Application of 'delete = replace' to deletion diagnostics for variance component estimation in the linear mixed model

'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series B, Statistical methodology Vol. 66; no. 1; pp. 131 - 143
Main Authors Haslett, John, Dillane, Dominic
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing 01.02.2004
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
SeriesJournal of the Royal Statistical Society Series B
Subjects
Online AccessGet full text
ISSN1369-7412
1467-9868
DOI10.1046/j.1369-7412.2003.05211.x

Cover

Loading…
Abstract 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual.
AbstractList ‘Delete = replace’ is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by‐product of the fitting process. We illustrate the effect of the deletion of individual observations, of ‘subjects’ and of arbitrary subsets. Central to the identity and its application is the conditional residual.
'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual.
'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. Reprinted by permission of Blackwell Publishers
'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. [PUBLICATION ABSTRACT]
'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. Copyright 2004 Royal Statistical Society.
Author Haslett, John
Dillane, Dominic
Author_xml – sequence: 1
  givenname: John
  surname: Haslett
  fullname: Haslett, John
– sequence: 2
  givenname: Dominic
  surname: Dillane
  fullname: Dillane, Dominic
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15517411$$DView record in Pascal Francis
http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131-143.htm$$DView record in RePEc
BookMark eNqNUk1v1DAQjVCRaAv_gIOFBD1lseOv5FCkUmABVSC1II6W43WoQxKntrfs_nsmm7JIvdBIk7E87z2Px-8oOxj8YLMMEbwgmInX7YJQUeWSkWJRYEwXmBeELDaPskPChMyrUpQHsP4LepIdxdhi-ISkh9n6bBw7Z3RyfkC-QScr29lk0SkKduy0sScoebTbnBArp38OPiZnImp8QLc6OD0Yi4zvR2hsSMhCtZ_13IDStUWdG6wOqHcbu0K9B7Gn2eNGd9E-u8vH2fcP77-df8wvvi4_nZ9d5IbzQuRGN1w0oqA1FjVtqBGElg00bhqiudasqCtaCM41JthIWclVhQWv5aoWrKaUHmevZt0x-Js1dKZ6F43tOj1Yv46KypKxUkzAF_eArV-HAXpTMNSqYBKX_wGVgmCOAfR5BsH8rFFjgGGErao73foQY61uFdVCwG8LATwGyUEQiHHKlCjCqLpOPYi9vDtRR6O7JsCsXdyLEs4JvCkBXDnjTPAxBtv8g2A12US1anKAmhwwNUvVziZqA9Q396jGpd3zpaBd9xCB01ngt-vs9sEHq8urq7eMCuA_n_ltTD7s-VQwKeh0tXwuu5jsZl_W4ZcCA0uufnxZqktRvJNLUaor-gfn5u9D
CitedBy_id crossref_primary_10_1016_j_csda_2005_11_009
crossref_primary_10_1002_sim_6810
crossref_primary_10_1080_03610926_2014_980517
crossref_primary_10_1016_j_csda_2011_11_006
crossref_primary_10_3103_S1066530715010020
crossref_primary_10_1002_cjs_5550360206
crossref_primary_10_1214_07_BA217
crossref_primary_10_1016_j_jspi_2008_01_004
crossref_primary_10_1016_j_spasta_2018_07_007
crossref_primary_10_1080_02664763_2015_1072140
crossref_primary_10_1155_2014_396875
crossref_primary_10_1016_j_csda_2015_10_003
crossref_primary_10_1016_j_csda_2010_03_019
crossref_primary_10_1007_s11222_007_9031_1
crossref_primary_10_1016_j_jmva_2008_01_023
crossref_primary_10_1016_j_jmva_2009_06_008
crossref_primary_10_1111_j_1751_5823_2006_00001_x
crossref_primary_10_1080_00401706_2013_810173
crossref_primary_10_1080_03610920701713229
crossref_primary_10_1111_j_1467_842X_2009_00565_x
crossref_primary_10_1007_s42519_023_00363_2
crossref_primary_10_1111_sjos_12090
crossref_primary_10_1016_j_csda_2011_07_002
crossref_primary_10_1007_s11222_016_9626_5
crossref_primary_10_1002_wics_1238
crossref_primary_10_1080_03610918_2021_1926502
Cites_doi 10.1111/1467-9868.00195
10.1016/S0024-3795(97)10047-7
10.1111/1467-9884.00277
10.1111/1467-9868.00287
10.1080/03610929808832267
10.1080/00031305.1997.10473581
10.1111/j.0006-341X.2001.01166.x
10.1007/978-1-4757-2477-6
10.1214/aos/1176347130
10.1080/01621459.1997.10474055
10.2307/3109764
10.1080/00401706.1977.10489493
10.1002/sim.4780110210
10.1080/00031305.1999.10474493
10.1002/9780470316856
10.1111/1467-9868.00119
10.1111/j.2517-6161.1986.tb01398.x
10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7
10.1016/0167-9473(94)00043-I
10.1111/1467-985X.00201
10.1007/978-1-4757-2719-7
10.1080/03610929208830840
10.1111/1467-9868.00137
10.2307/1269550
10.1039/an9871200679
ContentType Journal Article
Copyright Copyright 2004 The Royal Statistical Society
2004 INIST-CNRS
2004 Royal Statistical Society
Copyright_xml – notice: Copyright 2004 The Royal Statistical Society
– notice: 2004 INIST-CNRS
– notice: 2004 Royal Statistical Society
DBID BSCLL
AAYXX
CITATION
IQODW
DKI
X2L
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1046/j.1369-7412.2003.05211.x
DatabaseName Istex
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9868
EndPage 143
ExternalDocumentID 743223091
923773221
blajorssb_v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131_143_htm
15517411
10_1046_j_1369_7412_2003_05211_x
RSSB436
3647631
ark_67375_WNG_R62D7G68_S
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPTD
ABPVW
ABWST
ABXSQ
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFXHP
AFZJQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
O66
O9-
OIG
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
AANHP
AAPXW
AAWIL
ABAWQ
ABDFA
ABPQP
ACHJO
ACRPL
ACYXJ
ADNMO
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
NU-
AAYXX
CITATION
IQODW
02
08R
0R
31
3N
4S
8RP
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AFXKK
AGJLS
AIHXQ
AS
BFHJK
DKI
EFSUC
GA
HZ
IA
IPNFZ
KM
MEWTI
NF
P4A
PQEST
RIG
WRC
WT
X
X2L
XHC
Y3
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5526-caf56f623b06b3f3c6138f067cf1a5aa42b932655a010c7797d9065b7db64b333
IEDL.DBID DR2
ISSN 1369-7412
IngestDate Thu Jul 10 23:16:33 EDT 2025
Wed Aug 13 08:40:31 EDT 2025
Wed Aug 13 07:04:52 EDT 2025
Wed Aug 18 03:51:57 EDT 2021
Mon Jul 21 09:18:57 EDT 2025
Tue Jul 01 03:43:01 EDT 2025
Thu Apr 24 22:50:34 EDT 2025
Wed Jan 22 16:42:53 EST 2025
Thu Jul 03 21:13:52 EDT 2025
Wed Oct 30 09:49:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Statistical method
Conditional distribution
Fitting
Variance estimation
Mixed model
Linear estimation
Maximum likelihood
Regression residual
Variance analysis
Variance component
Linear model
Variance
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5526-caf56f623b06b3f3c6138f067cf1a5aa42b932655a010c7797d9065b7db64b333
Notes ArticleID:RSSB436
ark:/67375/WNG-R62D7G68-S
istex:6836DD43D1EF73B5865D56BA5196F5C81BE22CF1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 200861050
PQPubID 39359
PageCount 13
ParticipantIDs proquest_miscellaneous_37844863
proquest_journals_200924708
proquest_journals_200861050
repec_primary_blajorssb_v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131_143_htm
pascalfrancis_primary_15517411
crossref_primary_10_1046_j_1369_7412_2003_05211_x
crossref_citationtrail_10_1046_j_1369_7412_2003_05211_x
wiley_primary_10_1046_j_1369_7412_2003_05211_x_RSSB436
jstor_primary_3647631
istex_primary_ark_67375_WNG_R62D7G68_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2004
PublicationDateYYYYMMDD 2004-02-01
PublicationDate_xml – month: 02
  year: 2004
  text: February 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationSeriesTitle Journal of the Royal Statistical Society Series B
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2004
Publisher Blackwell Publishing
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
Publisher_xml – name: Blackwell Publishing
– name: Blackwell Publishers
– name: Blackwell
– name: Royal Statistical Society
– name: Oxford University Press
References Lesaffre, E. and Verbeke, G. (1998) Local influence in linear mixed models. Biometrics, 54, 570-582.
Banerjee, M. and Frees, E. W. (1997) Influence diagnostics for linear longitudinal models. J. Am. Statist. Ass., 92, 999-1005.
Wagner, J. R. and Thaggard, N. A. (1979) Gas-liquid chromotographic determination of nicotine contained on cambridge filter pads. J. Ass. Off. Anal. Chem., 62, 229-236.
Cook, R. D. (1977) Detection of influential observations in linear regression. Technometrics, 19, 15-18.
Critchley, F., Atkinson, R. A., Lu, G. and Biazi, E. (2001) Influence analysis based on the case sensitivity function. J. R. Statist. Soc. B, 63, 307-323.
Ouwens, M. J. N. M., Tan, F. E. S. and Berger, M. P. F. (2001) Local influence to detect influential data structures for generalized linear mixed models. Biometrics, 57, 1166-1172.
Oman, S. D. (1995) Checking the assumptions in mixed-model analysis of variance: a residual analysis approach. Comput. Statist. Data Anal., 20, 309-330.
Doganskoy, N. and Balakrishnan, N. (1997) A useful property of best linear unbiased predictors with application to life testing. Am. Statistn, 51, 22-28.
Venables, W. N. and Ripley B. D. (1997) Modern Applied Statistics with S-PLUS, 2nd edn. New York: Springer.
Jammalamadaka, S. R. and Sengupta, D. (1999) Changes in the general linear models: a unified approach. Lin. Alg. Appl., 289, 225-242.
Haslett, J. (1999) A simple derivation of deletion diagnostic results for the general linear model with correlated errors. J. R. Statist. Soc. B, 61, 603-609.
Longford, N. T. (2001) Simulation-based diagnostics in random-coefficient models. J. R. Statist. Soc. A, 164, 259-273.
Christensen, R. (1996) Plane Answers to Complex Questions. Berlin: Springer.
Molenberghs, G. and Verbeke, G. (eds) (1997) Linear Mixed Models in Practice: a SAS-oriented Approach. Berlin: Springer.
Tan, F. E. S., Ouwens, M. J. N. and Berger, M. P. F. (2001) Detection of influential observations in longitudinal mixed effects regression models. Statistician, 50, 271-284.
Lesaffre, E., Asefa, M. and Verbeke, G. (1999) Assessing the goodness-of-fit of the Laird and Ware model-an example: the Jimma infant survival differential longitudinal study. Statist. Med., 18, 835-854.
Martin, R. J. (1992) Leverage, influence and residuals in regression models when observations are correlated. Communs Statist. Theory Meth., 21, 1183-1212.
Haslett, J. and Hayes, K. (1998) Residuals for the linear model with general covariance structure. J. R. Statist. Soc. B, 60, 201-215.
Carter, R. L., Resnick, M. B., Ariet, M., Shieh, G. and Vonesh, E. F. (1992) A random coefficient growth curve analysis of mental development in low-birth-weight infants. Statist. Med., 11, 243-256.
Goldstein, H. (1995) Multilevel Statistical Models. London: Arnold.
Lange, N. and Ryan, L. (1989) Assessing normality in random effects models. Ann. Statist., 17, 624-642.
Atkinson, A. C. (1998) Discussion on 'Some algebra and geometry for hierarchical models, applied to diagnostics' (by J. S. Hodges). J. R. Statist. Soc. B, 60, 521-523.
Christensen, R., Pearson, L. M. and Johnson, W. (1992) Case-deletion diagnostics for mixed models. Technometrics, 34, 38-45.
Cook, R. D. (1986) Assessment of local influence (with discussion). J. R. Statist. Soc. B, 48, 133-169.
Bryk, A. S. and Raudenbush, S. W. (1992) Advanced Qualitative Techniques in the Social Sciences, vol. 1, Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park: Sage.
Hayes, K. and Haslett, J. (1999) Simplifying general least squares. Am. Statistn, 53, 376-381.
McCulloch, C. E. and Searle, S. R. (2001) Generalized, Linear and Mixed Models. New York: Wiley.
Banerjee, M. (1998) Cook's distance in linear longitudinal models. Communs Statist. Theory Meth., 27, 2973-2983.
Hodges, J. S. (1998) Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion). J. R. Statist. Soc. B, 60, 497-536.
Analytical Methods Committee (1987) Recommendations for the conduct and interpretation of co-operative trials. Analyst, 112, 679-686.
Diggle, P., Liang, K.-Y. and Zeger, S. L. (1994) Analysis of Longitudinal Data. Oxford: Oxford University Press.
Longford, N. T. (1993) Random Coefficient Models. Oxford: Oxford University Press.
Atkinson, A. C. (1985) Plots, Transformations, and Regression. Oxford: Clarendon.
Searle, S. R., Casella, G. and McCulloch, C. E. (1992) Variance Components. New York: Wiley.
1998; 27
2001; 50
2001; 164
1998
1997
1996
1995
1994
1999; 289
1993
1992
1998; 60
1999; 61
1992; 11
1992; 34
2001; 63
1995; 20
1987; 112
1997; 51
1997; 92
2001
1999; 18
1977; 19
1986; 48
1985
1999; 53
1992; 21
1998; 54
2001; 57
1989; 17
1979; 62
Hayes (2023040304305416900_) 1999; 53
Lange (2023040304305416900_) 1989; 17
Hodges (2023040304305416900_) 1998; 60
McCulloch (2023040304305416900_) 2001
Tan (2023040304305416900_) 2001; 50
Carter (2023040304305416900_) 1992; 11
Critchley (2023040304305416900_) 2001; 63
Ouwens (2023040304305416900_) 2001; 57
Lesaffre (2023040304305416900_) 1998; 54
Searle (2023040304305416900_) 1992
Atkinson (2023040304305416900_) 1998; 60
Bryk (2023040304305416900_) 1992
Diggle (2023040304305416900_) 1994
Haslett (2023040304305416900_) 1998; 60
Analytical Methods Committee (2023040304305416900_) 1987; 112
Nurhonen (2023040304305416900_) 1998
Wagner (2023040304305416900_) 1979; 62
Doganskoy (2023040304305416900_) 1997; 51
Cook (2023040304305416900_) 1986; 48
Christensen (2023040304305416900_) 1992; 34
Jammalamadaka (2023040304305416900_) 1999; 289
Atkinson (2023040304305416900_) 1985
Goldstein (2023040304305416900_) 1995
Banerjee (2023040304305416900_) 1998; 27
Haslett (2023040304305416900_) 1999; 61
Christensen (2023040304305416900_) 1996
Venables (2023040304305416900_) 1997
Oman (2023040304305416900_) 1995; 20
Longford (2023040304305416900_) 2001; 164
Longford (2023040304305416900_) 1993
Martin (2023040304305416900_) 1992; 21
Molenberghs (2023040304305416900_) 1997
Banerjee (2023040304305416900_) 1997; 92
Lesaffre (2023040304305416900_) 1999; 18
Cook (2023040304305416900_) 1977; 19
References_xml – reference: Carter, R. L., Resnick, M. B., Ariet, M., Shieh, G. and Vonesh, E. F. (1992) A random coefficient growth curve analysis of mental development in low-birth-weight infants. Statist. Med., 11, 243-256.
– reference: Lange, N. and Ryan, L. (1989) Assessing normality in random effects models. Ann. Statist., 17, 624-642.
– reference: Lesaffre, E., Asefa, M. and Verbeke, G. (1999) Assessing the goodness-of-fit of the Laird and Ware model-an example: the Jimma infant survival differential longitudinal study. Statist. Med., 18, 835-854.
– reference: Christensen, R. (1996) Plane Answers to Complex Questions. Berlin: Springer.
– reference: McCulloch, C. E. and Searle, S. R. (2001) Generalized, Linear and Mixed Models. New York: Wiley.
– reference: Cook, R. D. (1986) Assessment of local influence (with discussion). J. R. Statist. Soc. B, 48, 133-169.
– reference: Longford, N. T. (2001) Simulation-based diagnostics in random-coefficient models. J. R. Statist. Soc. A, 164, 259-273.
– reference: Doganskoy, N. and Balakrishnan, N. (1997) A useful property of best linear unbiased predictors with application to life testing. Am. Statistn, 51, 22-28.
– reference: Atkinson, A. C. (1985) Plots, Transformations, and Regression. Oxford: Clarendon.
– reference: Bryk, A. S. and Raudenbush, S. W. (1992) Advanced Qualitative Techniques in the Social Sciences, vol. 1, Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park: Sage.
– reference: Tan, F. E. S., Ouwens, M. J. N. and Berger, M. P. F. (2001) Detection of influential observations in longitudinal mixed effects regression models. Statistician, 50, 271-284.
– reference: Christensen, R., Pearson, L. M. and Johnson, W. (1992) Case-deletion diagnostics for mixed models. Technometrics, 34, 38-45.
– reference: Cook, R. D. (1977) Detection of influential observations in linear regression. Technometrics, 19, 15-18.
– reference: Lesaffre, E. and Verbeke, G. (1998) Local influence in linear mixed models. Biometrics, 54, 570-582.
– reference: Haslett, J. and Hayes, K. (1998) Residuals for the linear model with general covariance structure. J. R. Statist. Soc. B, 60, 201-215.
– reference: Oman, S. D. (1995) Checking the assumptions in mixed-model analysis of variance: a residual analysis approach. Comput. Statist. Data Anal., 20, 309-330.
– reference: Ouwens, M. J. N. M., Tan, F. E. S. and Berger, M. P. F. (2001) Local influence to detect influential data structures for generalized linear mixed models. Biometrics, 57, 1166-1172.
– reference: Banerjee, M. and Frees, E. W. (1997) Influence diagnostics for linear longitudinal models. J. Am. Statist. Ass., 92, 999-1005.
– reference: Molenberghs, G. and Verbeke, G. (eds) (1997) Linear Mixed Models in Practice: a SAS-oriented Approach. Berlin: Springer.
– reference: Venables, W. N. and Ripley B. D. (1997) Modern Applied Statistics with S-PLUS, 2nd edn. New York: Springer.
– reference: Martin, R. J. (1992) Leverage, influence and residuals in regression models when observations are correlated. Communs Statist. Theory Meth., 21, 1183-1212.
– reference: Analytical Methods Committee (1987) Recommendations for the conduct and interpretation of co-operative trials. Analyst, 112, 679-686.
– reference: Wagner, J. R. and Thaggard, N. A. (1979) Gas-liquid chromotographic determination of nicotine contained on cambridge filter pads. J. Ass. Off. Anal. Chem., 62, 229-236.
– reference: Banerjee, M. (1998) Cook's distance in linear longitudinal models. Communs Statist. Theory Meth., 27, 2973-2983.
– reference: Goldstein, H. (1995) Multilevel Statistical Models. London: Arnold.
– reference: Longford, N. T. (1993) Random Coefficient Models. Oxford: Oxford University Press.
– reference: Atkinson, A. C. (1998) Discussion on 'Some algebra and geometry for hierarchical models, applied to diagnostics' (by J. S. Hodges). J. R. Statist. Soc. B, 60, 521-523.
– reference: Diggle, P., Liang, K.-Y. and Zeger, S. L. (1994) Analysis of Longitudinal Data. Oxford: Oxford University Press.
– reference: Critchley, F., Atkinson, R. A., Lu, G. and Biazi, E. (2001) Influence analysis based on the case sensitivity function. J. R. Statist. Soc. B, 63, 307-323.
– reference: Jammalamadaka, S. R. and Sengupta, D. (1999) Changes in the general linear models: a unified approach. Lin. Alg. Appl., 289, 225-242.
– reference: Hodges, J. S. (1998) Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion). J. R. Statist. Soc. B, 60, 497-536.
– reference: Searle, S. R., Casella, G. and McCulloch, C. E. (1992) Variance Components. New York: Wiley.
– reference: Haslett, J. (1999) A simple derivation of deletion diagnostic results for the general linear model with correlated errors. J. R. Statist. Soc. B, 61, 603-609.
– reference: Hayes, K. and Haslett, J. (1999) Simplifying general least squares. Am. Statistn, 53, 376-381.
– year: 1985
– volume: 112
  start-page: 679
  year: 1987
  end-page: 686
  article-title: Recommendations for the conduct and interpretation of co‐operative trials
  publication-title: Analyst
– volume: 27
  start-page: 2973
  year: 1998
  end-page: 2983
  article-title: Cook's distance in linear longitudinal models
  publication-title: Communs Statist. Theory Meth.
– volume: 164
  start-page: 259
  year: 2001
  end-page: 273
  article-title: Simulation‐based diagnostics in random‐coefficient models
  publication-title: J. R. Statist. Soc.
– year: 2001
– year: 1996
– volume: 61
  start-page: 603
  year: 1999
  end-page: 609
  article-title: A simple derivation of deletion diagnostic results for the general linear model with correlated errors
  publication-title: J. R. Statist. Soc.
– volume: 51
  start-page: 22
  year: 1997
  end-page: 28
  article-title: A useful property of best linear unbiased predictors with application to life testing
  publication-title: Am. Statistn
– volume: 21
  start-page: 1183
  year: 1992
  end-page: 1212
  article-title: Leverage, influence and residuals in regression models when observations are correlated
  publication-title: Communs Statist. Theory Meth.
– volume: 60
  start-page: 201
  year: 1998
  end-page: 215
  article-title: Residuals for the linear model with general covariance structure
  publication-title: J. R. Statist. Soc.
– volume: 17
  start-page: 624
  year: 1989
  end-page: 642
  article-title: Assessing normality in random effects models
  publication-title: Ann. Statist.
– year: 1992
– start-page: 267
  year: 1998
  end-page: 275
– volume: 63
  start-page: 307
  year: 2001
  end-page: 323
  article-title: Influence analysis based on the case sensitivity function
  publication-title: J. R. Statist. Soc.
– year: 1994
– volume: 20
  start-page: 309
  year: 1995
  end-page: 330
  article-title: Checking the assumptions in mixed‐model analysis of variance: a residual analysis approach
  publication-title: Comput. Statist. Data Anal.
– volume: 53
  start-page: 376
  year: 1999
  end-page: 381
  article-title: Simplifying general least squares
  publication-title: Am. Statistn
– volume: 48
  start-page: 133
  year: 1986
  end-page: 169
  article-title: Assessment of local influence (with discussion)
  publication-title: J. R. Statist. Soc.
– volume: 18
  start-page: 835
  year: 1999
  end-page: 854
  article-title: Assessing the goodness‐of‐fit of the Laird and Ware model—an example: the Jimma infant survival differential longitudinal study
  publication-title: Statist. Med.
– volume: 50
  start-page: 271
  year: 2001
  end-page: 284
  article-title: Detection of influential observations in longitudinal mixed effects regression models
  publication-title: Statistician
– volume: 19
  start-page: 15
  year: 1977
  end-page: 18
  article-title: Detection of influential observations in linear regression
  publication-title: Technometrics
– volume: 92
  start-page: 999
  year: 1997
  end-page: 1005
  article-title: Influence diagnostics for linear longitudinal models
  publication-title: J. Am. Statist. Ass.
– volume: 34
  start-page: 38
  year: 1992
  end-page: 45
  article-title: Case‐deletion diagnostics for mixed models
  publication-title: Technometrics
– year: 1997
– year: 1995
– volume: 60
  start-page: 521
  year: 1998
  end-page: 523
  article-title: Discussion on ‘Some algebra and geometry for hierarchical models, applied to diagnostics’ (by J. S. Hodges)
  publication-title: J. R. Statist. Soc.
– volume: 54
  start-page: 570
  year: 1998
  end-page: 582
  article-title: Local influence in linear mixed models
  publication-title: Biometrics
– volume: 57
  start-page: 1166
  year: 2001
  end-page: 1172
  article-title: Local influence to detect influential data structures for generalized linear mixed models
  publication-title: Biometrics
– volume: 62
  start-page: 229
  year: 1979
  end-page: 236
  article-title: Gas‐liquid chromotographic determination of nicotine contained on cambridge filter pads
  publication-title: J. Ass. Off. Anal. Chem.
– volume: 60
  start-page: 497
  year: 1998
  end-page: 536
  article-title: Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion)
  publication-title: J. R. Statist. Soc.
– year: 1993
– volume: 11
  start-page: 243
  year: 1992
  end-page: 256
  article-title: A random coefficient growth curve analysis of mental development in low‐birth‐weight infants
  publication-title: Statist. Med.
– volume: 289
  start-page: 225
  year: 1999
  end-page: 242
  article-title: Changes in the general linear models: a unified approach
  publication-title: Lin. Alg. Appl.
– volume: 61
  start-page: 603
  year: 1999
  ident: 2023040304305416900_
  article-title: A simple derivation of deletion diagnostic results for the general linear model with correlated errors
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-9868.00195
– start-page: 267
  volume-title: Frontiers in Probability and Statistics
  year: 1998
  ident: 2023040304305416900_
– volume: 289
  start-page: 225
  year: 1999
  ident: 2023040304305416900_
  article-title: Changes in the general linear models: a unified approach
  publication-title: Lin. Alg. Appl.
  doi: 10.1016/S0024-3795(97)10047-7
– volume: 50
  start-page: 271
  year: 2001
  ident: 2023040304305416900_
  article-title: Detection of influential observations in longitudinal mixed effects regression models
  publication-title: Statistician
  doi: 10.1111/1467-9884.00277
– volume: 62
  start-page: 229
  year: 1979
  ident: 2023040304305416900_
  article-title: Gas-liquid chromotographic determination of nicotine contained on cambridge filter pads
  publication-title: J. Ass. Off. Anal. Chem.
– volume-title: Plots, Transformations, and Regression
  year: 1985
  ident: 2023040304305416900_
– volume: 63
  start-page: 307
  year: 2001
  ident: 2023040304305416900_
  article-title: Influence analysis based on the case sensitivity function
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-9868.00287
– volume: 27
  start-page: 2973
  year: 1998
  ident: 2023040304305416900_
  article-title: Cook's distance in linear longitudinal models
  publication-title: Communs Statist. Theory Meth.
  doi: 10.1080/03610929808832267
– volume: 51
  start-page: 22
  year: 1997
  ident: 2023040304305416900_
  article-title: A useful property of best linear unbiased predictors with application to life testing
  publication-title: Am. Statistn
  doi: 10.1080/00031305.1997.10473581
– volume: 57
  start-page: 1166
  year: 2001
  ident: 2023040304305416900_
  article-title: Local influence to detect influential data structures for generalized linear mixed models
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.01166.x
– volume-title: Plane Answers to Complex Questions
  year: 1996
  ident: 2023040304305416900_
  doi: 10.1007/978-1-4757-2477-6
– volume: 17
  start-page: 624
  year: 1989
  ident: 2023040304305416900_
  article-title: Assessing normality in random effects models
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176347130
– volume: 92
  start-page: 999
  year: 1997
  ident: 2023040304305416900_
  article-title: Influence diagnostics for linear longitudinal models
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1997.10474055
– volume: 54
  start-page: 570
  year: 1998
  ident: 2023040304305416900_
  article-title: Local influence in linear mixed models
  publication-title: Biometrics
  doi: 10.2307/3109764
– volume: 19
  start-page: 15
  year: 1977
  ident: 2023040304305416900_
  article-title: Detection of influential observations in linear regression
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489493
– volume: 11
  start-page: 243
  year: 1992
  ident: 2023040304305416900_
  article-title: A random coefficient growth curve analysis of mental development in low-birth-weight infants
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780110210
– volume: 53
  start-page: 376
  year: 1999
  ident: 2023040304305416900_
  article-title: Simplifying general least squares
  publication-title: Am. Statistn
  doi: 10.1080/00031305.1999.10474493
– volume-title: Generalized, Linear and Mixed Models
  year: 2001
  ident: 2023040304305416900_
– volume-title: Variance Components
  year: 1992
  ident: 2023040304305416900_
  doi: 10.1002/9780470316856
– volume: 60
  start-page: 201
  year: 1998
  ident: 2023040304305416900_
  article-title: Residuals for the linear model with general covariance structure
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-9868.00119
– volume: 48
  start-page: 133
  year: 1986
  ident: 2023040304305416900_
  article-title: Assessment of local influence (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.2517-6161.1986.tb01398.x
– volume-title: Advanced Qualitative Techniques in the Social Sciences
  year: 1992
  ident: 2023040304305416900_
– volume: 18
  start-page: 835
  year: 1999
  ident: 2023040304305416900_
  article-title: Assessing the goodness-of-fit of the Laird and Ware model—an example: the Jimma infant survival differential longitudinal study
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7
– volume: 20
  start-page: 309
  year: 1995
  ident: 2023040304305416900_
  article-title: Checking the assumptions in mixed-model analysis of variance: a residual analysis approach
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(94)00043-I
– volume: 164
  start-page: 259
  year: 2001
  ident: 2023040304305416900_
  article-title: Simulation-based diagnostics in random-coefficient models
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-985X.00201
– volume-title: Linear Mixed Models in Practice: a SAS-oriented Approach
  year: 1997
  ident: 2023040304305416900_
– volume-title: Modern Applied Statistics with S-PLUS
  year: 1997
  ident: 2023040304305416900_
  doi: 10.1007/978-1-4757-2719-7
– volume: 21
  start-page: 1183
  year: 1992
  ident: 2023040304305416900_
  article-title: Leverage, influence and residuals in regression models when observations are correlated
  publication-title: Communs Statist. Theory Meth.
  doi: 10.1080/03610929208830840
– volume: 60
  start-page: 521
  year: 1998
  ident: 2023040304305416900_
  article-title: Discussion on ‘Some algebra and geometry for hierarchical models, applied to diagnostics’ (by J. S. Hodges)
  publication-title: J. R. Statist. Soc.
– volume-title: Analysis of Longitudinal Data
  year: 1994
  ident: 2023040304305416900_
– volume: 60
  start-page: 497
  year: 1998
  ident: 2023040304305416900_
  article-title: Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-9868.00137
– volume: 34
  start-page: 38
  year: 1992
  ident: 2023040304305416900_
  article-title: Case-deletion diagnostics for mixed models
  publication-title: Technometrics
  doi: 10.2307/1269550
– volume: 112
  start-page: 679
  year: 1987
  ident: 2023040304305416900_
  article-title: Recommendations for the conduct and interpretation of co-operative trials
  publication-title: Analyst
  doi: 10.1039/an9871200679
– volume-title: Multilevel Statistical Models
  year: 1995
  ident: 2023040304305416900_
– volume-title: Random Coefficient Models
  year: 1993
  ident: 2023040304305416900_
SSID ssj0000673
Score 1.8688506
Snippet 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms...
‘Delete = replace’ is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms...
‘Delete = replace’ is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms...
SourceID proquest
repec
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131
SubjectTerms Approximation
Conditional residuals
Estimation
Exact sciences and technology
General topics
Generalized least squares
Least squares
Leverage
Linear inference, regression
Linear models
Mathematical expressions
Mathematics
Matrix identities
Maximum likelihood estimation
Modeling
Modelling
Observational research
Probability and statistics
Restricted maximum likelihood
Sciences and techniques of general use
Statistical methods
Statistical variance
Statistics
Studies
Waste byproducts
Title Application of 'delete = replace' to deletion diagnostics for variance component estimation in the linear mixed model
URI https://api.istex.fr/ark:/67375/WNG-R62D7G68-S/fulltext.pdf
https://www.jstor.org/stable/3647631
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1369-7412.2003.05211.x
http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131-143.htm
https://www.proquest.com/docview/200861050
https://www.proquest.com/docview/200924708
https://www.proquest.com/docview/37844863
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLfQdtmFv0OEQfEBcUuVxLHdHDhsg22A2KFlYjfLTmJRuiVVm04dp30M-Hr7JLxnpxlFIE2IQxqpsZP45eX59-Lfe4-Ql9xmaWqsCNOcReCglFGos8SGtky0EVyawmC888djcXSSvj_lpy3_CWNhfH6I7oMbvhnOXuMLro2vQhK57LaOoZWFMCO6fJKsj2GocR_xJFK3EB8Nk1-NMvMhWL5LS-ppFzj_eKK1mWoThb5ckRaRQannIETrq1-swdPNWTkt83Ww62arg3tkshqnJ6lM-ovG9PNvv6WA_D-CuE_utqCW7notfEDulNVDsoU41qeBfkQud28Wymlt6fXVd6zA05T0NYWB4Lf866sftKmp-xtbFZ4EiP0pIGt6AV49qihFFnxdwWRJMUOID72k44oClKU4Gj2j5-NlWVBX5WebnBy8_bR_FLZVH8Kc80SEubZcWEBlJhKGWZYD4BhYeH65jTXXOk0MYk7ONbiSuZSZLDLAUUYWRqSGMfaYbFRwF08ItXFeZEURaQleZikEYOECNNGkNgVFZDwgcvWEVd6mRMfKHGfKLc2nGMaGslUoWyzYyZSTrVoGJO56Tn1akFv0eeWUqOugZxOk1UmuPh8fqqFI3shDMVCjgGw7LesaYo5_weKA9Na07ubKHPONx9BgZ6WGqjVFc1dnFDAyj_52FGQjo0FAXnRHwcLgspGuynoxV0wOwIcXLCD7TrO7y5oz_bWezedGXSimhYAfuFeNdhd2Y9hi2Ka4ZzH4mEx9ac4DIpwy31psajga7aVMPP3Xjjtky9OtkIP0jGw0s0X5HJBkY3pgIz686zlL8ROpGWV6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLfQemAX_g4RBpsPiFtKEsd2c-AwBluBrYd2E7tZdhJrZV1btek0OO1jwNfbJ-E9O80oAmlCHNJIjV8Svzw__579_hDyktssTY0VYZqzCAyUMgp1ltjQlok2gktTGIx3PuyJ7nH68YSf1OWAMBbG54doFtxwZDh9jQMcF6Rf19uSfpQzkYUwJbqEkqyNcahxGwBlCwt8O_uqn_yqlpkPwvI0tVtPvcX5xzutzFUtZPvl0m0RfSj1HNhoff2LFYDampXTMl-Fu26-2rtPRsueejeVs_aiMu38229JIP8TKx6QezWupTteEB-SO-X4EVlHKOszQT8mX3du9srpxNLrq-9YhKcq6RsKPcHl_OurH7SaUPc3tiq8HyDSUwDX9AIMe5RSio7wkzHMlxSThPjoSzocU0CzFLujZ_R8eFkW1BX62SDHe--PdrthXfghzDlPRJhry4UFYGYiYZhlOWCOjoUPmNtYc63TxCDs5FyDNZlLmckiAyhlZGFEahhjT8jaGN7iKaE2zousKCItwdAshQA4XIAwmtSmIIuMB0QuP7HK66zoWJxjpNzufIqRbMhbhbzFmp1MOd6qy4DEDeXUZwa5Bc0rJ0UNgZ6doWed5Opzb1_1RfJO7ouOGgRkw4lZ0xDT_AsWB2RrRexunswx5XgMDTaXcqhqbTR3pUYBJvPob1eBNzLqBGS7uQpKBneO9LicLOaKyQ6Y8YIFZNeJdvNYM9JfJrP53KgLxbQQ8APvqlH1wmkIRwzHFM8sBjOTqdPqPCDCSfOt2ab6g8HblIln_0q4Te52jw4P1MGH3qdNsu69r9Al6TlZq2aL8gUAy8psOYXxE3UmaJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hRkK98CzCFNo9IG4Otvfh-MChNKTlFaGUit5Wu7ZXhLRJlDhV4NSfAX-vv4SZXcclCKQKcbAt2Tu2dzw7-413HoQ8FTbj3FgZ8pxFYKCUUaizxIa2TLSRIjWFwXjn9315eMzfnIiT2v8JY2F8fojmhxuODKevcYBPC_u8XpX0g5zJLIQZ0eWTZG0MQ43bgCdbXEYdlPDuIPlVKzMfg-Vpaq-eeoXzj3dam6payPXlymsRXSj1HLhoffmLNXzampXTMl9Hu2666t0mo1VHvZfKqL2oTDv_9lsOyP_DiTvkVo1q6Z4Xw7vkRjm-RzYRyPo80PfJ172rlXI6sfTy4juW4KlK-oJCR_Bn_uXFD1pNqDuNrQrvBYj0FKA1PQezHmWUohv8ZAyzJcUUIT72kg7HFLAsxd7oGT0bLsuCujI_W-S49-rj_mFYl30IcyESGebaCmkBlplIGmZZDoijY-H75TbWQmueGASdQmiwJfM0zdIiAyBl0sJIbhhjD8jGGN7iIaE2zousKCKdgplZSglguABRNNxykEQmApKuvrDK65zoWJrjVLm1eY5xbMhbhbzFip1MOd6qZUDihnLq84Jcg-aZE6KGQM9G6FeXCvWpf6AGMummB7KjjgKy5aSsaYhJ_iWLA7KzJnVXTxaYcDyGBtsrMVS1Lpq7QqMAkkX0t6vAmzTqBGS3uQoqBteN9LicLOaKpR0w4iULyL6T7Oax5lR_mczmc6POFdNSwg7eVaPihcMQthi2KR5ZDEYmU5-rs4BIJ8zXZpsaHB295Ew--lfCXXLzQ7en3r3uv90mm971Cv2RHpONarYonwCqrMyOUxc_AfrvZ1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+%27delete+%3D+replace%27+to+deletion+diagnostics+for+variance+component+estimation+in+the+linear+mixed+model&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Haslett%2C+John&rft.au=Dillane%2C+Dominic&rft.date=2004-02-01&rft.pub=Oxford+University+Press&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=66&rft.issue=1&rft.spage=131&rft_id=info:doi/10.1046%2Fj.1369-7412.2003.05211.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=743223091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon