State of the Art of Single-Walled Carbon Nanotube Synthesis on Surfaces

Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 26; no. 34; pp. 5898 - 5922
Main Authors Chen, Yabin, Zhang, Yingying, Hu, Yue, Kang, Lixing, Zhang, Shuchen, Xie, Huanhuan, Liu, Dan, Zhao, Qiuchen, Li, Qingwen, Zhang, Jin
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed. Single‐walled carbon nanotubes (SWNTs) on surfaces are promising building blocks for nanoelectronics. Structure‐controlled growth of SWNTs on surfaces is important for the development of SWNT‐based electronics. The recent progress in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs synthesized on surfaces by chemical vapor deposition is summarized and the remaining challenges and opportunities are discussed.
AbstractList Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed. Single-walled carbon nanotubes (SWNTs) on surfaces are promising building blocks for nanoelectronics. Structure-controlled growth of SWNTs on surfaces is important for the development of SWNT-based electronics. The recent progress in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs synthesized on surfaces by chemical vapor deposition is summarized and the remaining challenges and opportunities are discussed.
Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed. Single‐walled carbon nanotubes (SWNTs) on surfaces are promising building blocks for nanoelectronics. Structure‐controlled growth of SWNTs on surfaces is important for the development of SWNT‐based electronics. The recent progress in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs synthesized on surfaces by chemical vapor deposition is summarized and the remaining challenges and opportunities are discussed.
Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed.
Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed.Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed.
Author Zhang, Jin
Zhao, Qiuchen
Zhang, Shuchen
Zhang, Yingying
Hu, Yue
Xie, Huanhuan
Chen, Yabin
Kang, Lixing
Liu, Dan
Li, Qingwen
Author_xml – sequence: 1
  givenname: Yabin
  surname: Chen
  fullname: Chen, Yabin
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 2
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  organization: Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, P.R. China
– sequence: 3
  givenname: Yue
  surname: Hu
  fullname: Hu, Yue
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 4
  givenname: Lixing
  surname: Kang
  fullname: Kang, Lixing
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 5
  givenname: Shuchen
  surname: Zhang
  fullname: Zhang, Shuchen
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 6
  givenname: Huanhuan
  surname: Xie
  fullname: Xie, Huanhuan
  organization: Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, P.R. China
– sequence: 7
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 8
  givenname: Qiuchen
  surname: Zhao
  fullname: Zhao, Qiuchen
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China
– sequence: 9
  givenname: Qingwen
  surname: Li
  fullname: Li, Qingwen
  organization: Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, 215123, Suzhou, P.R. China
– sequence: 10
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  email: jinzhang@pku.edu.cn
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25042346$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9P2zAUx60JNMqP645Tjruke_6Z5Fh1UCaxAirQo-XEL8NbmoCdiPW_x1WhmpAQJz89fT7P9vsekr22a5GQLxTGFIB9N3ZlxgyoABCcfiIjKhlNBRRyj4yg4DItlMgPyGEIfwCgUKA-kwMmQTAu1IjMFr3pMenqpL_HZOL7Tblw7e8G06VpGrTJ1Piya5O5abt-KDFZrNvIBheS2F0MvjYVhmOyX5sm4MnLeURuz05vpufpxeXs53RykVZy8zCLoHIqQZoqyzljUOdZjcZSZVn8Q11ai5VhImNoy0oAz6XJY1fYgllRCn5Evm3nPvjuccDQ65ULFTaNabEbgqYqozLngsLHqFSRYorziH59QYdyhVY_eLcyfq1f9xSB8RaofBeCx3qHUNCbIPQmCL0LIgrijVC5uGnXtb03rnlfK7bak2tw_cElevLj1-R_N926LvT4b-ca_1erjGdSL-czfX21ZHfz-bk-4891hapN
CitedBy_id crossref_primary_10_1016_j_jelechem_2023_117906
crossref_primary_10_1002_anie_201502735
crossref_primary_10_1088_1361_6528_aa7ebe
crossref_primary_10_1002_smll_202103433
crossref_primary_10_3390_ma14123275
crossref_primary_10_1007_s41204_022_00293_7
crossref_primary_10_1016_j_carbon_2017_09_096
crossref_primary_10_3390_ijms242417239
crossref_primary_10_1021_acs_chemmater_5b02712
crossref_primary_10_1088_0268_1242_30_7_074001
crossref_primary_10_1039_C5CS00297D
crossref_primary_10_1021_acsami_3c04839
crossref_primary_10_1039_D0NR01919D
crossref_primary_10_1016_j_carbon_2015_11_060
crossref_primary_10_1039_C7CS00104E
crossref_primary_10_1002_adfm_202211335
crossref_primary_10_1002_adfm_202212665
crossref_primary_10_1039_C4TA05917D
crossref_primary_10_1080_1536383X_2018_1493460
crossref_primary_10_1038_ncomms7099
crossref_primary_10_1080_1536383X_2025_2468380
crossref_primary_10_1016_j_bios_2017_05_030
crossref_primary_10_1021_acs_chemrev_5b00608
crossref_primary_10_1016_j_chempr_2019_02_012
crossref_primary_10_1007_s12274_020_3183_0
crossref_primary_10_1002_smll_201403155
crossref_primary_10_1016_j_carbon_2018_08_068
crossref_primary_10_1016_j_optmat_2018_09_047
crossref_primary_10_1088_1361_6528_aa94b0
crossref_primary_10_1021_acs_accounts_6b00430
crossref_primary_10_1016_j_carbon_2015_11_001
crossref_primary_10_1021_jacs_6b06477
crossref_primary_10_1039_C6RA20088E
crossref_primary_10_1016_j_foodchem_2025_142906
crossref_primary_10_1007_s12633_025_03245_3
crossref_primary_10_1007_s13391_016_6012_6
crossref_primary_10_1021_acs_chemrev_7b00088
crossref_primary_10_1088_2043_6262_7_3_033002
crossref_primary_10_1002_chin_201443226
crossref_primary_10_1007_s40820_016_0113_5
crossref_primary_10_1021_jacs_6b03527
crossref_primary_10_18185_erzifbed_1036126
crossref_primary_10_1016_j_aca_2023_340907
crossref_primary_10_1021_acs_nanolett_6b00841
crossref_primary_10_1002_ange_201502735
crossref_primary_10_1007_s41061_017_0102_2
crossref_primary_10_1016_j_carbon_2019_10_002
crossref_primary_10_1016_j_compscitech_2023_109933
crossref_primary_10_1039_C5NR05616K
crossref_primary_10_3390_bios7010009
crossref_primary_10_1039_C4TC02317J
crossref_primary_10_1007_s12274_015_0869_9
crossref_primary_10_1002_admi_202001112
crossref_primary_10_1007_s40843_019_9581_4
crossref_primary_10_1039_C4CP05418K
crossref_primary_10_1016_j_mser_2016_08_002
crossref_primary_10_1088_1361_6641_aaad7e
crossref_primary_10_1063_1_4907613
crossref_primary_10_1021_acs_nanolett_7b04676
crossref_primary_10_1002_smll_201403170
crossref_primary_10_1021_nl5037325
crossref_primary_10_1039_C5NR06007A
crossref_primary_10_1515_amm_2015_0347
crossref_primary_10_1007_s41061_016_0085_4
crossref_primary_10_1016_j_jmst_2020_02_067
crossref_primary_10_1039_C9QM00267G
Cites_doi 10.1002/smll.200500120
10.1002/smll.201202940
10.1021/nl0708011
10.1038/ncomms2736
10.1016/S0009-2614(01)00278-0
10.1002/smll.201203252
10.1021/jp060080e
10.1038/nnano.2008.59
10.1038/27632
10.1038/nature02278
10.1038/nnano.2007.77
10.1021/ja070808k
10.1021/ja208221g
10.1039/c0nr00170h
10.1002/pssb.201000423
10.1103/PhysRevLett.107.065501
10.1088/0957-4484/16/11/004
10.1016/S0009-2614(99)01216-6
10.1038/363603a0
10.1038/nature12502
10.1002/adma.200901255
10.1021/jp071387w
10.1021/cm061862n
10.1021/nl061797g
10.1021/ja0274958
10.1021/nl070980m
10.1063/1.2779850
10.1016/j.cplett.2006.01.058
10.1103/PhysRevLett.80.3779
10.1038/nmat3231
10.1039/b009518b
10.1002/anie.200903463
10.1021/ja1087634
10.1016/0009-2614(96)00862-7
10.1088/0957-4484/16/7/031
10.1007/s12274-009-9054-3
10.1021/nl049691d
10.1021/jp901366h
10.1021/nl0256309
10.1021/nl803496s
10.1038/nnano.2010.68
10.1126/science.1222453
10.1021/nn900799v
10.1021/ja042544x
10.1016/j.cplett.2005.04.054
10.1021/cm990582n
10.1038/29954
10.1038/nmat1216
10.1073/pnas.0507064102
10.1021/jp0142278
10.1146/annurev.matsci.33.012802.100255
10.1038/ncomms2205
10.1016/j.carbon.2011.06.100
10.1021/jp0632283
10.1002/adma.200305203
10.1021/ja901295j
10.1016/S0379-6779(98)00278-1
10.1021/jp027096z
10.1021/ja071114e
10.1103/PhysRevLett.86.1118
10.1007/s12274-009-9077-9
10.1016/j.physrep.2004.10.006
10.1021/ja8006947
10.1038/nchem.1655
10.1021/ja035262q
10.1021/cm903866z
10.1021/nl900207v
10.1016/j.carbon.2005.07.008
10.1038/nmat1220
10.1021/ja809635s
10.1021/ja058214
10.1016/j.carbon.2011.02.019
10.1126/science.1058782
10.1007/s12274-010-0054-0
10.1109/TNANO.2009.2016562
10.1016/j.carbon.2011.12.019
10.1021/nl050714d
10.1103/PhysRevLett.68.1579
10.1021/jp012085b
10.1021/ja036622c
10.1063/1.1778471
10.1021/ja402762e
10.1021/nl035097c
10.1126/science.1086534
10.1038/nmat877
10.1038/nnano.2013.227
10.1021/nl061871v
10.1021/nn3020695
10.1021/nl0610026
10.1002/pssb.201000368
10.1126/science.1122797
10.1038/nmat2531
10.1073/pnas.050498597
10.1016/0022-3697(93)90297-5
10.1016/S0009-2614(98)00745-3
10.1021/nl1010178
10.1038/nnano.2013.56
10.1007/s12274-009-9082-z
10.1038/ncomms3205
10.1038/358220a0
10.1038/nnano.2010.220
10.1021/ja9068529
10.1103/PhysRevLett.95.036101
10.1021/ja3038992
10.1021/nl9025488
10.1002/adma.200900942
10.1126/science.1104962
10.1126/science.274.5293.1701
10.1103/PhysRevB.82.085421
10.1039/c0nr00222d
10.1002/adma.201000705
10.1002/adma.200904366
10.1021/nl034219y
10.1021/ja906932p
10.1016/0039-6028(80)90080-1
10.1109/TNANO.2002.1005429
10.1016/j.carbon.2012.10.006
10.1002/adma.200904167
10.1021/nn405105y
10.1021/nn401995z
10.1126/science.1102896
10.1021/jp900499g
10.1088/0022-3727/44/14/145401
10.1002/adma.200800703
10.1016/j.carbon.2012.09.025
10.1002/anie.200460356
10.1002/anie.201101700
10.1038/363605a0
10.1021/nn101363m
10.1002/adma.200903238
10.1007/s12274-011-0133-x
10.1021/nl301561f
10.1063/1.1415412
10.1021/ja052759m
10.1016/j.carbon.2012.01.035
10.1021/nl901260b
10.1021/jp710691j
10.1038/nnano.2012.189
10.1021/nn901908n
10.1021/jp003948o
10.1021/nl025602q
10.1063/1.1753975
10.1038/nnano.2007.150
10.1007/s12274-008-8022-7
10.1016/j.carbon.2013.02.046
10.1038/34139
10.1021/nl025675
10.1038/nature08116
10.1016/j.carbon.2011.02.045
10.1021/nn4004956
10.1021/jp0012404
10.1007/s12274-009-9057-0
10.1002/1521-3773(20001002)39:19<3413::AID-ANIE3413>3.0.CO;2-Q
10.1126/science.1078727
10.1016/j.carbon.2010.09.001
10.1016/S0094-5765(00)00111-9
10.1016/0008-6223(95)00017-8
10.1021/ja054454d
10.1021/ja107855q
10.1063/1.2715031
10.1021/ja302136x
10.1021/nn200198b
10.1021/jp1100329
10.1021/nl801007r
10.1126/science.1133781
10.1126/science.1208455
10.1126/science.1103294
10.1021/jp990957s
10.1021/ja8093907
10.1038/nnano.2006.192
10.1038/498443a
10.1073/pnas.0811946106
10.1021/nl8018802
10.1038/nnano.2006.52
10.1016/j.cap.2007.04.055
10.1002/smll.201102010
10.1021/jp8051938
10.1039/c2nr32276e
10.1016/S0009-2614(00)01163-5
10.1021/nl080452q
10.1002/smll.200700029
10.1021/nl801461f
10.1021/ja065767r
10.1021/ja805070b
10.1016/j.carbon.2011.04.016
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adma.201400431
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 5922
ExternalDocumentID 25042346
10_1002_adma_201400431
ADMA201400431
ark_67375_WNG_QPW2VNNH_F
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5521-de0681505ac783220f87fead16d2140fbddeca2472edbc40385a8fbd4d92d4b43
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 16:31:59 EDT 2025
Thu Jul 10 18:19:57 EDT 2025
Mon Jul 21 06:04:17 EDT 2025
Tue Jul 01 00:44:13 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Wed Jan 22 16:24:45 EST 2025
Wed Oct 30 09:51:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords single-walled carbon nanotube (SWNT)
structure control
chirality
chemical vapor deposition
parallel aligned array on surfaces
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5521-de0681505ac783220f87fead16d2140fbddeca2472edbc40385a8fbd4d92d4b43
Notes ark:/67375/WNG-QPW2VNNH-F
istex:104F808D38BB88B9C64CD2797EBB08B04D49E8E5
ArticleID:ADMA201400431
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25042346
PQID 1561032633
PQPubID 23479
PageCount 25
ParticipantIDs proquest_miscellaneous_1671583410
proquest_miscellaneous_1561032633
pubmed_primary_25042346
crossref_primary_10_1002_adma_201400431
crossref_citationtrail_10_1002_adma_201400431
wiley_primary_10_1002_adma_201400431_ADMA201400431
istex_primary_ark_67375_WNG_QPW2VNNH_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 1993, 363, 605.
Y. B. Chen, Y. Hu, Y. Fang, P. Li, C. Q. Feng, J. Zhang, Carbon 2012, 50, 3295.
B. Wang, C. H. P. Poa, L. Wei, L.-J. Li, Y. Yang, Y. Chen, J. Am. Chem. Soc. 2007, 129, 9014.
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, ACS Nano 2012, 6, 6433.
J. P. Edgeworth, N. R. Wilson, J. V. Macpherson, Small 2007, 3, 860.
X. L. Li, L. Zhang, X. R. Wang, I. Shimoyama, X. M. Sun, W. S. Seo, H. J. Dai, J. Am. Chem. Soc. 2007, 129, 4890.
S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman, J. Am. Chem. Soc. 2003, 125, 11186.
N. Mingo, D. Broido, Nano Lett. 2005, 5, 1221.
Z. Liu, L. Jiao, Y. Yao, X. Xian, J. Zhang, Adv. Mater. 2010, 22, 2285.
W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Angew. Chem. Int. Edit. 2010, 49, 2114.
S. Han, X. L. Liu, C. W. Zhou, J. Am. Chem. Soc. 2005, 127, 5294.
Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B 2001, 105, 11424.
Y. Chen, J. Zhang, Carbon 2011, 49, 3316.
B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2009, 131, 2082.
M. Hofmann, D. Nezich, A. Reina, J. Kong, Nano Lett. 2008, 8, 4122.
I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards, O. Jaschinski, Chem.Phys. Lett. 2000, 331, 125.
G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, H. Dai, P. Natl. Aacd. Sci. USA 2005, 102, 16141.
T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220.
S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Norskov, Nature 2004, 427, 426.
J. H. Hafner, C.-L. Cheung, T. H. Oosterkamp, C. M. Lieber, J. Phys. Chem. B 2001, 105, 743.
L. J. Ci, L. Song, D. Jariwala, A. L. Elias, W. Gao, M. Terrones, P. M. Ajayan, Adv. Mater. 2009, 21, 4487.
K. Seo, C. Kim, Y. S. Choi, K. A. Park, Y. H. Lee, B. Kim, J. Am. Chem. Soc. 2003, 125, 13946.
R. E. Smalley, Y. Li, V. C. Moore, B. K. Price, R. Colorado, H. K. Schmidt, R. H. Hauge, A. R. Barron, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 15824.
B. C. Edwards, Acta Astronautica 2000, 47, 735.
H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 1996, 260, 471.
B. Zhang, G. Hong, B. Peng, J. Zhang, W. Choi, J. M. Kim, J. Y. Choi, Z. Liu, J. Phys. Chem. C 2009, 113, 5341.
R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, B. Maruyama, Nat. Mater. 2012, 11, 213.
W. W. Zhou, S. T. Zhan, L. Ding, J. Liu, J. Am. Chem. Soc. 2012, 134, 14019.
J. Kong, A. M. Cassell, H. Dai, Chem. Phys. Lett. 1998, 292, 567.
S. Huang, Q. Cai, J. Chen, Y. Qian, L. Zhang, J. Am. Chem. Soc. 2009, 131, 2094.
A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 2001, 86, 1118.
H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Nano Lett. 2008, 8, 2082.
B. Liu, W. Ren, C. Liu, C.-H. Sun, L. Gao, S. Li, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 3421.
J. C. Hamilton, J. M. Blakely, Surf. Sci. 1980, 91, 199.
R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, ACS Nano 2013, 7, 6156.
W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science 1996, 274, 1701.
R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
M. Y. Sfeir, F. Wang, L. M. Huang, C. C. Chuang, J. Hone, S. P. O'Brien, T. F. Heinz, L. E. Brus, Science 2004, 306, 1540.
C. Y. Khripin, J. A. Fagan, M. Zheng, J. Am. Chem. Soc. 2013, 135, 6822.
S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, P. C. Eklund, Phys. Rev. Lett. 1998, 80, 3779.
N. Patil, A. Lin, E. R. Myers, K. Ryu, K. A. Badmaev, C. W. Zhou, H. S. P. Wong, S. Mitra, IEEE Trans. Nanotechnol. 2009, 8, 498.
G. Hong, Y. B. Chen, P. Li, J. Zhang, Carbon 2012, 50, 2067.
M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338.
R. F. Zhang, H. H. Xie, Y. Y. Zhang, Q. Zhang, Y. G. Jin, P. Li, W. Z. Qian, F. Wei, Carbon 2013, 52, 232.
P. G. Collins, M. S. Arnold, P. Avouris, Science 2001, 292, 706.
G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. Dai, Science 2006, 314, 974.
Z. Ren, Nat. Nanotechnol. 2007, 2, 17.
M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 1995, 33, 883.
Z. Zhu, H. Jiang, T. Susi, A. G. Nasibulin, E. I. Kauppinen, J. Am. Chem. Soc. 2010, 133, 1224.
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Science 2011, 333, 1003.
G. Hong, M. Zhou, R. Zhang, S. Hou, W. Choi, Y. S. Woo, J.-Y. Choi, Z. Liu, J. Zhang, Angew. Chem. Int. Edit. 2011, 50, 6819.
G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, J. Am. Chem. Soc. 2009, 131, 14642.
R. Krupke, F. Hennrich, H. v. Löhneysen, M. M. Kappes, Science 2003, 301, 344.
M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 2001, 338, 101.
A. D. Franklin, Nature 2013, 498, 443.
C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber, J. Phys. Chem. B 2002, 106, 2429.
J. W. Song, H. W. Seo, J. K. Park, J. E. Kim, D. G. Choi, C. S. Han, Curr. Appl. Phys. 2008, 8, 725.
M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. PhilipWong, S. Mitra, Nature 2013, 501, 526.
S. H. Jin, S. N. Dunham, J. Song, X. Xie, J.-h. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M. A. Wahab, M. Menon, E. Cho, K. L. Grosse, D. J. Lee, H. U. Chung, E. Pop, M. A. Alam, W. P. King, Y. Huang, J. A. Rogers, Nat. Nanotechnol. 2013, 8, 347.
S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Science 2002, 298, 2361.
Q. Wen, R. F. Zhang, W. Z. Qian, Y. R. Wang, P. H. Tan, J. Q. Nie, F. Wei, Chem. Mater. 2010, 22, 1294.
L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T. P. McNicholas, Y. Li, J. Liu, Nano Lett. 2009, 9, 800.
W. W. Zhou, Z. Y. Han, J. Y. Wang, Y. Zhang, Z. Jin, X. Sun, Y. W. Zhang, C. H. Yan, Y. Li, Nano Lett. 2006, 6, 2987.
C. L. Cheung, J. H. Hafner, C. M. Lieber, Proc. Natl. Aacd. Sci. USA 2000, 97, 3809.
A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 1999, 103, 6484.
J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59.
C. Kocabas, S. J. Kang, T. Ozel, M. Shim, J. A. Rogers, J. Phys. Chem. C 2007, 111, 17879.
P. L. McEuen, M. S. Fuhrer, H. K. Park, IEEE T. Nanotechnol. 2002, 1, 78.
C. S. Allen, C. Zhang, G. Burnell, A. P. Brown, J. Robertson, B. J. Hickey, Carbon 2011, 49, 4961.
K. J. Ziegler, Z. Gu, J. Shaver, Z. Chen, E. L. Flor, D. J. Schmidt, C. Chan, R. H. Hauge, R. E. Smalley, Nanotechnology 2005, 16, S539.
H. Ago, N. Uehara, K.-i. Ikeda, R. Ohdo, K. Nakamura, M. Tsuji, Chem. Phys. Lett. 2006, 421, 399.
A. Muller, S. K. Das, H. Bogge, M. Schmidtmann, A. Botar, A. Patrut, Chem. Comm. 2001, 657.
Y. Hu, Y. Chen, P. Li, J. Zhang, Small 2013, 9, 1306.
B. Wang, Y. F. Ma, N. Li, Y. P. Wu, F. F. Li, Y. S. Chen, Adv. Mater. 2010, 22, 3067.
B. S. Flavel, M. M. Kappes, R. Krupke, F. Hennrich, ACS Nano 2013, 7, 3557.
R. F. Zhang, Y. Y. Zhang, Q. Zhang, H. H. Xie, W. Z. Qian, F. Wei, ACS Nano 2013, 7, 6156.
D. Nishide, H. Liu, T. Tanaka, H. Kataura, Phys. Status Solidi B 2010, 247, 2746.
D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Nano Lett. 2006, 6, 2642.
K. Maehashi, Y. Ohno, K. Inoue, K. Matsumoto, Appl. Phys. Lett. 2004, 85, 858.
J. Li, Y. He, Y. Han, K. Liu, J. Wang, Q. Li, S. Fan, K. Jiang, Nano Lett. 2012, 12, 4095.
J. H. Li, K. H. Liu, S. B. Liang, W. W. Zhou, M. Pierce, F. Wang, L. M. Peng, J. Liu, Acs Nano 2014, 8, 554.
H. Dumlich, S. Reich, Phys. Rev. B 2010, 82, 085421.
Z. Gu, H. Peng, R. Hauge, R. Smalley, J. Margrave, Nano Lett. 2002, 2, 1009.
J. L. Xiao, S. Dunham, P. Liu, Y. W. Zhang, C. Kocabas, L. Moh, Y. G. Huang, K. C. Hwang, C. Lu, W. Huang, J. A. Rogers, Nano Lett. 2009, 9, 4311.
A. D. Franklin, Z. Chen, Nat. Nanotechnol. 2010, 5, 858.
L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, Z. F. Liu, J. Am. Chem. Soc. 2008, 130, 12612.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
Y. Feng, Y. Miyata, K. Matsuishi, H. Kataura, J. Phys. Chem. C 2011, 115, 1752.
Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. J. Dai, Nano Lett. 2004, 4, 317.
Y. G. Yao, X. C. Dai, C. Q. Feng, J. Zhang, X. L. Liang, L. Ding, W. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, Adv. Mater. 2009, 21, 4158.
D. Yuan, L. Ding, H. Chu, Y. Feng, T. P. McNicholas, J. Liu, Nano Lett. 2008, 8, 2576.
Y. Homma, H. P. Liu, D. Takagi, Y. Kobayashi, Nano Res. 2009, 2, 793.
H. H. Xie, R. F. Zhang, Y. Y. Zhang, P. Li, Y. G. Jin, F. Wei, Carbon 2013, 52, 535.
X. L. Liu, K. Ryu, A. Badmaev, S. Han, C. W. Zhou, J. Phys. Chem. C 2008, 112, 15929.
W.-H. Chiang, R. Mohan Sankaran, Nat. Mater. 2009, 8, 882.
C. Feng, Y. Yao, J. Zhang, Z. Liu, Nano Res. 2009, 2, 768.
S. Ghosh, S. M. Bachilo, R. B. Weisman, Nat. Nanotechnol. 2010, 5, 443.
H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synthetic Met. 1999, 103, 2555.
M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47.
B. Liu, D.-M. Tang, C. Sun, C. Liu, W. Ren, F. Li, W.-J. Yu, L.-C. Yin, L. Zhang, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2010, 133, 197.
H. Park, A. Afzali, S. J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, W. Haensch, Nat. Nanotechnol. 2012, 7, 787.
C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers, Small 2005, 1, 1110.
Y. N. Zhang, L. X. Zheng, Nanoscale 2010, 2, 1919.
Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, P. Avouris, Science 2006, 311, 1735.
N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 1992, 68, 1579.
M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, J. Phys. Ch
2011; 115
2010; 10
2013; 4
1995; 33
2004; 4
2004; 3
1996; 260
2009; 113
1998; 80
2013; 7
2013; 8
2012; 12
2013; 5
2012; 11
1998; 393
1993; 363
2013; 9
1998; 395
2010; 22
1998; 292
2013; 58
2012; 134
2000; 12
2005; 102
2013; 52
2000; 97
1992; 358
2007; 7
2007; 2
2007; 3
2008; 112
2010; 3
2010; 2
2010; 5
2010; 4
2004; 43
2007; 19
2013; 501
2002; 1
2002; 2
2007; 90
2007; 91
2006; 110
1999; 103
2011; 4
2004; 427
2004; 306
2011; 5
2011; 133
2003; 33
2012; 50
1998; 391
2010; 49
2003; 107
2013; 339
2000; 104
2006; 44
2002; 124
1993; 54
2005; 127
2005; 95
2005; 5
2005; 1
2005; 408
2005; 409
2009; 460
2005; 16
2008; 130
2009; 106
2000; 47
1964; 4
2003; 15
2008; 8
1980; 91
2008; 3
2000; 331
2008; 1
2001; 86
2001; 105
2001
2001; 292
2013; 13
2002; 106
2003; 2
2003; 3
2001; 338
2014; 8
2003; 125
2006; 128
2004; 85
2011; 333
2007; 129
2009; 21
2010; 247
2002; 298
2006; 6
2006; 1
2009; 131
2006; 314
2006; 311
2010; 82
2012; 3
2011; 107
2000; 39
2007; 111
2011; 50
2010; 133
2009; 9
2011; 44
2013; 498
2009; 8
2013; 135
1992; 68
1996; 274
2009; 3
2012; 6
1999; 315
2011; 49
2012; 7
2009; 2
2003; 301
2001; 79
2012; 4
2012; 8
2006; 421
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_172_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_134_1
e_1_2_12_176_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_180_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_171_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_137_1
e_1_2_12_179_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_175_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_141_1
e_1_2_12_183_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_145_1
e_1_2_12_187_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_151_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_132_1
Chen Y. B. (e_1_2_12_177_1) 2013; 13
e_1_2_12_178_1
e_1_2_12_113_1
e_1_2_12_155_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_182_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_186_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_5_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_185_1
e_1_2_12_162_1
e_1_2_12_181_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_124_1
e_1_2_12_166_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – reference: C. A. Wang, K. M. Ryu, L. G. De Arco, A. Badmaev, J. L. Zhang, X. Lin, Y. C. Che, C. W. Zhou, Nano Res. 2010, 3, 831.
– reference: H. H. Xie, R. F. Zhang, Y. Y. Zhang, P. Li, Y. G. Jin, F. Wei, Carbon 2013, 52, 535.
– reference: A. D. Franklin, Z. Chen, Nat. Nanotechnol. 2010, 5, 858.
– reference: A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 2001, 86, 1118.
– reference: Y. B. Chen, Y. Hu, Y. Fang, P. Li, C. Q. Feng, J. Zhang, Carbon 2012, 50, 3295.
– reference: L. X. Zheng, M. J. O'Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, Y. T. Zhu, Nat. Mater. 2004, 3, 673.
– reference: D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Science 2011, 333, 1003.
– reference: X. F. Feng, S. W. Chee, R. Sharma, K. Liu, X. Xie, Q. Q. Li, S. S. Fan, K. L. Jiang, Nano Res. 2011, 4, 767.
– reference: K. Maehashi, Y. Ohno, K. Inoue, K. Matsumoto, Appl. Phys. Lett. 2004, 85, 858.
– reference: Z. Y. Zhang, S. Wang, L. Ding, X. L. Liang, T. Pei, J. Shen, H. L. Xu, O. Chen, R. L. Cui, Y. Li, L. M. Peng, Nano Lett. 2008, 8, 3696.
– reference: C. Lu, J. Liu, J. Phys. Chem. B 2006, 110, 20254.
– reference: A. D. Franklin, Nature 2013, 498, 443.
– reference: R. Krupke, F. Hennrich, H. v. Löhneysen, M. M. Kappes, Science 2003, 301, 344.
– reference: H. Dumlich, S. Reich, Phys. Rev. B 2010, 82, 085421.
– reference: C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber, J. Phys. Chem. B 2002, 106, 2429.
– reference: A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L. R. Wallenberg, Nat. Mater. 2004, 3, 677.
– reference: Z. Gu, H. Peng, R. Hauge, R. Smalley, J. Margrave, Nano Lett. 2002, 2, 1009.
– reference: I. J. Teng, K. L. Chen, H. L. Hsu, S. R. Jian, L. C. Wang, J. H. Chen, W. H. Wang, C. T. Kuo, J. Phys. D: Appl. Phys. 2011, 44, 145401.
– reference: K. Moshammer, F. Hennrich, M. Kappes, Nano Res. 2009, 2, 599.
– reference: Z. Ren, Nat. Nanotechnol. 2007, 2, 17.
– reference: C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers, Small 2005, 1, 1110.
– reference: G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, J. Am. Chem. Soc. 2009, 131, 14642.
– reference: W. W. Zhou, Z. Y. Han, J. Y. Wang, Y. Zhang, Z. Jin, X. Sun, Y. W. Zhang, C. H. Yan, Y. Li, Nano Lett. 2006, 6, 2987.
– reference: Y. G. Yao, X. C. Dai, C. Q. Feng, J. Zhang, X. L. Liang, L. Ding, W. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, Adv. Mater. 2009, 21, 4158.
– reference: H. Qiu, Y. Maeda, T. Akasaka, J. Am. Chem. Soc. 2009, 131, 16529.
– reference: K. Seo, C. Kim, Y. S. Choi, K. A. Park, Y. H. Lee, B. Kim, J. Am. Chem. Soc. 2003, 125, 13946.
– reference: Z. Jin, H. B. Chu, J. Y. Wang, J. X. Hong, W. C. Tan, Y. Li, Nano Lett. 2007, 7, 2073.
– reference: B. H. Peng, S. Jiang, Y. Y. Zhang, J. Zhang, Carbon 2011, 49, 2555.
– reference: S. Jeong, A. Oshiyama, Phys. Rev. Lett. 2011, 107, 065501.
– reference: L. J. Ci, L. Song, D. Jariwala, A. L. Elias, W. Gao, M. Terrones, P. M. Ajayan, Adv. Mater. 2009, 21, 4487.
– reference: X. L. Li, L. Zhang, X. R. Wang, I. Shimoyama, X. M. Sun, W. S. Seo, H. J. Dai, J. Am. Chem. Soc. 2007, 129, 4890.
– reference: Y. Chen, Z. Shen, Z. Xu, Y. Hu, H. Xu, S. Wang, X. Guo, Y. Zhang, L. Peng, F. Ding, Z. Liu, J. Zhang, Nat. Commun. 2013, 4, 2205.
– reference: J. Kong, A. M. Cassell, H. Dai, Chem. Phys. Lett. 1998, 292, 567.
– reference: I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards, O. Jaschinski, Chem.Phys. Lett. 2000, 331, 125.
– reference: N. Geblinger, A. Ismach, E. Joselevich, Nat. Nanotechnol. 2008, 3, 195.
– reference: L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T. P. McNicholas, Y. Li, J. Liu, Nano Lett. 2009, 9, 800.
– reference: J. C. Hamilton, J. M. Blakely, Surf. Sci. 1980, 91, 199.
– reference: K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362.
– reference: D. Nishide, H. Liu, T. Tanaka, H. Kataura, Phys. Status Solidi B 2010, 247, 2746.
– reference: R. F. Zhang, H. H. Xie, Y. Y. Zhang, Q. Zhang, Y. G. Jin, P. Li, W. Z. Qian, F. Wei, Carbon 2013, 52, 232.
– reference: R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, ACS Nano 2013, 7, 6156.
– reference: B. S. Flavel, M. M. Kappes, R. Krupke, F. Hennrich, ACS Nano 2013, 7, 3557.
– reference: Y. Chen, J. Zhang, Carbon 2011, 49, 3316.
– reference: M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 2001, 338, 101.
– reference: M. Su, Y. Li, B. Maynor, A. Buldum, J. P. Lu, J. Liu, J. Phys. Chem. B. 2000, 104, 6505.
– reference: H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, K. Itami, Nature Chem. 2013, 5, 572.
– reference: M. He, H. Jiang, E. I. Kauppinen, J. Lehtonen, Nanoscale 2012, 4, 7394.
– reference: R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
– reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
– reference: J. Martinez, T. D. Yuzvinsky, A. M. Fennimore, A. Zettl, R. García, C. Bustamante, Nanotechnology 2005, 16, 2493.
– reference: M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47.
– reference: M. Hofmann, D. Nezich, A. Reina, J. Kong, Nano Lett. 2008, 8, 4122.
– reference: C. L. Cheung, J. H. Hafner, C. M. Lieber, Proc. Natl. Aacd. Sci. USA 2000, 97, 3809.
– reference: Y. Yao, X. Dai, R. Liu, J. Zhang, Z. Liu, J. Phys. Chem. C 2009, 113, 13051.
– reference: C. S. Allen, C. Zhang, G. Burnell, A. P. Brown, J. Robertson, B. J. Hickey, Carbon 2011, 49, 4961.
– reference: Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, F. Wei, Small 2013, 9, 1237.
– reference: M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam, Nat. Nanotechnol. 2006, 1, 60.
– reference: V. Derycke, R. Martel, M. Radosavljevi, F. M. Ross, P. Avouris, Nano Lett. 2002, 2, 1043.
– reference: Z. L. Wang, D. W. Tang, X. B. Li, X. H. Zheng, W. G. Zhang, L. X. Zheng, Y. T. Zhu, A. Z. Jin, H. F. Yang, C. Z. Gu, Appl. Phys. Lett. 2007, 91, 123119.
– reference: H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synthetic Met. 1999, 103, 2555.
– reference: S. Huang, Q. Cai, J. Chen, Y. Qian, L. Zhang, J. Am. Chem. Soc. 2009, 131, 2094.
– reference: D. N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima, J. Phys. Chem. B 2006, 110, 8035.
– reference: C. M. Orofeo, H. Ago, T. Ikuta, K. Takahasi, M. Tsuji, Nanoscale 2010, 2, 1708.
– reference: M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, J. Phys. Chem. Solids 1993, 54, 1841.
– reference: F. Ding, A. R. Harutyunyan, B. I. Yakobson, Proc. Natl. Aacd. Sci. USA 2009, 106, 2506.
– reference: S. Ghosh, S. M. Bachilo, R. B. Weisman, Nat. Nanotechnol. 2010, 5, 443.
– reference: J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59.
– reference: Y. Zhang, Y. Zhang, X. Xian, J. Zhang, Z. Liu, J. Phys. Chem. C 2008, 112, 3849.
– reference: X. Tu, M. Zheng, Nano Res. 2008, 1, 185.
– reference: Y. N. Zhang, L. X. Zheng, Nanoscale 2010, 2, 1919.
– reference: W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Angew. Chem. Int. Edit. 2010, 49, 2114.
– reference: S. Hofmann, G. Csányi, A. C. Ferrari, M. C. Payne, J. Robertson, Phys. Rev. Lett. 2005, 95, 036101.
– reference: J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng, C. Zhou, Nat. Commun. 2012, 3, 1199.
– reference: G. Hong, Y. B. Chen, P. Li, J. Zhang, Carbon 2012, 50, 2067.
– reference: Y. Hu, Y. Chen, P. Li, J. Zhang, Small 2013, 9, 1306.
– reference: M. Y. Sfeir, F. Wang, L. M. Huang, C. C. Chuang, J. Hone, S. P. O'Brien, T. F. Heinz, L. E. Brus, Science 2004, 306, 1540.
– reference: W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science 1996, 274, 1701.
– reference: P. G. Collins, M. S. Arnold, P. Avouris, Science 2001, 292, 706.
– reference: S. W. Hong, T. Banks, J. A. Rogers, Adv. Mater. 2010, 22, 1826.
– reference: W. W. Zhou, S. T. Zhan, L. Ding, J. Liu, J. Am. Chem. Soc. 2012, 134, 14019.
– reference: W. W. Zhou, L. Ding, S. Yang, J. Liu, ACS Nano 2011, 5, 3849.
– reference: S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, Chem. Phys. Lett. 1999, 315, 25.
– reference: B. Liu, D.-M. Tang, C. Sun, C. Liu, W. Ren, F. Li, W.-J. Yu, L.-C. Yin, L. Zhang, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2010, 133, 197.
– reference: J. Park, J. Yoon, S. J. Kang, G. T. Kim, J. S. Ha, Carbon 2011, 49, 2492.
– reference: J. H. Hafner, C.-L. Cheung, T. H. Oosterkamp, C. M. Lieber, J. Phys. Chem. B 2001, 105, 743.
– reference: A. Ismach, D. Kantorovich, E. Joselevich, J. Am. Chem. Soc. 2005, 127, 11554.
– reference: W.-J. Kim, M. L. Usrey, M. S. Strano, Chem. Mater. 2007, 19, 1571.
– reference: S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, P. C. Eklund, Phys. Rev. Lett. 1998, 80, 3779.
– reference: B. Wang, C. H. P. Poa, L. Wei, L.-J. Li, Y. Yang, Y. Chen, J. Am. Chem. Soc. 2007, 129, 9014.
– reference: J. H. Li, K. H. Liu, S. B. Liang, W. W. Zhou, M. Pierce, F. Wang, L. M. Peng, J. Liu, Acs Nano 2014, 8, 554.
– reference: V. Jourdain, C. Bichara, Carbon 2013, 58, 2.
– reference: N. Patil, A. Lin, E. R. Myers, K. Ryu, K. A. Badmaev, C. W. Zhou, H. S. P. Wong, S. Mitra, IEEE Trans. Nanotechnol. 2009, 8, 498.
– reference: G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. Dai, Science 2006, 314, 974.
– reference: X. Yu, J. Zhang, W. Choi, J.-Y. Choi, J. M. Kim, L. Gan, Z. Liu, Nano Lett. 2010, 10, 3343.
– reference: S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 1998, 393, 49.
– reference: A. Müller, S. K. Das, P. Kögerler, H. Bögge, M. Schmidtmann, A. X. Trautwein, V. Schünemann, E. Krickemeyer, W. Preetz, Angew. Chem. Int. Ed. 2000, 39, 3413.
– reference: L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, Z. F. Liu, J. Am. Chem. Soc. 2008, 130, 12612.
– reference: Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. J. Dai, Nano Lett. 2004, 4, 317.
– reference: B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2009, 131, 2082.
– reference: S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman, J. Am. Chem. Soc. 2003, 125, 11186.
– reference: Y. Yao, C. Feng, J. Zhang, Z. Liu, Nano Lett. 2009, 9, 1673.
– reference: J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, Nature 1998, 395, 878.
– reference: M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 1995, 33, 883.
– reference: M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338.
– reference: S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa, Nano Lett. 2003, 3, 1007.
– reference: J. Lu, S. Nagase, X. W. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, W. N. Mei, Y. S. Zhou, J. Am. Chem. Soc. 2006, 128, 5114.
– reference: D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 1993, 363, 605.
– reference: H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, M. Tsuji, Chem. Phys. Lett. 2005, 408, 433.
– reference: S. M. Huang, M. Woodson, R. Smalley, J. Liu, Nano Lett. 2004, 4, 1025.
– reference: D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Nano Lett. 2006, 6, 2642.
– reference: J. L. Xiao, S. Dunham, P. Liu, Y. W. Zhang, C. Kocabas, L. Moh, Y. G. Huang, K. C. Hwang, C. Lu, W. Huang, J. A. Rogers, Nano Lett. 2009, 9, 4311.
– reference: G. Hong, M. Zhou, R. Zhang, S. Hou, W. Choi, Y. S. Woo, J.-Y. Choi, Z. Liu, J. Zhang, Angew. Chem. Int. Edit. 2011, 50, 6819.
– reference: A. L. Antaris, J.-W. T. Seo, A. A. Green, M. C. Hersam, ACS Nano 2010, 4, 4725.
– reference: B. Liu, W. Ren, C. Liu, C.-H. Sun, L. Gao, S. Li, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 3421.
– reference: C. Feng, Y. Yao, J. Zhang, Z. Liu, Nano Res. 2009, 2, 768.
– reference: S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Norskov, Nature 2004, 427, 426.
– reference: H. Park, A. Afzali, S. J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, W. Haensch, Nat. Nanotechnol. 2012, 7, 787.
– reference: Y. Feng, Y. Miyata, K. Matsuishi, H. Kataura, J. Phys. Chem. C 2011, 115, 1752.
– reference: B. Zhang, G. Hong, B. Peng, J. Zhang, W. Choi, J. M. Kim, J. Y. Choi, Z. Liu, J. Phys. Chem. C 2009, 113, 5341.
– reference: Y. B. Chen, Y. Hu, M. X. Liu, W. G. Xu, Y. F. Zhang, L. M. Xie, J. Zhang, Nano Lett. 2013, 13, 5667.
– reference: W. Kim, H. C. Choi, M. Shim, Y. Li, D. Wang, H. Dai, Nano Lett. 2002, 2, 703.
– reference: M. Terrones, Annu. Rev. Mater. Res. 2003, 33, 419.
– reference: A. J. Hart, A. H. Slocum, L. Royer, Carbon 2006, 44, 348.
– reference: T. Tanaka, Y. Urabe, D. Nishide, H. Kataura, J. Am. Chem. Soc. 2011, 133, 17610.
– reference: C. Kocabas, S. J. Kang, T. Ozel, M. Shim, J. A. Rogers, J. Phys. Chem. C 2007, 111, 17879.
– reference: I. Ibrahim, A. Bachmatiuk, J. H. Warner, B. Buchner, G. Cuniberti, M. H. Rummeli, Small 2012, 8, 1973.
– reference: Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B 2001, 105, 11424.
– reference: T. Tanaka, Y. Urabe, D. Nishide, H. Liu, S. Asano, S. Nishiyama, H. Kataura, Phys. Status Solidi B 2010, 247, 2867.
– reference: Y. Homma, H. P. Liu, D. Takagi, Y. Kobayashi, Nano Res. 2009, 2, 793.
– reference: D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, ACS Nano 2012, 6, 6433.
– reference: C. Y. Khripin, J. A. Fagan, M. Zheng, J. Am. Chem. Soc. 2013, 135, 6822.
– reference: S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230.
– reference: B. H. Hong, J. Y. Lee, T. Beetz, Y. Zhu, P. Kim, K. S. Kim, J. Am. Chem. Soc. 2005, 127, 15336.
– reference: G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, H. Dai, P. Natl. Aacd. Sci. USA 2005, 102, 16141.
– reference: G. H. Yu, A. Y. Cao, C. M. Lieber, Nat. Nanotechnol. 2007, 2, 372.
– reference: M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535.
– reference: E. H. Hároz, W. D. Rice, B. Y. Lu, S. Ghosh, R. H. Hauge, R. B. Weisman, S. K. Doorn, J. Kono, ACS Nano 2010, 4, 1955.
– reference: D. Yuan, L. Ding, H. Chu, Y. Feng, T. P. McNicholas, J. Liu, Nano Lett. 2008, 8, 2576.
– reference: S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Science 2002, 298, 2361.
– reference: K. H. Liu, X. P. Hong, Q. Zhou, C. H. Jin, J. H. Li, W. W. Zhou, J. Liu, E. G. Wang, A. Zettl, F. Wang, Nat Nanotechnol 2013, 8, 917.
– reference: S. Han, X. L. Liu, C. W. Zhou, J. Am. Chem. Soc. 2005, 127, 5294.
– reference: S. M. Huang, B. Maynor, X. Y. Cai, J. Liu, Adv. Mater. 2003, 15, 1651.
– reference: M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. PhilipWong, S. Mitra, Nature 2013, 501, 526.
– reference: J. W. Song, H. W. Seo, J. K. Park, J. E. Kim, D. G. Choi, C. S. Han, Curr. Appl. Phys. 2008, 8, 725.
– reference: H. Ago, K. Imamoto, N. Ishigami, R. Ohdo, K. Ikeda, M. Tsuji, Appl. Phys. Lett. 2007, 90, 123112.
– reference: R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, B. Maruyama, Nat. Mater. 2012, 11, 213.
– reference: Z. Liu, L. Jiao, Y. Yao, X. Xian, J. Zhang, Adv. Mater. 2010, 22, 2285.
– reference: H. Zhang, Y. Liu, L. Cao, D. Wei, Y. Wang, H. Kajiura, Y. Li, K. Noda, G. Luo, L. Wang, J. Zhou, J. Lu, Z. Gao, Adv. Mater. 2009, 21, 813.
– reference: B. Wang, Y. F. Ma, N. Li, Y. P. Wu, F. F. Li, Y. S. Chen, Adv. Mater. 2010, 22, 3067.
– reference: P. E. Anderson, N. M. Rodríguez, Chem. Mater. 2000, 12, 823.
– reference: H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Nano Lett. 2008, 8, 2082.
– reference: X. L. Liu, K. Ryu, A. Badmaev, S. Han, C. W. Zhou, J. Phys. Chem. C 2008, 112, 15929.
– reference: A. Muller, S. K. Das, H. Bogge, M. Schmidtmann, A. Botar, A. Patrut, Chem. Comm. 2001, 657.
– reference: X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Nano Lett. 2009, 9, 3137.
– reference: D. Takagi, Y. Kobayashi, Y. Homma, J. Am. Chem. Soc. 2009, 131, 6922.
– reference: T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220.
– reference: J. Li, Y. He, Y. Han, K. Liu, J. Wang, Q. Li, S. Fan, K. Jiang, Nano Lett. 2012, 12, 4095.
– reference: N. Mingo, D. Broido, Nano Lett. 2005, 5, 1221.
– reference: A. Ismach, L. Segev, E. Wachtel, E. Joselevich, Angew. Chem. Int. Edit. 2004, 43, 6140.
– reference: Z. Zhu, H. Jiang, T. Susi, A. G. Nasibulin, E. I. Kauppinen, J. Am. Chem. Soc. 2010, 133, 1224.
– reference: X. Tu, S. Manohar, A. Jagota, M. Zheng, Nature 2009, 460, 250.
– reference: Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Kong, H. J. Dai, Appl. Phys. Lett. 2001, 79, 3155.
– reference: B. C. Edwards, Acta Astronautica 2000, 47, 735.
– reference: K. J. Ziegler, Z. Gu, J. Shaver, Z. Chen, E. L. Flor, D. J. Schmidt, C. Chan, R. H. Hauge, R. E. Smalley, Nanotechnology 2005, 16, S539.
– reference: H. Ago, N. Uehara, K.-i. Ikeda, R. Ohdo, K. Nakamura, M. Tsuji, Chem. Phys. Lett. 2006, 421, 399.
– reference: A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 1999, 103, 6484.
– reference: N. P. Bhatt, P. Vichchulada, M. D. Lay, J. Am. Chem. Soc. 2012, 134, 9352.
– reference: Q. Wen, R. F. Zhang, W. Z. Qian, Y. R. Wang, P. H. Tan, J. Q. Nie, F. Wei, Chem. Mater. 2010, 22, 1294.
– reference: S. H. Jin, S. N. Dunham, J. Song, X. Xie, J.-h. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M. A. Wahab, M. Menon, E. Cho, K. L. Grosse, D. J. Lee, H. U. Chung, E. Pop, M. A. Alam, W. P. King, Y. Huang, J. A. Rogers, Nat. Nanotechnol. 2013, 8, 347.
– reference: R. E. Smalley, Y. Li, V. C. Moore, B. K. Price, R. Colorado, H. K. Schmidt, R. H. Hauge, A. R. Barron, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 15824.
– reference: L. Ding, D. N. Yuan, J. Liu, J. Am. Chem. Soc. 2008, 130, 5428.
– reference: J. P. Edgeworth, N. R. Wilson, J. V. Macpherson, Small 2007, 3, 860.
– reference: P. L. McEuen, M. S. Fuhrer, H. K. Park, IEEE T. Nanotechnol. 2002, 1, 78.
– reference: S. Iijima, T. Ichihashi, Nature 1993, 363, 603.
– reference: R. F. Zhang, Y. Y. Zhang, Q. Zhang, H. H. Xie, W. Z. Qian, F. Wei, ACS Nano 2013, 7, 6156.
– reference: H. Ago, Y. Nakamura, Y. Ogawa, M. Tsuji, Carbon 2011, 49, 176.
– reference: L. An, J. M. Owens, L. E. McNeil, J. Liu, J. Am. Chem. Soc. 2002, 124, 13688.
– reference: E. Joselevich, Nano Res. 2009, 2, 743.
– reference: Y. Li, R. Cui, L. Ding, Y. Liu, W. Zhou, Y. Zhang, Z. Jin, F. Peng, J. Liu, Adv. Mater. 2010, 22, 1508.
– reference: N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 1992, 68, 1579.
– reference: Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, P. Avouris, Science 2006, 311, 1735.
– reference: S. Lebedkin, F. Hennrich, T. Skipa, M. M. Kappes, J. Phys. Chem. B 2003, 107, 1949.
– reference: D. Takagi, H. Hibino, S. Suzuki, Y. Kobayashic´, Y. Homma, Nano Lett. 2007, 7, 2272.
– reference: A. Ismach, E. Joselevich, Nano Lett. 2006, 6, 1706.
– reference: H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 1996, 260, 471.
– reference: R. Zhang, Y. Zhang, Q. Zhang, H. Xie, H. Wang, J. Nie, Q. Wen, F. Wei, Nat. Commun. 2013, 4, 1727.
– reference: W.-H. Chiang, R. Mohan Sankaran, Nat. Mater. 2009, 8, 882.
– volume: 363
  start-page: 605
  year: 1993
  publication-title: Nature
– volume: 9
  start-page: 4311
  year: 2009
  publication-title: Nano Lett.
– volume: 16
  start-page: S539
  year: 2005
  publication-title: Nanotechnology
– volume: 22
  start-page: 1508
  year: 2010
  publication-title: Adv. Mater.
– volume: 110
  start-page: 8035
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 103
  start-page: 6484
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 703
  year: 2002
  publication-title: Nano Lett.
– volume: 127
  start-page: 15336
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 813
  year: 2009
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3696
  year: 2008
  publication-title: Nano Lett.
– volume: 133
  start-page: 197
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 16141
  year: 2005
  publication-title: P. Natl. Aacd. Sci. USA
– volume: 15
  start-page: 1651
  year: 2003
  publication-title: Adv. Mater.
– volume: 128
  start-page: 15824
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 2506
  year: 2009
  publication-title: Proc. Natl. Aacd. Sci. USA
– volume: 112
  start-page: 15929
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 306
  start-page: 1362
  year: 2004
  publication-title: Science
– volume: 49
  start-page: 4961
  year: 2011
  publication-title: Carbon
– volume: 3
  start-page: 195
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 2493
  year: 2005
  publication-title: Nanotechnology
– volume: 113
  start-page: 13051
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 131
  start-page: 14642
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2576
  year: 2008
  publication-title: Nano Lett.
– volume: 90
  start-page: 123112
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 107
  start-page: 1949
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 735
  year: 2000
  publication-title: Acta Astronautica
– volume: 4
  start-page: 767
  year: 2011
  publication-title: Nano Res.
– volume: 115
  start-page: 1752
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 3137
  year: 2009
  publication-title: Nano Lett.
– volume: 135
  start-page: 6822
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3343
  year: 2010
  publication-title: Nano Lett.
– volume: 133
  start-page: 17610
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 17879
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 133
  start-page: 1224
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1919
  year: 2010
  publication-title: Nanoscale
– volume: 112
  start-page: 3849
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 460
  start-page: 250
  year: 2009
  publication-title: Nature
– volume: 91
  start-page: 123119
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 1043
  year: 2002
  publication-title: Nano Lett.
– volume: 7
  start-page: 2272
  year: 2007
  publication-title: Nano Lett.
– volume: 129
  start-page: 4890
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 1826
  year: 2010
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1673
  year: 2009
  publication-title: Nano Lett.
– volume: 79
  start-page: 3155
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 91
  start-page: 199
  year: 1980
  publication-title: Surf. Sci.
– volume: 50
  start-page: 3295
  year: 2012
  publication-title: Carbon
– volume: 39
  start-page: 3413
  year: 2000
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 4487
  year: 2009
  publication-title: Adv. Mater.
– volume: 110
  start-page: 20254
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 358
  start-page: 220
  year: 1992
  publication-title: Nature
– volume: 8
  start-page: 4122
  year: 2008
  publication-title: Nano Lett.
– volume: 274
  start-page: 1701
  year: 1996
  publication-title: Science
– volume: 54
  start-page: 1841
  year: 1993
  publication-title: J. Phys. Chem. Solids
– volume: 124
  start-page: 13688
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1973
  year: 2012
  publication-title: Small
– volume: 6
  start-page: 1706
  year: 2006
  publication-title: Nano Lett.
– volume: 247
  start-page: 2867
  year: 2010
  publication-title: Phys. Status Solidi B
– volume: 2
  start-page: 599
  year: 2009
  publication-title: Nano Res.
– volume: 2
  start-page: 338
  year: 2003
  publication-title: Nat. Mater.
– volume: 13
  start-page: 5667
  year: 2013
  publication-title: Nano Lett.
– volume: 43
  start-page: 6140
  year: 2004
  publication-title: Angew. Chem. Int. Edit.
– volume: 4
  start-page: 2205
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3849
  year: 2011
  publication-title: ACS Nano
– volume: 8
  start-page: 725
  year: 2008
  publication-title: Curr. Appl. Phys.
– volume: 95
  start-page: 036101
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 1571
  year: 2007
  publication-title: Chem. Mater.
– volume: 52
  start-page: 232
  year: 2013
  publication-title: Carbon
– volume: 134
  start-page: 14019
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4725
  year: 2010
  publication-title: ACS Nano
– volume: 4
  start-page: 7394
  year: 2012
  publication-title: Nanoscale
– volume: 391
  start-page: 59
  year: 1998
  publication-title: Nature
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– volume: 33
  start-page: 883
  year: 1995
  publication-title: Carbon
– volume: 49
  start-page: 2114
  year: 2010
  publication-title: Angew. Chem. Int. Edit.
– volume: 113
  start-page: 5341
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 1955
  year: 2010
  publication-title: ACS Nano
– volume: 395
  start-page: 878
  year: 1998
  publication-title: Nature
– volume: 3
  start-page: 1007
  year: 2003
  publication-title: Nano Lett.
– volume: 107
  start-page: 065501
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 348
  year: 2006
  publication-title: Carbon
– volume: 5
  start-page: 443
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 298
  start-page: 2361
  year: 2002
  publication-title: Science
– volume: 3
  start-page: 831
  year: 2010
  publication-title: Nano Res.
– volume: 80
  start-page: 3779
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 2
  year: 2013
  publication-title: Carbon
– volume: 1
  start-page: 78
  year: 2002
  publication-title: IEEE T. Nanotechnol.
– volume: 22
  start-page: 2285
  year: 2010
  publication-title: Adv. Mater.
– volume: 97
  start-page: 3809
  year: 2000
  publication-title: Proc. Natl. Aacd. Sci. USA
– volume: 52
  start-page: 535
  year: 2013
  publication-title: Carbon
– volume: 7
  start-page: 6156
  year: 2013
  publication-title: ACS Nano
– volume: 498
  start-page: 443
  year: 2013
  publication-title: Nature
– volume: 3
  start-page: 677
  year: 2004
  publication-title: Nat. Mater.
– volume: 131
  start-page: 2082
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 347
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 105
  start-page: 743
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 129
  start-page: 9014
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 554
  year: 2014
  publication-title: Acs Nano
– volume: 125
  start-page: 11186
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 11554
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 2555
  year: 2011
  publication-title: Carbon
– volume: 393
  start-page: 49
  year: 1998
  publication-title: Nature
– volume: 131
  start-page: 6922
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 60
  year: 2006
  publication-title: Nat. Nanotechnol.
– volume: 314
  start-page: 974
  year: 2006
  publication-title: Science
– volume: 22
  start-page: 3067
  year: 2010
  publication-title: Adv. Mater.
– volume: 4
  start-page: 89
  year: 1964
  publication-title: Appl. Phys. Lett.
– volume: 260
  start-page: 471
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 292
  start-page: 567
  year: 1998
  publication-title: Chem. Phys. Lett.
– volume: 409
  start-page: 47
  year: 2005
  publication-title: Phys. Rep.
– volume: 104
  start-page: 6505
  year: 2000
  publication-title: J. Phys. Chem. B.
– volume: 7
  start-page: 787
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 2642
  year: 2006
  publication-title: Nano Lett.
– volume: 21
  start-page: 4158
  year: 2009
  publication-title: Adv. Mater.
– volume: 105
  start-page: 11424
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 501
  start-page: 526
  year: 2013
  publication-title: Nature
– volume: 12
  start-page: 823
  year: 2000
  publication-title: Chem. Mater.
– volume: 130
  start-page: 12612
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 247
  start-page: 2746
  year: 2010
  publication-title: Phys. Status Solidi B
– volume: 301
  start-page: 344
  year: 2003
  publication-title: Science
– volume: 49
  start-page: 3316
  year: 2011
  publication-title: Carbon
– volume: 8
  start-page: 882
  year: 2009
  publication-title: Nat. Mater.
– volume: 9
  start-page: 800
  year: 2009
  publication-title: Nano Lett.
– volume: 8
  start-page: 498
  year: 2009
  publication-title: IEEE Trans. Nanotechnol.
– volume: 331
  start-page: 125
  year: 2000
  publication-title: Chem.Phys. Lett.
– volume: 2
  start-page: 768
  year: 2009
  publication-title: Nano Res.
– volume: 2
  start-page: 743
  year: 2009
  publication-title: Nano Res.
– volume: 3
  start-page: 3421
  year: 2009
  publication-title: ACS Nano
– volume: 333
  start-page: 1003
  year: 2011
  publication-title: Science
– volume: 44
  start-page: 145401
  year: 2011
  publication-title: J. Phys. D: Appl. Phys.
– volume: 7
  start-page: 3557
  year: 2013
  publication-title: ACS Nano
– volume: 2
  start-page: 1009
  year: 2002
  publication-title: Nano Lett.
– volume: 128
  start-page: 5114
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 2067
  year: 2012
  publication-title: Carbon
– volume: 130
  start-page: 5428
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 085421
  year: 2010
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 230
  year: 2007
  publication-title: Nat. Nanotechnol.
– start-page: 657
  year: 2001
  publication-title: Chem. Comm.
– volume: 4
  start-page: 317
  year: 2004
  publication-title: Nano Lett.
– volume: 9
  start-page: 1237
  year: 2013
  publication-title: Small
– volume: 50
  start-page: 6819
  year: 2011
  publication-title: Angew. Chem. Int. Edit.
– volume: 134
  start-page: 9352
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 2555
  year: 1999
  publication-title: Synthetic Met.
– volume: 131
  start-page: 16529
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 427
  start-page: 426
  year: 2004
  publication-title: Nature
– volume: 68
  start-page: 1579
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 363
  start-page: 603
  year: 1993
  publication-title: Nature
– volume: 33
  start-page: 419
  year: 2003
  publication-title: Annu. Rev. Mater. Res.
– volume: 125
  start-page: 13946
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1199
  year: 2012
  publication-title: Nat. Commun.
– volume: 131
  start-page: 2094
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 3
  start-page: 860
  year: 2007
  publication-title: Small
– volume: 4
  start-page: 1025
  year: 2004
  publication-title: Nano Lett.
– volume: 5
  start-page: 858
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 311
  start-page: 1735
  year: 2006
  publication-title: Science
– volume: 22
  start-page: 1294
  year: 2010
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1708
  year: 2010
  publication-title: Nanoscale
– volume: 306
  start-page: 1540
  year: 2004
  publication-title: Science
– volume: 8
  start-page: 2082
  year: 2008
  publication-title: Nano Lett.
– volume: 11
  start-page: 213
  year: 2012
  publication-title: Nat. Mater.
– volume: 338
  start-page: 101
  year: 2001
  publication-title: Chem. Phys. Lett.
– volume: 2
  start-page: 17
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 6433
  year: 2012
  publication-title: ACS Nano
– volume: 1
  start-page: 185
  year: 2008
  publication-title: Nano Res.
– volume: 85
  start-page: 858
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 572
  year: 2013
  publication-title: Nature Chem.
– volume: 5
  start-page: 1221
  year: 2005
  publication-title: Nano Lett.
– volume: 2
  start-page: 372
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 49
  start-page: 176
  year: 2011
  publication-title: Carbon
– volume: 292
  start-page: 706
  year: 2001
  publication-title: Science
– volume: 1
  start-page: 1110
  year: 2005
  publication-title: Small
– volume: 9
  start-page: 1306
  year: 2013
  publication-title: Small
– volume: 421
  start-page: 399
  year: 2006
  publication-title: Chem. Phys. Lett.
– volume: 127
  start-page: 5294
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2073
  year: 2007
  publication-title: Nano Lett.
– volume: 408
  start-page: 433
  year: 2005
  publication-title: Chem. Phys. Lett.
– volume: 86
  start-page: 1118
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 315
  start-page: 25
  year: 1999
  publication-title: Chem. Phys. Lett.
– volume: 4
  start-page: 1727
  year: 2013
  publication-title: Nat. Commun.
– volume: 49
  start-page: 2492
  year: 2011
  publication-title: Carbon
– volume: 8
  start-page: 917
  year: 2013
  publication-title: Nat Nanotechnol
– volume: 106
  start-page: 2429
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 673
  year: 2004
  publication-title: Nat. Mater.
– volume: 2
  start-page: 793
  year: 2009
  publication-title: Nano Res.
– volume: 6
  start-page: 2987
  year: 2006
  publication-title: Nano Lett.
– volume: 12
  start-page: 4095
  year: 2012
  publication-title: Nano Lett.
– ident: e_1_2_12_37_1
  doi: 10.1002/smll.200500120
– ident: e_1_2_12_163_1
  doi: 10.1002/smll.201202940
– ident: e_1_2_12_22_1
  doi: 10.1021/nl0708011
– ident: e_1_2_12_83_1
  doi: 10.1038/ncomms2736
– ident: e_1_2_12_16_1
  doi: 10.1016/S0009-2614(01)00278-0
– ident: e_1_2_12_4_1
  doi: 10.1002/smll.201203252
– ident: e_1_2_12_109_1
  doi: 10.1021/jp060080e
– ident: e_1_2_12_56_1
  doi: 10.1038/nnano.2008.59
– ident: e_1_2_12_29_1
  doi: 10.1038/27632
– ident: e_1_2_12_33_1
  doi: 10.1038/nature02278
– ident: e_1_2_12_35_1
  doi: 10.1038/nnano.2007.77
– ident: e_1_2_12_171_1
  doi: 10.1021/ja070808k
– ident: e_1_2_12_149_1
  doi: 10.1021/ja208221g
– ident: e_1_2_12_68_1
  doi: 10.1039/c0nr00170h
– ident: e_1_2_12_146_1
  doi: 10.1002/pssb.201000423
– ident: e_1_2_12_73_1
  doi: 10.1103/PhysRevLett.107.065501
– ident: e_1_2_12_88_1
  doi: 10.1088/0957-4484/16/11/004
– ident: e_1_2_12_116_1
  doi: 10.1016/S0009-2614(99)01216-6
– ident: e_1_2_12_10_1
  doi: 10.1038/363603a0
– ident: e_1_2_12_8_1
  doi: 10.1038/nature12502
– ident: e_1_2_12_78_1
  doi: 10.1002/adma.200901255
– ident: e_1_2_12_100_1
  doi: 10.1021/jp071387w
– ident: e_1_2_12_136_1
  doi: 10.1021/cm061862n
– ident: e_1_2_12_18_1
  doi: 10.1021/nl061797g
– ident: e_1_2_12_123_1
  doi: 10.1021/ja0274958
– ident: e_1_2_12_59_1
  doi: 10.1021/nl070980m
– ident: e_1_2_12_85_1
  doi: 10.1063/1.2779850
– ident: e_1_2_12_112_1
  doi: 10.1016/j.cplett.2006.01.058
– ident: e_1_2_12_166_1
  doi: 10.1103/PhysRevLett.80.3779
– ident: e_1_2_12_167_1
  doi: 10.1038/nmat3231
– ident: e_1_2_12_125_1
  doi: 10.1039/b009518b
– ident: e_1_2_12_20_1
  doi: 10.1002/anie.200903463
– ident: e_1_2_12_129_1
  doi: 10.1021/ja1087634
– ident: e_1_2_12_115_1
  doi: 10.1016/0009-2614(96)00862-7
– ident: e_1_2_12_93_1
  doi: 10.1088/0957-4484/16/7/031
– ident: e_1_2_12_95_1
  doi: 10.1007/s12274-009-9054-3
– ident: e_1_2_12_51_1
  doi: 10.1021/nl049691d
– ident: e_1_2_12_127_1
  doi: 10.1021/jp901366h
– ident: e_1_2_12_21_1
  doi: 10.1021/nl0256309
– ident: e_1_2_12_130_1
  doi: 10.1021/nl803496s
– ident: e_1_2_12_144_1
  doi: 10.1038/nnano.2010.68
– ident: e_1_2_12_1_1
  doi: 10.1126/science.1222453
– ident: e_1_2_12_26_1
  doi: 10.1021/nn900799v
– ident: e_1_2_12_49_1
  doi: 10.1021/ja042544x
– ident: e_1_2_12_67_1
  doi: 10.1016/j.cplett.2005.04.054
– ident: e_1_2_12_117_1
  doi: 10.1021/cm990582n
– ident: e_1_2_12_5_1
  doi: 10.1038/29954
– ident: e_1_2_12_60_1
  doi: 10.1038/nmat1216
– ident: e_1_2_12_128_1
  doi: 10.1073/pnas.0507064102
– ident: e_1_2_12_122_1
  doi: 10.1021/jp0142278
– ident: e_1_2_12_3_1
  doi: 10.1146/annurev.matsci.33.012802.100255
– ident: e_1_2_12_175_1
  doi: 10.1038/ncomms2205
– ident: e_1_2_12_184_1
  doi: 10.1016/j.carbon.2011.06.100
– ident: e_1_2_12_126_1
  doi: 10.1021/jp0632283
– ident: e_1_2_12_44_1
  doi: 10.1002/adma.200305203
– ident: e_1_2_12_24_1
  doi: 10.1021/ja901295j
– ident: e_1_2_12_180_1
  doi: 10.1016/S0379-6779(98)00278-1
– ident: e_1_2_12_12_1
  doi: 10.1021/jp027096z
– ident: e_1_2_12_39_1
  doi: 10.1021/ja071114e
– ident: e_1_2_12_181_1
  doi: 10.1103/PhysRevLett.86.1118
– ident: e_1_2_12_54_1
  doi: 10.1007/s12274-009-9077-9
– ident: e_1_2_12_186_1
  doi: 10.1016/j.physrep.2004.10.006
– ident: e_1_2_12_71_1
  doi: 10.1021/ja8006947
– ident: e_1_2_12_121_1
  doi: 10.1038/nchem.1655
– ident: e_1_2_12_159_1
  doi: 10.1021/ja035262q
– ident: e_1_2_12_57_1
  doi: 10.1021/cm903866z
– ident: e_1_2_12_92_1
  doi: 10.1021/nl900207v
– ident: e_1_2_12_102_1
  doi: 10.1016/j.carbon.2005.07.008
– ident: e_1_2_12_23_1
  doi: 10.1038/nmat1220
– ident: e_1_2_12_25_1
  doi: 10.1021/ja809635s
– ident: e_1_2_12_131_1
  doi: 10.1021/ja058214
– ident: e_1_2_12_103_1
  doi: 10.1016/j.carbon.2011.02.019
– ident: e_1_2_12_157_1
  doi: 10.1126/science.1058782
– ident: e_1_2_12_114_1
  doi: 10.1007/s12274-010-0054-0
– ident: e_1_2_12_77_1
  doi: 10.1109/TNANO.2009.2016562
– ident: e_1_2_12_79_1
  doi: 10.1016/j.carbon.2011.12.019
– ident: e_1_2_12_84_1
  doi: 10.1021/nl050714d
– ident: e_1_2_12_178_1
  doi: 10.1103/PhysRevLett.68.1579
– ident: e_1_2_12_119_1
  doi: 10.1021/jp012085b
– ident: e_1_2_12_168_1
  doi: 10.1021/ja036622c
– ident: e_1_2_12_161_1
  doi: 10.1063/1.1778471
– ident: e_1_2_12_152_1
  doi: 10.1021/ja402762e
– ident: e_1_2_12_134_1
  doi: 10.1021/nl035097c
– ident: e_1_2_12_153_1
  doi: 10.1126/science.1086534
– ident: e_1_2_12_154_1
  doi: 10.1038/nmat877
– ident: e_1_2_12_176_1
  doi: 10.1038/nnano.2013.227
– ident: e_1_2_12_65_1
  doi: 10.1021/nl061871v
– ident: e_1_2_12_70_1
  doi: 10.1021/nn3020695
– ident: e_1_2_12_55_1
  doi: 10.1021/nl0610026
– ident: e_1_2_12_147_1
  doi: 10.1002/pssb.201000368
– ident: e_1_2_12_7_1
  doi: 10.1126/science.1122797
– ident: e_1_2_12_169_1
  doi: 10.1038/nmat2531
– ident: e_1_2_12_118_1
  doi: 10.1073/pnas.050498597
– ident: e_1_2_12_13_1
  doi: 10.1016/0022-3697(93)90297-5
– ident: e_1_2_12_15_1
  doi: 10.1016/S0009-2614(98)00745-3
– ident: e_1_2_12_172_1
  doi: 10.1021/nl1010178
– ident: e_1_2_12_158_1
  doi: 10.1038/nnano.2013.56
– ident: e_1_2_12_63_1
  doi: 10.1007/s12274-009-9082-z
– ident: e_1_2_12_80_1
  doi: 10.1038/ncomms3205
– ident: e_1_2_12_11_1
  doi: 10.1038/358220a0
– ident: e_1_2_12_86_1
  doi: 10.1038/nnano.2010.220
– ident: e_1_2_12_135_1
  doi: 10.1021/ja9068529
– ident: e_1_2_12_30_1
  doi: 10.1103/PhysRevLett.95.036101
– ident: e_1_2_12_132_1
  doi: 10.1021/ja3038992
– ident: e_1_2_12_107_1
  doi: 10.1021/nl9025488
– ident: e_1_2_12_187_1
  doi: 10.1002/adma.200900942
– ident: e_1_2_12_101_1
  doi: 10.1126/science.1104962
– volume: 13
  start-page: 5667
  year: 2013
  ident: e_1_2_12_177_1
  publication-title: Nano Lett.
– ident: e_1_2_12_43_1
  doi: 10.1126/science.274.5293.1701
– ident: e_1_2_12_165_1
  doi: 10.1103/PhysRevB.82.085421
– ident: e_1_2_12_41_1
  doi: 10.1039/c0nr00222d
– ident: e_1_2_12_75_1
  doi: 10.1002/adma.201000705
– ident: e_1_2_12_14_1
  doi: 10.1002/adma.200904366
– ident: e_1_2_12_90_1
  doi: 10.1021/nl034219y
– ident: e_1_2_12_140_1
  doi: 10.1021/ja906932p
– ident: e_1_2_12_17_1
  doi: 10.1016/0039-6028(80)90080-1
– ident: e_1_2_12_2_1
  doi: 10.1109/TNANO.2002.1005429
– ident: e_1_2_12_64_1
  doi: 10.1016/j.carbon.2012.10.006
– ident: e_1_2_12_106_1
  doi: 10.1002/adma.200904167
– ident: e_1_2_12_108_1
  doi: 10.1021/nn405105y
– ident: e_1_2_12_96_1
  doi: 10.1021/nn401995z
– ident: e_1_2_12_81_1
  doi: 10.1126/science.1102896
– ident: e_1_2_12_66_1
  doi: 10.1021/jp900499g
– ident: e_1_2_12_104_1
  doi: 10.1088/0022-3727/44/14/145401
– ident: e_1_2_12_142_1
  doi: 10.1002/adma.200800703
– ident: e_1_2_12_62_1
  doi: 10.1016/j.carbon.2012.09.025
– ident: e_1_2_12_46_1
  doi: 10.1002/anie.200460356
– ident: e_1_2_12_156_1
  doi: 10.1002/anie.201101700
– ident: e_1_2_12_9_1
  doi: 10.1038/363605a0
– ident: e_1_2_12_143_1
  doi: 10.1021/nn101363m
– ident: e_1_2_12_111_1
  doi: 10.1002/adma.200903238
– ident: e_1_2_12_133_1
  doi: 10.1007/s12274-011-0133-x
– ident: e_1_2_12_61_1
  doi: 10.1021/nn401995z
– ident: e_1_2_12_82_1
  doi: 10.1021/nl301561f
– ident: e_1_2_12_47_1
  doi: 10.1063/1.1415412
– ident: e_1_2_12_50_1
  doi: 10.1021/ja052759m
– ident: e_1_2_12_53_1
  doi: 10.1016/j.carbon.2012.01.035
– ident: e_1_2_12_98_1
  doi: 10.1021/nl901260b
– ident: e_1_2_12_138_1
  doi: 10.1021/jp710691j
– ident: e_1_2_12_36_1
  doi: 10.1038/nnano.2012.189
– ident: e_1_2_12_145_1
  doi: 10.1021/nn901908n
– ident: e_1_2_12_89_1
  doi: 10.1021/jp003948o
– ident: e_1_2_12_99_1
  doi: 10.1021/nl025602q
– ident: e_1_2_12_28_1
  doi: 10.1063/1.1753975
– ident: e_1_2_12_40_1
  doi: 10.1038/nnano.2007.150
– ident: e_1_2_12_137_1
  doi: 10.1007/s12274-008-8022-7
– ident: e_1_2_12_48_1
  doi: 10.1016/j.carbon.2013.02.046
– ident: e_1_2_12_185_1
  doi: 10.1038/34139
– ident: e_1_2_12_94_1
  doi: 10.1021/nl025675
– ident: e_1_2_12_141_1
  doi: 10.1038/nature08116
– ident: e_1_2_12_52_1
  doi: 10.1016/j.carbon.2011.02.045
– ident: e_1_2_12_151_1
  doi: 10.1021/nn4004956
– ident: e_1_2_12_45_1
  doi: 10.1021/jp0012404
– ident: e_1_2_12_139_1
  doi: 10.1007/s12274-009-9057-0
– ident: e_1_2_12_124_1
  doi: 10.1002/1521-3773(20001002)39:19<3413::AID-ANIE3413>3.0.CO;2-Q
– ident: e_1_2_12_182_1
  doi: 10.1126/science.1078727
– ident: e_1_2_12_113_1
  doi: 10.1016/j.carbon.2010.09.001
– ident: e_1_2_12_87_1
  doi: 10.1016/S0094-5765(00)00111-9
– ident: e_1_2_12_179_1
  doi: 10.1016/0008-6223(95)00017-8
– ident: e_1_2_12_97_1
  doi: 10.1021/ja054454d
– ident: e_1_2_12_27_1
  doi: 10.1021/ja107855q
– ident: e_1_2_12_72_1
  doi: 10.1063/1.2715031
– ident: e_1_2_12_150_1
  doi: 10.1021/ja302136x
– ident: e_1_2_12_110_1
  doi: 10.1021/nn200198b
– ident: e_1_2_12_148_1
  doi: 10.1021/jp1100329
– ident: e_1_2_12_19_1
  doi: 10.1021/nl801007r
– ident: e_1_2_12_160_1
  doi: 10.1126/science.1133781
– ident: e_1_2_12_69_1
  doi: 10.1126/science.1208455
– ident: e_1_2_12_183_1
  doi: 10.1126/science.1103294
– ident: e_1_2_12_120_1
  doi: 10.1021/jp990957s
– ident: e_1_2_12_31_1
  doi: 10.1021/ja8093907
– ident: e_1_2_12_174_1
  doi: 10.1038/nnano.2006.192
– ident: e_1_2_12_38_1
  doi: 10.1038/498443a
– ident: e_1_2_12_164_1
  doi: 10.1073/pnas.0811946106
– ident: e_1_2_12_6_1
  doi: 10.1021/nl8018802
– ident: e_1_2_12_155_1
  doi: 10.1038/nnano.2006.52
– ident: e_1_2_12_162_1
  doi: 10.1016/j.cap.2007.04.055
– ident: e_1_2_12_42_1
  doi: 10.1002/smll.201102010
– ident: e_1_2_12_74_1
  doi: 10.1021/jp8051938
– ident: e_1_2_12_170_1
  doi: 10.1039/c2nr32276e
– ident: e_1_2_12_91_1
  doi: 10.1016/S0009-2614(00)01163-5
– ident: e_1_2_12_34_1
  doi: 10.1021/nl080452q
– ident: e_1_2_12_105_1
  doi: 10.1002/smll.200700029
– ident: e_1_2_12_58_1
  doi: 10.1021/nl801461f
– ident: e_1_2_12_173_1
  doi: 10.1021/ja065767r
– ident: e_1_2_12_76_1
  doi: 10.1021/ja805070b
– ident: e_1_2_12_32_1
  doi: 10.1016/j.carbon.2011.04.016
SSID ssj0009606
Score 2.4123278
SecondaryResourceType review_article
Snippet Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement...
Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5898
SubjectTerms Chemical vapor deposition
Chirality
Control surfaces
Density
Metallicity
Nanoelectronics
Orientation
parallel aligned array on surfaces
Single wall carbon nanotubes
single-walled carbon nanotube (SWNT)
structure control
Title State of the Art of Single-Walled Carbon Nanotube Synthesis on Surfaces
URI https://api.istex.fr/ark:/67375/WNG-QPW2VNNH-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201400431
https://www.ncbi.nlm.nih.gov/pubmed/25042346
https://www.proquest.com/docview/1561032633
https://www.proquest.com/docview/1671583410
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoED70coRUFCcHK7cZzYe1y1LAsSK2Ap7c3yKxJqlaDdjUQ58RP4jfwSZpzdtIt4SHBLnLHi2PP4Yo8_Azzx-O8vufPMqrJiIhSGmUI65jF4-yq30tmYbTEtJ4fi1XFxfGEXf8cP0U-4kWVEf00Gbuxi75w01PjIG5SREsaN1JSwRajo3Tl_FMHzSLaXF2xYCrVmbRzwvc3qG1HpMnXw519Bzk0EG0PQ-DqYdeO7zJOT3XZpd92Xn3gd_-frbsC1FT5NR51C3YRLob4FVy-wFt6GlxGgpk2VIngkSbqc4aPT8P3rN5qZDz7dN3Pb1Ck672bZ2pDOzmqUXnxcpFg6a-cVpYLdgcPx8_f7E7Y6kYG5AuM882FQKoSQhXGSXMGgUrJCXcxKz7GplUVn6QwXkgdvnaBVR6OwVPgh98KK_C5s1U0d7kOa5QJ9m1e5p7XX4IaIhGymhtYI6XhQCbD1iGi3oiunUzNOdUe0zDV1ke67KIFnvfynjqjjt5JP4wD3YmZ-QultstBH0xf67Zsj_mE6nehxAo_XGqDR6GglxdShaRc6I9SJwDfP_yBTyqxQCBIGCdzr1Kd_I_HG8VyUCfCoBH9psR4dvB71dw_-pdI2XKHrLjvuIWwt523YQTi1tI-iyfwAEGAUtw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQewAO7EtYg4Tg5HbiOLHnOGoZptBGwLS0N8tbJNQqQTMTCTjxE_ob-0v6njNJGcQiwS1xXhTHfstn-_kzIc8djP0Fs44amZeU-0xTnQlLHQRvV6ZGWBOyLYp8csDfHGVdNiHuhWn5IfoJN7SM4K_RwHFCevOCNVS7QByUoBbiTup1PNY7jKo-XDBIIUAPdHtpRoc5lx1v44Btrr6_EpfWsYm__Ap0rmLYEITG14npqt_mnhxvNAuzYb_9xOz4X_93g1xbQtR41OrUTXLJV7fI1R-IC2-TnYBR47qMAT-iJF5O4dGJP_t-ipPz3sVbembqKgb_XS8a4-Pp1wqk55_mMZROm1mJ2WB3yMH41f7WhC4PZaA2g1BPnR_kElBkpq1AbzAopShBHZPcMahqacBfWs24YN4Zy3HhUUso5W7IHDc8vUvWqrry90mcpBzcm5Opw-VXb4cAhkwih0ZzYZmXEaFdlyi7ZCzHgzNOVMu1zBQ2keqbKCIve_nPLVfHbyVfhB7uxfTsGDPcRKYOi9fq_btD9rEoJmockWedCiiwO1xM0ZWvm7lKEHgC9k3TP8jkIskk4IRBRO61-tN_EanjWMrziLCgBX-psRpt7436uwf_8tJTcnmyv7erdneKtw_JFSxvk-UekbXFrPGPAV0tzJNgP-db8BjS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQKyE4sFPCGiQEJ7eJ48Se46jDMGWJCkNpb5a3SKhVUs1MJODET-A38kt4z5lJO4hFglviPCuO_ZYv9vNnQp44-PcXzDpqZFFR7nNNdS4sdRC8XZUZYU3ItiiLyQF_eZQfndvF3_FD9BNuaBnBX6OBn7pq54w0VLvAG5SiEuJG6k1eJBL1evTujEAK8Xlg28tyOii4XNE2Jmxnvf5aWNrEHv70K8y5DmFDDBpfJXrV-i715Hi7XZht--UnYsf_-bxr5MoSoMbDTqOukwu-vkEun6MtvEn2AkKNmyoG9IiSeDmFRyf--9dvODXvXbyrZ6apY_DezaI1Pp5-rkF6_nEeQ-m0nVWYC3aLHIyfv9-d0OWRDNTmEOip80khAUPm2gr0BUklRQXKmBaOQVMrA97SasYF885YjsuOWkIpdwPmuOHZbbJRN7W_Q-I04-DcnMwcLr56OwAoZFI5MJoLy7yMCF2NiLJLvnI8NuNEdUzLTGEXqb6LIvKslz_tmDp-K_k0DHAvpmfHmN8mcnVYvlBv9w_Zh7KcqHFEHq80QIHV4VKKrn3TzlWKsBOQb5b9QaYQaS4BJSQR2erUp38jEsexjBcRYUEJ_tJiNRy9GfZ3d_-l0iNycX80Vq_3ylf3yCUs7jLl7pONxaz1DwBaLczDYD0_AA-eF4o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Art+of+Single-Walled+Carbon+Nanotube+Synthesis+on+Surfaces&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yabin&rft.au=Zhang%2C+Yingying&rft.au=Hu%2C+Yue&rft.au=Kang%2C+Lixing&rft.date=2014-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=26&rft.issue=34&rft.spage=5898&rft.epage=5922&rft_id=info:doi/10.1002%2Fadma.201400431&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon