Calcium‐Dependent Dissociation of Synaptotagmin from Synaptic SNARE Complexes

: The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+‐dependent regulation of exocytosis. However, the subcellular compartm...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 74; no. 1; pp. 367 - 374
Main Authors Leveque, Christian, Boudier, Jeanne‐Andree, Takahashi, Masami, Seagar, Michael
Format Journal Article
LanguageEnglish
Published Oxford UK Blackwell Science Ltd 01.01.2000
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract : The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+‐dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca2+ influx remain obscure. Sodium dodecyl sulfate (SDS)‐resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [3H]GABA release and Ca2+‐dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca2+ (30‐300 μM) but not Sr2+ (1 mM); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v‐SNARE/t‐SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N‐ethylmaleimide‐sensitive fusion protein (NSF) was inhibited with N‐ethylmaleimide or adenosine 5′‐O‐(3‐thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca2+‐triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.
AbstractList The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+-dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca2+ influx remain obscure. Sodium dodecyl sulfate (SDS)-resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [3H]GABA release and Ca2+-dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca2+ (30-300 microM) but not Sr2+ (1 mM); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v-SNARE/t-SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N-ethylmaleimide-sensitive fusion protein (NSF) was inhibited with N-ethylmaleimide or adenosine 5'-O-(3-thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca2+ triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.
: The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca2+‐dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca2+ influx remain obscure. Sodium dodecyl sulfate (SDS)‐resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [3H]GABA release and Ca2+‐dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca2+ (30‐300 μM) but not Sr2+ (1 mM); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v‐SNARE/t‐SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N‐ethylmaleimide‐sensitive fusion protein (NSF) was inhibited with N‐ethylmaleimide or adenosine 5′‐O‐(3‐thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca2+‐triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.
The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca 2+ ‐dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca 2+ influx remain obscure. Sodium dodecyl sulfate (SDS)‐resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [ 3 H]GABA release and Ca 2+ ‐dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca 2+ (30‐300 μ M ) but not Sr 2+ (1 m M ); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v‐SNARE/t‐SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N ‐ethylmaleimide‐sensitive fusion protein (NSF) was inhibited with N ‐ethylmaleimide or adenosine 5′‐ O ‐(3‐thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca 2+ ‐triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.
The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of synaptotagmin I with this complex potentially provides a means of conferring Ca super(2+)-dependent regulation of exocytosis. However, the subcellular compartments in which interactions occur and their modulation by Ca super(2+) influx remain obscure. Sodium dodecyl sulfate (SDS)-resistant core complexes, associated with synaptotagmin I, were enriched in rat brain fractions containing plasma membranes and docked synaptic vesicles. Depolarization of synaptosomes triggered [ super(3)H]GABA release and Ca super(2+)-dependent dissociation of synaptotagmin from the core complex. In perforated synaptosomes, synaptotagmin dissociation was induced by Ca super(2+) (30-300 mu M) but not Sr super(2+) (1 mM); it apparently required intact membrane bilayers but did not result in disassembly of trimeric SNARE complexes. Synaptotagmin was not associated with unstable v-SNARE/t-SNARE complexes, present in fractions containing synaptic vesicles and cytoplasm. These complexes acquired SDS resistance when N-ethylmaleimide-sensitive fusion protein (NSF) was inhibited with N-ethylmaleimide or adenosine 5'-O-(3-thiotriphosphate), suggesting that constitutive SNARE complex disassembly occurs in undocked synaptic vesicles. Our findings are consistent with models in which the Ca super(2+)-triggered release of synaptotagmin precedes vesicle fusion. NSF may then dissociate ternary core complexes captured by endocytosis and recycle/prime individual SNARE proteins.
Author Leveque, Christian
Boudier, Jeanne‐Andree
Takahashi, Masami
Seagar, Michael
Author_xml – sequence: 1
  givenname: Christian
  surname: Leveque
  fullname: Leveque, Christian
– sequence: 2
  givenname: Jeanne‐Andree
  surname: Boudier
  fullname: Boudier, Jeanne‐Andree
– sequence: 3
  givenname: Masami
  surname: Takahashi
  fullname: Takahashi, Masami
– sequence: 4
  givenname: Michael
  surname: Seagar
  fullname: Seagar, Michael
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1243789$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10617141$$D View this record in MEDLINE/PubMed
BookMark eNqVkM1u1DAQgC1URLeFV0ARQtw2zPh3w62kLT-qWonC2fI6NvIqsUOcFbs3HqHPyJOQ1UbADXEazcw3P_rOyElM0RHyAqFE4PL1pkSucMlRVCUFgBIUByZVuXtEFr9bJ2QBQOmSAaen5CznDQBKLvEJOUWQqJDjgtzVprVh2_388XDpehcbF8fiMuScbDBjSLFIvrjfR9OPaTRfuxALP6RuLgVb3N9efLoq6tT1rdu5_JQ89qbN7tkcz8mX66vP9fvlzd27D_XFzdIKQdX0lGGWN0qhctY1UnhmpMS1wEqgUeBMBWAqZSVdUYprUL5ppDLCGfDeITsnr457-yF927o86i5k69rWRJe2WStYARPA_gmi4lxQlBP45gjaIeU8OK_7IXRm2GsEffCuN_ogVx_k6oN3PXvXu2n4-Xxlu-5c89foUfQEvJwBk61p_WCiDfkPRzlTq2rC3h6x76F1-__4QH-8reeE_QJkd6EY
CODEN JONRA9
CitedBy_id crossref_primary_10_1016_j_ab_2004_08_002
crossref_primary_10_1042_BJ20050583
crossref_primary_10_1016_j_bbamem_2006_12_008
crossref_primary_10_1046_j_1471_4159_2001_00168_x
crossref_primary_10_1016_S0959_4388_00_00214_2
crossref_primary_10_1091_mbc_e05_07_0620
crossref_primary_10_1523_JNEUROSCI_2545_04_2004
crossref_primary_10_1073_pnas_97_17_9695
crossref_primary_10_1242_jcs_00941
crossref_primary_10_1146_annurev_cellbio_19_110701_155609
crossref_primary_10_1073_pnas_201398798
crossref_primary_10_1096_fj_01_0157com
crossref_primary_10_1006_dbio_2001_0316
crossref_primary_10_1002_gene_10002
crossref_primary_10_1038_nrm855
crossref_primary_10_1083_jcb_151_2_439
crossref_primary_10_1242_jcs_115_3_667
crossref_primary_10_3390_cells12050750
crossref_primary_10_1002_jcp_10265
crossref_primary_10_1046_j_1471_4159_2001_00591_x
crossref_primary_10_1042_BJ20041818
crossref_primary_10_1016_S0006_3495_04_74302_7
crossref_primary_10_1042_BJ20050855
crossref_primary_10_1002_cne_1049
crossref_primary_10_1016_j_neulet_2006_06_029
crossref_primary_10_1016_j_mcn_2011_09_007
crossref_primary_10_1111_j_1474_9726_2012_00814_x
crossref_primary_10_1016_j_bbrc_2005_01_111
crossref_primary_10_1242_jcs_115_13_2791
crossref_primary_10_1007_s11068_008_9032_9
Cites_doi 10.1016/S0962-8924(00)89059-5
10.1016/0092-8674(93)90352-Q
10.1074/jbc.273.22.13995
10.1073/pnas.91.26.12942
10.1016/0092-8674(95)90239-2
10.1523/JNEUROSCI.17-05-01596.1997
10.1016/S0896-6273(00)80036-7
10.1074/jbc.271.3.1262
10.1016/0092-8674(93)90376-2
10.1073/pnas.94.12.6197
10.1016/S0092-8674(00)80727-8
10.1074/jbc.270.42.24898
10.1038/375645a0
10.1523/JNEUROSCI.18-19-07662.1998
10.1083/jcb.128.4.637
10.1093/emboj/16.15.4591
10.1002/j.1460-2075.1994.tb06834.x
10.1016/0896-6273(94)90415-4
10.1016/S0092-8674(00)81404-X
10.1016/0092-8674(94)90556-8
10.1016/S0896-6273(00)80171-3
10.1073/pnas.82.12.4137
10.1073/pnas.94.3.997
10.1016/S0092-8674(94)90442-1
10.1073/pnas.93.19.10471
10.1038/26412
10.1016/S0896-6273(00)80549-8
10.1002/j.1460-2075.1995.tb00152.x
10.1038/1799
10.1016/S0959-4388(97)80057-8
10.1016/S0896-6273(00)80522-X
10.1016/S0960-9822(98)70297-0
10.1016/0896-6273(89)90240-7
10.1126/science.1589771
10.1038/362318a0
10.1038/375594a0
10.1006/bbrc.1998.8527
10.1016/0896-6273(94)90342-5
10.1074/jbc.270.40.23667
10.1126/science.272.5259.227
10.1038/5673
10.1038/371513a0
10.1016/0092-8674(93)90733-7
10.1074/jbc.271.12.6567
10.1073/pnas.91.23.10888
10.1016/0006-8993(81)91086-6
10.1016/0092-8674(94)90352-2
ContentType Journal Article
Copyright 2000 INIST-CNRS
Copyright_xml – notice: 2000 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
7X8
DOI 10.1046/j.1471-4159.2000.0740367.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 374
ExternalDocumentID 10_1046_j_1471_4159_2000_0740367_x
10617141
1243789
JNC0740367
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
08R
AAJUZ
AAVGM
ABCVL
ABFLS
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
ADGIM
AFVGU
AGJLS
IQODW
PQEST
UMP
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
7X8
ID FETCH-LOGICAL-c5527-30a3c4d7717eced65f3a661b51951a70ea900a97c628221b07fdd67a5ea0ffe13
IEDL.DBID DR2
ISSN 0022-3042
IngestDate Fri Aug 16 02:12:11 EDT 2024
Sat Aug 17 02:23:13 EDT 2024
Fri Aug 23 00:30:03 EDT 2024
Sat Sep 28 08:40:05 EDT 2024
Fri Nov 25 01:04:34 EST 2022
Sat Aug 24 01:00:42 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vertebrata
Synaptosome
Mammalia
Calcium
Rat
Synaptic transmission
Rodentia
Synaptic vesicle
Molecular complex
Synaptotagmin
Exocytosis
In vitro
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5527-30a3c4d7717eced65f3a661b51951a70ea900a97c628221b07fdd67a5ea0ffe13
Notes ATPγS, adenosine 5
(3‐thiotriphosphate); BSA, bovine serum albumin; MBP‐syt I, synaptotagmin I fused to maltose binding protein; NEM
ethylmaleimide; NSF, NEM‐sensitive fusion protein; PAGE, polyacrylamide gel electrophoresis; SDS, sodium dodecyl sulfate; SNAP, soluble NSF attachment protein; SNAP‐25, synaptosomal‐associated protein of 25 kDa; SNARE, soluble NSF attachment protein receptor; VAMP, vesicle‐associated membrane protein.
N
Abbreviations used
O
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://doi.org/10.1046/j.1471-4159.2000.0740367.x
PMID 10617141
PQID 17445216
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_70803503
proquest_miscellaneous_17445216
crossref_primary_10_1046_j_1471_4159_2000_0740367_x
pubmed_primary_10617141
pascalfrancis_primary_1243789
wiley_primary_10_1046_j_1471_4159_2000_0740367_x_JNC0740367
PublicationCentury 2000
PublicationDate January 2000
2000
2000-Jan
2000-01-00
20000101
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – month: 01
  year: 2000
  text: January 2000
PublicationDecade 2000
PublicationPlace Oxford UK
PublicationPlace_xml – name: Oxford UK
– name: Oxford
– name: England
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2000
Publisher Blackwell Science Ltd
Blackwell
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell
References 1989; 3
1995a; 375
1993b; 75
1996; 17
1995; 14
1994; 371
1996; 93
1981; 226
1999; 2
1985; 82
1995; 375
1996; 16
1998; 21
1995; 270
1995; 5
1997; 7
1998; 395
1998; 273
1998; 18
1995; 83
1997; 94
1993; 73
1995b; 270
1993a; 362
1992; 256
1993; 74
1994; 12
1996; 272
1995; 128
1994; 78
1996; 271
1997; 17
1997; 16
1994; 79
1994; 13
1999; 97
1998; 92
1998; 248
1994; 91
1998; 5
1994; 76
1998; 8
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
Hao J.C. (e_1_2_7_14_2) 1997; 17
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
Reist N.E. (e_1_2_7_34_2) 1998; 18
e_1_2_7_15_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_45_2
e_1_2_7_46_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – volume: 5
  start-page: 335
  year: 1995
  end-page: 339
  article-title: Is NSF a fusion protein?
  publication-title: Trends Cell Biol.
– volume: 270
  start-page: 23667
  year: 1995
  end-page: 23671
  article-title: Ca regulates the interaction between synaptotagmin and syntaxin 1.
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: 10471
  year: 1996
  end-page: 10476
  article-title: SNAP‐25 and synaptotagmin involvement in the final Ca ‐dependent triggering of neurotransmitter exocytosis.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 362
  start-page: 318
  year: 1993a
  end-page: 324
  article-title: SNAP receptors implicated in vesicle targeting and fusion.
  publication-title: Nature
– volume: 271
  start-page: 1262
  year: 1996
  end-page: 1265
  article-title: Distinct Ca ‐dependent properties of the first and second C2‐domains of synaptotagmin I.
  publication-title: J. Biol. Chem.
– volume: 371
  start-page: 513
  year: 1994
  end-page: 515
  article-title: Calcium dependence of the rate of exocytosis in a synaptic terminal.
  publication-title: Nature
– volume: 16
  start-page: 195
  year: 1996
  end-page: 205
  article-title: Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis in adrenal chromaffin cells.
  publication-title: Neuron
– volume: 91
  start-page: 12942
  year: 1994
  end-page: 12946
  article-title: Two components of transmitter release at a central synapse.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 128
  start-page: 637
  year: 1995
  end-page: 645
  article-title: The t‐SNAREs syntaxin 1 and SNAP‐25 are present on organelles that participate in synaptic vesicle recycling.
  publication-title: J. Cell Biol.
– volume: 12
  start-page: 909
  year: 1994
  end-page: 920
  article-title: The effect on synaptic physiology of synaptotagmin mutations in
  publication-title: Drosophila. Neuron
– volume: 94
  start-page: 997
  year: 1997
  end-page: 1001
  article-title: Binding of the synaptic vesicle v‐SNARE synaptotagmin to the plasma membrane t‐SNARE can explain docked vesicles at neurotoxin‐treated synapses.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 7662
  year: 1998
  end-page: 7673
  article-title: Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of
  publication-title: Drosophila. J. Neurosci.
– volume: 226
  start-page: 107
  year: 1981
  end-page: 118
  article-title: A rapid method for preparing synaptosomes: a comparison with alternative procedures.
  publication-title: Brain Res.
– volume: 13
  start-page: 5051
  year: 1994
  end-page: 5061
  article-title: Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly.
  publication-title: EMBO J.
– volume: 271
  start-page: 6567
  year: 1996
  end-page: 6570
  article-title: Interaction of SNARE complexes with P/Q‐type Ca channels in rat cerebellar synaptosomes.
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 740
  year: 1998
  end-page: 749
  article-title: Ca triggers calcineurin‐dependent synaptic vesicle recycling in mammalian nerve terminals.
  publication-title: Curr. Biol.
– volume: 375
  start-page: 645
  year: 1995
  end-page: 653
  article-title: The synaptic vesicle cycle: a cascade of protein‐protein interactions.
  publication-title: Nature
– volume: 17
  start-page: 379
  year: 1996
  end-page: 388
  article-title: Synaptotagmins: C ‐domain proteins that regulate membrane traffic.
  publication-title: Neuron
– volume: 75
  start-page: 409
  year: 1993b
  end-page: 418
  article-title: A protein assembly‐disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.
  publication-title: Cell
– volume: 256
  start-page: 1021
  year: 1992
  end-page: 1025
  article-title: Synaptotagmin: a Ca sensor on the synaptic vesicle surface.
  publication-title: Science
– volume: 273
  start-page: 13995
  year: 1998
  end-page: 14001
  article-title: Direct interaction of a Ca ‐ binding loop of synaptotagmin with lipid bilayers.
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 715
  year: 1989
  end-page: 720
  article-title: Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate.
  publication-title: Neuron
– volume: 17
  start-page: 1596
  year: 1997
  end-page: 1603
  article-title: Effects of mutations in vesicle‐associated membrane protein (VAMP) on the assembly of multimeric protein complexes.
  publication-title: J. Neurosci
– volume: 2
  start-page: 119
  year: 1999
  end-page: 124
  article-title: Snapin: a SNARE‐associated protein implicated in synaptic transmission.
  publication-title: Nat. Neurosci.
– volume: 5
  start-page: 765
  year: 1998
  end-page: 769
  article-title: The synaptic SNARE complex is a parallel four‐stranded helical bundle.
  publication-title: Nat. Struct. Biol.
– volume: 248
  start-page: 1
  year: 1998
  end-page: 8
  article-title: Synaptotagmins: more isoforms than functions?
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 94
  start-page: 6197
  year: 1997
  end-page: 6201
  article-title: Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP‐25 in the membrane of synaptic vesicles.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 74
  start-page: 1125
  year: 1993
  end-page: 1134
  article-title: Mutational analysis of synaptotagmin demonstrates its essential role in Ca ‐activated neurotransmitter release.
  publication-title: Cell
– volume: 91
  start-page: 10888
  year: 1994
  end-page: 10892
  article-title: Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in synaptotagmin mutants.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 272
  start-page: 227
  year: 1996
  end-page: 234
  article-title: Protein sorting by transport vesicles.
  publication-title: Science
– volume: 78
  start-page: 751
  year: 1994
  end-page: 760
  article-title: Synaptotagmin‐I is a high affinity receptor for clathrin‐AP2: implications for membrane recycling.
  publication-title: Cell
– volume: 395
  start-page: 347
  year: 1998
  end-page: 353
  article-title: Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution.
  publication-title: Nature
– volume: 97
  start-page: 165
  year: 1999
  end-page: 174
  article-title: SNARE complex formation is triggered by Ca and drives membrane fusion.
  publication-title: Cell
– volume: 76
  start-page: 785
  year: 1994
  end-page: 787
  article-title: Synaptic vesicle exocytosis: molecules and models.
  publication-title: Cell
– volume: 13
  start-page: 1281
  year: 1994
  end-page: 1291
  article-title: Functional properties of multiple synaptotagmins in brain.
  publication-title: Neuron
– volume: 21
  start-page: 401
  year: 1998
  end-page: 413
  article-title: Temperature‐sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly.
  publication-title: Neuron
– volume: 82
  start-page: 4137
  year: 1985
  end-page: 4141
  article-title: A 38,000‐dalton membrane protein (p38) present in synaptic vesicles.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 73
  start-page: 1247
  year: 1993
  end-page: 1249
  article-title: Synaptotagmin: a Ca ‐sensitive inhibitor of exocytosis?
  publication-title: Cell
– volume: 83
  start-page: 111
  year: 1995
  end-page: 119
  article-title: Complexins: cytosolic proteins that regulate SNAP receptor function.
  publication-title: Cell
– volume: 79
  start-page: 717
  year: 1994
  end-page: 727
  article-title: Synaptotagmin I: a major Ca sensor for transmitter release at a central synapse.
  publication-title: Cell
– volume: 7
  start-page: 310
  year: 1997
  end-page: 315
  article-title: Neurotransmitter release—four years of SNARE complexes.
  publication-title: Curr. Opin. Neurobiol.
– volume: 21
  start-page: 147
  year: 1998
  end-page: 154
  article-title: Differential regulation of exocytosis by Ca and CAPS in semi‐intact synaptosomes.
  publication-title: Neuron
– volume: 375
  start-page: 594
  year: 1995a
  end-page: 599
  article-title: Ca ‐dependent and ‐independent activities of neural synaptotagmins.
  publication-title: Nature
– volume: 270
  start-page: 24898
  year: 1995b
  end-page: 24902
  article-title: Distinct Ca and Sr binding properties of synaptotagmins.
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 4705
  year: 1995
  end-page: 4713
  article-title: Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion.
  publication-title: EMBO J.
– volume: 92
  start-page: 759
  year: 1998
  end-page: 772
  article-title: SNARE‐pins: minimal machinery for membrane fusion.
  publication-title: Cell
– volume: 16
  start-page: 4591
  year: 1997
  end-page: 4596
  article-title: Direct interaction of the Ca sensor protein synaptotagmin I with a cytoplasmic domain of the alpha A subunit of the P/Q‐type Ca channel.
  publication-title: EMBO J.
– ident: e_1_2_7_28_2
  doi: 10.1016/S0962-8924(00)89059-5
– ident: e_1_2_7_33_2
  doi: 10.1016/0092-8674(93)90352-Q
– ident: e_1_2_7_5_2
  doi: 10.1074/jbc.273.22.13995
– ident: e_1_2_7_12_2
  doi: 10.1073/pnas.91.26.12942
– ident: e_1_2_7_26_2
  doi: 10.1016/0092-8674(95)90239-2
– volume: 17
  start-page: 1596
  year: 1997
  ident: e_1_2_7_14_2
  article-title: Effects of mutations in vesicle‐associated membrane protein (VAMP) on the assembly of multimeric protein complexes.
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.17-05-01596.1997
  contributor:
    fullname: Hao J.C.
– ident: e_1_2_7_2_2
  doi: 10.1016/S0896-6273(00)80036-7
– ident: e_1_2_7_42_2
  doi: 10.1074/jbc.271.3.1262
– ident: e_1_2_7_39_2
  doi: 10.1016/0092-8674(93)90376-2
– ident: e_1_2_7_30_2
  doi: 10.1073/pnas.94.12.6197
– ident: e_1_2_7_8_2
  doi: 10.1016/S0092-8674(00)80727-8
– ident: e_1_2_7_20_2
  doi: 10.1074/jbc.270.42.24898
– ident: e_1_2_7_40_2
  doi: 10.1038/375645a0
– volume: 18
  start-page: 7662
  year: 1998
  ident: e_1_2_7_34_2
  article-title: Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of
  publication-title: Drosophila. J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-19-07662.1998
  contributor:
    fullname: Reist N.E.
– ident: e_1_2_7_46_2
  doi: 10.1083/jcb.128.4.637
– ident: e_1_2_7_7_2
  doi: 10.1093/emboj/16.15.4591
– ident: e_1_2_7_15_2
  doi: 10.1002/j.1460-2075.1994.tb06834.x
– ident: e_1_2_7_45_2
  doi: 10.1016/0896-6273(94)90415-4
– ident: e_1_2_7_47_2
  doi: 10.1016/S0092-8674(00)81404-X
– ident: e_1_2_7_11_2
  doi: 10.1016/0092-8674(94)90556-8
– ident: e_1_2_7_41_2
  doi: 10.1016/S0896-6273(00)80171-3
– ident: e_1_2_7_18_2
  doi: 10.1073/pnas.82.12.4137
– ident: e_1_2_7_36_2
  doi: 10.1073/pnas.94.3.997
– ident: e_1_2_7_48_2
  doi: 10.1016/S0092-8674(94)90442-1
– ident: e_1_2_7_27_2
  doi: 10.1073/pnas.93.19.10471
– ident: e_1_2_7_43_2
  doi: 10.1038/26412
– ident: e_1_2_7_23_2
  doi: 10.1016/S0896-6273(00)80549-8
– ident: e_1_2_7_31_2
  doi: 10.1002/j.1460-2075.1995.tb00152.x
– ident: e_1_2_7_32_2
  doi: 10.1038/1799
– ident: e_1_2_7_13_2
  doi: 10.1016/S0959-4388(97)80057-8
– ident: e_1_2_7_44_2
  doi: 10.1016/S0896-6273(00)80522-X
– ident: e_1_2_7_24_2
  doi: 10.1016/S0960-9822(98)70297-0
– ident: e_1_2_7_4_2
  doi: 10.1016/0896-6273(89)90240-7
– ident: e_1_2_7_3_2
  doi: 10.1126/science.1589771
– ident: e_1_2_7_38_2
  doi: 10.1038/362318a0
– ident: e_1_2_7_19_2
  doi: 10.1038/375594a0
– ident: e_1_2_7_37_2
  doi: 10.1006/bbrc.1998.8527
– ident: e_1_2_7_9_2
  doi: 10.1016/0896-6273(94)90342-5
– ident: e_1_2_7_6_2
  doi: 10.1074/jbc.270.40.23667
– ident: e_1_2_7_35_2
  doi: 10.1126/science.272.5259.227
– ident: e_1_2_7_17_2
  doi: 10.1038/5673
– ident: e_1_2_7_16_2
  doi: 10.1038/371513a0
– ident: e_1_2_7_21_2
  doi: 10.1016/0092-8674(93)90733-7
– ident: e_1_2_7_25_2
  doi: 10.1074/jbc.271.12.6567
– ident: e_1_2_7_22_2
  doi: 10.1073/pnas.91.23.10888
– ident: e_1_2_7_10_2
  doi: 10.1016/0006-8993(81)91086-6
– ident: e_1_2_7_29_2
  doi: 10.1016/0092-8674(94)90352-2
SSID ssj0016461
Score 1.8280584
Snippet : The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of...
The formation of the synaptic core (SNARE) complex constitutes a crucial step in synaptic vesicle fusion at the nerve terminal. The interaction of...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 367
SubjectTerms Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - pharmacology
Animals
Biological and medical sciences
Brain - drug effects
Brain - metabolism
Calcium - physiology
Calcium-Binding Proteins
Carrier Proteins - antagonists & inhibitors
Cell Membrane - metabolism
Cell physiology
Drug Resistance
Endocytosis
Ethylmaleimide - pharmacology
Exocytosis
Exocytosis - physiology
Fundamental and applied biological sciences. Psychology
Membrane Glycoproteins - metabolism
Membrane Proteins - metabolism
Molecular and cellular biology
N-Ethylmaleimide-Sensitive Proteins
Nerve Tissue Proteins - metabolism
N‐Ethylmaleimide‐sensitive fusion protein
Rats
SNARE complex
SNARE Proteins
Sodium Dodecyl Sulfate - pharmacology
Synapses - metabolism
Synaptic vesicle
Synaptic Vesicles - metabolism
Synaptosomal‐associated protein of 25 kDa
Synaptotagmin I
Synaptotagmins
Syntaxin
Vesicle‐associated membrane protein
Vesicular Transport Proteins
Title Calcium‐Dependent Dissociation of Synaptotagmin from Synaptic SNARE Complexes
URI https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1471-4159.2000.0740367.x
https://www.ncbi.nlm.nih.gov/pubmed/10617141
https://search.proquest.com/docview/17445216
https://search.proquest.com/docview/70803503
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hXkBCFFp-AhR8QNyysjdOnKin1bZVVYlFaqnUW2Q7trSim12xWantiUfgGXmSzjjJlkXlgOCYKI7sscfzjcfzDcAHOxSmEM7H0uZpLLOcx4XlaWyM0JL7VGpP-c6fJtnxuTy5SC-69GjKhWn5IdYHbqQZYb8mBdemrULCA7stKblC_wftccg3GaAxxO1YDQhRErMeIaTTNZcU8WiJNXU4LtWegbQLcd7_qw1r9Xihlyg431a8uA-SbiLcYKKOtmHWD669mfJ1sGrMwN78xvv4v0b_FJ50WJaN2sX3DB64egd2RzX68bNr9pGF26Xh2H4HHo77ynK78HmsL-10Nfv5_cdBV4O3YQfTu4XC5p6dXdd60VDQbDatGWXBdK-mlp1NRqeHjLayS3flls_h_Ojwy_g47go7xJYI31D8OrGyUuhKOuuqLPWJRpxgiOlGaMWdLjjXhbIZXXIVhitfVZnSqdPceyeSF7BVz2v3ChiiUTvEDwqlC1nlMk-VKYyqvBuaXMgqgqSfwHLR8neUIe4us-D3KFGSDKkaJy87GZZXEextzPVdU-JvzIsI3vdzX6LsKMaiazdfLUt08CQiouzPXyjE6EnKkwhetovml35lVI5eRLAfpv4vOlyeTMbdw-t_av0GHrVkA3TI9Ba2mm8rt4ewqzHvgjrdAqY_HEI
link.rule.ids 315,786,790,1382,4043,27954,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxEB5V5VAkRKGFsoVSHxC3DXbWXu-KU5S0CqUJUn-k3la215Yimk1ENlLLiUfgGXkSxvuTElQOCI67Wq_s8Yz9jcfzDcAb02U6ZdaF3CQi5HFCw9RQEWrNFKdOcOV8vvNoHA8v-cmVuNqAUZsLU_NDrA7cvGVU67U3cH8g_a4JSzZWLtEBwg25Sjjp4G6I67HsIKR8gPYvvJ0OzlZsUp5Ji63Iw1FZWw7SJsh5_7_W9qtHc7VA0bm65sV9oHQd41ab1PE2FO3w6rspnzvLUnfM19-YH__b-J_A4wbOkl6tf09hwxY7sNsr0JWf3pK3pLpgWp3c78BWvy0utwuf-uraTJbTH9--D5oyvCUZTO50hcwcOb8t1Lz0cbPppCA-EaZ5NTHkfNw7OyJ-Nbu2N3bxDC6Pjy76w7Cp7RAaz_mG8leR4blEb9Iam8fCRQqhgvZkN0xJalVKqUqlif09V6apdHkeSyWsos5ZFj2HzWJW2BdAEJCaLn6QSpXyPOGJkDrVMne2qxPG8wCidgazeU3hkVWhdx5Xro9kmZehL8hJs0aG2U0AB2uTfdfUUzgmaQCH7eRnKDsfZlGFnS0XGfp4HEFR_OcvJML0SNAogL1aa37pV-wr0rMA3ldz_xcdzk7G_eZh_59aH8LW8GJ0mp1-GH98CQ9r7gF_5vQKNssvS3uAKKzUryvb-gmD2yBi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-hIQES4s_GnwBjfkC8pdiNYyfiqWpXjQEFbUzam2U7tlSxphVNpY0nPgKfkU-C7TgdReMBwWOiOLLPPt_vfL7fAbzQfaJKYmxKdZGnlBU4LTXOU6WIpNjmVFqf7_x-wg5O6OFpfhrTo30uTMsPsT5w85oR9muv4IvKvopRyajk3Pk_zh6HfJOeM4ZuO-Y9hyivU5b1vSs2OlqTSXkiLbLmDndrtaMgjTHOq_-1Ya5uL-TSSc62JS-uwqSbEDfYqPFdmHWja6-mfO6tGtXTX38jfvxfw78HdyKYRYN29d2Ha6behp1B7Rz52QV6icL10nBuvw03h11puR34MJRnerqa_fj2fRSL8DZoNL1cKWhu0fFFLReNj5rNpjXyaTDx1VSj48ngaB_5vezMnJvlAzgZ738aHqSxskOqPeObE7_MNK248yWNNhXLbSYdUFCe6oZIjo0sMZYl18zfciUKc1tVjMvcSGytIdlD2KrntXkMyMFR3XcflFyWtCpokXNVKl5Z01cFoVUCWTeBYtESeIgQeKcsOD6cCC9DX44TiyhDcZ7A7sZcXzb1BI5FmcBeN_fCyc4HWWRt5qulcB4edZCI_fkL7kB6luMsgUftovmlX8zXoycJvA5T_xcdFoeTYXx48k-t9-DGx9FYvHszefsUbrXEA_7A6RlsNV9WZtdBsEY9D5r1E_SxHxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium-dependent+dissociation+of+synaptotagmin+from+synaptic+SNARE+complexes&rft.jtitle=Journal+of+neurochemistry&rft.au=LEVEQUE%2C+C&rft.au=BOUDIER%2C+J.-A&rft.au=TAKAHASHI%2C+M&rft.au=SEAGAR%2C+M&rft.date=2000&rft.pub=Blackwell&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=74&rft.issue=1&rft.spage=367&rft.epage=374&rft_id=info:doi/10.1046%2Fj.1471-4159.2000.0740367.x&rft.externalDBID=n%2Fa&rft.externalDocID=1243789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon