State of the Art of Single-Walled Carbon Nanotube Synthesis on Surfaces
Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 26; no. 34; pp. 5898 - 5922 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed.
Single‐walled carbon nanotubes (SWNTs) on surfaces are promising building blocks for nanoelectronics. Structure‐controlled growth of SWNTs on surfaces is important for the development of SWNT‐based electronics. The recent progress in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs synthesized on surfaces by chemical vapor deposition is summarized and the remaining challenges and opportunities are discussed. |
---|---|
AbstractList | Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed. Single-walled carbon nanotubes (SWNTs) on surfaces are promising building blocks for nanoelectronics. Structure-controlled growth of SWNTs on surfaces is important for the development of SWNT-based electronics. The recent progress in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs synthesized on surfaces by chemical vapor deposition is summarized and the remaining challenges and opportunities are discussed. Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed. Single‐walled carbon nanotubes (SWNTs) on surfaces are promising building blocks for nanoelectronics. Structure‐controlled growth of SWNTs on surfaces is important for the development of SWNT‐based electronics. The recent progress in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs synthesized on surfaces by chemical vapor deposition is summarized and the remaining challenges and opportunities are discussed. Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed. Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed.Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed. |
Author | Zhang, Jin Zhao, Qiuchen Zhang, Shuchen Zhang, Yingying Hu, Yue Xie, Huanhuan Chen, Yabin Kang, Lixing Liu, Dan Li, Qingwen |
Author_xml | – sequence: 1 givenname: Yabin surname: Chen fullname: Chen, Yabin organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 2 givenname: Yingying surname: Zhang fullname: Zhang, Yingying organization: Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, P.R. China – sequence: 3 givenname: Yue surname: Hu fullname: Hu, Yue organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 4 givenname: Lixing surname: Kang fullname: Kang, Lixing organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 5 givenname: Shuchen surname: Zhang fullname: Zhang, Shuchen organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 6 givenname: Huanhuan surname: Xie fullname: Xie, Huanhuan organization: Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, P.R. China – sequence: 7 givenname: Dan surname: Liu fullname: Liu, Dan organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 8 givenname: Qiuchen surname: Zhao fullname: Zhao, Qiuchen organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China – sequence: 9 givenname: Qingwen surname: Li fullname: Li, Qingwen organization: Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, 215123, Suzhou, P.R. China – sequence: 10 givenname: Jin surname: Zhang fullname: Zhang, Jin email: jinzhang@pku.edu.cn organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, P.R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25042346$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9P2zAUx60JNMqP645Tjruke_6Z5Fh1UCaxAirQo-XEL8NbmoCdiPW_x1WhmpAQJz89fT7P9vsekr22a5GQLxTGFIB9N3ZlxgyoABCcfiIjKhlNBRRyj4yg4DItlMgPyGEIfwCgUKA-kwMmQTAu1IjMFr3pMenqpL_HZOL7Tblw7e8G06VpGrTJ1Piya5O5abt-KDFZrNvIBheS2F0MvjYVhmOyX5sm4MnLeURuz05vpufpxeXs53RykVZy8zCLoHIqQZoqyzljUOdZjcZSZVn8Q11ai5VhImNoy0oAz6XJY1fYgllRCn5Evm3nPvjuccDQ65ULFTaNabEbgqYqozLngsLHqFSRYorziH59QYdyhVY_eLcyfq1f9xSB8RaofBeCx3qHUNCbIPQmCL0LIgrijVC5uGnXtb03rnlfK7bak2tw_cElevLj1-R_N926LvT4b-ca_1erjGdSL-czfX21ZHfz-bk-4891hapN |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2023_117906 crossref_primary_10_1002_anie_201502735 crossref_primary_10_1088_1361_6528_aa7ebe crossref_primary_10_1002_smll_202103433 crossref_primary_10_3390_ma14123275 crossref_primary_10_1007_s41204_022_00293_7 crossref_primary_10_1016_j_carbon_2017_09_096 crossref_primary_10_3390_ijms242417239 crossref_primary_10_1021_acs_chemmater_5b02712 crossref_primary_10_1088_0268_1242_30_7_074001 crossref_primary_10_1039_C5CS00297D crossref_primary_10_1021_acsami_3c04839 crossref_primary_10_1039_D0NR01919D crossref_primary_10_1016_j_carbon_2015_11_060 crossref_primary_10_1039_C7CS00104E crossref_primary_10_1002_adfm_202211335 crossref_primary_10_1002_adfm_202212665 crossref_primary_10_1039_C4TA05917D crossref_primary_10_1080_1536383X_2018_1493460 crossref_primary_10_1038_ncomms7099 crossref_primary_10_1080_1536383X_2025_2468380 crossref_primary_10_1016_j_bios_2017_05_030 crossref_primary_10_1021_acs_chemrev_5b00608 crossref_primary_10_1016_j_chempr_2019_02_012 crossref_primary_10_1007_s12274_020_3183_0 crossref_primary_10_1002_smll_201403155 crossref_primary_10_1016_j_carbon_2018_08_068 crossref_primary_10_1016_j_optmat_2018_09_047 crossref_primary_10_1088_1361_6528_aa94b0 crossref_primary_10_1021_acs_accounts_6b00430 crossref_primary_10_1016_j_carbon_2015_11_001 crossref_primary_10_1021_jacs_6b06477 crossref_primary_10_1039_C6RA20088E crossref_primary_10_1016_j_foodchem_2025_142906 crossref_primary_10_1007_s12633_025_03245_3 crossref_primary_10_1007_s13391_016_6012_6 crossref_primary_10_1021_acs_chemrev_7b00088 crossref_primary_10_1088_2043_6262_7_3_033002 crossref_primary_10_1002_chin_201443226 crossref_primary_10_1007_s40820_016_0113_5 crossref_primary_10_1021_jacs_6b03527 crossref_primary_10_18185_erzifbed_1036126 crossref_primary_10_1016_j_aca_2023_340907 crossref_primary_10_1021_acs_nanolett_6b00841 crossref_primary_10_1002_ange_201502735 crossref_primary_10_1007_s41061_017_0102_2 crossref_primary_10_1016_j_carbon_2019_10_002 crossref_primary_10_1016_j_compscitech_2023_109933 crossref_primary_10_1039_C5NR05616K crossref_primary_10_3390_bios7010009 crossref_primary_10_1039_C4TC02317J crossref_primary_10_1007_s12274_015_0869_9 crossref_primary_10_1002_admi_202001112 crossref_primary_10_1007_s40843_019_9581_4 crossref_primary_10_1039_C4CP05418K crossref_primary_10_1016_j_mser_2016_08_002 crossref_primary_10_1088_1361_6641_aaad7e crossref_primary_10_1063_1_4907613 crossref_primary_10_1021_acs_nanolett_7b04676 crossref_primary_10_1002_smll_201403170 crossref_primary_10_1021_nl5037325 crossref_primary_10_1039_C5NR06007A crossref_primary_10_1515_amm_2015_0347 crossref_primary_10_1007_s41061_016_0085_4 crossref_primary_10_1016_j_jmst_2020_02_067 crossref_primary_10_1039_C9QM00267G |
Cites_doi | 10.1002/smll.200500120 10.1002/smll.201202940 10.1021/nl0708011 10.1038/ncomms2736 10.1016/S0009-2614(01)00278-0 10.1002/smll.201203252 10.1021/jp060080e 10.1038/nnano.2008.59 10.1038/27632 10.1038/nature02278 10.1038/nnano.2007.77 10.1021/ja070808k 10.1021/ja208221g 10.1039/c0nr00170h 10.1002/pssb.201000423 10.1103/PhysRevLett.107.065501 10.1088/0957-4484/16/11/004 10.1016/S0009-2614(99)01216-6 10.1038/363603a0 10.1038/nature12502 10.1002/adma.200901255 10.1021/jp071387w 10.1021/cm061862n 10.1021/nl061797g 10.1021/ja0274958 10.1021/nl070980m 10.1063/1.2779850 10.1016/j.cplett.2006.01.058 10.1103/PhysRevLett.80.3779 10.1038/nmat3231 10.1039/b009518b 10.1002/anie.200903463 10.1021/ja1087634 10.1016/0009-2614(96)00862-7 10.1088/0957-4484/16/7/031 10.1007/s12274-009-9054-3 10.1021/nl049691d 10.1021/jp901366h 10.1021/nl0256309 10.1021/nl803496s 10.1038/nnano.2010.68 10.1126/science.1222453 10.1021/nn900799v 10.1021/ja042544x 10.1016/j.cplett.2005.04.054 10.1021/cm990582n 10.1038/29954 10.1038/nmat1216 10.1073/pnas.0507064102 10.1021/jp0142278 10.1146/annurev.matsci.33.012802.100255 10.1038/ncomms2205 10.1016/j.carbon.2011.06.100 10.1021/jp0632283 10.1002/adma.200305203 10.1021/ja901295j 10.1016/S0379-6779(98)00278-1 10.1021/jp027096z 10.1021/ja071114e 10.1103/PhysRevLett.86.1118 10.1007/s12274-009-9077-9 10.1016/j.physrep.2004.10.006 10.1021/ja8006947 10.1038/nchem.1655 10.1021/ja035262q 10.1021/cm903866z 10.1021/nl900207v 10.1016/j.carbon.2005.07.008 10.1038/nmat1220 10.1021/ja809635s 10.1021/ja058214 10.1016/j.carbon.2011.02.019 10.1126/science.1058782 10.1007/s12274-010-0054-0 10.1109/TNANO.2009.2016562 10.1016/j.carbon.2011.12.019 10.1021/nl050714d 10.1103/PhysRevLett.68.1579 10.1021/jp012085b 10.1021/ja036622c 10.1063/1.1778471 10.1021/ja402762e 10.1021/nl035097c 10.1126/science.1086534 10.1038/nmat877 10.1038/nnano.2013.227 10.1021/nl061871v 10.1021/nn3020695 10.1021/nl0610026 10.1002/pssb.201000368 10.1126/science.1122797 10.1038/nmat2531 10.1073/pnas.050498597 10.1016/0022-3697(93)90297-5 10.1016/S0009-2614(98)00745-3 10.1021/nl1010178 10.1038/nnano.2013.56 10.1007/s12274-009-9082-z 10.1038/ncomms3205 10.1038/358220a0 10.1038/nnano.2010.220 10.1021/ja9068529 10.1103/PhysRevLett.95.036101 10.1021/ja3038992 10.1021/nl9025488 10.1002/adma.200900942 10.1126/science.1104962 10.1126/science.274.5293.1701 10.1103/PhysRevB.82.085421 10.1039/c0nr00222d 10.1002/adma.201000705 10.1002/adma.200904366 10.1021/nl034219y 10.1021/ja906932p 10.1016/0039-6028(80)90080-1 10.1109/TNANO.2002.1005429 10.1016/j.carbon.2012.10.006 10.1002/adma.200904167 10.1021/nn405105y 10.1021/nn401995z 10.1126/science.1102896 10.1021/jp900499g 10.1088/0022-3727/44/14/145401 10.1002/adma.200800703 10.1016/j.carbon.2012.09.025 10.1002/anie.200460356 10.1002/anie.201101700 10.1038/363605a0 10.1021/nn101363m 10.1002/adma.200903238 10.1007/s12274-011-0133-x 10.1021/nl301561f 10.1063/1.1415412 10.1021/ja052759m 10.1016/j.carbon.2012.01.035 10.1021/nl901260b 10.1021/jp710691j 10.1038/nnano.2012.189 10.1021/nn901908n 10.1021/jp003948o 10.1021/nl025602q 10.1063/1.1753975 10.1038/nnano.2007.150 10.1007/s12274-008-8022-7 10.1016/j.carbon.2013.02.046 10.1038/34139 10.1021/nl025675 10.1038/nature08116 10.1016/j.carbon.2011.02.045 10.1021/nn4004956 10.1021/jp0012404 10.1007/s12274-009-9057-0 10.1002/1521-3773(20001002)39:19<3413::AID-ANIE3413>3.0.CO;2-Q 10.1126/science.1078727 10.1016/j.carbon.2010.09.001 10.1016/S0094-5765(00)00111-9 10.1016/0008-6223(95)00017-8 10.1021/ja054454d 10.1021/ja107855q 10.1063/1.2715031 10.1021/ja302136x 10.1021/nn200198b 10.1021/jp1100329 10.1021/nl801007r 10.1126/science.1133781 10.1126/science.1208455 10.1126/science.1103294 10.1021/jp990957s 10.1021/ja8093907 10.1038/nnano.2006.192 10.1038/498443a 10.1073/pnas.0811946106 10.1021/nl8018802 10.1038/nnano.2006.52 10.1016/j.cap.2007.04.055 10.1002/smll.201102010 10.1021/jp8051938 10.1039/c2nr32276e 10.1016/S0009-2614(00)01163-5 10.1021/nl080452q 10.1002/smll.200700029 10.1021/nl801461f 10.1021/ja065767r 10.1021/ja805070b 10.1016/j.carbon.2011.04.016 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adma.201400431 |
DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 5922 |
ExternalDocumentID | 25042346 10_1002_adma_201400431 ADMA201400431 ark_67375_WNG_QPW2VNNH_F |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5521-de0681505ac783220f87fead16d2140fbddeca2472edbc40385a8fbd4d92d4b43 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 16:31:59 EDT 2025 Thu Jul 10 18:19:57 EDT 2025 Mon Jul 21 06:04:17 EDT 2025 Tue Jul 01 00:44:13 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Wed Jan 22 16:24:45 EST 2025 Wed Oct 30 09:51:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | single-walled carbon nanotube (SWNT) structure control chirality chemical vapor deposition parallel aligned array on surfaces |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5521-de0681505ac783220f87fead16d2140fbddeca2472edbc40385a8fbd4d92d4b43 |
Notes | ark:/67375/WNG-QPW2VNNH-F istex:104F808D38BB88B9C64CD2797EBB08B04D49E8E5 ArticleID:ADMA201400431 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25042346 |
PQID | 1561032633 |
PQPubID | 23479 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_1671583410 proquest_miscellaneous_1561032633 pubmed_primary_25042346 crossref_primary_10_1002_adma_201400431 crossref_citationtrail_10_1002_adma_201400431 wiley_primary_10_1002_adma_201400431_ADMA201400431 istex_primary_ark_67375_WNG_QPW2VNNH_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 1993, 363, 605. Y. B. Chen, Y. Hu, Y. Fang, P. Li, C. Q. Feng, J. Zhang, Carbon 2012, 50, 3295. B. Wang, C. H. P. Poa, L. Wei, L.-J. Li, Y. Yang, Y. Chen, J. Am. Chem. Soc. 2007, 129, 9014. D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, ACS Nano 2012, 6, 6433. J. P. Edgeworth, N. R. Wilson, J. V. Macpherson, Small 2007, 3, 860. X. L. Li, L. Zhang, X. R. Wang, I. Shimoyama, X. M. Sun, W. S. Seo, H. J. Dai, J. Am. Chem. Soc. 2007, 129, 4890. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman, J. Am. Chem. Soc. 2003, 125, 11186. N. Mingo, D. Broido, Nano Lett. 2005, 5, 1221. Z. Liu, L. Jiao, Y. Yao, X. Xian, J. Zhang, Adv. Mater. 2010, 22, 2285. W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Angew. Chem. Int. Edit. 2010, 49, 2114. S. Han, X. L. Liu, C. W. Zhou, J. Am. Chem. Soc. 2005, 127, 5294. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B 2001, 105, 11424. Y. Chen, J. Zhang, Carbon 2011, 49, 3316. B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2009, 131, 2082. M. Hofmann, D. Nezich, A. Reina, J. Kong, Nano Lett. 2008, 8, 4122. I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards, O. Jaschinski, Chem.Phys. Lett. 2000, 331, 125. G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, H. Dai, P. Natl. Aacd. Sci. USA 2005, 102, 16141. T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Norskov, Nature 2004, 427, 426. J. H. Hafner, C.-L. Cheung, T. H. Oosterkamp, C. M. Lieber, J. Phys. Chem. B 2001, 105, 743. L. J. Ci, L. Song, D. Jariwala, A. L. Elias, W. Gao, M. Terrones, P. M. Ajayan, Adv. Mater. 2009, 21, 4487. K. Seo, C. Kim, Y. S. Choi, K. A. Park, Y. H. Lee, B. Kim, J. Am. Chem. Soc. 2003, 125, 13946. R. E. Smalley, Y. Li, V. C. Moore, B. K. Price, R. Colorado, H. K. Schmidt, R. H. Hauge, A. R. Barron, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 15824. B. C. Edwards, Acta Astronautica 2000, 47, 735. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 1996, 260, 471. B. Zhang, G. Hong, B. Peng, J. Zhang, W. Choi, J. M. Kim, J. Y. Choi, Z. Liu, J. Phys. Chem. C 2009, 113, 5341. R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, B. Maruyama, Nat. Mater. 2012, 11, 213. W. W. Zhou, S. T. Zhan, L. Ding, J. Liu, J. Am. Chem. Soc. 2012, 134, 14019. J. Kong, A. M. Cassell, H. Dai, Chem. Phys. Lett. 1998, 292, 567. S. Huang, Q. Cai, J. Chen, Y. Qian, L. Zhang, J. Am. Chem. Soc. 2009, 131, 2094. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 2001, 86, 1118. H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Nano Lett. 2008, 8, 2082. B. Liu, W. Ren, C. Liu, C.-H. Sun, L. Gao, S. Li, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 3421. J. C. Hamilton, J. M. Blakely, Surf. Sci. 1980, 91, 199. R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, ACS Nano 2013, 7, 6156. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science 1996, 274, 1701. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89. M. Y. Sfeir, F. Wang, L. M. Huang, C. C. Chuang, J. Hone, S. P. O'Brien, T. F. Heinz, L. E. Brus, Science 2004, 306, 1540. C. Y. Khripin, J. A. Fagan, M. Zheng, J. Am. Chem. Soc. 2013, 135, 6822. S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, P. C. Eklund, Phys. Rev. Lett. 1998, 80, 3779. N. Patil, A. Lin, E. R. Myers, K. Ryu, K. A. Badmaev, C. W. Zhou, H. S. P. Wong, S. Mitra, IEEE Trans. Nanotechnol. 2009, 8, 498. G. Hong, Y. B. Chen, P. Li, J. Zhang, Carbon 2012, 50, 2067. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338. R. F. Zhang, H. H. Xie, Y. Y. Zhang, Q. Zhang, Y. G. Jin, P. Li, W. Z. Qian, F. Wei, Carbon 2013, 52, 232. P. G. Collins, M. S. Arnold, P. Avouris, Science 2001, 292, 706. G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. Dai, Science 2006, 314, 974. Z. Ren, Nat. Nanotechnol. 2007, 2, 17. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 1995, 33, 883. Z. Zhu, H. Jiang, T. Susi, A. G. Nasibulin, E. I. Kauppinen, J. Am. Chem. Soc. 2010, 133, 1224. D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Science 2011, 333, 1003. G. Hong, M. Zhou, R. Zhang, S. Hou, W. Choi, Y. S. Woo, J.-Y. Choi, Z. Liu, J. Zhang, Angew. Chem. Int. Edit. 2011, 50, 6819. G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, J. Am. Chem. Soc. 2009, 131, 14642. R. Krupke, F. Hennrich, H. v. Löhneysen, M. M. Kappes, Science 2003, 301, 344. M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 2001, 338, 101. A. D. Franklin, Nature 2013, 498, 443. C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber, J. Phys. Chem. B 2002, 106, 2429. J. W. Song, H. W. Seo, J. K. Park, J. E. Kim, D. G. Choi, C. S. Han, Curr. Appl. Phys. 2008, 8, 725. M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. PhilipWong, S. Mitra, Nature 2013, 501, 526. S. H. Jin, S. N. Dunham, J. Song, X. Xie, J.-h. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M. A. Wahab, M. Menon, E. Cho, K. L. Grosse, D. J. Lee, H. U. Chung, E. Pop, M. A. Alam, W. P. King, Y. Huang, J. A. Rogers, Nat. Nanotechnol. 2013, 8, 347. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Science 2002, 298, 2361. Q. Wen, R. F. Zhang, W. Z. Qian, Y. R. Wang, P. H. Tan, J. Q. Nie, F. Wei, Chem. Mater. 2010, 22, 1294. L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T. P. McNicholas, Y. Li, J. Liu, Nano Lett. 2009, 9, 800. W. W. Zhou, Z. Y. Han, J. Y. Wang, Y. Zhang, Z. Jin, X. Sun, Y. W. Zhang, C. H. Yan, Y. Li, Nano Lett. 2006, 6, 2987. C. L. Cheung, J. H. Hafner, C. M. Lieber, Proc. Natl. Aacd. Sci. USA 2000, 97, 3809. A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 1999, 103, 6484. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59. C. Kocabas, S. J. Kang, T. Ozel, M. Shim, J. A. Rogers, J. Phys. Chem. C 2007, 111, 17879. P. L. McEuen, M. S. Fuhrer, H. K. Park, IEEE T. Nanotechnol. 2002, 1, 78. C. S. Allen, C. Zhang, G. Burnell, A. P. Brown, J. Robertson, B. J. Hickey, Carbon 2011, 49, 4961. K. J. Ziegler, Z. Gu, J. Shaver, Z. Chen, E. L. Flor, D. J. Schmidt, C. Chan, R. H. Hauge, R. E. Smalley, Nanotechnology 2005, 16, S539. H. Ago, N. Uehara, K.-i. Ikeda, R. Ohdo, K. Nakamura, M. Tsuji, Chem. Phys. Lett. 2006, 421, 399. A. Muller, S. K. Das, H. Bogge, M. Schmidtmann, A. Botar, A. Patrut, Chem. Comm. 2001, 657. Y. Hu, Y. Chen, P. Li, J. Zhang, Small 2013, 9, 1306. B. Wang, Y. F. Ma, N. Li, Y. P. Wu, F. F. Li, Y. S. Chen, Adv. Mater. 2010, 22, 3067. B. S. Flavel, M. M. Kappes, R. Krupke, F. Hennrich, ACS Nano 2013, 7, 3557. R. F. Zhang, Y. Y. Zhang, Q. Zhang, H. H. Xie, W. Z. Qian, F. Wei, ACS Nano 2013, 7, 6156. D. Nishide, H. Liu, T. Tanaka, H. Kataura, Phys. Status Solidi B 2010, 247, 2746. D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Nano Lett. 2006, 6, 2642. K. Maehashi, Y. Ohno, K. Inoue, K. Matsumoto, Appl. Phys. Lett. 2004, 85, 858. J. Li, Y. He, Y. Han, K. Liu, J. Wang, Q. Li, S. Fan, K. Jiang, Nano Lett. 2012, 12, 4095. J. H. Li, K. H. Liu, S. B. Liang, W. W. Zhou, M. Pierce, F. Wang, L. M. Peng, J. Liu, Acs Nano 2014, 8, 554. H. Dumlich, S. Reich, Phys. Rev. B 2010, 82, 085421. Z. Gu, H. Peng, R. Hauge, R. Smalley, J. Margrave, Nano Lett. 2002, 2, 1009. J. L. Xiao, S. Dunham, P. Liu, Y. W. Zhang, C. Kocabas, L. Moh, Y. G. Huang, K. C. Hwang, C. Lu, W. Huang, J. A. Rogers, Nano Lett. 2009, 9, 4311. A. D. Franklin, Z. Chen, Nat. Nanotechnol. 2010, 5, 858. L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, Z. F. Liu, J. Am. Chem. Soc. 2008, 130, 12612. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. Y. Feng, Y. Miyata, K. Matsuishi, H. Kataura, J. Phys. Chem. C 2011, 115, 1752. Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. J. Dai, Nano Lett. 2004, 4, 317. Y. G. Yao, X. C. Dai, C. Q. Feng, J. Zhang, X. L. Liang, L. Ding, W. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, Adv. Mater. 2009, 21, 4158. D. Yuan, L. Ding, H. Chu, Y. Feng, T. P. McNicholas, J. Liu, Nano Lett. 2008, 8, 2576. Y. Homma, H. P. Liu, D. Takagi, Y. Kobayashi, Nano Res. 2009, 2, 793. H. H. Xie, R. F. Zhang, Y. Y. Zhang, P. Li, Y. G. Jin, F. Wei, Carbon 2013, 52, 535. X. L. Liu, K. Ryu, A. Badmaev, S. Han, C. W. Zhou, J. Phys. Chem. C 2008, 112, 15929. W.-H. Chiang, R. Mohan Sankaran, Nat. Mater. 2009, 8, 882. C. Feng, Y. Yao, J. Zhang, Z. Liu, Nano Res. 2009, 2, 768. S. Ghosh, S. M. Bachilo, R. B. Weisman, Nat. Nanotechnol. 2010, 5, 443. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synthetic Met. 1999, 103, 2555. M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47. B. Liu, D.-M. Tang, C. Sun, C. Liu, W. Ren, F. Li, W.-J. Yu, L.-C. Yin, L. Zhang, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2010, 133, 197. H. Park, A. Afzali, S. J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, W. Haensch, Nat. Nanotechnol. 2012, 7, 787. C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers, Small 2005, 1, 1110. Y. N. Zhang, L. X. Zheng, Nanoscale 2010, 2, 1919. Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, P. Avouris, Science 2006, 311, 1735. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 1992, 68, 1579. M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, J. Phys. Ch 2011; 115 2010; 10 2013; 4 1995; 33 2004; 4 2004; 3 1996; 260 2009; 113 1998; 80 2013; 7 2013; 8 2012; 12 2013; 5 2012; 11 1998; 393 1993; 363 2013; 9 1998; 395 2010; 22 1998; 292 2013; 58 2012; 134 2000; 12 2005; 102 2013; 52 2000; 97 1992; 358 2007; 7 2007; 2 2007; 3 2008; 112 2010; 3 2010; 2 2010; 5 2010; 4 2004; 43 2007; 19 2013; 501 2002; 1 2002; 2 2007; 90 2007; 91 2006; 110 1999; 103 2011; 4 2004; 427 2004; 306 2011; 5 2011; 133 2003; 33 2012; 50 1998; 391 2010; 49 2003; 107 2013; 339 2000; 104 2006; 44 2002; 124 1993; 54 2005; 127 2005; 95 2005; 5 2005; 1 2005; 408 2005; 409 2009; 460 2005; 16 2008; 130 2009; 106 2000; 47 1964; 4 2003; 15 2008; 8 1980; 91 2008; 3 2000; 331 2008; 1 2001; 86 2001; 105 2001 2001; 292 2013; 13 2002; 106 2003; 2 2003; 3 2001; 338 2014; 8 2003; 125 2006; 128 2004; 85 2011; 333 2007; 129 2009; 21 2010; 247 2002; 298 2006; 6 2006; 1 2009; 131 2006; 314 2006; 311 2010; 82 2012; 3 2011; 107 2000; 39 2007; 111 2011; 50 2010; 133 2009; 9 2011; 44 2013; 498 2009; 8 2013; 135 1992; 68 1996; 274 2009; 3 2012; 6 1999; 315 2011; 49 2012; 7 2009; 2 2003; 301 2001; 79 2012; 4 2012; 8 2006; 421 e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_172_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_134_1 e_1_2_12_176_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_184_1 e_1_2_12_180_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_171_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_137_1 e_1_2_12_179_1 e_1_2_12_114_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_175_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_141_1 e_1_2_12_183_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_145_1 e_1_2_12_187_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_151_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_132_1 Chen Y. B. (e_1_2_12_177_1) 2013; 13 e_1_2_12_178_1 e_1_2_12_113_1 e_1_2_12_155_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_182_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_186_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_5_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_185_1 e_1_2_12_162_1 e_1_2_12_181_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_124_1 e_1_2_12_166_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – reference: C. A. Wang, K. M. Ryu, L. G. De Arco, A. Badmaev, J. L. Zhang, X. Lin, Y. C. Che, C. W. Zhou, Nano Res. 2010, 3, 831. – reference: H. H. Xie, R. F. Zhang, Y. Y. Zhang, P. Li, Y. G. Jin, F. Wei, Carbon 2013, 52, 535. – reference: A. D. Franklin, Z. Chen, Nat. Nanotechnol. 2010, 5, 858. – reference: A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 2001, 86, 1118. – reference: Y. B. Chen, Y. Hu, Y. Fang, P. Li, C. Q. Feng, J. Zhang, Carbon 2012, 50, 3295. – reference: L. X. Zheng, M. J. O'Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, Y. T. Zhu, Nat. Mater. 2004, 3, 673. – reference: D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Science 2011, 333, 1003. – reference: X. F. Feng, S. W. Chee, R. Sharma, K. Liu, X. Xie, Q. Q. Li, S. S. Fan, K. L. Jiang, Nano Res. 2011, 4, 767. – reference: K. Maehashi, Y. Ohno, K. Inoue, K. Matsumoto, Appl. Phys. Lett. 2004, 85, 858. – reference: Z. Y. Zhang, S. Wang, L. Ding, X. L. Liang, T. Pei, J. Shen, H. L. Xu, O. Chen, R. L. Cui, Y. Li, L. M. Peng, Nano Lett. 2008, 8, 3696. – reference: C. Lu, J. Liu, J. Phys. Chem. B 2006, 110, 20254. – reference: A. D. Franklin, Nature 2013, 498, 443. – reference: R. Krupke, F. Hennrich, H. v. Löhneysen, M. M. Kappes, Science 2003, 301, 344. – reference: H. Dumlich, S. Reich, Phys. Rev. B 2010, 82, 085421. – reference: C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber, J. Phys. Chem. B 2002, 106, 2429. – reference: A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L. R. Wallenberg, Nat. Mater. 2004, 3, 677. – reference: Z. Gu, H. Peng, R. Hauge, R. Smalley, J. Margrave, Nano Lett. 2002, 2, 1009. – reference: I. J. Teng, K. L. Chen, H. L. Hsu, S. R. Jian, L. C. Wang, J. H. Chen, W. H. Wang, C. T. Kuo, J. Phys. D: Appl. Phys. 2011, 44, 145401. – reference: K. Moshammer, F. Hennrich, M. Kappes, Nano Res. 2009, 2, 599. – reference: Z. Ren, Nat. Nanotechnol. 2007, 2, 17. – reference: C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers, Small 2005, 1, 1110. – reference: G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, J. Am. Chem. Soc. 2009, 131, 14642. – reference: W. W. Zhou, Z. Y. Han, J. Y. Wang, Y. Zhang, Z. Jin, X. Sun, Y. W. Zhang, C. H. Yan, Y. Li, Nano Lett. 2006, 6, 2987. – reference: Y. G. Yao, X. C. Dai, C. Q. Feng, J. Zhang, X. L. Liang, L. Ding, W. Choi, J. Y. Choi, J. M. Kim, Z. F. Liu, Adv. Mater. 2009, 21, 4158. – reference: H. Qiu, Y. Maeda, T. Akasaka, J. Am. Chem. Soc. 2009, 131, 16529. – reference: K. Seo, C. Kim, Y. S. Choi, K. A. Park, Y. H. Lee, B. Kim, J. Am. Chem. Soc. 2003, 125, 13946. – reference: Z. Jin, H. B. Chu, J. Y. Wang, J. X. Hong, W. C. Tan, Y. Li, Nano Lett. 2007, 7, 2073. – reference: B. H. Peng, S. Jiang, Y. Y. Zhang, J. Zhang, Carbon 2011, 49, 2555. – reference: S. Jeong, A. Oshiyama, Phys. Rev. Lett. 2011, 107, 065501. – reference: L. J. Ci, L. Song, D. Jariwala, A. L. Elias, W. Gao, M. Terrones, P. M. Ajayan, Adv. Mater. 2009, 21, 4487. – reference: X. L. Li, L. Zhang, X. R. Wang, I. Shimoyama, X. M. Sun, W. S. Seo, H. J. Dai, J. Am. Chem. Soc. 2007, 129, 4890. – reference: Y. Chen, Z. Shen, Z. Xu, Y. Hu, H. Xu, S. Wang, X. Guo, Y. Zhang, L. Peng, F. Ding, Z. Liu, J. Zhang, Nat. Commun. 2013, 4, 2205. – reference: J. Kong, A. M. Cassell, H. Dai, Chem. Phys. Lett. 1998, 292, 567. – reference: I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards, O. Jaschinski, Chem.Phys. Lett. 2000, 331, 125. – reference: N. Geblinger, A. Ismach, E. Joselevich, Nat. Nanotechnol. 2008, 3, 195. – reference: L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T. P. McNicholas, Y. Li, J. Liu, Nano Lett. 2009, 9, 800. – reference: J. C. Hamilton, J. M. Blakely, Surf. Sci. 1980, 91, 199. – reference: K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362. – reference: D. Nishide, H. Liu, T. Tanaka, H. Kataura, Phys. Status Solidi B 2010, 247, 2746. – reference: R. F. Zhang, H. H. Xie, Y. Y. Zhang, Q. Zhang, Y. G. Jin, P. Li, W. Z. Qian, F. Wei, Carbon 2013, 52, 232. – reference: R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, ACS Nano 2013, 7, 6156. – reference: B. S. Flavel, M. M. Kappes, R. Krupke, F. Hennrich, ACS Nano 2013, 7, 3557. – reference: Y. Chen, J. Zhang, Carbon 2011, 49, 3316. – reference: M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 2001, 338, 101. – reference: M. Su, Y. Li, B. Maynor, A. Buldum, J. P. Lu, J. Liu, J. Phys. Chem. B. 2000, 104, 6505. – reference: H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, K. Itami, Nature Chem. 2013, 5, 572. – reference: M. He, H. Jiang, E. I. Kauppinen, J. Lehtonen, Nanoscale 2012, 4, 7394. – reference: R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89. – reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. – reference: J. Martinez, T. D. Yuzvinsky, A. M. Fennimore, A. Zettl, R. García, C. Bustamante, Nanotechnology 2005, 16, 2493. – reference: M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47. – reference: M. Hofmann, D. Nezich, A. Reina, J. Kong, Nano Lett. 2008, 8, 4122. – reference: C. L. Cheung, J. H. Hafner, C. M. Lieber, Proc. Natl. Aacd. Sci. USA 2000, 97, 3809. – reference: Y. Yao, X. Dai, R. Liu, J. Zhang, Z. Liu, J. Phys. Chem. C 2009, 113, 13051. – reference: C. S. Allen, C. Zhang, G. Burnell, A. P. Brown, J. Robertson, B. J. Hickey, Carbon 2011, 49, 4961. – reference: Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, F. Wei, Small 2013, 9, 1237. – reference: M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam, Nat. Nanotechnol. 2006, 1, 60. – reference: V. Derycke, R. Martel, M. Radosavljevi, F. M. Ross, P. Avouris, Nano Lett. 2002, 2, 1043. – reference: Z. L. Wang, D. W. Tang, X. B. Li, X. H. Zheng, W. G. Zhang, L. X. Zheng, Y. T. Zhu, A. Z. Jin, H. F. Yang, C. Z. Gu, Appl. Phys. Lett. 2007, 91, 123119. – reference: H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synthetic Met. 1999, 103, 2555. – reference: S. Huang, Q. Cai, J. Chen, Y. Qian, L. Zhang, J. Am. Chem. Soc. 2009, 131, 2094. – reference: D. N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima, J. Phys. Chem. B 2006, 110, 8035. – reference: C. M. Orofeo, H. Ago, T. Ikuta, K. Takahasi, M. Tsuji, Nanoscale 2010, 2, 1708. – reference: M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto, J. Phys. Chem. Solids 1993, 54, 1841. – reference: F. Ding, A. R. Harutyunyan, B. I. Yakobson, Proc. Natl. Aacd. Sci. USA 2009, 106, 2506. – reference: S. Ghosh, S. M. Bachilo, R. B. Weisman, Nat. Nanotechnol. 2010, 5, 443. – reference: J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59. – reference: Y. Zhang, Y. Zhang, X. Xian, J. Zhang, Z. Liu, J. Phys. Chem. C 2008, 112, 3849. – reference: X. Tu, M. Zheng, Nano Res. 2008, 1, 185. – reference: Y. N. Zhang, L. X. Zheng, Nanoscale 2010, 2, 1919. – reference: W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Angew. Chem. Int. Edit. 2010, 49, 2114. – reference: S. Hofmann, G. Csányi, A. C. Ferrari, M. C. Payne, J. Robertson, Phys. Rev. Lett. 2005, 95, 036101. – reference: J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng, C. Zhou, Nat. Commun. 2012, 3, 1199. – reference: G. Hong, Y. B. Chen, P. Li, J. Zhang, Carbon 2012, 50, 2067. – reference: Y. Hu, Y. Chen, P. Li, J. Zhang, Small 2013, 9, 1306. – reference: M. Y. Sfeir, F. Wang, L. M. Huang, C. C. Chuang, J. Hone, S. P. O'Brien, T. F. Heinz, L. E. Brus, Science 2004, 306, 1540. – reference: W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science 1996, 274, 1701. – reference: P. G. Collins, M. S. Arnold, P. Avouris, Science 2001, 292, 706. – reference: S. W. Hong, T. Banks, J. A. Rogers, Adv. Mater. 2010, 22, 1826. – reference: W. W. Zhou, S. T. Zhan, L. Ding, J. Liu, J. Am. Chem. Soc. 2012, 134, 14019. – reference: W. W. Zhou, L. Ding, S. Yang, J. Liu, ACS Nano 2011, 5, 3849. – reference: S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, Chem. Phys. Lett. 1999, 315, 25. – reference: B. Liu, D.-M. Tang, C. Sun, C. Liu, W. Ren, F. Li, W.-J. Yu, L.-C. Yin, L. Zhang, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2010, 133, 197. – reference: J. Park, J. Yoon, S. J. Kang, G. T. Kim, J. S. Ha, Carbon 2011, 49, 2492. – reference: J. H. Hafner, C.-L. Cheung, T. H. Oosterkamp, C. M. Lieber, J. Phys. Chem. B 2001, 105, 743. – reference: A. Ismach, D. Kantorovich, E. Joselevich, J. Am. Chem. Soc. 2005, 127, 11554. – reference: W.-J. Kim, M. L. Usrey, M. S. Strano, Chem. Mater. 2007, 19, 1571. – reference: S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, P. C. Eklund, Phys. Rev. Lett. 1998, 80, 3779. – reference: B. Wang, C. H. P. Poa, L. Wei, L.-J. Li, Y. Yang, Y. Chen, J. Am. Chem. Soc. 2007, 129, 9014. – reference: J. H. Li, K. H. Liu, S. B. Liang, W. W. Zhou, M. Pierce, F. Wang, L. M. Peng, J. Liu, Acs Nano 2014, 8, 554. – reference: V. Jourdain, C. Bichara, Carbon 2013, 58, 2. – reference: N. Patil, A. Lin, E. R. Myers, K. Ryu, K. A. Badmaev, C. W. Zhou, H. S. P. Wong, S. Mitra, IEEE Trans. Nanotechnol. 2009, 8, 498. – reference: G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. Dai, Science 2006, 314, 974. – reference: X. Yu, J. Zhang, W. Choi, J.-Y. Choi, J. M. Kim, L. Gan, Z. Liu, Nano Lett. 2010, 10, 3343. – reference: S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 1998, 393, 49. – reference: A. Müller, S. K. Das, P. Kögerler, H. Bögge, M. Schmidtmann, A. X. Trautwein, V. Schünemann, E. Krickemeyer, W. Preetz, Angew. Chem. Int. Ed. 2000, 39, 3413. – reference: L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, Z. F. Liu, J. Am. Chem. Soc. 2008, 130, 12612. – reference: Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, H. J. Dai, Nano Lett. 2004, 4, 317. – reference: B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2009, 131, 2082. – reference: S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman, J. Am. Chem. Soc. 2003, 125, 11186. – reference: Y. Yao, C. Feng, J. Zhang, Z. Liu, Nano Lett. 2009, 9, 1673. – reference: J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, Nature 1998, 395, 878. – reference: M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 1995, 33, 883. – reference: M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338. – reference: S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa, Nano Lett. 2003, 3, 1007. – reference: J. Lu, S. Nagase, X. W. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, W. N. Mei, Y. S. Zhou, J. Am. Chem. Soc. 2006, 128, 5114. – reference: D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 1993, 363, 605. – reference: H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, M. Tsuji, Chem. Phys. Lett. 2005, 408, 433. – reference: S. M. Huang, M. Woodson, R. Smalley, J. Liu, Nano Lett. 2004, 4, 1025. – reference: D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Nano Lett. 2006, 6, 2642. – reference: J. L. Xiao, S. Dunham, P. Liu, Y. W. Zhang, C. Kocabas, L. Moh, Y. G. Huang, K. C. Hwang, C. Lu, W. Huang, J. A. Rogers, Nano Lett. 2009, 9, 4311. – reference: G. Hong, M. Zhou, R. Zhang, S. Hou, W. Choi, Y. S. Woo, J.-Y. Choi, Z. Liu, J. Zhang, Angew. Chem. Int. Edit. 2011, 50, 6819. – reference: A. L. Antaris, J.-W. T. Seo, A. A. Green, M. C. Hersam, ACS Nano 2010, 4, 4725. – reference: B. Liu, W. Ren, C. Liu, C.-H. Sun, L. Gao, S. Li, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 3421. – reference: C. Feng, Y. Yao, J. Zhang, Z. Liu, Nano Res. 2009, 2, 768. – reference: S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Norskov, Nature 2004, 427, 426. – reference: H. Park, A. Afzali, S. J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, W. Haensch, Nat. Nanotechnol. 2012, 7, 787. – reference: Y. Feng, Y. Miyata, K. Matsuishi, H. Kataura, J. Phys. Chem. C 2011, 115, 1752. – reference: B. Zhang, G. Hong, B. Peng, J. Zhang, W. Choi, J. M. Kim, J. Y. Choi, Z. Liu, J. Phys. Chem. C 2009, 113, 5341. – reference: Y. B. Chen, Y. Hu, M. X. Liu, W. G. Xu, Y. F. Zhang, L. M. Xie, J. Zhang, Nano Lett. 2013, 13, 5667. – reference: W. Kim, H. C. Choi, M. Shim, Y. Li, D. Wang, H. Dai, Nano Lett. 2002, 2, 703. – reference: M. Terrones, Annu. Rev. Mater. Res. 2003, 33, 419. – reference: A. J. Hart, A. H. Slocum, L. Royer, Carbon 2006, 44, 348. – reference: T. Tanaka, Y. Urabe, D. Nishide, H. Kataura, J. Am. Chem. Soc. 2011, 133, 17610. – reference: C. Kocabas, S. J. Kang, T. Ozel, M. Shim, J. A. Rogers, J. Phys. Chem. C 2007, 111, 17879. – reference: I. Ibrahim, A. Bachmatiuk, J. H. Warner, B. Buchner, G. Cuniberti, M. H. Rummeli, Small 2012, 8, 1973. – reference: Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B 2001, 105, 11424. – reference: T. Tanaka, Y. Urabe, D. Nishide, H. Liu, S. Asano, S. Nishiyama, H. Kataura, Phys. Status Solidi B 2010, 247, 2867. – reference: Y. Homma, H. P. Liu, D. Takagi, Y. Kobayashi, Nano Res. 2009, 2, 793. – reference: D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, ACS Nano 2012, 6, 6433. – reference: C. Y. Khripin, J. A. Fagan, M. Zheng, J. Am. Chem. Soc. 2013, 135, 6822. – reference: S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230. – reference: B. H. Hong, J. Y. Lee, T. Beetz, Y. Zhu, P. Kim, K. S. Kim, J. Am. Chem. Soc. 2005, 127, 15336. – reference: G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, H. Dai, P. Natl. Aacd. Sci. USA 2005, 102, 16141. – reference: G. H. Yu, A. Y. Cao, C. M. Lieber, Nat. Nanotechnol. 2007, 2, 372. – reference: M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535. – reference: E. H. Hároz, W. D. Rice, B. Y. Lu, S. Ghosh, R. H. Hauge, R. B. Weisman, S. K. Doorn, J. Kono, ACS Nano 2010, 4, 1955. – reference: D. Yuan, L. Ding, H. Chu, Y. Feng, T. P. McNicholas, J. Liu, Nano Lett. 2008, 8, 2576. – reference: S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Science 2002, 298, 2361. – reference: K. H. Liu, X. P. Hong, Q. Zhou, C. H. Jin, J. H. Li, W. W. Zhou, J. Liu, E. G. Wang, A. Zettl, F. Wang, Nat Nanotechnol 2013, 8, 917. – reference: S. Han, X. L. Liu, C. W. Zhou, J. Am. Chem. Soc. 2005, 127, 5294. – reference: S. M. Huang, B. Maynor, X. Y. Cai, J. Liu, Adv. Mater. 2003, 15, 1651. – reference: M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. PhilipWong, S. Mitra, Nature 2013, 501, 526. – reference: J. W. Song, H. W. Seo, J. K. Park, J. E. Kim, D. G. Choi, C. S. Han, Curr. Appl. Phys. 2008, 8, 725. – reference: H. Ago, K. Imamoto, N. Ishigami, R. Ohdo, K. Ikeda, M. Tsuji, Appl. Phys. Lett. 2007, 90, 123112. – reference: R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, B. Maruyama, Nat. Mater. 2012, 11, 213. – reference: Z. Liu, L. Jiao, Y. Yao, X. Xian, J. Zhang, Adv. Mater. 2010, 22, 2285. – reference: H. Zhang, Y. Liu, L. Cao, D. Wei, Y. Wang, H. Kajiura, Y. Li, K. Noda, G. Luo, L. Wang, J. Zhou, J. Lu, Z. Gao, Adv. Mater. 2009, 21, 813. – reference: B. Wang, Y. F. Ma, N. Li, Y. P. Wu, F. F. Li, Y. S. Chen, Adv. Mater. 2010, 22, 3067. – reference: P. E. Anderson, N. M. Rodríguez, Chem. Mater. 2000, 12, 823. – reference: H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Nano Lett. 2008, 8, 2082. – reference: X. L. Liu, K. Ryu, A. Badmaev, S. Han, C. W. Zhou, J. Phys. Chem. C 2008, 112, 15929. – reference: A. Muller, S. K. Das, H. Bogge, M. Schmidtmann, A. Botar, A. Patrut, Chem. Comm. 2001, 657. – reference: X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Nano Lett. 2009, 9, 3137. – reference: D. Takagi, Y. Kobayashi, Y. Homma, J. Am. Chem. Soc. 2009, 131, 6922. – reference: T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220. – reference: J. Li, Y. He, Y. Han, K. Liu, J. Wang, Q. Li, S. Fan, K. Jiang, Nano Lett. 2012, 12, 4095. – reference: N. Mingo, D. Broido, Nano Lett. 2005, 5, 1221. – reference: A. Ismach, L. Segev, E. Wachtel, E. Joselevich, Angew. Chem. Int. Edit. 2004, 43, 6140. – reference: Z. Zhu, H. Jiang, T. Susi, A. G. Nasibulin, E. I. Kauppinen, J. Am. Chem. Soc. 2010, 133, 1224. – reference: X. Tu, S. Manohar, A. Jagota, M. Zheng, Nature 2009, 460, 250. – reference: Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Kong, H. J. Dai, Appl. Phys. Lett. 2001, 79, 3155. – reference: B. C. Edwards, Acta Astronautica 2000, 47, 735. – reference: K. J. Ziegler, Z. Gu, J. Shaver, Z. Chen, E. L. Flor, D. J. Schmidt, C. Chan, R. H. Hauge, R. E. Smalley, Nanotechnology 2005, 16, S539. – reference: H. Ago, N. Uehara, K.-i. Ikeda, R. Ohdo, K. Nakamura, M. Tsuji, Chem. Phys. Lett. 2006, 421, 399. – reference: A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 1999, 103, 6484. – reference: N. P. Bhatt, P. Vichchulada, M. D. Lay, J. Am. Chem. Soc. 2012, 134, 9352. – reference: Q. Wen, R. F. Zhang, W. Z. Qian, Y. R. Wang, P. H. Tan, J. Q. Nie, F. Wei, Chem. Mater. 2010, 22, 1294. – reference: S. H. Jin, S. N. Dunham, J. Song, X. Xie, J.-h. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M. A. Wahab, M. Menon, E. Cho, K. L. Grosse, D. J. Lee, H. U. Chung, E. Pop, M. A. Alam, W. P. King, Y. Huang, J. A. Rogers, Nat. Nanotechnol. 2013, 8, 347. – reference: R. E. Smalley, Y. Li, V. C. Moore, B. K. Price, R. Colorado, H. K. Schmidt, R. H. Hauge, A. R. Barron, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 15824. – reference: L. Ding, D. N. Yuan, J. Liu, J. Am. Chem. Soc. 2008, 130, 5428. – reference: J. P. Edgeworth, N. R. Wilson, J. V. Macpherson, Small 2007, 3, 860. – reference: P. L. McEuen, M. S. Fuhrer, H. K. Park, IEEE T. Nanotechnol. 2002, 1, 78. – reference: S. Iijima, T. Ichihashi, Nature 1993, 363, 603. – reference: R. F. Zhang, Y. Y. Zhang, Q. Zhang, H. H. Xie, W. Z. Qian, F. Wei, ACS Nano 2013, 7, 6156. – reference: H. Ago, Y. Nakamura, Y. Ogawa, M. Tsuji, Carbon 2011, 49, 176. – reference: L. An, J. M. Owens, L. E. McNeil, J. Liu, J. Am. Chem. Soc. 2002, 124, 13688. – reference: E. Joselevich, Nano Res. 2009, 2, 743. – reference: Y. Li, R. Cui, L. Ding, Y. Liu, W. Zhou, Y. Zhang, Z. Jin, F. Peng, J. Liu, Adv. Mater. 2010, 22, 1508. – reference: N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 1992, 68, 1579. – reference: Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, P. Avouris, Science 2006, 311, 1735. – reference: S. Lebedkin, F. Hennrich, T. Skipa, M. M. Kappes, J. Phys. Chem. B 2003, 107, 1949. – reference: D. Takagi, H. Hibino, S. Suzuki, Y. Kobayashic´, Y. Homma, Nano Lett. 2007, 7, 2272. – reference: A. Ismach, E. Joselevich, Nano Lett. 2006, 6, 1706. – reference: H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 1996, 260, 471. – reference: R. Zhang, Y. Zhang, Q. Zhang, H. Xie, H. Wang, J. Nie, Q. Wen, F. Wei, Nat. Commun. 2013, 4, 1727. – reference: W.-H. Chiang, R. Mohan Sankaran, Nat. Mater. 2009, 8, 882. – volume: 363 start-page: 605 year: 1993 publication-title: Nature – volume: 9 start-page: 4311 year: 2009 publication-title: Nano Lett. – volume: 16 start-page: S539 year: 2005 publication-title: Nanotechnology – volume: 22 start-page: 1508 year: 2010 publication-title: Adv. Mater. – volume: 110 start-page: 8035 year: 2006 publication-title: J. Phys. Chem. B – volume: 103 start-page: 6484 year: 1999 publication-title: J. Phys. Chem. B – volume: 2 start-page: 703 year: 2002 publication-title: Nano Lett. – volume: 127 start-page: 15336 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 813 year: 2009 publication-title: Adv. Mater. – volume: 8 start-page: 3696 year: 2008 publication-title: Nano Lett. – volume: 133 start-page: 197 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 16141 year: 2005 publication-title: P. Natl. Aacd. Sci. USA – volume: 15 start-page: 1651 year: 2003 publication-title: Adv. Mater. – volume: 128 start-page: 15824 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 2506 year: 2009 publication-title: Proc. Natl. Aacd. Sci. USA – volume: 112 start-page: 15929 year: 2008 publication-title: J. Phys. Chem. C – volume: 306 start-page: 1362 year: 2004 publication-title: Science – volume: 49 start-page: 4961 year: 2011 publication-title: Carbon – volume: 3 start-page: 195 year: 2008 publication-title: Nat. Nanotechnol. – volume: 16 start-page: 2493 year: 2005 publication-title: Nanotechnology – volume: 113 start-page: 13051 year: 2009 publication-title: J. Phys. Chem. C – volume: 131 start-page: 14642 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2576 year: 2008 publication-title: Nano Lett. – volume: 90 start-page: 123112 year: 2007 publication-title: Appl. Phys. Lett. – volume: 107 start-page: 1949 year: 2003 publication-title: J. Phys. Chem. B – volume: 47 start-page: 735 year: 2000 publication-title: Acta Astronautica – volume: 4 start-page: 767 year: 2011 publication-title: Nano Res. – volume: 115 start-page: 1752 year: 2011 publication-title: J. Phys. Chem. C – volume: 9 start-page: 3137 year: 2009 publication-title: Nano Lett. – volume: 135 start-page: 6822 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3343 year: 2010 publication-title: Nano Lett. – volume: 133 start-page: 17610 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 17879 year: 2007 publication-title: J. Phys. Chem. C – volume: 133 start-page: 1224 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1919 year: 2010 publication-title: Nanoscale – volume: 112 start-page: 3849 year: 2008 publication-title: J. Phys. Chem. C – volume: 460 start-page: 250 year: 2009 publication-title: Nature – volume: 91 start-page: 123119 year: 2007 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 1043 year: 2002 publication-title: Nano Lett. – volume: 7 start-page: 2272 year: 2007 publication-title: Nano Lett. – volume: 129 start-page: 4890 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 1826 year: 2010 publication-title: Adv. Mater. – volume: 9 start-page: 1673 year: 2009 publication-title: Nano Lett. – volume: 79 start-page: 3155 year: 2001 publication-title: Appl. Phys. Lett. – volume: 91 start-page: 199 year: 1980 publication-title: Surf. Sci. – volume: 50 start-page: 3295 year: 2012 publication-title: Carbon – volume: 39 start-page: 3413 year: 2000 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 4487 year: 2009 publication-title: Adv. Mater. – volume: 110 start-page: 20254 year: 2006 publication-title: J. Phys. Chem. B – volume: 358 start-page: 220 year: 1992 publication-title: Nature – volume: 8 start-page: 4122 year: 2008 publication-title: Nano Lett. – volume: 274 start-page: 1701 year: 1996 publication-title: Science – volume: 54 start-page: 1841 year: 1993 publication-title: J. Phys. Chem. Solids – volume: 124 start-page: 13688 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1973 year: 2012 publication-title: Small – volume: 6 start-page: 1706 year: 2006 publication-title: Nano Lett. – volume: 247 start-page: 2867 year: 2010 publication-title: Phys. Status Solidi B – volume: 2 start-page: 599 year: 2009 publication-title: Nano Res. – volume: 2 start-page: 338 year: 2003 publication-title: Nat. Mater. – volume: 13 start-page: 5667 year: 2013 publication-title: Nano Lett. – volume: 43 start-page: 6140 year: 2004 publication-title: Angew. Chem. Int. Edit. – volume: 4 start-page: 2205 year: 2013 publication-title: Nat. Commun. – volume: 5 start-page: 3849 year: 2011 publication-title: ACS Nano – volume: 8 start-page: 725 year: 2008 publication-title: Curr. Appl. Phys. – volume: 95 start-page: 036101 year: 2005 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 1571 year: 2007 publication-title: Chem. Mater. – volume: 52 start-page: 232 year: 2013 publication-title: Carbon – volume: 134 start-page: 14019 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4725 year: 2010 publication-title: ACS Nano – volume: 4 start-page: 7394 year: 2012 publication-title: Nanoscale – volume: 391 start-page: 59 year: 1998 publication-title: Nature – volume: 339 start-page: 535 year: 2013 publication-title: Science – volume: 33 start-page: 883 year: 1995 publication-title: Carbon – volume: 49 start-page: 2114 year: 2010 publication-title: Angew. Chem. Int. Edit. – volume: 113 start-page: 5341 year: 2009 publication-title: J. Phys. Chem. C – volume: 4 start-page: 1955 year: 2010 publication-title: ACS Nano – volume: 395 start-page: 878 year: 1998 publication-title: Nature – volume: 3 start-page: 1007 year: 2003 publication-title: Nano Lett. – volume: 107 start-page: 065501 year: 2011 publication-title: Phys. Rev. Lett. – volume: 44 start-page: 348 year: 2006 publication-title: Carbon – volume: 5 start-page: 443 year: 2010 publication-title: Nat. Nanotechnol. – volume: 298 start-page: 2361 year: 2002 publication-title: Science – volume: 3 start-page: 831 year: 2010 publication-title: Nano Res. – volume: 80 start-page: 3779 year: 1998 publication-title: Phys. Rev. Lett. – volume: 58 start-page: 2 year: 2013 publication-title: Carbon – volume: 1 start-page: 78 year: 2002 publication-title: IEEE T. Nanotechnol. – volume: 22 start-page: 2285 year: 2010 publication-title: Adv. Mater. – volume: 97 start-page: 3809 year: 2000 publication-title: Proc. Natl. Aacd. Sci. USA – volume: 52 start-page: 535 year: 2013 publication-title: Carbon – volume: 7 start-page: 6156 year: 2013 publication-title: ACS Nano – volume: 498 start-page: 443 year: 2013 publication-title: Nature – volume: 3 start-page: 677 year: 2004 publication-title: Nat. Mater. – volume: 131 start-page: 2082 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 347 year: 2013 publication-title: Nat. Nanotechnol. – volume: 105 start-page: 743 year: 2001 publication-title: J. Phys. Chem. B – volume: 129 start-page: 9014 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 554 year: 2014 publication-title: Acs Nano – volume: 125 start-page: 11186 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 11554 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 2555 year: 2011 publication-title: Carbon – volume: 393 start-page: 49 year: 1998 publication-title: Nature – volume: 131 start-page: 6922 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 60 year: 2006 publication-title: Nat. Nanotechnol. – volume: 314 start-page: 974 year: 2006 publication-title: Science – volume: 22 start-page: 3067 year: 2010 publication-title: Adv. Mater. – volume: 4 start-page: 89 year: 1964 publication-title: Appl. Phys. Lett. – volume: 260 start-page: 471 year: 1996 publication-title: Chem. Phys. Lett. – volume: 292 start-page: 567 year: 1998 publication-title: Chem. Phys. Lett. – volume: 409 start-page: 47 year: 2005 publication-title: Phys. Rep. – volume: 104 start-page: 6505 year: 2000 publication-title: J. Phys. Chem. B. – volume: 7 start-page: 787 year: 2012 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 2642 year: 2006 publication-title: Nano Lett. – volume: 21 start-page: 4158 year: 2009 publication-title: Adv. Mater. – volume: 105 start-page: 11424 year: 2001 publication-title: J. Phys. Chem. B – volume: 501 start-page: 526 year: 2013 publication-title: Nature – volume: 12 start-page: 823 year: 2000 publication-title: Chem. Mater. – volume: 130 start-page: 12612 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 247 start-page: 2746 year: 2010 publication-title: Phys. Status Solidi B – volume: 301 start-page: 344 year: 2003 publication-title: Science – volume: 49 start-page: 3316 year: 2011 publication-title: Carbon – volume: 8 start-page: 882 year: 2009 publication-title: Nat. Mater. – volume: 9 start-page: 800 year: 2009 publication-title: Nano Lett. – volume: 8 start-page: 498 year: 2009 publication-title: IEEE Trans. Nanotechnol. – volume: 331 start-page: 125 year: 2000 publication-title: Chem.Phys. Lett. – volume: 2 start-page: 768 year: 2009 publication-title: Nano Res. – volume: 2 start-page: 743 year: 2009 publication-title: Nano Res. – volume: 3 start-page: 3421 year: 2009 publication-title: ACS Nano – volume: 333 start-page: 1003 year: 2011 publication-title: Science – volume: 44 start-page: 145401 year: 2011 publication-title: J. Phys. D: Appl. Phys. – volume: 7 start-page: 3557 year: 2013 publication-title: ACS Nano – volume: 2 start-page: 1009 year: 2002 publication-title: Nano Lett. – volume: 128 start-page: 5114 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 2067 year: 2012 publication-title: Carbon – volume: 130 start-page: 5428 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 085421 year: 2010 publication-title: Phys. Rev. B – volume: 2 start-page: 230 year: 2007 publication-title: Nat. Nanotechnol. – start-page: 657 year: 2001 publication-title: Chem. Comm. – volume: 4 start-page: 317 year: 2004 publication-title: Nano Lett. – volume: 9 start-page: 1237 year: 2013 publication-title: Small – volume: 50 start-page: 6819 year: 2011 publication-title: Angew. Chem. Int. Edit. – volume: 134 start-page: 9352 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 2555 year: 1999 publication-title: Synthetic Met. – volume: 131 start-page: 16529 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 427 start-page: 426 year: 2004 publication-title: Nature – volume: 68 start-page: 1579 year: 1992 publication-title: Phys. Rev. Lett. – volume: 363 start-page: 603 year: 1993 publication-title: Nature – volume: 33 start-page: 419 year: 2003 publication-title: Annu. Rev. Mater. Res. – volume: 125 start-page: 13946 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1199 year: 2012 publication-title: Nat. Commun. – volume: 131 start-page: 2094 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 3 start-page: 860 year: 2007 publication-title: Small – volume: 4 start-page: 1025 year: 2004 publication-title: Nano Lett. – volume: 5 start-page: 858 year: 2010 publication-title: Nat. Nanotechnol. – volume: 311 start-page: 1735 year: 2006 publication-title: Science – volume: 22 start-page: 1294 year: 2010 publication-title: Chem. Mater. – volume: 2 start-page: 1708 year: 2010 publication-title: Nanoscale – volume: 306 start-page: 1540 year: 2004 publication-title: Science – volume: 8 start-page: 2082 year: 2008 publication-title: Nano Lett. – volume: 11 start-page: 213 year: 2012 publication-title: Nat. Mater. – volume: 338 start-page: 101 year: 2001 publication-title: Chem. Phys. Lett. – volume: 2 start-page: 17 year: 2007 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 6433 year: 2012 publication-title: ACS Nano – volume: 1 start-page: 185 year: 2008 publication-title: Nano Res. – volume: 85 start-page: 858 year: 2004 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 572 year: 2013 publication-title: Nature Chem. – volume: 5 start-page: 1221 year: 2005 publication-title: Nano Lett. – volume: 2 start-page: 372 year: 2007 publication-title: Nat. Nanotechnol. – volume: 49 start-page: 176 year: 2011 publication-title: Carbon – volume: 292 start-page: 706 year: 2001 publication-title: Science – volume: 1 start-page: 1110 year: 2005 publication-title: Small – volume: 9 start-page: 1306 year: 2013 publication-title: Small – volume: 421 start-page: 399 year: 2006 publication-title: Chem. Phys. Lett. – volume: 127 start-page: 5294 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2073 year: 2007 publication-title: Nano Lett. – volume: 408 start-page: 433 year: 2005 publication-title: Chem. Phys. Lett. – volume: 86 start-page: 1118 year: 2001 publication-title: Phys. Rev. Lett. – volume: 315 start-page: 25 year: 1999 publication-title: Chem. Phys. Lett. – volume: 4 start-page: 1727 year: 2013 publication-title: Nat. Commun. – volume: 49 start-page: 2492 year: 2011 publication-title: Carbon – volume: 8 start-page: 917 year: 2013 publication-title: Nat Nanotechnol – volume: 106 start-page: 2429 year: 2002 publication-title: J. Phys. Chem. B – volume: 3 start-page: 673 year: 2004 publication-title: Nat. Mater. – volume: 2 start-page: 793 year: 2009 publication-title: Nano Res. – volume: 6 start-page: 2987 year: 2006 publication-title: Nano Lett. – volume: 12 start-page: 4095 year: 2012 publication-title: Nano Lett. – ident: e_1_2_12_37_1 doi: 10.1002/smll.200500120 – ident: e_1_2_12_163_1 doi: 10.1002/smll.201202940 – ident: e_1_2_12_22_1 doi: 10.1021/nl0708011 – ident: e_1_2_12_83_1 doi: 10.1038/ncomms2736 – ident: e_1_2_12_16_1 doi: 10.1016/S0009-2614(01)00278-0 – ident: e_1_2_12_4_1 doi: 10.1002/smll.201203252 – ident: e_1_2_12_109_1 doi: 10.1021/jp060080e – ident: e_1_2_12_56_1 doi: 10.1038/nnano.2008.59 – ident: e_1_2_12_29_1 doi: 10.1038/27632 – ident: e_1_2_12_33_1 doi: 10.1038/nature02278 – ident: e_1_2_12_35_1 doi: 10.1038/nnano.2007.77 – ident: e_1_2_12_171_1 doi: 10.1021/ja070808k – ident: e_1_2_12_149_1 doi: 10.1021/ja208221g – ident: e_1_2_12_68_1 doi: 10.1039/c0nr00170h – ident: e_1_2_12_146_1 doi: 10.1002/pssb.201000423 – ident: e_1_2_12_73_1 doi: 10.1103/PhysRevLett.107.065501 – ident: e_1_2_12_88_1 doi: 10.1088/0957-4484/16/11/004 – ident: e_1_2_12_116_1 doi: 10.1016/S0009-2614(99)01216-6 – ident: e_1_2_12_10_1 doi: 10.1038/363603a0 – ident: e_1_2_12_8_1 doi: 10.1038/nature12502 – ident: e_1_2_12_78_1 doi: 10.1002/adma.200901255 – ident: e_1_2_12_100_1 doi: 10.1021/jp071387w – ident: e_1_2_12_136_1 doi: 10.1021/cm061862n – ident: e_1_2_12_18_1 doi: 10.1021/nl061797g – ident: e_1_2_12_123_1 doi: 10.1021/ja0274958 – ident: e_1_2_12_59_1 doi: 10.1021/nl070980m – ident: e_1_2_12_85_1 doi: 10.1063/1.2779850 – ident: e_1_2_12_112_1 doi: 10.1016/j.cplett.2006.01.058 – ident: e_1_2_12_166_1 doi: 10.1103/PhysRevLett.80.3779 – ident: e_1_2_12_167_1 doi: 10.1038/nmat3231 – ident: e_1_2_12_125_1 doi: 10.1039/b009518b – ident: e_1_2_12_20_1 doi: 10.1002/anie.200903463 – ident: e_1_2_12_129_1 doi: 10.1021/ja1087634 – ident: e_1_2_12_115_1 doi: 10.1016/0009-2614(96)00862-7 – ident: e_1_2_12_93_1 doi: 10.1088/0957-4484/16/7/031 – ident: e_1_2_12_95_1 doi: 10.1007/s12274-009-9054-3 – ident: e_1_2_12_51_1 doi: 10.1021/nl049691d – ident: e_1_2_12_127_1 doi: 10.1021/jp901366h – ident: e_1_2_12_21_1 doi: 10.1021/nl0256309 – ident: e_1_2_12_130_1 doi: 10.1021/nl803496s – ident: e_1_2_12_144_1 doi: 10.1038/nnano.2010.68 – ident: e_1_2_12_1_1 doi: 10.1126/science.1222453 – ident: e_1_2_12_26_1 doi: 10.1021/nn900799v – ident: e_1_2_12_49_1 doi: 10.1021/ja042544x – ident: e_1_2_12_67_1 doi: 10.1016/j.cplett.2005.04.054 – ident: e_1_2_12_117_1 doi: 10.1021/cm990582n – ident: e_1_2_12_5_1 doi: 10.1038/29954 – ident: e_1_2_12_60_1 doi: 10.1038/nmat1216 – ident: e_1_2_12_128_1 doi: 10.1073/pnas.0507064102 – ident: e_1_2_12_122_1 doi: 10.1021/jp0142278 – ident: e_1_2_12_3_1 doi: 10.1146/annurev.matsci.33.012802.100255 – ident: e_1_2_12_175_1 doi: 10.1038/ncomms2205 – ident: e_1_2_12_184_1 doi: 10.1016/j.carbon.2011.06.100 – ident: e_1_2_12_126_1 doi: 10.1021/jp0632283 – ident: e_1_2_12_44_1 doi: 10.1002/adma.200305203 – ident: e_1_2_12_24_1 doi: 10.1021/ja901295j – ident: e_1_2_12_180_1 doi: 10.1016/S0379-6779(98)00278-1 – ident: e_1_2_12_12_1 doi: 10.1021/jp027096z – ident: e_1_2_12_39_1 doi: 10.1021/ja071114e – ident: e_1_2_12_181_1 doi: 10.1103/PhysRevLett.86.1118 – ident: e_1_2_12_54_1 doi: 10.1007/s12274-009-9077-9 – ident: e_1_2_12_186_1 doi: 10.1016/j.physrep.2004.10.006 – ident: e_1_2_12_71_1 doi: 10.1021/ja8006947 – ident: e_1_2_12_121_1 doi: 10.1038/nchem.1655 – ident: e_1_2_12_159_1 doi: 10.1021/ja035262q – ident: e_1_2_12_57_1 doi: 10.1021/cm903866z – ident: e_1_2_12_92_1 doi: 10.1021/nl900207v – ident: e_1_2_12_102_1 doi: 10.1016/j.carbon.2005.07.008 – ident: e_1_2_12_23_1 doi: 10.1038/nmat1220 – ident: e_1_2_12_25_1 doi: 10.1021/ja809635s – ident: e_1_2_12_131_1 doi: 10.1021/ja058214 – ident: e_1_2_12_103_1 doi: 10.1016/j.carbon.2011.02.019 – ident: e_1_2_12_157_1 doi: 10.1126/science.1058782 – ident: e_1_2_12_114_1 doi: 10.1007/s12274-010-0054-0 – ident: e_1_2_12_77_1 doi: 10.1109/TNANO.2009.2016562 – ident: e_1_2_12_79_1 doi: 10.1016/j.carbon.2011.12.019 – ident: e_1_2_12_84_1 doi: 10.1021/nl050714d – ident: e_1_2_12_178_1 doi: 10.1103/PhysRevLett.68.1579 – ident: e_1_2_12_119_1 doi: 10.1021/jp012085b – ident: e_1_2_12_168_1 doi: 10.1021/ja036622c – ident: e_1_2_12_161_1 doi: 10.1063/1.1778471 – ident: e_1_2_12_152_1 doi: 10.1021/ja402762e – ident: e_1_2_12_134_1 doi: 10.1021/nl035097c – ident: e_1_2_12_153_1 doi: 10.1126/science.1086534 – ident: e_1_2_12_154_1 doi: 10.1038/nmat877 – ident: e_1_2_12_176_1 doi: 10.1038/nnano.2013.227 – ident: e_1_2_12_65_1 doi: 10.1021/nl061871v – ident: e_1_2_12_70_1 doi: 10.1021/nn3020695 – ident: e_1_2_12_55_1 doi: 10.1021/nl0610026 – ident: e_1_2_12_147_1 doi: 10.1002/pssb.201000368 – ident: e_1_2_12_7_1 doi: 10.1126/science.1122797 – ident: e_1_2_12_169_1 doi: 10.1038/nmat2531 – ident: e_1_2_12_118_1 doi: 10.1073/pnas.050498597 – ident: e_1_2_12_13_1 doi: 10.1016/0022-3697(93)90297-5 – ident: e_1_2_12_15_1 doi: 10.1016/S0009-2614(98)00745-3 – ident: e_1_2_12_172_1 doi: 10.1021/nl1010178 – ident: e_1_2_12_158_1 doi: 10.1038/nnano.2013.56 – ident: e_1_2_12_63_1 doi: 10.1007/s12274-009-9082-z – ident: e_1_2_12_80_1 doi: 10.1038/ncomms3205 – ident: e_1_2_12_11_1 doi: 10.1038/358220a0 – ident: e_1_2_12_86_1 doi: 10.1038/nnano.2010.220 – ident: e_1_2_12_135_1 doi: 10.1021/ja9068529 – ident: e_1_2_12_30_1 doi: 10.1103/PhysRevLett.95.036101 – ident: e_1_2_12_132_1 doi: 10.1021/ja3038992 – ident: e_1_2_12_107_1 doi: 10.1021/nl9025488 – ident: e_1_2_12_187_1 doi: 10.1002/adma.200900942 – ident: e_1_2_12_101_1 doi: 10.1126/science.1104962 – volume: 13 start-page: 5667 year: 2013 ident: e_1_2_12_177_1 publication-title: Nano Lett. – ident: e_1_2_12_43_1 doi: 10.1126/science.274.5293.1701 – ident: e_1_2_12_165_1 doi: 10.1103/PhysRevB.82.085421 – ident: e_1_2_12_41_1 doi: 10.1039/c0nr00222d – ident: e_1_2_12_75_1 doi: 10.1002/adma.201000705 – ident: e_1_2_12_14_1 doi: 10.1002/adma.200904366 – ident: e_1_2_12_90_1 doi: 10.1021/nl034219y – ident: e_1_2_12_140_1 doi: 10.1021/ja906932p – ident: e_1_2_12_17_1 doi: 10.1016/0039-6028(80)90080-1 – ident: e_1_2_12_2_1 doi: 10.1109/TNANO.2002.1005429 – ident: e_1_2_12_64_1 doi: 10.1016/j.carbon.2012.10.006 – ident: e_1_2_12_106_1 doi: 10.1002/adma.200904167 – ident: e_1_2_12_108_1 doi: 10.1021/nn405105y – ident: e_1_2_12_96_1 doi: 10.1021/nn401995z – ident: e_1_2_12_81_1 doi: 10.1126/science.1102896 – ident: e_1_2_12_66_1 doi: 10.1021/jp900499g – ident: e_1_2_12_104_1 doi: 10.1088/0022-3727/44/14/145401 – ident: e_1_2_12_142_1 doi: 10.1002/adma.200800703 – ident: e_1_2_12_62_1 doi: 10.1016/j.carbon.2012.09.025 – ident: e_1_2_12_46_1 doi: 10.1002/anie.200460356 – ident: e_1_2_12_156_1 doi: 10.1002/anie.201101700 – ident: e_1_2_12_9_1 doi: 10.1038/363605a0 – ident: e_1_2_12_143_1 doi: 10.1021/nn101363m – ident: e_1_2_12_111_1 doi: 10.1002/adma.200903238 – ident: e_1_2_12_133_1 doi: 10.1007/s12274-011-0133-x – ident: e_1_2_12_61_1 doi: 10.1021/nn401995z – ident: e_1_2_12_82_1 doi: 10.1021/nl301561f – ident: e_1_2_12_47_1 doi: 10.1063/1.1415412 – ident: e_1_2_12_50_1 doi: 10.1021/ja052759m – ident: e_1_2_12_53_1 doi: 10.1016/j.carbon.2012.01.035 – ident: e_1_2_12_98_1 doi: 10.1021/nl901260b – ident: e_1_2_12_138_1 doi: 10.1021/jp710691j – ident: e_1_2_12_36_1 doi: 10.1038/nnano.2012.189 – ident: e_1_2_12_145_1 doi: 10.1021/nn901908n – ident: e_1_2_12_89_1 doi: 10.1021/jp003948o – ident: e_1_2_12_99_1 doi: 10.1021/nl025602q – ident: e_1_2_12_28_1 doi: 10.1063/1.1753975 – ident: e_1_2_12_40_1 doi: 10.1038/nnano.2007.150 – ident: e_1_2_12_137_1 doi: 10.1007/s12274-008-8022-7 – ident: e_1_2_12_48_1 doi: 10.1016/j.carbon.2013.02.046 – ident: e_1_2_12_185_1 doi: 10.1038/34139 – ident: e_1_2_12_94_1 doi: 10.1021/nl025675 – ident: e_1_2_12_141_1 doi: 10.1038/nature08116 – ident: e_1_2_12_52_1 doi: 10.1016/j.carbon.2011.02.045 – ident: e_1_2_12_151_1 doi: 10.1021/nn4004956 – ident: e_1_2_12_45_1 doi: 10.1021/jp0012404 – ident: e_1_2_12_139_1 doi: 10.1007/s12274-009-9057-0 – ident: e_1_2_12_124_1 doi: 10.1002/1521-3773(20001002)39:19<3413::AID-ANIE3413>3.0.CO;2-Q – ident: e_1_2_12_182_1 doi: 10.1126/science.1078727 – ident: e_1_2_12_113_1 doi: 10.1016/j.carbon.2010.09.001 – ident: e_1_2_12_87_1 doi: 10.1016/S0094-5765(00)00111-9 – ident: e_1_2_12_179_1 doi: 10.1016/0008-6223(95)00017-8 – ident: e_1_2_12_97_1 doi: 10.1021/ja054454d – ident: e_1_2_12_27_1 doi: 10.1021/ja107855q – ident: e_1_2_12_72_1 doi: 10.1063/1.2715031 – ident: e_1_2_12_150_1 doi: 10.1021/ja302136x – ident: e_1_2_12_110_1 doi: 10.1021/nn200198b – ident: e_1_2_12_148_1 doi: 10.1021/jp1100329 – ident: e_1_2_12_19_1 doi: 10.1021/nl801007r – ident: e_1_2_12_160_1 doi: 10.1126/science.1133781 – ident: e_1_2_12_69_1 doi: 10.1126/science.1208455 – ident: e_1_2_12_183_1 doi: 10.1126/science.1103294 – ident: e_1_2_12_120_1 doi: 10.1021/jp990957s – ident: e_1_2_12_31_1 doi: 10.1021/ja8093907 – ident: e_1_2_12_174_1 doi: 10.1038/nnano.2006.192 – ident: e_1_2_12_38_1 doi: 10.1038/498443a – ident: e_1_2_12_164_1 doi: 10.1073/pnas.0811946106 – ident: e_1_2_12_6_1 doi: 10.1021/nl8018802 – ident: e_1_2_12_155_1 doi: 10.1038/nnano.2006.52 – ident: e_1_2_12_162_1 doi: 10.1016/j.cap.2007.04.055 – ident: e_1_2_12_42_1 doi: 10.1002/smll.201102010 – ident: e_1_2_12_74_1 doi: 10.1021/jp8051938 – ident: e_1_2_12_170_1 doi: 10.1039/c2nr32276e – ident: e_1_2_12_91_1 doi: 10.1016/S0009-2614(00)01163-5 – ident: e_1_2_12_34_1 doi: 10.1021/nl080452q – ident: e_1_2_12_105_1 doi: 10.1002/smll.200700029 – ident: e_1_2_12_58_1 doi: 10.1021/nl801461f – ident: e_1_2_12_173_1 doi: 10.1021/ja065767r – ident: e_1_2_12_76_1 doi: 10.1021/ja805070b – ident: e_1_2_12_32_1 doi: 10.1016/j.carbon.2011.04.016 |
SSID | ssj0009606 |
Score | 2.4123278 |
SecondaryResourceType | review_article |
Snippet | Single‐walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement... Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5898 |
SubjectTerms | Chemical vapor deposition Chirality Control surfaces Density Metallicity Nanoelectronics Orientation parallel aligned array on surfaces Single wall carbon nanotubes single-walled carbon nanotube (SWNT) structure control |
Title | State of the Art of Single-Walled Carbon Nanotube Synthesis on Surfaces |
URI | https://api.istex.fr/ark:/67375/WNG-QPW2VNNH-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201400431 https://www.ncbi.nlm.nih.gov/pubmed/25042346 https://www.proquest.com/docview/1561032633 https://www.proquest.com/docview/1671583410 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoED70coRUFCcHK7cZzYe1y1LAsSK2Ap7c3yKxJqlaDdjUQ58RP4jfwSZpzdtIt4SHBLnLHi2PP4Yo8_Azzx-O8vufPMqrJiIhSGmUI65jF4-yq30tmYbTEtJ4fi1XFxfGEXf8cP0U-4kWVEf00Gbuxi75w01PjIG5SREsaN1JSwRajo3Tl_FMHzSLaXF2xYCrVmbRzwvc3qG1HpMnXw519Bzk0EG0PQ-DqYdeO7zJOT3XZpd92Xn3gd_-frbsC1FT5NR51C3YRLob4FVy-wFt6GlxGgpk2VIngkSbqc4aPT8P3rN5qZDz7dN3Pb1Ck672bZ2pDOzmqUXnxcpFg6a-cVpYLdgcPx8_f7E7Y6kYG5AuM882FQKoSQhXGSXMGgUrJCXcxKz7GplUVn6QwXkgdvnaBVR6OwVPgh98KK_C5s1U0d7kOa5QJ9m1e5p7XX4IaIhGymhtYI6XhQCbD1iGi3oiunUzNOdUe0zDV1ke67KIFnvfynjqjjt5JP4wD3YmZ-QultstBH0xf67Zsj_mE6nehxAo_XGqDR6GglxdShaRc6I9SJwDfP_yBTyqxQCBIGCdzr1Kd_I_HG8VyUCfCoBH9psR4dvB71dw_-pdI2XKHrLjvuIWwt523YQTi1tI-iyfwAEGAUtw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQewAO7EtYg4Tg5HbiOLHnOGoZptBGwLS0N8tbJNQqQTMTCTjxE_ob-0v6njNJGcQiwS1xXhTHfstn-_kzIc8djP0Fs44amZeU-0xTnQlLHQRvV6ZGWBOyLYp8csDfHGVdNiHuhWn5IfoJN7SM4K_RwHFCevOCNVS7QByUoBbiTup1PNY7jKo-XDBIIUAPdHtpRoc5lx1v44Btrr6_EpfWsYm__Ap0rmLYEITG14npqt_mnhxvNAuzYb_9xOz4X_93g1xbQtR41OrUTXLJV7fI1R-IC2-TnYBR47qMAT-iJF5O4dGJP_t-ipPz3sVbembqKgb_XS8a4-Pp1wqk55_mMZROm1mJ2WB3yMH41f7WhC4PZaA2g1BPnR_kElBkpq1AbzAopShBHZPcMahqacBfWs24YN4Zy3HhUUso5W7IHDc8vUvWqrry90mcpBzcm5Opw-VXb4cAhkwih0ZzYZmXEaFdlyi7ZCzHgzNOVMu1zBQ2keqbKCIve_nPLVfHbyVfhB7uxfTsGDPcRKYOi9fq_btD9rEoJmockWedCiiwO1xM0ZWvm7lKEHgC9k3TP8jkIskk4IRBRO61-tN_EanjWMrziLCgBX-psRpt7436uwf_8tJTcnmyv7erdneKtw_JFSxvk-UekbXFrPGPAV0tzJNgP-db8BjS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQKyE4sFPCGiQEJ7eJ48Se46jDMGWJCkNpb5a3SKhVUs1MJODET-A38kt4z5lJO4hFglviPCuO_ZYv9vNnQp44-PcXzDpqZFFR7nNNdS4sdRC8XZUZYU3ItiiLyQF_eZQfndvF3_FD9BNuaBnBX6OBn7pq54w0VLvAG5SiEuJG6k1eJBL1evTujEAK8Xlg28tyOii4XNE2Jmxnvf5aWNrEHv70K8y5DmFDDBpfJXrV-i715Hi7XZht--UnYsf_-bxr5MoSoMbDTqOukwu-vkEun6MtvEn2AkKNmyoG9IiSeDmFRyf--9dvODXvXbyrZ6apY_DezaI1Pp5-rkF6_nEeQ-m0nVWYC3aLHIyfv9-d0OWRDNTmEOip80khAUPm2gr0BUklRQXKmBaOQVMrA97SasYF885YjsuOWkIpdwPmuOHZbbJRN7W_Q-I04-DcnMwcLr56OwAoZFI5MJoLy7yMCF2NiLJLvnI8NuNEdUzLTGEXqb6LIvKslz_tmDp-K_k0DHAvpmfHmN8mcnVYvlBv9w_Zh7KcqHFEHq80QIHV4VKKrn3TzlWKsBOQb5b9QaYQaS4BJSQR2erUp38jEsexjBcRYUEJ_tJiNRy9GfZ3d_-l0iNycX80Vq_3ylf3yCUs7jLl7pONxaz1DwBaLczDYD0_AA-eF4o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Art+of+Single-Walled+Carbon+Nanotube+Synthesis+on+Surfaces&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yabin&rft.au=Zhang%2C+Yingying&rft.au=Hu%2C+Yue&rft.au=Kang%2C+Lixing&rft.date=2014-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=26&rft.issue=34&rft.spage=5898&rft.epage=5922&rft_id=info:doi/10.1002%2Fadma.201400431&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |