Application of 'delete = replace' to deletion diagnostics for variance component estimation in the linear mixed model
'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood...
Saved in:
Published in | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 66; no. 1; pp. 131 - 143 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing
01.02.2004
Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Series | Journal of the Royal Statistical Society Series B |
Subjects | |
Online Access | Get full text |
ISSN | 1369-7412 1467-9868 |
DOI | 10.1046/j.1369-7412.2003.05211.x |
Cover
Loading…
Abstract | 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. |
---|---|
AbstractList | ‘Delete = replace’ is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by‐product of the fitting process. We illustrate the effect of the deletion of individual observations, of ‘subjects’ and of arbitrary subsets. Central to the identity and its application is the conditional residual. 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. Reprinted by permission of Blackwell Publishers 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. [PUBLICATION ABSTRACT] 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms and extending its application to deletion diagnostics for estimates of variance components obtained by restricted maximum likelihood estimation for the linear mixed model. We present a new, fast, transparent and approximate computational procedure, arising as a by-product of the fitting process. We illustrate the effect of the deletion of individual observations, of 'subjects' and of arbitrary subsets. Central to the identity and its application is the conditional residual. Copyright 2004 Royal Statistical Society. |
Author | Haslett, John Dillane, Dominic |
Author_xml | – sequence: 1 givenname: John surname: Haslett fullname: Haslett, John – sequence: 2 givenname: Dominic surname: Dillane fullname: Dillane, Dominic |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15517411$$DView record in Pascal Francis http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131-143.htm$$DView record in RePEc |
BookMark | eNqNUk1v1DAQjVCRaAv_gIOFBD1lseOv5FCkUmABVSC1II6W43WoQxKntrfs_nsmm7JIvdBIk7E87z2Px-8oOxj8YLMMEbwgmInX7YJQUeWSkWJRYEwXmBeELDaPskPChMyrUpQHsP4LepIdxdhi-ISkh9n6bBw7Z3RyfkC-QScr29lk0SkKduy0sScoebTbnBArp38OPiZnImp8QLc6OD0Yi4zvR2hsSMhCtZ_13IDStUWdG6wOqHcbu0K9B7Gn2eNGd9E-u8vH2fcP77-df8wvvi4_nZ9d5IbzQuRGN1w0oqA1FjVtqBGElg00bhqiudasqCtaCM41JthIWclVhQWv5aoWrKaUHmevZt0x-Js1dKZ6F43tOj1Yv46KypKxUkzAF_eArV-HAXpTMNSqYBKX_wGVgmCOAfR5BsH8rFFjgGGErao73foQY61uFdVCwG8LATwGyUEQiHHKlCjCqLpOPYi9vDtRR6O7JsCsXdyLEs4JvCkBXDnjTPAxBtv8g2A12US1anKAmhwwNUvVziZqA9Q396jGpd3zpaBd9xCB01ngt-vs9sEHq8urq7eMCuA_n_ltTD7s-VQwKeh0tXwuu5jsZl_W4ZcCA0uufnxZqktRvJNLUaor-gfn5u9D |
CitedBy_id | crossref_primary_10_1016_j_csda_2005_11_009 crossref_primary_10_1002_sim_6810 crossref_primary_10_1080_03610926_2014_980517 crossref_primary_10_1016_j_csda_2011_11_006 crossref_primary_10_3103_S1066530715010020 crossref_primary_10_1002_cjs_5550360206 crossref_primary_10_1214_07_BA217 crossref_primary_10_1016_j_jspi_2008_01_004 crossref_primary_10_1016_j_spasta_2018_07_007 crossref_primary_10_1080_02664763_2015_1072140 crossref_primary_10_1155_2014_396875 crossref_primary_10_1016_j_csda_2015_10_003 crossref_primary_10_1016_j_csda_2010_03_019 crossref_primary_10_1007_s11222_007_9031_1 crossref_primary_10_1016_j_jmva_2008_01_023 crossref_primary_10_1016_j_jmva_2009_06_008 crossref_primary_10_1111_j_1751_5823_2006_00001_x crossref_primary_10_1080_00401706_2013_810173 crossref_primary_10_1080_03610920701713229 crossref_primary_10_1111_j_1467_842X_2009_00565_x crossref_primary_10_1007_s42519_023_00363_2 crossref_primary_10_1111_sjos_12090 crossref_primary_10_1016_j_csda_2011_07_002 crossref_primary_10_1007_s11222_016_9626_5 crossref_primary_10_1002_wics_1238 crossref_primary_10_1080_03610918_2021_1926502 |
Cites_doi | 10.1111/1467-9868.00195 10.1016/S0024-3795(97)10047-7 10.1111/1467-9884.00277 10.1111/1467-9868.00287 10.1080/03610929808832267 10.1080/00031305.1997.10473581 10.1111/j.0006-341X.2001.01166.x 10.1007/978-1-4757-2477-6 10.1214/aos/1176347130 10.1080/01621459.1997.10474055 10.2307/3109764 10.1080/00401706.1977.10489493 10.1002/sim.4780110210 10.1080/00031305.1999.10474493 10.1002/9780470316856 10.1111/1467-9868.00119 10.1111/j.2517-6161.1986.tb01398.x 10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7 10.1016/0167-9473(94)00043-I 10.1111/1467-985X.00201 10.1007/978-1-4757-2719-7 10.1080/03610929208830840 10.1111/1467-9868.00137 10.2307/1269550 10.1039/an9871200679 |
ContentType | Journal Article |
Copyright | Copyright 2004 The Royal Statistical Society 2004 INIST-CNRS 2004 Royal Statistical Society |
Copyright_xml | – notice: Copyright 2004 The Royal Statistical Society – notice: 2004 INIST-CNRS – notice: 2004 Royal Statistical Society |
DBID | BSCLL AAYXX CITATION IQODW DKI X2L 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
DOI | 10.1046/j.1369-7412.2003.05211.x |
DatabaseName | Istex CrossRef Pascal-Francis RePEc IDEAS RePEc Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-9868 |
EndPage | 143 |
ExternalDocumentID | 743223091 923773221 blajorssb_v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131_143_htm 15517411 10_1046_j_1369_7412_2003_05211_x RSSB436 3647631 ark_67375_WNG_R62D7G68_S |
Genre | article Feature |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 10A 1OC 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHBH AAHHS AAONW AARHZ AASGY AAUAY AAXRX AAZKR ABBHK ABCQN ABCUV ABEHJ ABEML ABFAN ABIVO ABLJU ABPFR ABPQH ABPTD ABPVW ABWST ABXSQ ABYAD ABYWD ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXQS ADACV ADBBV ADEOM ADIPN ADIYS ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK ADZMN AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVYC AFXHP AFZJQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD ARCSS ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EJD EMK F00 F5P FEDTE FVMVE G-S G.N GODZA H.T H.X H13 HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NHB O66 O9- OIG OWPYF P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZGI ZL0 ZZTAW ~02 ~IA ~KM ~WT AANHP AAPXW AAWIL ABAWQ ABDFA ABPQP ACHJO ACRPL ACYXJ ADNMO AGLNM AGQPQ AHQJS AIHAF AJNCP ALRMG AMVHM NU- AAYXX CITATION IQODW 02 08R 0R 31 3N 4S 8RP ABHUG ACXME ADAWD ADDAD AFVGU AFXKK AGJLS AIHXQ AS BFHJK DKI EFSUC GA HZ IA IPNFZ KM MEWTI NF P4A PQEST RIG WRC WT X X2L XHC Y3 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c5526-caf56f623b06b3f3c6138f067cf1a5aa42b932655a010c7797d9065b7db64b333 |
IEDL.DBID | DR2 |
ISSN | 1369-7412 |
IngestDate | Thu Jul 10 23:16:33 EDT 2025 Wed Aug 13 08:40:31 EDT 2025 Wed Aug 13 07:04:52 EDT 2025 Wed Aug 18 03:51:57 EDT 2021 Mon Jul 21 09:18:57 EDT 2025 Tue Jul 01 03:43:01 EDT 2025 Thu Apr 24 22:50:34 EDT 2025 Wed Jan 22 16:42:53 EST 2025 Thu Jul 03 21:13:52 EDT 2025 Wed Oct 30 09:49:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Statistical method Conditional distribution Fitting Variance estimation Mixed model Linear estimation Maximum likelihood Regression residual Variance analysis Variance component Linear model Variance |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5526-caf56f623b06b3f3c6138f067cf1a5aa42b932655a010c7797d9065b7db64b333 |
Notes | ArticleID:RSSB436 ark:/67375/WNG-R62D7G68-S istex:6836DD43D1EF73B5865D56BA5196F5C81BE22CF1 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
PQID | 200861050 |
PQPubID | 39359 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_37844863 proquest_journals_200924708 proquest_journals_200861050 repec_primary_blajorssb_v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131_143_htm pascalfrancis_primary_15517411 crossref_primary_10_1046_j_1369_7412_2003_05211_x crossref_citationtrail_10_1046_j_1369_7412_2003_05211_x wiley_primary_10_1046_j_1369_7412_2003_05211_x_RSSB436 jstor_primary_3647631 istex_primary_ark_67375_WNG_R62D7G68_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2004 |
PublicationDateYYYYMMDD | 2004-02-01 |
PublicationDate_xml | – month: 02 year: 2004 text: February 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationSeriesTitle | Journal of the Royal Statistical Society Series B |
PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology |
PublicationYear | 2004 |
Publisher | Blackwell Publishing Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Publisher_xml | – name: Blackwell Publishing – name: Blackwell Publishers – name: Blackwell – name: Royal Statistical Society – name: Oxford University Press |
References | Lesaffre, E. and Verbeke, G. (1998) Local influence in linear mixed models. Biometrics, 54, 570-582. Banerjee, M. and Frees, E. W. (1997) Influence diagnostics for linear longitudinal models. J. Am. Statist. Ass., 92, 999-1005. Wagner, J. R. and Thaggard, N. A. (1979) Gas-liquid chromotographic determination of nicotine contained on cambridge filter pads. J. Ass. Off. Anal. Chem., 62, 229-236. Cook, R. D. (1977) Detection of influential observations in linear regression. Technometrics, 19, 15-18. Critchley, F., Atkinson, R. A., Lu, G. and Biazi, E. (2001) Influence analysis based on the case sensitivity function. J. R. Statist. Soc. B, 63, 307-323. Ouwens, M. J. N. M., Tan, F. E. S. and Berger, M. P. F. (2001) Local influence to detect influential data structures for generalized linear mixed models. Biometrics, 57, 1166-1172. Oman, S. D. (1995) Checking the assumptions in mixed-model analysis of variance: a residual analysis approach. Comput. Statist. Data Anal., 20, 309-330. Doganskoy, N. and Balakrishnan, N. (1997) A useful property of best linear unbiased predictors with application to life testing. Am. Statistn, 51, 22-28. Venables, W. N. and Ripley B. D. (1997) Modern Applied Statistics with S-PLUS, 2nd edn. New York: Springer. Jammalamadaka, S. R. and Sengupta, D. (1999) Changes in the general linear models: a unified approach. Lin. Alg. Appl., 289, 225-242. Haslett, J. (1999) A simple derivation of deletion diagnostic results for the general linear model with correlated errors. J. R. Statist. Soc. B, 61, 603-609. Longford, N. T. (2001) Simulation-based diagnostics in random-coefficient models. J. R. Statist. Soc. A, 164, 259-273. Christensen, R. (1996) Plane Answers to Complex Questions. Berlin: Springer. Molenberghs, G. and Verbeke, G. (eds) (1997) Linear Mixed Models in Practice: a SAS-oriented Approach. Berlin: Springer. Tan, F. E. S., Ouwens, M. J. N. and Berger, M. P. F. (2001) Detection of influential observations in longitudinal mixed effects regression models. Statistician, 50, 271-284. Lesaffre, E., Asefa, M. and Verbeke, G. (1999) Assessing the goodness-of-fit of the Laird and Ware model-an example: the Jimma infant survival differential longitudinal study. Statist. Med., 18, 835-854. Martin, R. J. (1992) Leverage, influence and residuals in regression models when observations are correlated. Communs Statist. Theory Meth., 21, 1183-1212. Haslett, J. and Hayes, K. (1998) Residuals for the linear model with general covariance structure. J. R. Statist. Soc. B, 60, 201-215. Carter, R. L., Resnick, M. B., Ariet, M., Shieh, G. and Vonesh, E. F. (1992) A random coefficient growth curve analysis of mental development in low-birth-weight infants. Statist. Med., 11, 243-256. Goldstein, H. (1995) Multilevel Statistical Models. London: Arnold. Lange, N. and Ryan, L. (1989) Assessing normality in random effects models. Ann. Statist., 17, 624-642. Atkinson, A. C. (1998) Discussion on 'Some algebra and geometry for hierarchical models, applied to diagnostics' (by J. S. Hodges). J. R. Statist. Soc. B, 60, 521-523. Christensen, R., Pearson, L. M. and Johnson, W. (1992) Case-deletion diagnostics for mixed models. Technometrics, 34, 38-45. Cook, R. D. (1986) Assessment of local influence (with discussion). J. R. Statist. Soc. B, 48, 133-169. Bryk, A. S. and Raudenbush, S. W. (1992) Advanced Qualitative Techniques in the Social Sciences, vol. 1, Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park: Sage. Hayes, K. and Haslett, J. (1999) Simplifying general least squares. Am. Statistn, 53, 376-381. McCulloch, C. E. and Searle, S. R. (2001) Generalized, Linear and Mixed Models. New York: Wiley. Banerjee, M. (1998) Cook's distance in linear longitudinal models. Communs Statist. Theory Meth., 27, 2973-2983. Hodges, J. S. (1998) Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion). J. R. Statist. Soc. B, 60, 497-536. Analytical Methods Committee (1987) Recommendations for the conduct and interpretation of co-operative trials. Analyst, 112, 679-686. Diggle, P., Liang, K.-Y. and Zeger, S. L. (1994) Analysis of Longitudinal Data. Oxford: Oxford University Press. Longford, N. T. (1993) Random Coefficient Models. Oxford: Oxford University Press. Atkinson, A. C. (1985) Plots, Transformations, and Regression. Oxford: Clarendon. Searle, S. R., Casella, G. and McCulloch, C. E. (1992) Variance Components. New York: Wiley. 1998; 27 2001; 50 2001; 164 1998 1997 1996 1995 1994 1999; 289 1993 1992 1998; 60 1999; 61 1992; 11 1992; 34 2001; 63 1995; 20 1987; 112 1997; 51 1997; 92 2001 1999; 18 1977; 19 1986; 48 1985 1999; 53 1992; 21 1998; 54 2001; 57 1989; 17 1979; 62 Hayes (2023040304305416900_) 1999; 53 Lange (2023040304305416900_) 1989; 17 Hodges (2023040304305416900_) 1998; 60 McCulloch (2023040304305416900_) 2001 Tan (2023040304305416900_) 2001; 50 Carter (2023040304305416900_) 1992; 11 Critchley (2023040304305416900_) 2001; 63 Ouwens (2023040304305416900_) 2001; 57 Lesaffre (2023040304305416900_) 1998; 54 Searle (2023040304305416900_) 1992 Atkinson (2023040304305416900_) 1998; 60 Bryk (2023040304305416900_) 1992 Diggle (2023040304305416900_) 1994 Haslett (2023040304305416900_) 1998; 60 Analytical Methods Committee (2023040304305416900_) 1987; 112 Nurhonen (2023040304305416900_) 1998 Wagner (2023040304305416900_) 1979; 62 Doganskoy (2023040304305416900_) 1997; 51 Cook (2023040304305416900_) 1986; 48 Christensen (2023040304305416900_) 1992; 34 Jammalamadaka (2023040304305416900_) 1999; 289 Atkinson (2023040304305416900_) 1985 Goldstein (2023040304305416900_) 1995 Banerjee (2023040304305416900_) 1998; 27 Haslett (2023040304305416900_) 1999; 61 Christensen (2023040304305416900_) 1996 Venables (2023040304305416900_) 1997 Oman (2023040304305416900_) 1995; 20 Longford (2023040304305416900_) 2001; 164 Longford (2023040304305416900_) 1993 Martin (2023040304305416900_) 1992; 21 Molenberghs (2023040304305416900_) 1997 Banerjee (2023040304305416900_) 1997; 92 Lesaffre (2023040304305416900_) 1999; 18 Cook (2023040304305416900_) 1977; 19 |
References_xml | – reference: Carter, R. L., Resnick, M. B., Ariet, M., Shieh, G. and Vonesh, E. F. (1992) A random coefficient growth curve analysis of mental development in low-birth-weight infants. Statist. Med., 11, 243-256. – reference: Lange, N. and Ryan, L. (1989) Assessing normality in random effects models. Ann. Statist., 17, 624-642. – reference: Lesaffre, E., Asefa, M. and Verbeke, G. (1999) Assessing the goodness-of-fit of the Laird and Ware model-an example: the Jimma infant survival differential longitudinal study. Statist. Med., 18, 835-854. – reference: Christensen, R. (1996) Plane Answers to Complex Questions. Berlin: Springer. – reference: McCulloch, C. E. and Searle, S. R. (2001) Generalized, Linear and Mixed Models. New York: Wiley. – reference: Cook, R. D. (1986) Assessment of local influence (with discussion). J. R. Statist. Soc. B, 48, 133-169. – reference: Longford, N. T. (2001) Simulation-based diagnostics in random-coefficient models. J. R. Statist. Soc. A, 164, 259-273. – reference: Doganskoy, N. and Balakrishnan, N. (1997) A useful property of best linear unbiased predictors with application to life testing. Am. Statistn, 51, 22-28. – reference: Atkinson, A. C. (1985) Plots, Transformations, and Regression. Oxford: Clarendon. – reference: Bryk, A. S. and Raudenbush, S. W. (1992) Advanced Qualitative Techniques in the Social Sciences, vol. 1, Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park: Sage. – reference: Tan, F. E. S., Ouwens, M. J. N. and Berger, M. P. F. (2001) Detection of influential observations in longitudinal mixed effects regression models. Statistician, 50, 271-284. – reference: Christensen, R., Pearson, L. M. and Johnson, W. (1992) Case-deletion diagnostics for mixed models. Technometrics, 34, 38-45. – reference: Cook, R. D. (1977) Detection of influential observations in linear regression. Technometrics, 19, 15-18. – reference: Lesaffre, E. and Verbeke, G. (1998) Local influence in linear mixed models. Biometrics, 54, 570-582. – reference: Haslett, J. and Hayes, K. (1998) Residuals for the linear model with general covariance structure. J. R. Statist. Soc. B, 60, 201-215. – reference: Oman, S. D. (1995) Checking the assumptions in mixed-model analysis of variance: a residual analysis approach. Comput. Statist. Data Anal., 20, 309-330. – reference: Ouwens, M. J. N. M., Tan, F. E. S. and Berger, M. P. F. (2001) Local influence to detect influential data structures for generalized linear mixed models. Biometrics, 57, 1166-1172. – reference: Banerjee, M. and Frees, E. W. (1997) Influence diagnostics for linear longitudinal models. J. Am. Statist. Ass., 92, 999-1005. – reference: Molenberghs, G. and Verbeke, G. (eds) (1997) Linear Mixed Models in Practice: a SAS-oriented Approach. Berlin: Springer. – reference: Venables, W. N. and Ripley B. D. (1997) Modern Applied Statistics with S-PLUS, 2nd edn. New York: Springer. – reference: Martin, R. J. (1992) Leverage, influence and residuals in regression models when observations are correlated. Communs Statist. Theory Meth., 21, 1183-1212. – reference: Analytical Methods Committee (1987) Recommendations for the conduct and interpretation of co-operative trials. Analyst, 112, 679-686. – reference: Wagner, J. R. and Thaggard, N. A. (1979) Gas-liquid chromotographic determination of nicotine contained on cambridge filter pads. J. Ass. Off. Anal. Chem., 62, 229-236. – reference: Banerjee, M. (1998) Cook's distance in linear longitudinal models. Communs Statist. Theory Meth., 27, 2973-2983. – reference: Goldstein, H. (1995) Multilevel Statistical Models. London: Arnold. – reference: Longford, N. T. (1993) Random Coefficient Models. Oxford: Oxford University Press. – reference: Atkinson, A. C. (1998) Discussion on 'Some algebra and geometry for hierarchical models, applied to diagnostics' (by J. S. Hodges). J. R. Statist. Soc. B, 60, 521-523. – reference: Diggle, P., Liang, K.-Y. and Zeger, S. L. (1994) Analysis of Longitudinal Data. Oxford: Oxford University Press. – reference: Critchley, F., Atkinson, R. A., Lu, G. and Biazi, E. (2001) Influence analysis based on the case sensitivity function. J. R. Statist. Soc. B, 63, 307-323. – reference: Jammalamadaka, S. R. and Sengupta, D. (1999) Changes in the general linear models: a unified approach. Lin. Alg. Appl., 289, 225-242. – reference: Hodges, J. S. (1998) Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion). J. R. Statist. Soc. B, 60, 497-536. – reference: Searle, S. R., Casella, G. and McCulloch, C. E. (1992) Variance Components. New York: Wiley. – reference: Haslett, J. (1999) A simple derivation of deletion diagnostic results for the general linear model with correlated errors. J. R. Statist. Soc. B, 61, 603-609. – reference: Hayes, K. and Haslett, J. (1999) Simplifying general least squares. Am. Statistn, 53, 376-381. – year: 1985 – volume: 112 start-page: 679 year: 1987 end-page: 686 article-title: Recommendations for the conduct and interpretation of co‐operative trials publication-title: Analyst – volume: 27 start-page: 2973 year: 1998 end-page: 2983 article-title: Cook's distance in linear longitudinal models publication-title: Communs Statist. Theory Meth. – volume: 164 start-page: 259 year: 2001 end-page: 273 article-title: Simulation‐based diagnostics in random‐coefficient models publication-title: J. R. Statist. Soc. – year: 2001 – year: 1996 – volume: 61 start-page: 603 year: 1999 end-page: 609 article-title: A simple derivation of deletion diagnostic results for the general linear model with correlated errors publication-title: J. R. Statist. Soc. – volume: 51 start-page: 22 year: 1997 end-page: 28 article-title: A useful property of best linear unbiased predictors with application to life testing publication-title: Am. Statistn – volume: 21 start-page: 1183 year: 1992 end-page: 1212 article-title: Leverage, influence and residuals in regression models when observations are correlated publication-title: Communs Statist. Theory Meth. – volume: 60 start-page: 201 year: 1998 end-page: 215 article-title: Residuals for the linear model with general covariance structure publication-title: J. R. Statist. Soc. – volume: 17 start-page: 624 year: 1989 end-page: 642 article-title: Assessing normality in random effects models publication-title: Ann. Statist. – year: 1992 – start-page: 267 year: 1998 end-page: 275 – volume: 63 start-page: 307 year: 2001 end-page: 323 article-title: Influence analysis based on the case sensitivity function publication-title: J. R. Statist. Soc. – year: 1994 – volume: 20 start-page: 309 year: 1995 end-page: 330 article-title: Checking the assumptions in mixed‐model analysis of variance: a residual analysis approach publication-title: Comput. Statist. Data Anal. – volume: 53 start-page: 376 year: 1999 end-page: 381 article-title: Simplifying general least squares publication-title: Am. Statistn – volume: 48 start-page: 133 year: 1986 end-page: 169 article-title: Assessment of local influence (with discussion) publication-title: J. R. Statist. Soc. – volume: 18 start-page: 835 year: 1999 end-page: 854 article-title: Assessing the goodness‐of‐fit of the Laird and Ware model—an example: the Jimma infant survival differential longitudinal study publication-title: Statist. Med. – volume: 50 start-page: 271 year: 2001 end-page: 284 article-title: Detection of influential observations in longitudinal mixed effects regression models publication-title: Statistician – volume: 19 start-page: 15 year: 1977 end-page: 18 article-title: Detection of influential observations in linear regression publication-title: Technometrics – volume: 92 start-page: 999 year: 1997 end-page: 1005 article-title: Influence diagnostics for linear longitudinal models publication-title: J. Am. Statist. Ass. – volume: 34 start-page: 38 year: 1992 end-page: 45 article-title: Case‐deletion diagnostics for mixed models publication-title: Technometrics – year: 1997 – year: 1995 – volume: 60 start-page: 521 year: 1998 end-page: 523 article-title: Discussion on ‘Some algebra and geometry for hierarchical models, applied to diagnostics’ (by J. S. Hodges) publication-title: J. R. Statist. Soc. – volume: 54 start-page: 570 year: 1998 end-page: 582 article-title: Local influence in linear mixed models publication-title: Biometrics – volume: 57 start-page: 1166 year: 2001 end-page: 1172 article-title: Local influence to detect influential data structures for generalized linear mixed models publication-title: Biometrics – volume: 62 start-page: 229 year: 1979 end-page: 236 article-title: Gas‐liquid chromotographic determination of nicotine contained on cambridge filter pads publication-title: J. Ass. Off. Anal. Chem. – volume: 60 start-page: 497 year: 1998 end-page: 536 article-title: Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion) publication-title: J. R. Statist. Soc. – year: 1993 – volume: 11 start-page: 243 year: 1992 end-page: 256 article-title: A random coefficient growth curve analysis of mental development in low‐birth‐weight infants publication-title: Statist. Med. – volume: 289 start-page: 225 year: 1999 end-page: 242 article-title: Changes in the general linear models: a unified approach publication-title: Lin. Alg. Appl. – volume: 61 start-page: 603 year: 1999 ident: 2023040304305416900_ article-title: A simple derivation of deletion diagnostic results for the general linear model with correlated errors publication-title: J. R. Statist. Soc. doi: 10.1111/1467-9868.00195 – start-page: 267 volume-title: Frontiers in Probability and Statistics year: 1998 ident: 2023040304305416900_ – volume: 289 start-page: 225 year: 1999 ident: 2023040304305416900_ article-title: Changes in the general linear models: a unified approach publication-title: Lin. Alg. Appl. doi: 10.1016/S0024-3795(97)10047-7 – volume: 50 start-page: 271 year: 2001 ident: 2023040304305416900_ article-title: Detection of influential observations in longitudinal mixed effects regression models publication-title: Statistician doi: 10.1111/1467-9884.00277 – volume: 62 start-page: 229 year: 1979 ident: 2023040304305416900_ article-title: Gas-liquid chromotographic determination of nicotine contained on cambridge filter pads publication-title: J. Ass. Off. Anal. Chem. – volume-title: Plots, Transformations, and Regression year: 1985 ident: 2023040304305416900_ – volume: 63 start-page: 307 year: 2001 ident: 2023040304305416900_ article-title: Influence analysis based on the case sensitivity function publication-title: J. R. Statist. Soc. doi: 10.1111/1467-9868.00287 – volume: 27 start-page: 2973 year: 1998 ident: 2023040304305416900_ article-title: Cook's distance in linear longitudinal models publication-title: Communs Statist. Theory Meth. doi: 10.1080/03610929808832267 – volume: 51 start-page: 22 year: 1997 ident: 2023040304305416900_ article-title: A useful property of best linear unbiased predictors with application to life testing publication-title: Am. Statistn doi: 10.1080/00031305.1997.10473581 – volume: 57 start-page: 1166 year: 2001 ident: 2023040304305416900_ article-title: Local influence to detect influential data structures for generalized linear mixed models publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.01166.x – volume-title: Plane Answers to Complex Questions year: 1996 ident: 2023040304305416900_ doi: 10.1007/978-1-4757-2477-6 – volume: 17 start-page: 624 year: 1989 ident: 2023040304305416900_ article-title: Assessing normality in random effects models publication-title: Ann. Statist. doi: 10.1214/aos/1176347130 – volume: 92 start-page: 999 year: 1997 ident: 2023040304305416900_ article-title: Influence diagnostics for linear longitudinal models publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1997.10474055 – volume: 54 start-page: 570 year: 1998 ident: 2023040304305416900_ article-title: Local influence in linear mixed models publication-title: Biometrics doi: 10.2307/3109764 – volume: 19 start-page: 15 year: 1977 ident: 2023040304305416900_ article-title: Detection of influential observations in linear regression publication-title: Technometrics doi: 10.1080/00401706.1977.10489493 – volume: 11 start-page: 243 year: 1992 ident: 2023040304305416900_ article-title: A random coefficient growth curve analysis of mental development in low-birth-weight infants publication-title: Statist. Med. doi: 10.1002/sim.4780110210 – volume: 53 start-page: 376 year: 1999 ident: 2023040304305416900_ article-title: Simplifying general least squares publication-title: Am. Statistn doi: 10.1080/00031305.1999.10474493 – volume-title: Generalized, Linear and Mixed Models year: 2001 ident: 2023040304305416900_ – volume-title: Variance Components year: 1992 ident: 2023040304305416900_ doi: 10.1002/9780470316856 – volume: 60 start-page: 201 year: 1998 ident: 2023040304305416900_ article-title: Residuals for the linear model with general covariance structure publication-title: J. R. Statist. Soc. doi: 10.1111/1467-9868.00119 – volume: 48 start-page: 133 year: 1986 ident: 2023040304305416900_ article-title: Assessment of local influence (with discussion) publication-title: J. R. Statist. Soc. doi: 10.1111/j.2517-6161.1986.tb01398.x – volume-title: Advanced Qualitative Techniques in the Social Sciences year: 1992 ident: 2023040304305416900_ – volume: 18 start-page: 835 year: 1999 ident: 2023040304305416900_ article-title: Assessing the goodness-of-fit of the Laird and Ware model—an example: the Jimma infant survival differential longitudinal study publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19990415)18:7<835::AID-SIM75>3.0.CO;2-7 – volume: 20 start-page: 309 year: 1995 ident: 2023040304305416900_ article-title: Checking the assumptions in mixed-model analysis of variance: a residual analysis approach publication-title: Comput. Statist. Data Anal. doi: 10.1016/0167-9473(94)00043-I – volume: 164 start-page: 259 year: 2001 ident: 2023040304305416900_ article-title: Simulation-based diagnostics in random-coefficient models publication-title: J. R. Statist. Soc. doi: 10.1111/1467-985X.00201 – volume-title: Linear Mixed Models in Practice: a SAS-oriented Approach year: 1997 ident: 2023040304305416900_ – volume-title: Modern Applied Statistics with S-PLUS year: 1997 ident: 2023040304305416900_ doi: 10.1007/978-1-4757-2719-7 – volume: 21 start-page: 1183 year: 1992 ident: 2023040304305416900_ article-title: Leverage, influence and residuals in regression models when observations are correlated publication-title: Communs Statist. Theory Meth. doi: 10.1080/03610929208830840 – volume: 60 start-page: 521 year: 1998 ident: 2023040304305416900_ article-title: Discussion on ‘Some algebra and geometry for hierarchical models, applied to diagnostics’ (by J. S. Hodges) publication-title: J. R. Statist. Soc. – volume-title: Analysis of Longitudinal Data year: 1994 ident: 2023040304305416900_ – volume: 60 start-page: 497 year: 1998 ident: 2023040304305416900_ article-title: Some algebra and geometry for hierarchical models, applied to diagnostics (with discussion) publication-title: J. R. Statist. Soc. doi: 10.1111/1467-9868.00137 – volume: 34 start-page: 38 year: 1992 ident: 2023040304305416900_ article-title: Case-deletion diagnostics for mixed models publication-title: Technometrics doi: 10.2307/1269550 – volume: 112 start-page: 679 year: 1987 ident: 2023040304305416900_ article-title: Recommendations for the conduct and interpretation of co-operative trials publication-title: Analyst doi: 10.1039/an9871200679 – volume-title: Multilevel Statistical Models year: 1995 ident: 2023040304305416900_ – volume-title: Random Coefficient Models year: 1993 ident: 2023040304305416900_ |
SSID | ssj0000673 |
Score | 1.8688506 |
Snippet | 'Delete = replace' is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms... ‘Delete = replace’ is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms... ‘Delete = replace’ is a powerful and intuitive modelling identity. This paper extends previous work by stating and proving the identity in more general terms... |
SourceID | proquest repec pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 131 |
SubjectTerms | Approximation Conditional residuals Estimation Exact sciences and technology General topics Generalized least squares Least squares Leverage Linear inference, regression Linear models Mathematical expressions Mathematics Matrix identities Maximum likelihood estimation Modeling Modelling Observational research Probability and statistics Restricted maximum likelihood Sciences and techniques of general use Statistical methods Statistical variance Statistics Studies Waste byproducts |
Title | Application of 'delete = replace' to deletion diagnostics for variance component estimation in the linear mixed model |
URI | https://api.istex.fr/ark:/67375/WNG-R62D7G68-S/fulltext.pdf https://www.jstor.org/stable/3647631 https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1369-7412.2003.05211.x http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a1_3ap_3a131-143.htm https://www.proquest.com/docview/200861050 https://www.proquest.com/docview/200924708 https://www.proquest.com/docview/37844863 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLfQdtmFv0OEQfEBcUuVxLHdHDhsg22A2KFlYjfLTmJRuiVVm04dp30M-Hr7JLxnpxlFIE2IQxqpsZP45eX59-Lfe4-Ql9xmaWqsCNOcReCglFGos8SGtky0EVyawmC888djcXSSvj_lpy3_CWNhfH6I7oMbvhnOXuMLro2vQhK57LaOoZWFMCO6fJKsj2GocR_xJFK3EB8Nk1-NMvMhWL5LS-ppFzj_eKK1mWoThb5ckRaRQannIETrq1-swdPNWTkt83Ww62arg3tkshqnJ6lM-ovG9PNvv6WA_D-CuE_utqCW7notfEDulNVDsoU41qeBfkQud28Wymlt6fXVd6zA05T0NYWB4Lf866sftKmp-xtbFZ4EiP0pIGt6AV49qihFFnxdwWRJMUOID72k44oClKU4Gj2j5-NlWVBX5WebnBy8_bR_FLZVH8Kc80SEubZcWEBlJhKGWZYD4BhYeH65jTXXOk0MYk7ONbiSuZSZLDLAUUYWRqSGMfaYbFRwF08ItXFeZEURaQleZikEYOECNNGkNgVFZDwgcvWEVd6mRMfKHGfKLc2nGMaGslUoWyzYyZSTrVoGJO56Tn1akFv0eeWUqOugZxOk1UmuPh8fqqFI3shDMVCjgGw7LesaYo5_weKA9Na07ubKHPONx9BgZ6WGqjVFc1dnFDAyj_52FGQjo0FAXnRHwcLgspGuynoxV0wOwIcXLCD7TrO7y5oz_bWezedGXSimhYAfuFeNdhd2Y9hi2Ka4ZzH4mEx9ac4DIpwy31psajga7aVMPP3Xjjtky9OtkIP0jGw0s0X5HJBkY3pgIz686zlL8ROpGWV6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLfQemAX_g4RBpsPiFtKEsd2c-AwBluBrYd2E7tZdhJrZV1btek0OO1jwNfbJ-E9O80oAmlCHNJIjV8Svzw__579_hDyktssTY0VYZqzCAyUMgp1ltjQlok2gktTGIx3PuyJ7nH68YSf1OWAMBbG54doFtxwZDh9jQMcF6Rf19uSfpQzkYUwJbqEkqyNcahxGwBlCwt8O_uqn_yqlpkPwvI0tVtPvcX5xzutzFUtZPvl0m0RfSj1HNhoff2LFYDampXTMl-Fu26-2rtPRsueejeVs_aiMu38229JIP8TKx6QezWupTteEB-SO-X4EVlHKOszQT8mX3du9srpxNLrq-9YhKcq6RsKPcHl_OurH7SaUPc3tiq8HyDSUwDX9AIMe5RSio7wkzHMlxSThPjoSzocU0CzFLujZ_R8eFkW1BX62SDHe--PdrthXfghzDlPRJhry4UFYGYiYZhlOWCOjoUPmNtYc63TxCDs5FyDNZlLmckiAyhlZGFEahhjT8jaGN7iKaE2zousKCItwdAshQA4XIAwmtSmIIuMB0QuP7HK66zoWJxjpNzufIqRbMhbhbzFmp1MOd6qy4DEDeXUZwa5Bc0rJ0UNgZ6doWed5Opzb1_1RfJO7ouOGgRkw4lZ0xDT_AsWB2RrRexunswx5XgMDTaXcqhqbTR3pUYBJvPob1eBNzLqBGS7uQpKBneO9LicLOaKyQ6Y8YIFZNeJdvNYM9JfJrP53KgLxbQQ8APvqlH1wmkIRwzHFM8sBjOTqdPqPCDCSfOt2ab6g8HblIln_0q4Te52jw4P1MGH3qdNsu69r9Al6TlZq2aL8gUAy8psOYXxE3UmaJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hRkK98CzCFNo9IG4Otvfh-MChNKTlFaGUit5Wu7ZXhLRJlDhV4NSfAX-vv4SZXcclCKQKcbAt2Tu2dzw7-413HoQ8FTbj3FgZ8pxFYKCUUaizxIa2TLSRIjWFwXjn9315eMzfnIiT2v8JY2F8fojmhxuODKevcYBPC_u8XpX0g5zJLIQZ0eWTZG0MQ43bgCdbXEYdlPDuIPlVKzMfg-Vpaq-eeoXzj3dam6payPXlymsRXSj1HLhoffmLNXzampXTMl9Hu2666t0mo1VHvZfKqL2oTDv_9lsOyP_DiTvkVo1q6Z4Xw7vkRjm-RzYRyPo80PfJ172rlXI6sfTy4juW4KlK-oJCR_Bn_uXFD1pNqDuNrQrvBYj0FKA1PQezHmWUohv8ZAyzJcUUIT72kg7HFLAsxd7oGT0bLsuCujI_W-S49-rj_mFYl30IcyESGebaCmkBlplIGmZZDoijY-H75TbWQmueGASdQmiwJfM0zdIiAyBl0sJIbhhjD8jGGN7iIaE2zousKCKdgplZSglguABRNNxykEQmApKuvrDK65zoWJrjVLm1eY5xbMhbhbzFip1MOd6qZUDihnLq84Jcg-aZE6KGQM9G6FeXCvWpf6AGMummB7KjjgKy5aSsaYhJ_iWLA7KzJnVXTxaYcDyGBtsrMVS1Lpq7QqMAkkX0t6vAmzTqBGS3uQoqBteN9LicLOaKpR0w4iULyL6T7Oax5lR_mczmc6POFdNSwg7eVaPihcMQthi2KR5ZDEYmU5-rs4BIJ8zXZpsaHB295Ew--lfCXXLzQ7en3r3uv90mm971Cv2RHpONarYonwCqrMyOUxc_AfrvZ1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+%27delete+%3D+replace%27+to+deletion+diagnostics+for+variance+component+estimation+in+the+linear+mixed+model&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Haslett%2C+John&rft.au=Dillane%2C+Dominic&rft.date=2004-02-01&rft.pub=Oxford+University+Press&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=66&rft.issue=1&rft.spage=131&rft_id=info:doi/10.1046%2Fj.1369-7412.2003.05211.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=743223091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |