The role of kinematic redundancy in adaptation of reaching
Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reachi...
Saved in:
Published in | Experimental brain research Vol. 176; no. 1; pp. 54 - 69 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Springer
01.01.2007
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics. |
---|---|
AbstractList | Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle–scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (
V
UCM
) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (
V
ORT
) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four ‘pseudo-adaptation’ phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of
V
UCM
than
V
ORT
during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field,
V
UCM
was higher in experimental than in control subjects after performing a comparable number of reaches.
V
UCM
was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics. Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V sub(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V sub(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V sub(UCM) than V sub(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V sub(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V sub(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics. Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics. Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics. |
Author | Scholz, John P. Latash, Mark L. Yang, Jeng-Feng |
Author_xml | – sequence: 1 givenname: Jeng-Feng surname: Yang fullname: Yang, Jeng-Feng – sequence: 2 givenname: John P. surname: Scholz fullname: Scholz, John P. – sequence: 3 givenname: Mark L. surname: Latash fullname: Latash, Mark L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18409137$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16874517$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKeFH8AGRUiwC9zrd1ggoYqXVIlNWVuO43RcMvZgJ0j99ziagUIXsLJsf_fc6-NzRk5iip6QpwivEEC9LgCUYgsgW5BAW_2AbJAz2iKCPCEbAOQt19idkrNSbtYtU_CInKLUigtUG_LmauubnCbfpLH5FqLf2Tm4JvthiYON7rYJsbGD3c_1PMWVyt66bYjXj8nD0U7FPzmu5-Trh_dXF5_ayy8fP1-8u2ydEDi348Co5b5j2kutLVVMadQe3ND3nmoLmnI29opypXg3MJBCcs1E3_ne4dizc_L2oLtf-p0fnI9ztpPZ57Cz-dYkG8zfNzFszXX6YbDjggqoAi-PAjl9X3yZzS4U56fJRp-WYmTtVk3S_wWxE0p0SlTw-T3wJi05VhcMRYGcolzbPvtz7t8D_zK_Ai-OgC3OTmOufodyx2kOHbKVwwPnciol-_EOAbMGwRyCYGoQzBoEsz5F3atx4fCF1aIw_aPyJxmetRw |
CODEN | EXBRAP |
CitedBy_id | crossref_primary_10_1109_TBME_2012_2192437 crossref_primary_10_1186_s12984_024_01532_5 crossref_primary_10_1016_j_jbiomech_2021_110769 crossref_primary_10_1016_j_jbiomech_2007_09_004 crossref_primary_10_1080_23335432_2019_1633958 crossref_primary_10_1016_j_humov_2018_06_009 crossref_primary_10_1002_ajpa_22224 crossref_primary_10_1080_09638288_2020_1752317 crossref_primary_10_1016_j_robot_2011_12_006 crossref_primary_10_1186_s12984_016_0213_y crossref_primary_10_1007_s00422_006_0086_4 crossref_primary_10_1152_jn_00163_2011 crossref_primary_10_2139_ssrn_4452129 crossref_primary_10_1109_TNSRE_2012_2189585 crossref_primary_10_1152_jn_00951_2011 crossref_primary_10_3389_fbioe_2020_00308 crossref_primary_10_1152_jn_00077_2010 crossref_primary_10_1016_j_humov_2013_07_019 crossref_primary_10_1146_annurev_control_060117_105206 crossref_primary_10_1007_s00221_013_3433_4 crossref_primary_10_1152_japplphysiol_00375_2013 crossref_primary_10_1371_journal_pcbi_1002348 crossref_primary_10_3389_fpsyg_2021_706228 crossref_primary_10_1007_s00221_019_05548_5 crossref_primary_10_1007_s00221_012_3000_4 crossref_primary_10_1007_s00221_009_2128_3 crossref_primary_10_1016_j_jbiomech_2014_11_024 crossref_primary_10_1007_s00221_012_3235_0 crossref_primary_10_1016_j_neulet_2016_08_032 crossref_primary_10_1371_journal_pone_0127017 crossref_primary_10_1016_j_jbiomech_2023_111595 crossref_primary_10_1016_j_humov_2018_04_010 crossref_primary_10_1152_jn_00461_2013 crossref_primary_10_1371_journal_pone_0181041 crossref_primary_10_1016_j_humov_2023_103089 crossref_primary_10_1016_j_conb_2008_01_002 crossref_primary_10_1016_j_neuroscience_2008_07_028 crossref_primary_10_1152_jn_00292_2016 crossref_primary_10_3389_fbioe_2022_1044275 crossref_primary_10_1016_j_humov_2015_12_010 crossref_primary_10_2522_ptj_20080278 crossref_primary_10_1073_pnas_1613383113 crossref_primary_10_1177_1545968315613863 crossref_primary_10_1123_jab_2022_0317 crossref_primary_10_1123_mc_2017_0076 crossref_primary_10_1152_jn_00394_2024 crossref_primary_10_1016_j_clinbiomech_2011_09_003 crossref_primary_10_1371_journal_pone_0193463 crossref_primary_10_3389_fnbeh_2023_1162744 crossref_primary_10_1007_s00221_017_5093_2 crossref_primary_10_1016_j_neulet_2007_05_051 crossref_primary_10_1109_TBME_2018_2842458 crossref_primary_10_1038_s41598_018_27101_0 crossref_primary_10_1038_s41598_019_43558_z crossref_primary_10_1123_mc_2021_0114 crossref_primary_10_3389_fncom_2016_00069 crossref_primary_10_1007_s00221_006_0812_0 crossref_primary_10_7566_JPSJ_85_114801 crossref_primary_10_1007_s00221_011_2909_3 crossref_primary_10_1002_dev_21741 crossref_primary_10_1007_s00221_018_5227_1 crossref_primary_10_1123_mc_2017_0061 crossref_primary_10_1152_jn_00246_2014 crossref_primary_10_1007_s00221_015_4388_4 crossref_primary_10_1152_jn_00901_2014 crossref_primary_10_1109_TBME_2014_2332359 crossref_primary_10_1523_ENEURO_0275_22_2023 crossref_primary_10_3389_fnhum_2015_00315 crossref_primary_10_1177_1545968319847969 crossref_primary_10_3389_fnhum_2021_662006 crossref_primary_10_1111_eos_12100 crossref_primary_10_1007_s00221_010_2440_y crossref_primary_10_1007_s00221_014_3994_x crossref_primary_10_1016_j_humov_2010_02_003 crossref_primary_10_1016_j_ifacol_2019_01_053 crossref_primary_10_1080_00222895_2012_665101 crossref_primary_10_1016_j_neuroscience_2016_01_054 crossref_primary_10_1007_s00221_008_1662_8 |
Cites_doi | 10.1007/s00221-003-1812-y 10.1007/s002210100878 10.1007/s002210050738 10.1152/jn.2001.86.2.1047 10.1101/lm.50303 10.1152/jn.00883.2004 10.2466/pms.2001.93.1.181 10.1007/s00221-001-0944-1 10.1007/s00221-003-1574-6 10.1007/s00221-003-1480-y 10.1523/JNEUROSCI.14-05-03208.1994 10.1123/mcj.6.2.183 10.1038/35106566 10.1007/BF00241503 10.1016/S1050-6411(02)00029-9 10.1088/1741-2560/2/3/S09 10.1073/pnas.93.9.3843 10.1152/jn.00189.2003 10.1016/S0167-9457(02)00177-X 10.1007/s00221-004-2055-2 10.1007/s00221-002-1357-5 10.1523/JNEUROSCI.17-01-00409.1997 10.1207/s15326969eco0704_5 10.1088/1741-2560/2/3/S11 10.1523/JNEUROSCI.20-20-07807.2000 10.1152/jn.1995.74.4.1787 10.1016/j.actpsy.2005.04.001 10.1007/s00221-004-2205-6 10.1152/jn.00960.2003 10.1016/S0166-4115(97)80014-3 10.1007/s00221-002-1196-4 10.1523/JNEUROSCI.13-01-00045.1993 10.1016/S1050-6411(98)00019-4 10.1007/s002210000540 10.1007/s00221-004-2137-1 10.1007/s00221-003-1691-2 10.1080/00222895.1992.9941608 10.1007/s00422-005-0548-0 10.1007/s004220100279 10.1123/mcj.9.1.75 10.1097/00003677-200201000-00006 10.1016/0028-3932(71)90067-4 10.1523/JNEUROSCI.22-22-09656.2002 10.1152/jn.2000.84.2.853 10.1007/s00221-004-1850-0 10.1080/00222895.1989.10735480 10.1007/s002210100861 10.1007/s00221-003-1786-9 10.1007/s00221-003-1580-8 10.1523/JNEUROSCI.19-19-08573.1999 10.1038/nn1309 10.1080/00222895.1986.10735369 10.1037/h0087404 10.1123/mcj.2.4.306 10.1007/s00221-002-1189-3 10.1007/s00221-004-2149-x |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Springer-Verlag 2006 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Springer-Verlag 2006 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 0-V 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 88J 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M M2R NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRQQA PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1007/s00221-006-0602-8 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Social Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Sociology & Social Sciences Collection ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection Sociology & Social Sciences Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Medical Library ProQuest Psychology Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology Physical Therapy |
EISSN | 1432-1106 |
EndPage | 69 |
ExternalDocumentID | PMC1945250 1192403781 16874517 18409137 10_1007_s00221_006_0602_8 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS050880 – fundername: NINDS NIH HHS grantid: R01 NS035032 – fundername: NINDS NIH HHS grantid: NS35032 – fundername: NINDS NIH HHS grantid: NS50880 – fundername: NINDS NIH HHS grantid: R01 NS050880-01A2 |
GroupedDBID | --- -DZ -XW -Y2 -~C -~X .86 .GJ .VR 0-V 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3O- 4.4 406 408 409 40D 40E 53G 5GY 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ INH INR IPY ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L7B LAS LLZTM M1P M2M M2R M4Y MA- N2Q NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF- PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV ROL RPX RRX RSV S16 S27 S3A S3B SAP SBL SBY SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 ZMTXR ZOVNA ~EX ~KM .55 1SB 2.D 28- 2P1 3SX 5QI AAYJJ ABRTQ ADYPR AEFIE AFEXP AFFNX AFOHR AGGDS AHAVH BBWZM FA8 H13 IQODW ITC KOW NDZJH OHT PJZUB PPXIY PRQQA R4E RIG RNI RZK S1Z S26 S28 SCLPG T16 WK6 X7M ZGI ZXP -4W -56 -5G -BR -EM 3V. AAAVM ADINQ CGR CUY CVF ECM EIF GQ6 NPM PKN Z7R Z7U Z7W Z7X Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8V Z8W Z91 Z92 7QP 7QR 7TK 7TM 7XB 8FD 8FK FR3 K9. P64 PKEHL POGQB PQEST PQUKI Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c551t-fd32a4e938e688a2737818e0cdbbe28a08243fb7247749d306564835b9ebc1fb3 |
IEDL.DBID | 7X7 |
ISSN | 0014-4819 |
IngestDate | Thu Aug 21 14:10:40 EDT 2025 Thu Jul 10 23:07:46 EDT 2025 Fri Jul 11 06:26:32 EDT 2025 Sat Aug 23 13:20:06 EDT 2025 Wed Feb 19 01:52:36 EST 2025 Mon Jul 21 09:14:50 EDT 2025 Tue Jul 01 03:27:35 EDT 2025 Thu Apr 24 22:52:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Coordination Force Redundancy Central nervous system Motor skill Goal directed movement Nervous system Joint Motor learning Hand Osteoarticular system Acquisition process Kinematics Synergy Planning Motricity Motor preparation Adaptation |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c551t-fd32a4e938e688a2737818e0cdbbe28a08243fb7247749d306564835b9ebc1fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1007/s00221-006-0602-8 |
PMID | 16874517 |
PQID | 215142160 |
PQPubID | 47176 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1945250 proquest_miscellaneous_68358198 proquest_miscellaneous_19575975 proquest_journals_215142160 pubmed_primary_16874517 pascalfrancis_primary_18409137 crossref_primary_10_1007_s00221_006_0602_8 crossref_citationtrail_10_1007_s00221_006_0602_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-01-01 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Germany – name: Heidelberg |
PublicationTitle | Experimental brain research |
PublicationTitleAlternate | Exp Brain Res |
PublicationYear | 2007 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
References | J Wang (602_CR60) 2004; 92 N Malfait (602_CR32) 2005; 93 YW Tseng (602_CR56) 2005; 120 ER Buch (602_CR5) 2003; 10 B Vereijken (602_CR59) 1992; 24 RC Oldfield (602_CR36) 1971; 9 E Todorov (602_CR54) 2004; 7 RA Scheidt (602_CR38) 2000; 84 N Kang (602_CR20) 2004; 157 PV McDonald (602_CR35) 1989; 21 JP Scholz (602_CR42) 2002; 86 PR Davidson (602_CR8) 2005; 2 N Malfait (602_CR31) 2002; 22 ML Latash (602_CR29) 2003; 151 FH Guenther (602_CR18) 1997 LB Bagesteiro (602_CR1) 2005; 161 G Schöner (602_CR44) 1995; 7 IM Gelfand (602_CR17) 1966 M Shinohara (602_CR50) 2004; 156 N Bernstein (602_CR3) 1967 ML Latash (602_CR28) 2001; 141 R Shadmehr (602_CR48) 1993; 13 CD Takahashi (602_CR52) 2001; 86 R Shadmehr (602_CR49) 1995; 7 D Domkin (602_CR11) 2002; 143 IM Gelfand (602_CR16) 1998; 2 F Gandolfo (602_CR15) 1996; 93 EJ Hwang (602_CR19) 2005; 2 LB Bagesteiro (602_CR2) 2003; 90 E Burdet (602_CR6) 2001; 414 KA Thoroughman (602_CR53) 1999; 19 ML Latash (602_CR26) 2002; 30 YG Ko (602_CR21) 2003; 22 JP Scholz (602_CR39) 1999; 126 D Domkin (602_CR10) 2005; 163 ML Latash (602_CR25) 2002; 146 YW Tseng (602_CR58) 2003; 149 J Wang (602_CR61) 2004; 155 JP Scholz (602_CR40) 2000; 135 T Brashers-Krug (602_CR4) 1995; 7 AG Feldman (602_CR13) 1995; 103 AG Feldman (602_CR14) 1998; 8 602_CR34 602_CR33 R Shadmehr (602_CR47) 2000; 20 YW Tseng (602_CR55) 2005; 9 DS Reisman (602_CR37) 2002; 12 R Shadmehr (602_CR45) 1997; 17 JP Scholz (602_CR41) 2001; 141 V Krishnamoorthy (602_CR22) 2003; 152 R Shadmehr (602_CR46) 1994; 14 ML Latash (602_CR27) 2002; 146 JF Yang (602_CR62) 2005; 163 P Dizio (602_CR9) 1995; 74 DR Smith (602_CR51) 2001; 93 Y Tseng (602_CR57) 2002; 6 V Krishnamoorthy (602_CR23) 2004; 157 N Caillou (602_CR7) 2002; 56 V Krishnamoorthy (602_CR24) 2005; 164 ML Latash (602_CR30) 2005; 92 AG Feldman (602_CR12) 1986; 18 JP Scholz (602_CR43) 2003; 153 15939387 - Acta Psychol (Amst). 2005 Oct;120(2):172-98 15136283 - J Mot Behav. 1986 Mar;18(1):17-54 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 15659531 - J Neurophysiol. 2005 Jun;93(6):3327-38 15136263 - J Mot Behav. 1989 Sep;21(3):245-64 11918210 - Biol Cybern. 2002 Jan;86(1):29-39 15657698 - Exp Brain Res. 2005 May;163(2):137-58 12736237 - J Neurophysiol. 2003 Sep;90(3):1503-13 11027245 - J Neurosci. 2000 Oct 15;20(20):7807-15 8423483 - J Neurosci. 1993 Jan;13(1):45-62 12491652 - Can J Exp Psychol. 2002 Dec;56(4):283-93 11800496 - Exerc Sport Sci Rev. 2002 Jan;30(1):26-31 11693684 - Percept Mot Skills. 2001 Aug;93(1):181-91 11719805 - Nature. 2001 Nov 22;414(6862):446-9 16135891 - J Neural Eng. 2005 Sep;2(3):S313-9 8987766 - J Neurosci. 1997 Jan 1;17(1):409-19 15064878 - Exp Brain Res. 2004 Mar;155(1):1-8 10938312 - J Neurophysiol. 2000 Aug;84(2):853-62 14985897 - Exp Brain Res. 2004 Jul;157(1):18-31 11810142 - Exp Brain Res. 2001 Dec;141(4):485-500 12632230 - Exp Brain Res. 2003 Apr;149(3):276-88 12623180 - Hum Mov Sci. 2003 Feb;22(1):47-66 11495973 - J Neurophysiol. 2001 Aug;86(2):1047-51 12355270 - Exp Brain Res. 2002 Oct;146(4):419-32 11713627 - Exp Brain Res. 2001 Nov;141(2):153-65 16135889 - J Neural Eng. 2005 Sep;2(3):S266-78 12740728 - Exp Brain Res. 2003 Jul;151(1):60-71 8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24 12904934 - Exp Brain Res. 2003 Oct;152(3):281-92 11146817 - Exp Brain Res. 2000 Dec;135(3):382-404 12122226 - Motor Control. 2002 Apr;6(2):183-207 12551964 - Learn Mem. 2003 Jan-Feb;10(1):55-63 7789450 - Exp Brain Res. 1995;103(3):440-50 15841397 - Exp Brain Res. 2005 Jul;164(1):1-17 15739110 - Biol Cybern. 2005 Mar;92(3):186-91 11907686 - Exp Brain Res. 2002 Mar;143(1):11-23 15028745 - J Neurophysiol. 2004 Jul;92(1):349-60 9840893 - J Electromyogr Kinesiol. 1998 Dec;8(6):383-90 15784951 - Motor Control. 2005 Jan;9(1):75-100 10382616 - Exp Brain Res. 1999 Jun;126(3):289-306 10493757 - J Neurosci. 1999 Oct 1;19(19):8573-88 15332089 - Nat Neurosci. 2004 Sep;7(9):907-15 14985892 - Exp Brain Res. 2004 Jun;156(3):282-92 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92 12232691 - Exp Brain Res. 2002 Oct;146(3):345-55 9758883 - Motor Control. 1998 Oct;2(4):306-13 8632977 - Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3843-6 12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505 12928761 - Exp Brain Res. 2003 Nov;153(1):45-58 15551087 - Exp Brain Res. 2005 Feb;161(2):155-65 15668794 - Exp Brain Res. 2005 May;163(1):44-57 12427820 - J Neurosci. 2002 Nov 15;22(22):9656-60 15042264 - Exp Brain Res. 2004 Aug;157(3):336-50 |
References_xml | – volume: 157 start-page: 18 year: 2004 ident: 602_CR23 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1812-y – volume: 141 start-page: 485 year: 2001 ident: 602_CR41 publication-title: Exp Brain Res doi: 10.1007/s002210100878 – volume: 126 start-page: 289 year: 1999 ident: 602_CR39 publication-title: Exp Brain Res doi: 10.1007/s002210050738 – volume: 86 start-page: 1047 year: 2001 ident: 602_CR52 publication-title: J Neurophysiol doi: 10.1152/jn.2001.86.2.1047 – volume: 10 start-page: 55 year: 2003 ident: 602_CR5 publication-title: Learn Memory doi: 10.1101/lm.50303 – volume: 93 start-page: 3327 year: 2005 ident: 602_CR32 publication-title: J Neurophysiol doi: 10.1152/jn.00883.2004 – volume: 93 start-page: 181 year: 2001 ident: 602_CR51 publication-title: Percept Mot Skills doi: 10.2466/pms.2001.93.1.181 – volume: 143 start-page: 11 year: 2002 ident: 602_CR11 publication-title: Exp Brain Res doi: 10.1007/s00221-001-0944-1 – volume: 152 start-page: 281 year: 2003 ident: 602_CR22 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1574-6 – volume: 151 start-page: 60 year: 2003 ident: 602_CR29 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1480-y – start-page: 9 volume-title: Models of the structural–functional organization of certain biological systems year: 1966 ident: 602_CR17 – volume: 14 start-page: 3208 year: 1994 ident: 602_CR46 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-05-03208.1994 – volume: 6 start-page: 183 year: 2002 ident: 602_CR57 publication-title: Mot Control doi: 10.1123/mcj.6.2.183 – volume: 414 start-page: 446 year: 2001 ident: 602_CR6 publication-title: Nature doi: 10.1038/35106566 – volume: 103 start-page: 440 year: 1995 ident: 602_CR13 publication-title: Exp Brain Res doi: 10.1007/BF00241503 – volume: 12 start-page: 493 year: 2002 ident: 602_CR37 publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(02)00029-9 – volume: 2 start-page: S266 year: 2005 ident: 602_CR19 publication-title: J Neural Eng doi: 10.1088/1741-2560/2/3/S09 – volume: 93 start-page: 3843 year: 1996 ident: 602_CR15 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.9.3843 – volume: 90 start-page: 1503 year: 2003 ident: 602_CR2 publication-title: J Neurophysiol doi: 10.1152/jn.00189.2003 – volume: 22 start-page: 47 year: 2003 ident: 602_CR21 publication-title: Hum Mov Sci doi: 10.1016/S0167-9457(02)00177-X – volume: 161 start-page: 155 year: 2005 ident: 602_CR1 publication-title: Exp Brain Res doi: 10.1007/s00221-004-2055-2 – volume: 149 start-page: 276 year: 2003 ident: 602_CR58 publication-title: Exp Brain Res doi: 10.1007/s00221-002-1357-5 – volume: 17 start-page: 409 year: 1997 ident: 602_CR45 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-01-00409.1997 – volume: 7 start-page: 291 year: 1995 ident: 602_CR44 publication-title: Ecol Psychol doi: 10.1207/s15326969eco0704_5 – volume: 2 start-page: S313 year: 2005 ident: 602_CR8 publication-title: J Neural Eng doi: 10.1088/1741-2560/2/3/S11 – volume: 20 start-page: 7807 year: 2000 ident: 602_CR47 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-20-07807.2000 – volume: 74 start-page: 1787 year: 1995 ident: 602_CR9 publication-title: J Neurophysiol doi: 10.1152/jn.1995.74.4.1787 – volume: 120 start-page: 172 year: 2005 ident: 602_CR56 publication-title: Acta Psychol (Amst) doi: 10.1016/j.actpsy.2005.04.001 – volume: 164 start-page: 1 year: 2005 ident: 602_CR24 publication-title: Exp Brain Res doi: 10.1007/s00221-004-2205-6 – volume: 92 start-page: 349 year: 2004 ident: 602_CR60 publication-title: J Neurophysiol doi: 10.1152/jn.00960.2003 – start-page: 383 volume-title: Self-organization, computational maps and motor control year: 1997 ident: 602_CR18 doi: 10.1016/S0166-4115(97)80014-3 – volume: 146 start-page: 419 year: 2002 ident: 602_CR25 publication-title: Exp Brain Res doi: 10.1007/s00221-002-1196-4 – ident: 602_CR34 – volume: 13 start-page: 45 year: 1993 ident: 602_CR48 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-01-00045.1993 – volume: 8 start-page: 383 year: 1998 ident: 602_CR14 publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(98)00019-4 – volume: 135 start-page: 382 year: 2000 ident: 602_CR40 publication-title: Exp Brain Res doi: 10.1007/s002210000540 – volume: 163 start-page: 44 year: 2005 ident: 602_CR10 publication-title: Exp Brain Res doi: 10.1007/s00221-004-2137-1 – volume: 155 start-page: 1 year: 2004 ident: 602_CR61 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1691-2 – volume: 24 start-page: 133 year: 1992 ident: 602_CR59 publication-title: J Mot Behav doi: 10.1080/00222895.1992.9941608 – volume: 92 start-page: 186 year: 2005 ident: 602_CR30 publication-title: Biol Cybern doi: 10.1007/s00422-005-0548-0 – volume: 86 start-page: 29 year: 2002 ident: 602_CR42 publication-title: Biol Cybern doi: 10.1007/s004220100279 – volume: 9 start-page: 75 year: 2005 ident: 602_CR55 publication-title: Mot Control doi: 10.1123/mcj.9.1.75 – volume: 30 start-page: 26 year: 2002 ident: 602_CR26 publication-title: Exerc Sport Sci Rev doi: 10.1097/00003677-200201000-00006 – volume: 9 start-page: 97 year: 1971 ident: 602_CR36 publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 22 start-page: 9656 year: 2002 ident: 602_CR31 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-22-09656.2002 – volume: 7 start-page: 19 year: 1995 ident: 602_CR4 publication-title: Adv Neural Inf Process Syst – ident: 602_CR33 – volume: 84 start-page: 853 year: 2000 ident: 602_CR38 publication-title: J Neurophysiol doi: 10.1152/jn.2000.84.2.853 – volume: 157 start-page: 336 year: 2004 ident: 602_CR20 publication-title: Exp Brain Res doi: 10.1007/s00221-004-1850-0 – volume: 21 start-page: 245 year: 1989 ident: 602_CR35 publication-title: J Mot Behav doi: 10.1080/00222895.1989.10735480 – volume: 141 start-page: 153 year: 2001 ident: 602_CR28 publication-title: Exp Brain Res doi: 10.1007/s002210100861 – volume: 156 start-page: 282 year: 2004 ident: 602_CR50 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1786-9 – volume: 153 start-page: 45 year: 2003 ident: 602_CR43 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1580-8 – volume: 19 start-page: 8573 year: 1999 ident: 602_CR53 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-19-08573.1999 – volume: 7 start-page: 907 year: 2004 ident: 602_CR54 publication-title: Nat Neurosci doi: 10.1038/nn1309 – volume: 18 start-page: 17 year: 1986 ident: 602_CR12 publication-title: J Mot Behav doi: 10.1080/00222895.1986.10735369 – volume: 56 start-page: 283 year: 2002 ident: 602_CR7 publication-title: Can J Exp Psychol doi: 10.1037/h0087404 – volume: 2 start-page: 306 year: 1998 ident: 602_CR16 publication-title: Mot Control doi: 10.1123/mcj.2.4.306 – volume: 7 start-page: 1117 year: 1995 ident: 602_CR49 publication-title: Adv Neural Inf Process Syst – volume: 146 start-page: 345 year: 2002 ident: 602_CR27 publication-title: Exp Brain Res doi: 10.1007/s00221-002-1189-3 – volume: 163 start-page: 137 year: 2005 ident: 602_CR62 publication-title: Exp Brain Res doi: 10.1007/s00221-004-2149-x – volume-title: The coordination and regulation of movements year: 1967 ident: 602_CR3 – reference: 12740728 - Exp Brain Res. 2003 Jul;151(1):60-71 – reference: 11907686 - Exp Brain Res. 2002 Mar;143(1):11-23 – reference: 8423483 - J Neurosci. 1993 Jan;13(1):45-62 – reference: 15939387 - Acta Psychol (Amst). 2005 Oct;120(2):172-98 – reference: 15136263 - J Mot Behav. 1989 Sep;21(3):245-64 – reference: 11800496 - Exerc Sport Sci Rev. 2002 Jan;30(1):26-31 – reference: 15064878 - Exp Brain Res. 2004 Mar;155(1):1-8 – reference: 15551087 - Exp Brain Res. 2005 Feb;161(2):155-65 – reference: 15028745 - J Neurophysiol. 2004 Jul;92(1):349-60 – reference: 14985897 - Exp Brain Res. 2004 Jul;157(1):18-31 – reference: 12632230 - Exp Brain Res. 2003 Apr;149(3):276-88 – reference: 8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24 – reference: 9758883 - Motor Control. 1998 Oct;2(4):306-13 – reference: 15136283 - J Mot Behav. 1986 Mar;18(1):17-54 – reference: 12491652 - Can J Exp Psychol. 2002 Dec;56(4):283-93 – reference: 16135891 - J Neural Eng. 2005 Sep;2(3):S313-9 – reference: 15659531 - J Neurophysiol. 2005 Jun;93(6):3327-38 – reference: 11719805 - Nature. 2001 Nov 22;414(6862):446-9 – reference: 15668794 - Exp Brain Res. 2005 May;163(1):44-57 – reference: 15739110 - Biol Cybern. 2005 Mar;92(3):186-91 – reference: 10938312 - J Neurophysiol. 2000 Aug;84(2):853-62 – reference: 10382616 - Exp Brain Res. 1999 Jun;126(3):289-306 – reference: 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92 – reference: 11146817 - Exp Brain Res. 2000 Dec;135(3):382-404 – reference: 11693684 - Percept Mot Skills. 2001 Aug;93(1):181-91 – reference: 12736237 - J Neurophysiol. 2003 Sep;90(3):1503-13 – reference: 8632977 - Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3843-6 – reference: 7789450 - Exp Brain Res. 1995;103(3):440-50 – reference: 16135889 - J Neural Eng. 2005 Sep;2(3):S266-78 – reference: 11918210 - Biol Cybern. 2002 Jan;86(1):29-39 – reference: 11027245 - J Neurosci. 2000 Oct 15;20(20):7807-15 – reference: 11713627 - Exp Brain Res. 2001 Nov;141(2):153-65 – reference: 12427820 - J Neurosci. 2002 Nov 15;22(22):9656-60 – reference: 12355270 - Exp Brain Res. 2002 Oct;146(4):419-32 – reference: 10493757 - J Neurosci. 1999 Oct 1;19(19):8573-88 – reference: 12623180 - Hum Mov Sci. 2003 Feb;22(1):47-66 – reference: 12928761 - Exp Brain Res. 2003 Nov;153(1):45-58 – reference: 12551964 - Learn Mem. 2003 Jan-Feb;10(1):55-63 – reference: 15841397 - Exp Brain Res. 2005 Jul;164(1):1-17 – reference: 11810142 - Exp Brain Res. 2001 Dec;141(4):485-500 – reference: 9840893 - J Electromyogr Kinesiol. 1998 Dec;8(6):383-90 – reference: 12122226 - Motor Control. 2002 Apr;6(2):183-207 – reference: 12232691 - Exp Brain Res. 2002 Oct;146(3):345-55 – reference: 15784951 - Motor Control. 2005 Jan;9(1):75-100 – reference: 11495973 - J Neurophysiol. 2001 Aug;86(2):1047-51 – reference: 14985892 - Exp Brain Res. 2004 Jun;156(3):282-92 – reference: 12904934 - Exp Brain Res. 2003 Oct;152(3):281-92 – reference: 12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505 – reference: 15657698 - Exp Brain Res. 2005 May;163(2):137-58 – reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 – reference: 8987766 - J Neurosci. 1997 Jan 1;17(1):409-19 – reference: 15332089 - Nat Neurosci. 2004 Sep;7(9):907-15 – reference: 15042264 - Exp Brain Res. 2004 Aug;157(3):336-50 |
SSID | ssj0014370 |
Score | 2.1851704 |
Snippet | Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 54 |
SubjectTerms | Adaptation Adaptation, Physiological - physiology Adult Algorithms Biological and medical sciences Biomechanical Phenomena Clavicle - physiology Data Interpretation, Statistical Elbow Joint - physiology Female Fundamental and applied biological sciences. Psychology Hand - physiology Humans Hypotheses Kinematics Learning - physiology Male Medical sciences Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Nervous system Ophthalmology Physical therapy Robotics Scapula - physiology Shoulder - physiology Space Perception - physiology Upper Extremity - innervation Upper Extremity - physiology Vertebrates: nervous system and sense organs Vision disorders Wrist Joint - physiology |
Title | The role of kinematic redundancy in adaptation of reaching |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16874517 https://www.proquest.com/docview/215142160 https://www.proquest.com/docview/19575975 https://www.proquest.com/docview/68358198 https://pubmed.ncbi.nlm.nih.gov/PMC1945250 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH-C7VIJ8dENKIXiA-KAFJE4ru1wQQN1mpA2VVMr9RbZiS0mIC1td9h_z3uOm1E0do2d2PKzn3_vI78H8C7VHs1kOU5SVctEaOsTq6o64a5OK2-U0MGhf34hz-bi22K8iLk5m5hWudOJQVHXy4p85B_pahI8k-nn1e-EikZRcDVW0HgIh8RcRhldatHZW4gEVPsHSiZwFlmxC2qmgUOUc7SjyZyWpBP2rqVHK7PBFfJtaYu7sOe_KZR_3UmnT-FxBJPspJX-M3jgmj4cnTRoSP-6Ye9ZSO8MfvM-PJlGibBZSyTQh16n_W6O4BM-ZpRryJae_UDsGbhc2drRb2akgtlVw0xtVm3snnqtYybmMcxPJ7OvZ0ksrJBUCJC2ia9zboQrcu2k1gYRjMJ726VVba3j2iAsELm3igsEh0VNxeWlQKhmC2erzNv8ORw0y8a9BGZNlVltrFVFIZwTJh0bxBgCP--5k3wA6W5dyyqyjlPxi59lx5ccRFGG_DoURakH8KF7ZdVSbtzXebQnrNs3yHLNcjWA4U56ZTyem7LbTAN427XiuaJgiWnc8npT4n5SaGyN_99DauKOK3AKL9q9cDu2pCICGY6t9nZJ14E4vfdbmqvvgds7K0Kg-dW9sx5Cr3UxkyfoNRxs19fuDWKjrR2FEzCCwy-Ti-nlHzp8DXc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7oFJiI-ObWWw-QF4QIpIHNd2kBAasKljWzWhTtpbsBNHTLC0tJ1Q_yj-R-6cj1EEe9tr4sRO7nzf_h3A81AX6CbLfhCqXAZC2yKwKssD7vIwK4wS2gf0T4ZycCY-nffPV-BXcxaGyiobmegFdT7OKEb-mlST4JEM301-BNQ0ipKrTQeNiiuO3OInemyzt4cfkbwvOD_YH30YBHVTgSBD42AeFHnMjXBJrJ3U2qD2VqizXJjl1jquDapEERdWcYGGUZJTY3Up0EyxibNZVNgY33sHVkWMnkwHVt_vD08_t2kLEavqzEsk8LujpEmjhh61lHP03MmBlySFlhThvYmZIU2KqpnGv6zdv4s2_9CCBw_hfm2-sr2K3x7Biiu7sL5Xout-uWAvmS8o9ZH6Ljw4rXmAjSrogi6stfJ2sQ5v8DKj6kY2Ltg3tHY9eiybOjrYRkKfXZTM5GZSVQvQqGld-_kYzm7lr29ApxyXbguYNVlktbFWJYlwTpiwb9CqEfj6gjvJexA2_zXNapxzarfxPW0Rmj0pUl_Rh6RIdQ9etY9MKpCPmwbvLBHr-gnylaNY9WC7oV5aC4RZ2rJvD3bbu7iTKT1jSje-mqVRQs1SVf__I6QmtLoEl7BZ8cL13JLaFkQ4t1riknYAoYgv3ykvvno08Sjxqe0nN656F-4ORifH6fHh8Ggb1qoAN8WhnkJnPr1yz9Aym9udej8w-HLbW_A38B5JRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIqFKiMeWx1JofQAOSFFjx7EdJIQqyqqlUPXQSnsLduKICsguu1uh_Wn8O2acR1kEvfWa2E7keY_H3wA8j02FYbJKo1iXKpLGVZHTRRkJX8ZFZbU0IaH_6VgdnMkP43S8Br-6uzBUVtnpxKCoy0lBOfJdMk1ScBXvVm1VxMn-6O30R0QNpOigteum0XDIkV_-xOht_uZwH0n9QojR-9N3B1HbYCAq0FFYRFWZCCt9lhivjLFoyTXaLx8XpXNeGIvmUSaV00Kik5SV1GRdSXRZXOZdwSuX4Lo34KZOUk4ipsd9rIdeiG5uv3CJO8Cz7kA1DvilQmAMT6G8In20YhJvT-0cqVM1bTX-5ff-Xb75hz0c3YM7rSPL9hrOuw9rvh7A5l6NQfz3JXvJQmlpyNkP4O5Jyw3stAExGMBGr3mXm_AaHzOqc2STin1FvzfgyLKZpytupP7Zec1saadN3QCNmrVVoA_g7Fr2_CGs15PaPwbmbMGdsc7pLJPeSxunFv0bictXwisxhLjb17xoEc-p8ca3vMdqDqTIQ20fkiI3Q3jVT5k2cB9XDd5eIdblDIqaeaKHsNVRL29VwzzvGXkIO_1blGk6qLG1n1zMc55R21Sd_n-EMoRbl-EvPGp44fLbihoYcPy2XuGSfgDhia--qc-_BFxxnoVD7idX_vUO3ELByz8eHh9twUaT6aaE1FNYX8wu_DN00RZuOwgDg8_XLX2_AbhwTBY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+kinematic+redundancy+in+adaptation+of+reaching&rft.jtitle=Experimental+brain+research&rft.au=Jeng-Feng%2C+Yang&rft.au=Scholz%2C+John+P&rft.au=Latash%2C+Mark+L&rft.date=2007-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=176&rft.issue=1&rft.spage=54&rft_id=info:doi/10.1007%2Fs00221-006-0602-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1192403781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |