page: 590 ident: bib11 article-title: TSC2 mediates cellular energy response to control cell growth and survival publication-title: Cell contributor: fullname: Guan – volume: 41 start-page: 55 year: 2010 end-page: 72 ident: bib8 article-title: Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases publication-title: Mol. Neurobiol. contributor: fullname: Lipton – volume: 18 start-page: 1812 year: 2004 end-page: 1823 ident: bib43 article-title: Regulation of multimers via truncated isoforms: a novel mechanism to control nitric-oxide signaling publication-title: Genes Dev. contributor: fullname: Enikolopov – volume: 320 start-page: 1496 year: 2008 end-page: 1501 ident: bib35 article-title: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1 publication-title: Science contributor: fullname: Sabatini – volume: 21 start-page: 633 year: 1998 end-page: 642 ident: bib12 article-title: Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons publication-title: Neuron contributor: fullname: Zipursky – volume: 112 start-page: 1223 year: 2003 end-page: 1233 ident: bib48 article-title: Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR publication-title: J. Clin. Invest. contributor: fullname: Kwiatkowski – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: bib23 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature contributor: fullname: Klionsky – volume: 16 start-page: 1040 year: 2009 end-page: 1052 ident: bib3 article-title: Superoxide is the major reactive oxygen species regulating autophagy publication-title: Cell Death Differ. contributor: fullname: Gibson – volume: 89 start-page: 1031 year: 1992 end-page: 1035 ident: bib7 article-title: Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Walter – volume: 42 start-page: 492 year: 2008 end-page: 504 ident: bib47 article-title: Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells publication-title: Free Radic. Res. contributor: fullname: Ikejima – volume: 25 start-page: 1025 year: 2005 end-page: 1040 ident: bib2 article-title: Inhibition of macroautophagy triggers apoptosis publication-title: Mol. Cell. Biol. contributor: fullname: Yoshimori – volume: 106 start-page: 8923 year: 2009 end-page: 8928 ident: bib49 article-title: Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Guan – volume: 2 start-page: pe24 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib9 article-title: The pharmacology of mTOR inhibition publication-title: Sci. Signal. doi: 10.1126/scisignal.267pe24 contributor: fullname: Guertin – volume: 90 start-page: 313 year: 2008 ident: 10.1016/j.molcel.2011.04.029_bib27 article-title: Regulation of macroautophagy by mTOR and Beclin 1 complexes publication-title: Biochimie doi: 10.1016/j.biochi.2007.08.014 contributor: fullname: Pattingre – volume: 320 start-page: 1496 year: 2008 ident: 10.1016/j.molcel.2011.04.029_bib35 article-title: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1 publication-title: Science doi: 10.1126/science.1157535 contributor: fullname: Sancak – volume: 89 start-page: 1031 year: 1992 ident: 10.1016/j.molcel.2011.04.029_bib7 article-title: Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.3.1031 contributor: fullname: Geiger – volume: 41 start-page: 55 year: 2010 ident: 10.1016/j.molcel.2011.04.029_bib8 article-title: Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases publication-title: Mol. Neurobiol. doi: 10.1007/s12035-010-8113-9 contributor: fullname: Gu – volume: 101 start-page: 8945 year: 2004 ident: 10.1016/j.molcel.2011.04.029_bib32 article-title: Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400588101 contributor: fullname: Reynaert – volume: 5 start-page: 585 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib33 article-title: In search of an “autophagomometer” publication-title: Autophagy doi: 10.4161/auto.5.5.8823 contributor: fullname: Rubinsztein – volume: 42 start-page: 492 year: 2008 ident: 10.1016/j.molcel.2011.04.029_bib47 article-title: Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells publication-title: Free Radic. Res. doi: 10.1080/10715760802112791 contributor: fullname: Yang – volume: 19 start-page: 5720 year: 2000 ident: 10.1016/j.molcel.2011.04.029_bib13 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J. doi: 10.1093/emboj/19.21.5720 contributor: fullname: Kabeya – volume: 273 start-page: 3963 year: 1998 ident: 10.1016/j.molcel.2011.04.029_bib24 article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.7.3963 contributor: fullname: Noda – volume: 16 start-page: 46 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib38 article-title: Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies publication-title: Cell Death Differ. doi: 10.1038/cdd.2008.110 contributor: fullname: Sarkar – volume: 21 start-page: 633 year: 1998 ident: 10.1016/j.molcel.2011.04.029_bib12 article-title: Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons publication-title: Neuron doi: 10.1016/S0896-6273(00)80573-5 contributor: fullname: Jackson – volume: 130 start-page: 440 year: 2007 ident: 10.1016/j.molcel.2011.04.029_bib17 article-title: IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway publication-title: Cell doi: 10.1016/j.cell.2007.05.058 contributor: fullname: Lee – volume: 281 start-page: H2053 year: 2001 ident: 10.1016/j.molcel.2011.04.029_bib41 article-title: Comparison of neuronal and endothelial isoforms of nitric oxide synthase in stably transfected HEK 293 cells publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.2001.281.5.H2053 contributor: fullname: Schmidt – volume: 15 start-page: 391 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib6 article-title: Protein S-nitrosylation in health and disease: a current perspective publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2009.06.007 contributor: fullname: Foster – volume: 288 start-page: 870 year: 2000 ident: 10.1016/j.molcel.2011.04.029_bib44 article-title: Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway publication-title: Science doi: 10.1126/science.288.5467.870 contributor: fullname: Tournier – volume: 29 start-page: 619 year: 2010 ident: 10.1016/j.molcel.2011.04.029_bib4 article-title: The IKK complex contributes to the induction of autophagy publication-title: EMBO J. doi: 10.1038/emboj.2009.364 contributor: fullname: Criollo – volume: 22 start-page: 132 year: 2010 ident: 10.1016/j.molcel.2011.04.029_bib21 article-title: The role of the Atg1/ULK1 complex in autophagy regulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.12.004 contributor: fullname: Mizushima – volume: 453 start-page: 83 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib39 article-title: Autophagic clearance of aggregate-prone proteins associated with neurodegeneration publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(08)04005-6 contributor: fullname: Sarkar – volume: 37 start-page: 771 year: 2005 ident: 10.1016/j.molcel.2011.04.029_bib30 article-title: Dynein mutations impair autophagic clearance of aggregate-prone proteins publication-title: Nat. Genet. doi: 10.1038/ng1591 contributor: fullname: Ravikumar – volume: 35 start-page: 13277 year: 1996 ident: 10.1016/j.molcel.2011.04.029_bib18 article-title: Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization publication-title: Biochemistry doi: 10.1021/bi961720e contributor: fullname: Liu – volume: 5 start-page: 307 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib37 article-title: Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates publication-title: Autophagy doi: 10.4161/auto.5.3.7664 contributor: fullname: Sarkar – volume: 116 start-page: 1679 year: 2003 ident: 10.1016/j.molcel.2011.04.029_bib22 article-title: Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate publication-title: J. Cell Sci. doi: 10.1242/jcs.00381 contributor: fullname: Mizushima – volume: 281 start-page: 34124 year: 2006 ident: 10.1016/j.molcel.2011.04.029_bib1 article-title: S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602551200 contributor: fullname: Azad – volume: 122 start-page: 927 year: 2005 ident: 10.1016/j.molcel.2011.04.029_bib28 article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy publication-title: Cell doi: 10.1016/j.cell.2005.07.002 contributor: fullname: Pattingre – volume: 106 start-page: 8923 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib49 article-title: Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903621106 contributor: fullname: Zhou – volume: 27 start-page: 411 year: 2006 ident: 10.1016/j.molcel.2011.04.029_bib20 article-title: Signaling and autophagy regulation in health, aging and disease publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2006.08.002 contributor: fullname: Meijer – volume: 15 start-page: 1209 year: 2006 ident: 10.1016/j.molcel.2011.04.029_bib31 article-title: Rapamycin pre-treatment protects against apoptosis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl036 contributor: fullname: Ravikumar – volume: 6 start-page: 150 year: 2005 ident: 10.1016/j.molcel.2011.04.029_bib10 article-title: Protein S-nitrosylation: purview and parameters publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1569 contributor: fullname: Hess – volume: 26 start-page: 1749 year: 2007 ident: 10.1016/j.molcel.2011.04.029_bib40 article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601623 contributor: fullname: Scherz-Shouval – volume: 16 start-page: 1040 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib3 article-title: Superoxide is the major reactive oxygen species regulating autophagy publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.49 contributor: fullname: Chen – volume: 115 start-page: 577 year: 2003 ident: 10.1016/j.molcel.2011.04.029_bib11 article-title: TSC2 mediates cellular energy response to control cell growth and survival publication-title: Cell doi: 10.1016/S0092-8674(03)00929-2 contributor: fullname: Inoki – volume: 36 start-page: 585 year: 2004 ident: 10.1016/j.molcel.2011.04.029_bib29 article-title: Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease publication-title: Nat. Genet. doi: 10.1038/ng1362 contributor: fullname: Ravikumar – volume: 3 start-page: 331 year: 2007 ident: 10.1016/j.molcel.2011.04.029_bib36 article-title: Small molecules enhance autophagy and reduce toxicity in Huntington's disease models publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio883 contributor: fullname: Sarkar – volume: 106 start-page: 1211 year: 2009 ident: 10.1016/j.molcel.2011.04.029_bib25 article-title: The physiologic aggresome mediates cellular inactivation of iNOS publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810968106 contributor: fullname: Pandit – volume: 18 start-page: 1812 year: 2004 ident: 10.1016/j.molcel.2011.04.029_bib43 article-title: Regulation of multimers via truncated isoforms: a novel mechanism to control nitric-oxide signaling publication-title: Genes Dev. doi: 10.1101/gad.298004 contributor: fullname: Stasiv – volume: 4 start-page: 295 year: 2008 ident: 10.1016/j.molcel.2011.04.029_bib46 article-title: Novel targets for Huntington's disease in an mTOR-independent autophagy pathway publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.79 contributor: fullname: Williams – volume: 112 start-page: 1223 year: 2003 ident: 10.1016/j.molcel.2011.04.029_bib48 article-title: Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR publication-title: J. Clin. Invest. doi: 10.1172/JCI200317222 contributor: fullname: Zhang – volume: 3 start-page: 452 year: 2007 ident: 10.1016/j.molcel.2011.04.029_bib15 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy doi: 10.4161/auto.4451 contributor: fullname: Kimura – volume: 12 start-page: 1094 year: 2010 ident: 10.1016/j.molcel.2011.04.029_bib16 article-title: GAPDH mediates nitrosylation of nuclear proteins publication-title: Nat. Cell Biol. doi: 10.1038/ncb2114 contributor: fullname: Kornberg – volume: 17 start-page: 158 year: 2005 ident: 10.1016/j.molcel.2011.04.029_bib19 article-title: The expanding TOR signaling network publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2005.02.008 contributor: fullname: Martin – volume: 6 start-page: 304 year: 2007 ident: 10.1016/j.molcel.2011.04.029_bib34 article-title: Potential therapeutic applications of autophagy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2272 contributor: fullname: Rubinsztein – volume: 268 start-page: 281 year: 1996 ident: 10.1016/j.molcel.2011.04.029_bib14 article-title: “NONOates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(96)68030-6 contributor: fullname: Keefer – volume: 451 start-page: 1069 year: 2008 ident: 10.1016/j.molcel.2011.04.029_bib23 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature doi: 10.1038/nature06639 contributor: fullname: Mizushima – volume: 1411 start-page: 334 year: 1999 ident: 10.1016/j.molcel.2011.04.029_bib5 article-title: Guanylate cyclase and the NO/cGMP signaling pathway publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2728(99)00024-9 contributor: fullname: Denninger – volume: 276 start-page: 42241 year: 2001 ident: 10.1016/j.molcel.2011.04.029_bib42 article-title: The Drosophila nitric-oxide synthase gene (dNOS) encodes a family of proteins that can modulate NOS activity by acting as dominant negative regulators publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105066200 contributor: fullname: Stasiv – volume: 97 start-page: 14382 year: 2000 ident: 10.1016/j.molcel.2011.04.029_bib26 article-title: Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.26.14382 contributor: fullname: Park – volume: 25 start-page: 1025 year: 2005 ident: 10.1016/j.molcel.2011.04.029_bib2 article-title: Inhibition of macroautophagy triggers apoptosis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.3.1025-1040.2005 contributor: fullname: Boya – volume: 30 start-page: 678 year: 2008 ident: 10.1016/j.molcel.2011.04.029_bib45 article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.06.001 contributor: fullname: Wei |
SSID | ssj0014589 |
Score | 2.5633502 |
Snippet | Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and... |
SourceID | pubmedcentral proquest crossref pubmed fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 19 |
SubjectTerms | Animals Apoptosis Regulatory Proteins - metabolism Autophagy Beclin-1 Cell Line Class III Phosphatidylinositol 3-Kinases - metabolism endothelial nitric oxide synthase Enzyme Inhibitors - pharmacology HEK293 Cells HeLa Cells Humans Huntingtin Protein Huntington Disease - metabolism Huntington Disease - pathology I-kappa B Kinase - metabolism inducible nitric oxide synthase Mechanistic Target of Rapamycin Complex 1 Membrane Proteins - metabolism Mice Mitogen-Activated Protein Kinase 8 - metabolism Multiprotein Complexes Nerve Tissue Proteins - metabolism neurodegenerative diseases neuronal nitric oxide synthase NG-Nitroarginine Methyl Ester - pharmacology nitric oxide Nitric Oxide - biosynthesis Nitric Oxide - metabolism Nitric Oxide Synthase - antagonists & inhibitors Nitric Oxide Synthase - metabolism Nuclear Proteins - metabolism Phosphorylation Protein Isoforms - metabolism proteins Proteins - metabolism Proto-Oncogene Proteins c-bcl-2 - metabolism Rats TOR Serine-Threonine Kinases Tumor Suppressor Proteins - metabolism |
Title | Complex Inhibitory Effects of Nitric Oxide on Autophagy |
URI | https://dx.doi.org/10.1016/j.molcel.2011.04.029 https://www.ncbi.nlm.nih.gov/pubmed/21726807 https://search.proquest.com/docview/875040189 https://pubmed.ncbi.nlm.nih.gov/PMC3149661 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcoaNJeprEvYAz5Ya9encSx3cdSgWAf5YF1qvZi2Y4NmboEjVaC_567fFQrQpq0x8S25Nz5zne5u98R8lHFTIigMzaCy46JzHk2UuDzuEwWaQEOiW7qK75N5dlMfJ7n8y0y6WthMK2y0_2tTm-0dfdm2FFzeFOWw0uMnaZK5gh6lik9GpAdxDKHo70zPv7x5es6mCDyphMezme4oK-ga9K8ftcLHxYdlqf4xBtb88kbahBt_ZQd-jid8q_76fQledEZlnTc7n2XbIXqFXnWtpq8f00UCv4i3NHz6rp0JYbWaYtcfEvrSKclIvXTi7uyCLSu6HiFgAP26v4NmZ2efJ-csa5pAvN5ni5ZImJEFLkkgCvgEj_ywSlutdcuplza3CdFofLEom8QiqSQ0oZUAM9y4SxI61uyXdVV2CNUeLBWoosCrDKshwPRtsr7NHLuZLRin7CeUOamxcYwfdLYL9MS1iBhDRcGCLtPVE9Ns8FjA-r7Hyv3gPjGXoHiM7PLFGHxGjQ6CUO054gBycBwh61Cvbo1GpHreaJhyruWQetdYlcuqbmCHW2wbj0BQbc3R6ryugHfzsClBJvm4L-_5T153v6XVozrQ7K9_LMKH8CwWbqj7uAekcH5_BieppP5xc8HToL2cw |
link.rule.ids | 230,314,780,784,885,3506,27569,27924,27925,45663,45874 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4qGovFX0CLa0PvbrrJI7tPW5R0VKW7QG24mbZjg2ptgmCXQn-fWfyWLEIqVKviS05M57xN5mZz4R8UTETIuiMDeGwYyJzng0VxDwuk0VaQECim_6K06kcz8SPi_xigxz2vTBYVtn5_tanN966ezLopDm4LsvBGeZOUyVzJD3LlB5ukm1AAxI2-_bo26-TySqZIPLmJjwcz3BC30HXlHn9qec-zDsuT_GVN1jzyRNqM9r6KRz6uJzywfl0tENedsCSjtq1vyIboXpNnrVXTd6_IQoNfx7u6HF1VboSU-u0ZS6-pXWk0xKZ-unPu7IItK7oaImEA_by_i2ZHX0_Pxyz7tIE5vM8XbBExIgsckmAUMAlfuiDU9xqr11MubS5T4pC5YnF2CAUSSGlDakAneXCWbDWd2SrqquwS6jwgFaiiwJQGfbDgWlb5X0aOXcyWrFHWC8oc91yY5i-aOy3aQVrULCGCwOC3SOql6ZZ07EB9_2PmbsgfGMvwfGZ2VmKtHgNG52EV7TXiAHLwHSHrUK9vDUamet5omHI-1ZBq1XirVxScwUrWlPdagCSbq-_qcqrhnw7g5ASMM3-f3_LZ_J8fH46MZPj6ckH8qL9R60Y1x_J1uJmGQ4A5Czcp24T_wVoG_af |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+Inhibitory+Effects+of+Nitric+Oxide+on+Autophagy&rft.jtitle=Molecular+cell&rft.au=Sarkar%2C+Sovan&rft.au=Korolchuk%2C+Viktor%C2%A0I.&rft.au=Renna%2C+Maurizio&rft.au=Imarisio%2C+Sara&rft.date=2011-07-08&rft.pub=Cell+Press&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=43&rft.issue=1&rft.spage=19&rft.epage=32&rft_id=info:doi/10.1016%2Fj.molcel.2011.04.029&rft_id=info%3Apmid%2F21726807&rft.externalDBID=PMC3149661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |