The role of kinematic redundancy in adaptation of reaching

Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reachi...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 176; no. 1; pp. 54 - 69
Main Authors Yang, Jeng-Feng, Scholz, John P., Latash, Mark L.
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.01.2007
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.
AbstractList Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle–scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one ( V UCM ) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another ( V ORT ) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four ‘pseudo-adaptation’ phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V UCM than V ORT during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V UCM was higher in experimental than in control subjects after performing a comparable number of reaches. V UCM was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.
Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V sub(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V sub(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V sub(UCM) than V sub(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V sub(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V sub(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.
Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.
Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle-scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V(UCM)) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V(ORT)) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four 'pseudo-adaptation' phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V(UCM) than V(ORT) during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V(UCM) was higher in experimental than in control subjects after performing a comparable number of reaches. V(UCM) was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.
Author Scholz, John P.
Latash, Mark L.
Yang, Jeng-Feng
Author_xml – sequence: 1
  givenname: Jeng-Feng
  surname: Yang
  fullname: Yang, Jeng-Feng
– sequence: 2
  givenname: John P.
  surname: Scholz
  fullname: Scholz, John P.
– sequence: 3
  givenname: Mark L.
  surname: Latash
  fullname: Latash, Mark L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18409137$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16874517$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFH8AGRUiwC9zrd1ggoYqXVIlNWVuO43RcMvZgJ0j99ziagUIXsLJsf_fc6-NzRk5iip6QpwivEEC9LgCUYgsgW5BAW_2AbJAz2iKCPCEbAOQt19idkrNSbtYtU_CInKLUigtUG_LmauubnCbfpLH5FqLf2Tm4JvthiYON7rYJsbGD3c_1PMWVyt66bYjXj8nD0U7FPzmu5-Trh_dXF5_ayy8fP1-8u2ydEDi348Co5b5j2kutLVVMadQe3ND3nmoLmnI29opypXg3MJBCcs1E3_ne4dizc_L2oLtf-p0fnI9ztpPZ57Cz-dYkG8zfNzFszXX6YbDjggqoAi-PAjl9X3yZzS4U56fJRp-WYmTtVk3S_wWxE0p0SlTw-T3wJi05VhcMRYGcolzbPvtz7t8D_zK_Ai-OgC3OTmOufodyx2kOHbKVwwPnciol-_EOAbMGwRyCYGoQzBoEsz5F3atx4fCF1aIw_aPyJxmetRw
CODEN EXBRAP
CitedBy_id crossref_primary_10_1109_TBME_2012_2192437
crossref_primary_10_1186_s12984_024_01532_5
crossref_primary_10_1016_j_jbiomech_2021_110769
crossref_primary_10_1016_j_jbiomech_2007_09_004
crossref_primary_10_1080_23335432_2019_1633958
crossref_primary_10_1016_j_humov_2018_06_009
crossref_primary_10_1002_ajpa_22224
crossref_primary_10_1080_09638288_2020_1752317
crossref_primary_10_1016_j_robot_2011_12_006
crossref_primary_10_1186_s12984_016_0213_y
crossref_primary_10_1007_s00422_006_0086_4
crossref_primary_10_1152_jn_00163_2011
crossref_primary_10_2139_ssrn_4452129
crossref_primary_10_1109_TNSRE_2012_2189585
crossref_primary_10_1152_jn_00951_2011
crossref_primary_10_3389_fbioe_2020_00308
crossref_primary_10_1152_jn_00077_2010
crossref_primary_10_1016_j_humov_2013_07_019
crossref_primary_10_1146_annurev_control_060117_105206
crossref_primary_10_1007_s00221_013_3433_4
crossref_primary_10_1152_japplphysiol_00375_2013
crossref_primary_10_1371_journal_pcbi_1002348
crossref_primary_10_3389_fpsyg_2021_706228
crossref_primary_10_1007_s00221_019_05548_5
crossref_primary_10_1007_s00221_012_3000_4
crossref_primary_10_1007_s00221_009_2128_3
crossref_primary_10_1016_j_jbiomech_2014_11_024
crossref_primary_10_1007_s00221_012_3235_0
crossref_primary_10_1016_j_neulet_2016_08_032
crossref_primary_10_1371_journal_pone_0127017
crossref_primary_10_1016_j_jbiomech_2023_111595
crossref_primary_10_1016_j_humov_2018_04_010
crossref_primary_10_1152_jn_00461_2013
crossref_primary_10_1371_journal_pone_0181041
crossref_primary_10_1016_j_humov_2023_103089
crossref_primary_10_1016_j_conb_2008_01_002
crossref_primary_10_1016_j_neuroscience_2008_07_028
crossref_primary_10_1152_jn_00292_2016
crossref_primary_10_3389_fbioe_2022_1044275
crossref_primary_10_1016_j_humov_2015_12_010
crossref_primary_10_2522_ptj_20080278
crossref_primary_10_1073_pnas_1613383113
crossref_primary_10_1177_1545968315613863
crossref_primary_10_1123_jab_2022_0317
crossref_primary_10_1123_mc_2017_0076
crossref_primary_10_1152_jn_00394_2024
crossref_primary_10_1016_j_clinbiomech_2011_09_003
crossref_primary_10_1371_journal_pone_0193463
crossref_primary_10_3389_fnbeh_2023_1162744
crossref_primary_10_1007_s00221_017_5093_2
crossref_primary_10_1016_j_neulet_2007_05_051
crossref_primary_10_1109_TBME_2018_2842458
crossref_primary_10_1038_s41598_018_27101_0
crossref_primary_10_1038_s41598_019_43558_z
crossref_primary_10_1123_mc_2021_0114
crossref_primary_10_3389_fncom_2016_00069
crossref_primary_10_1007_s00221_006_0812_0
crossref_primary_10_7566_JPSJ_85_114801
crossref_primary_10_1007_s00221_011_2909_3
crossref_primary_10_1002_dev_21741
crossref_primary_10_1007_s00221_018_5227_1
crossref_primary_10_1123_mc_2017_0061
crossref_primary_10_1152_jn_00246_2014
crossref_primary_10_1007_s00221_015_4388_4
crossref_primary_10_1152_jn_00901_2014
crossref_primary_10_1109_TBME_2014_2332359
crossref_primary_10_1523_ENEURO_0275_22_2023
crossref_primary_10_3389_fnhum_2015_00315
crossref_primary_10_1177_1545968319847969
crossref_primary_10_3389_fnhum_2021_662006
crossref_primary_10_1111_eos_12100
crossref_primary_10_1007_s00221_010_2440_y
crossref_primary_10_1007_s00221_014_3994_x
crossref_primary_10_1016_j_humov_2010_02_003
crossref_primary_10_1016_j_ifacol_2019_01_053
crossref_primary_10_1080_00222895_2012_665101
crossref_primary_10_1016_j_neuroscience_2016_01_054
crossref_primary_10_1007_s00221_008_1662_8
Cites_doi 10.1007/s00221-003-1812-y
10.1007/s002210100878
10.1007/s002210050738
10.1152/jn.2001.86.2.1047
10.1101/lm.50303
10.1152/jn.00883.2004
10.2466/pms.2001.93.1.181
10.1007/s00221-001-0944-1
10.1007/s00221-003-1574-6
10.1007/s00221-003-1480-y
10.1523/JNEUROSCI.14-05-03208.1994
10.1123/mcj.6.2.183
10.1038/35106566
10.1007/BF00241503
10.1016/S1050-6411(02)00029-9
10.1088/1741-2560/2/3/S09
10.1073/pnas.93.9.3843
10.1152/jn.00189.2003
10.1016/S0167-9457(02)00177-X
10.1007/s00221-004-2055-2
10.1007/s00221-002-1357-5
10.1523/JNEUROSCI.17-01-00409.1997
10.1207/s15326969eco0704_5
10.1088/1741-2560/2/3/S11
10.1523/JNEUROSCI.20-20-07807.2000
10.1152/jn.1995.74.4.1787
10.1016/j.actpsy.2005.04.001
10.1007/s00221-004-2205-6
10.1152/jn.00960.2003
10.1016/S0166-4115(97)80014-3
10.1007/s00221-002-1196-4
10.1523/JNEUROSCI.13-01-00045.1993
10.1016/S1050-6411(98)00019-4
10.1007/s002210000540
10.1007/s00221-004-2137-1
10.1007/s00221-003-1691-2
10.1080/00222895.1992.9941608
10.1007/s00422-005-0548-0
10.1007/s004220100279
10.1123/mcj.9.1.75
10.1097/00003677-200201000-00006
10.1016/0028-3932(71)90067-4
10.1523/JNEUROSCI.22-22-09656.2002
10.1152/jn.2000.84.2.853
10.1007/s00221-004-1850-0
10.1080/00222895.1989.10735480
10.1007/s002210100861
10.1007/s00221-003-1786-9
10.1007/s00221-003-1580-8
10.1523/JNEUROSCI.19-19-08573.1999
10.1038/nn1309
10.1080/00222895.1986.10735369
10.1037/h0087404
10.1123/mcj.2.4.306
10.1007/s00221-002-1189-3
10.1007/s00221-004-2149-x
ContentType Journal Article
Copyright 2007 INIST-CNRS
Springer-Verlag 2006
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Springer-Verlag 2006
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
88J
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
M2R
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRQQA
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1007/s00221-006-0602-8
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Social Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Sociology & Social Sciences Collection
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
Sociology & Social Sciences Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
Physical Therapy
EISSN 1432-1106
EndPage 69
ExternalDocumentID PMC1945250
1192403781
16874517
18409137
10_1007_s00221_006_0602_8
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS050880
– fundername: NINDS NIH HHS
  grantid: R01 NS035032
– fundername: NINDS NIH HHS
  grantid: NS35032
– fundername: NINDS NIH HHS
  grantid: NS50880
– fundername: NINDS NIH HHS
  grantid: R01 NS050880-01A2
GroupedDBID ---
-DZ
-XW
-Y2
-~C
-~X
.86
.GJ
.VR
0-V
06C
06D
0R~
0VY
199
1N0
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3O-
4.4
406
408
409
40D
40E
53G
5GY
5RE
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IHW
IJ-
IKXTQ
INH
INR
IPY
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
L7B
LAS
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
ROL
RPX
RRX
RSV
S16
S27
S3A
S3B
SAP
SBL
SBY
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
~EX
~KM
.55
1SB
2.D
28-
2P1
3SX
5QI
AAYJJ
ABRTQ
ADYPR
AEFIE
AFEXP
AFFNX
AFOHR
AGGDS
AHAVH
BBWZM
FA8
H13
IQODW
ITC
KOW
NDZJH
OHT
PJZUB
PPXIY
PRQQA
R4E
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
T16
WK6
X7M
ZGI
ZXP
-4W
-56
-5G
-BR
-EM
3V.
AAAVM
ADINQ
CGR
CUY
CVF
ECM
EIF
GQ6
NPM
PKN
Z7R
Z7U
Z7W
Z7X
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
7QP
7QR
7TK
7TM
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
POGQB
PQEST
PQUKI
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c551t-fd32a4e938e688a2737818e0cdbbe28a08243fb7247749d306564835b9ebc1fb3
IEDL.DBID 7X7
ISSN 0014-4819
IngestDate Thu Aug 21 14:10:40 EDT 2025
Thu Jul 10 23:07:46 EDT 2025
Fri Jul 11 06:26:32 EDT 2025
Sat Aug 23 13:20:06 EDT 2025
Wed Feb 19 01:52:36 EST 2025
Mon Jul 21 09:14:50 EDT 2025
Tue Jul 01 03:27:35 EDT 2025
Thu Apr 24 22:52:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Coordination
Force
Redundancy
Central nervous system
Motor skill
Goal directed movement
Nervous system
Joint
Motor learning
Hand
Osteoarticular system
Acquisition process
Kinematics
Synergy
Planning
Motricity
Motor preparation
Adaptation
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c551t-fd32a4e938e688a2737818e0cdbbe28a08243fb7247749d306564835b9ebc1fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1007/s00221-006-0602-8
PMID 16874517
PQID 215142160
PQPubID 47176
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1945250
proquest_miscellaneous_68358198
proquest_miscellaneous_19575975
proquest_journals_215142160
pubmed_primary_16874517
pascalfrancis_primary_18409137
crossref_primary_10_1007_s00221_006_0602_8
crossref_citationtrail_10_1007_s00221_006_0602_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Germany
– name: Heidelberg
PublicationTitle Experimental brain research
PublicationTitleAlternate Exp Brain Res
PublicationYear 2007
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References J Wang (602_CR60) 2004; 92
N Malfait (602_CR32) 2005; 93
YW Tseng (602_CR56) 2005; 120
ER Buch (602_CR5) 2003; 10
B Vereijken (602_CR59) 1992; 24
RC Oldfield (602_CR36) 1971; 9
E Todorov (602_CR54) 2004; 7
RA Scheidt (602_CR38) 2000; 84
N Kang (602_CR20) 2004; 157
PV McDonald (602_CR35) 1989; 21
JP Scholz (602_CR42) 2002; 86
PR Davidson (602_CR8) 2005; 2
N Malfait (602_CR31) 2002; 22
ML Latash (602_CR29) 2003; 151
FH Guenther (602_CR18) 1997
LB Bagesteiro (602_CR1) 2005; 161
G Schöner (602_CR44) 1995; 7
IM Gelfand (602_CR17) 1966
M Shinohara (602_CR50) 2004; 156
N Bernstein (602_CR3) 1967
ML Latash (602_CR28) 2001; 141
R Shadmehr (602_CR48) 1993; 13
CD Takahashi (602_CR52) 2001; 86
R Shadmehr (602_CR49) 1995; 7
D Domkin (602_CR11) 2002; 143
IM Gelfand (602_CR16) 1998; 2
F Gandolfo (602_CR15) 1996; 93
EJ Hwang (602_CR19) 2005; 2
LB Bagesteiro (602_CR2) 2003; 90
E Burdet (602_CR6) 2001; 414
KA Thoroughman (602_CR53) 1999; 19
ML Latash (602_CR26) 2002; 30
YG Ko (602_CR21) 2003; 22
JP Scholz (602_CR39) 1999; 126
D Domkin (602_CR10) 2005; 163
ML Latash (602_CR25) 2002; 146
YW Tseng (602_CR58) 2003; 149
J Wang (602_CR61) 2004; 155
JP Scholz (602_CR40) 2000; 135
T Brashers-Krug (602_CR4) 1995; 7
AG Feldman (602_CR13) 1995; 103
AG Feldman (602_CR14) 1998; 8
602_CR34
602_CR33
R Shadmehr (602_CR47) 2000; 20
YW Tseng (602_CR55) 2005; 9
DS Reisman (602_CR37) 2002; 12
R Shadmehr (602_CR45) 1997; 17
JP Scholz (602_CR41) 2001; 141
V Krishnamoorthy (602_CR22) 2003; 152
R Shadmehr (602_CR46) 1994; 14
ML Latash (602_CR27) 2002; 146
JF Yang (602_CR62) 2005; 163
P Dizio (602_CR9) 1995; 74
DR Smith (602_CR51) 2001; 93
Y Tseng (602_CR57) 2002; 6
V Krishnamoorthy (602_CR23) 2004; 157
N Caillou (602_CR7) 2002; 56
V Krishnamoorthy (602_CR24) 2005; 164
ML Latash (602_CR30) 2005; 92
AG Feldman (602_CR12) 1986; 18
JP Scholz (602_CR43) 2003; 153
15939387 - Acta Psychol (Amst). 2005 Oct;120(2):172-98
15136283 - J Mot Behav. 1986 Mar;18(1):17-54
5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
15659531 - J Neurophysiol. 2005 Jun;93(6):3327-38
15136263 - J Mot Behav. 1989 Sep;21(3):245-64
11918210 - Biol Cybern. 2002 Jan;86(1):29-39
15657698 - Exp Brain Res. 2005 May;163(2):137-58
12736237 - J Neurophysiol. 2003 Sep;90(3):1503-13
11027245 - J Neurosci. 2000 Oct 15;20(20):7807-15
8423483 - J Neurosci. 1993 Jan;13(1):45-62
12491652 - Can J Exp Psychol. 2002 Dec;56(4):283-93
11800496 - Exerc Sport Sci Rev. 2002 Jan;30(1):26-31
11693684 - Percept Mot Skills. 2001 Aug;93(1):181-91
11719805 - Nature. 2001 Nov 22;414(6862):446-9
16135891 - J Neural Eng. 2005 Sep;2(3):S313-9
8987766 - J Neurosci. 1997 Jan 1;17(1):409-19
15064878 - Exp Brain Res. 2004 Mar;155(1):1-8
10938312 - J Neurophysiol. 2000 Aug;84(2):853-62
14985897 - Exp Brain Res. 2004 Jul;157(1):18-31
11810142 - Exp Brain Res. 2001 Dec;141(4):485-500
12632230 - Exp Brain Res. 2003 Apr;149(3):276-88
12623180 - Hum Mov Sci. 2003 Feb;22(1):47-66
11495973 - J Neurophysiol. 2001 Aug;86(2):1047-51
12355270 - Exp Brain Res. 2002 Oct;146(4):419-32
11713627 - Exp Brain Res. 2001 Nov;141(2):153-65
16135889 - J Neural Eng. 2005 Sep;2(3):S266-78
12740728 - Exp Brain Res. 2003 Jul;151(1):60-71
8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24
12904934 - Exp Brain Res. 2003 Oct;152(3):281-92
11146817 - Exp Brain Res. 2000 Dec;135(3):382-404
12122226 - Motor Control. 2002 Apr;6(2):183-207
12551964 - Learn Mem. 2003 Jan-Feb;10(1):55-63
7789450 - Exp Brain Res. 1995;103(3):440-50
15841397 - Exp Brain Res. 2005 Jul;164(1):1-17
15739110 - Biol Cybern. 2005 Mar;92(3):186-91
11907686 - Exp Brain Res. 2002 Mar;143(1):11-23
15028745 - J Neurophysiol. 2004 Jul;92(1):349-60
9840893 - J Electromyogr Kinesiol. 1998 Dec;8(6):383-90
15784951 - Motor Control. 2005 Jan;9(1):75-100
10382616 - Exp Brain Res. 1999 Jun;126(3):289-306
10493757 - J Neurosci. 1999 Oct 1;19(19):8573-88
15332089 - Nat Neurosci. 2004 Sep;7(9):907-15
14985892 - Exp Brain Res. 2004 Jun;156(3):282-92
8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92
12232691 - Exp Brain Res. 2002 Oct;146(3):345-55
9758883 - Motor Control. 1998 Oct;2(4):306-13
8632977 - Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3843-6
12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505
12928761 - Exp Brain Res. 2003 Nov;153(1):45-58
15551087 - Exp Brain Res. 2005 Feb;161(2):155-65
15668794 - Exp Brain Res. 2005 May;163(1):44-57
12427820 - J Neurosci. 2002 Nov 15;22(22):9656-60
15042264 - Exp Brain Res. 2004 Aug;157(3):336-50
References_xml – volume: 157
  start-page: 18
  year: 2004
  ident: 602_CR23
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1812-y
– volume: 141
  start-page: 485
  year: 2001
  ident: 602_CR41
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100878
– volume: 126
  start-page: 289
  year: 1999
  ident: 602_CR39
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050738
– volume: 86
  start-page: 1047
  year: 2001
  ident: 602_CR52
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.86.2.1047
– volume: 10
  start-page: 55
  year: 2003
  ident: 602_CR5
  publication-title: Learn Memory
  doi: 10.1101/lm.50303
– volume: 93
  start-page: 3327
  year: 2005
  ident: 602_CR32
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00883.2004
– volume: 93
  start-page: 181
  year: 2001
  ident: 602_CR51
  publication-title: Percept Mot Skills
  doi: 10.2466/pms.2001.93.1.181
– volume: 143
  start-page: 11
  year: 2002
  ident: 602_CR11
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-001-0944-1
– volume: 152
  start-page: 281
  year: 2003
  ident: 602_CR22
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1574-6
– volume: 151
  start-page: 60
  year: 2003
  ident: 602_CR29
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1480-y
– start-page: 9
  volume-title: Models of the structural–functional organization of certain biological systems
  year: 1966
  ident: 602_CR17
– volume: 14
  start-page: 3208
  year: 1994
  ident: 602_CR46
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-05-03208.1994
– volume: 6
  start-page: 183
  year: 2002
  ident: 602_CR57
  publication-title: Mot Control
  doi: 10.1123/mcj.6.2.183
– volume: 414
  start-page: 446
  year: 2001
  ident: 602_CR6
  publication-title: Nature
  doi: 10.1038/35106566
– volume: 103
  start-page: 440
  year: 1995
  ident: 602_CR13
  publication-title: Exp Brain Res
  doi: 10.1007/BF00241503
– volume: 12
  start-page: 493
  year: 2002
  ident: 602_CR37
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(02)00029-9
– volume: 2
  start-page: S266
  year: 2005
  ident: 602_CR19
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/2/3/S09
– volume: 93
  start-page: 3843
  year: 1996
  ident: 602_CR15
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.9.3843
– volume: 90
  start-page: 1503
  year: 2003
  ident: 602_CR2
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00189.2003
– volume: 22
  start-page: 47
  year: 2003
  ident: 602_CR21
  publication-title: Hum Mov Sci
  doi: 10.1016/S0167-9457(02)00177-X
– volume: 161
  start-page: 155
  year: 2005
  ident: 602_CR1
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-2055-2
– volume: 149
  start-page: 276
  year: 2003
  ident: 602_CR58
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1357-5
– volume: 17
  start-page: 409
  year: 1997
  ident: 602_CR45
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-01-00409.1997
– volume: 7
  start-page: 291
  year: 1995
  ident: 602_CR44
  publication-title: Ecol Psychol
  doi: 10.1207/s15326969eco0704_5
– volume: 2
  start-page: S313
  year: 2005
  ident: 602_CR8
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/2/3/S11
– volume: 20
  start-page: 7807
  year: 2000
  ident: 602_CR47
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-20-07807.2000
– volume: 74
  start-page: 1787
  year: 1995
  ident: 602_CR9
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1995.74.4.1787
– volume: 120
  start-page: 172
  year: 2005
  ident: 602_CR56
  publication-title: Acta Psychol (Amst)
  doi: 10.1016/j.actpsy.2005.04.001
– volume: 164
  start-page: 1
  year: 2005
  ident: 602_CR24
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-2205-6
– volume: 92
  start-page: 349
  year: 2004
  ident: 602_CR60
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00960.2003
– start-page: 383
  volume-title: Self-organization, computational maps and motor control
  year: 1997
  ident: 602_CR18
  doi: 10.1016/S0166-4115(97)80014-3
– volume: 146
  start-page: 419
  year: 2002
  ident: 602_CR25
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1196-4
– ident: 602_CR34
– volume: 13
  start-page: 45
  year: 1993
  ident: 602_CR48
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-01-00045.1993
– volume: 8
  start-page: 383
  year: 1998
  ident: 602_CR14
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(98)00019-4
– volume: 135
  start-page: 382
  year: 2000
  ident: 602_CR40
  publication-title: Exp Brain Res
  doi: 10.1007/s002210000540
– volume: 163
  start-page: 44
  year: 2005
  ident: 602_CR10
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-2137-1
– volume: 155
  start-page: 1
  year: 2004
  ident: 602_CR61
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1691-2
– volume: 24
  start-page: 133
  year: 1992
  ident: 602_CR59
  publication-title: J Mot Behav
  doi: 10.1080/00222895.1992.9941608
– volume: 92
  start-page: 186
  year: 2005
  ident: 602_CR30
  publication-title: Biol Cybern
  doi: 10.1007/s00422-005-0548-0
– volume: 86
  start-page: 29
  year: 2002
  ident: 602_CR42
  publication-title: Biol Cybern
  doi: 10.1007/s004220100279
– volume: 9
  start-page: 75
  year: 2005
  ident: 602_CR55
  publication-title: Mot Control
  doi: 10.1123/mcj.9.1.75
– volume: 30
  start-page: 26
  year: 2002
  ident: 602_CR26
  publication-title: Exerc Sport Sci Rev
  doi: 10.1097/00003677-200201000-00006
– volume: 9
  start-page: 97
  year: 1971
  ident: 602_CR36
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 22
  start-page: 9656
  year: 2002
  ident: 602_CR31
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-22-09656.2002
– volume: 7
  start-page: 19
  year: 1995
  ident: 602_CR4
  publication-title: Adv Neural Inf Process Syst
– ident: 602_CR33
– volume: 84
  start-page: 853
  year: 2000
  ident: 602_CR38
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2000.84.2.853
– volume: 157
  start-page: 336
  year: 2004
  ident: 602_CR20
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-1850-0
– volume: 21
  start-page: 245
  year: 1989
  ident: 602_CR35
  publication-title: J Mot Behav
  doi: 10.1080/00222895.1989.10735480
– volume: 141
  start-page: 153
  year: 2001
  ident: 602_CR28
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100861
– volume: 156
  start-page: 282
  year: 2004
  ident: 602_CR50
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1786-9
– volume: 153
  start-page: 45
  year: 2003
  ident: 602_CR43
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1580-8
– volume: 19
  start-page: 8573
  year: 1999
  ident: 602_CR53
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-19-08573.1999
– volume: 7
  start-page: 907
  year: 2004
  ident: 602_CR54
  publication-title: Nat Neurosci
  doi: 10.1038/nn1309
– volume: 18
  start-page: 17
  year: 1986
  ident: 602_CR12
  publication-title: J Mot Behav
  doi: 10.1080/00222895.1986.10735369
– volume: 56
  start-page: 283
  year: 2002
  ident: 602_CR7
  publication-title: Can J Exp Psychol
  doi: 10.1037/h0087404
– volume: 2
  start-page: 306
  year: 1998
  ident: 602_CR16
  publication-title: Mot Control
  doi: 10.1123/mcj.2.4.306
– volume: 7
  start-page: 1117
  year: 1995
  ident: 602_CR49
  publication-title: Adv Neural Inf Process Syst
– volume: 146
  start-page: 345
  year: 2002
  ident: 602_CR27
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1189-3
– volume: 163
  start-page: 137
  year: 2005
  ident: 602_CR62
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-004-2149-x
– volume-title: The coordination and regulation of movements
  year: 1967
  ident: 602_CR3
– reference: 12740728 - Exp Brain Res. 2003 Jul;151(1):60-71
– reference: 11907686 - Exp Brain Res. 2002 Mar;143(1):11-23
– reference: 8423483 - J Neurosci. 1993 Jan;13(1):45-62
– reference: 15939387 - Acta Psychol (Amst). 2005 Oct;120(2):172-98
– reference: 15136263 - J Mot Behav. 1989 Sep;21(3):245-64
– reference: 11800496 - Exerc Sport Sci Rev. 2002 Jan;30(1):26-31
– reference: 15064878 - Exp Brain Res. 2004 Mar;155(1):1-8
– reference: 15551087 - Exp Brain Res. 2005 Feb;161(2):155-65
– reference: 15028745 - J Neurophysiol. 2004 Jul;92(1):349-60
– reference: 14985897 - Exp Brain Res. 2004 Jul;157(1):18-31
– reference: 12632230 - Exp Brain Res. 2003 Apr;149(3):276-88
– reference: 8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24
– reference: 9758883 - Motor Control. 1998 Oct;2(4):306-13
– reference: 15136283 - J Mot Behav. 1986 Mar;18(1):17-54
– reference: 12491652 - Can J Exp Psychol. 2002 Dec;56(4):283-93
– reference: 16135891 - J Neural Eng. 2005 Sep;2(3):S313-9
– reference: 15659531 - J Neurophysiol. 2005 Jun;93(6):3327-38
– reference: 11719805 - Nature. 2001 Nov 22;414(6862):446-9
– reference: 15668794 - Exp Brain Res. 2005 May;163(1):44-57
– reference: 15739110 - Biol Cybern. 2005 Mar;92(3):186-91
– reference: 10938312 - J Neurophysiol. 2000 Aug;84(2):853-62
– reference: 10382616 - Exp Brain Res. 1999 Jun;126(3):289-306
– reference: 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92
– reference: 11146817 - Exp Brain Res. 2000 Dec;135(3):382-404
– reference: 11693684 - Percept Mot Skills. 2001 Aug;93(1):181-91
– reference: 12736237 - J Neurophysiol. 2003 Sep;90(3):1503-13
– reference: 8632977 - Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3843-6
– reference: 7789450 - Exp Brain Res. 1995;103(3):440-50
– reference: 16135889 - J Neural Eng. 2005 Sep;2(3):S266-78
– reference: 11918210 - Biol Cybern. 2002 Jan;86(1):29-39
– reference: 11027245 - J Neurosci. 2000 Oct 15;20(20):7807-15
– reference: 11713627 - Exp Brain Res. 2001 Nov;141(2):153-65
– reference: 12427820 - J Neurosci. 2002 Nov 15;22(22):9656-60
– reference: 12355270 - Exp Brain Res. 2002 Oct;146(4):419-32
– reference: 10493757 - J Neurosci. 1999 Oct 1;19(19):8573-88
– reference: 12623180 - Hum Mov Sci. 2003 Feb;22(1):47-66
– reference: 12928761 - Exp Brain Res. 2003 Nov;153(1):45-58
– reference: 12551964 - Learn Mem. 2003 Jan-Feb;10(1):55-63
– reference: 15841397 - Exp Brain Res. 2005 Jul;164(1):1-17
– reference: 11810142 - Exp Brain Res. 2001 Dec;141(4):485-500
– reference: 9840893 - J Electromyogr Kinesiol. 1998 Dec;8(6):383-90
– reference: 12122226 - Motor Control. 2002 Apr;6(2):183-207
– reference: 12232691 - Exp Brain Res. 2002 Oct;146(3):345-55
– reference: 15784951 - Motor Control. 2005 Jan;9(1):75-100
– reference: 11495973 - J Neurophysiol. 2001 Aug;86(2):1047-51
– reference: 14985892 - Exp Brain Res. 2004 Jun;156(3):282-92
– reference: 12904934 - Exp Brain Res. 2003 Oct;152(3):281-92
– reference: 12435546 - J Electromyogr Kinesiol. 2002 Dec;12(6):493-505
– reference: 15657698 - Exp Brain Res. 2005 May;163(2):137-58
– reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
– reference: 8987766 - J Neurosci. 1997 Jan 1;17(1):409-19
– reference: 15332089 - Nat Neurosci. 2004 Sep;7(9):907-15
– reference: 15042264 - Exp Brain Res. 2004 Aug;157(3):336-50
SSID ssj0014370
Score 2.1851704
Snippet Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 54
SubjectTerms Adaptation
Adaptation, Physiological - physiology
Adult
Algorithms
Biological and medical sciences
Biomechanical Phenomena
Clavicle - physiology
Data Interpretation, Statistical
Elbow Joint - physiology
Female
Fundamental and applied biological sciences. Psychology
Hand - physiology
Humans
Hypotheses
Kinematics
Learning - physiology
Male
Medical sciences
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Nervous system
Ophthalmology
Physical therapy
Robotics
Scapula - physiology
Shoulder - physiology
Space Perception - physiology
Upper Extremity - innervation
Upper Extremity - physiology
Vertebrates: nervous system and sense organs
Vision disorders
Wrist Joint - physiology
Title The role of kinematic redundancy in adaptation of reaching
URI https://www.ncbi.nlm.nih.gov/pubmed/16874517
https://www.proquest.com/docview/215142160
https://www.proquest.com/docview/19575975
https://www.proquest.com/docview/68358198
https://pubmed.ncbi.nlm.nih.gov/PMC1945250
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH-C7VIJ8dENKIXiA-KAFJE4ru1wQQN1mpA2VVMr9RbZiS0mIC1td9h_z3uOm1E0do2d2PKzn3_vI78H8C7VHs1kOU5SVctEaOsTq6o64a5OK2-U0MGhf34hz-bi22K8iLk5m5hWudOJQVHXy4p85B_pahI8k-nn1e-EikZRcDVW0HgIh8RcRhldatHZW4gEVPsHSiZwFlmxC2qmgUOUc7SjyZyWpBP2rqVHK7PBFfJtaYu7sOe_KZR_3UmnT-FxBJPspJX-M3jgmj4cnTRoSP-6Ye9ZSO8MfvM-PJlGibBZSyTQh16n_W6O4BM-ZpRryJae_UDsGbhc2drRb2akgtlVw0xtVm3snnqtYybmMcxPJ7OvZ0ksrJBUCJC2ia9zboQrcu2k1gYRjMJ726VVba3j2iAsELm3igsEh0VNxeWlQKhmC2erzNv8ORw0y8a9BGZNlVltrFVFIZwTJh0bxBgCP--5k3wA6W5dyyqyjlPxi59lx5ccRFGG_DoURakH8KF7ZdVSbtzXebQnrNs3yHLNcjWA4U56ZTyem7LbTAN427XiuaJgiWnc8npT4n5SaGyN_99DauKOK3AKL9q9cDu2pCICGY6t9nZJ14E4vfdbmqvvgds7K0Kg-dW9sx5Cr3UxkyfoNRxs19fuDWKjrR2FEzCCwy-Ti-nlHzp8DXc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7oFJiI-ObWWw-QF4QIpIHNd2kBAasKljWzWhTtpbsBNHTLC0tJ1Q_yj-R-6cj1EEe9tr4sRO7nzf_h3A81AX6CbLfhCqXAZC2yKwKssD7vIwK4wS2gf0T4ZycCY-nffPV-BXcxaGyiobmegFdT7OKEb-mlST4JEM301-BNQ0ipKrTQeNiiuO3OInemyzt4cfkbwvOD_YH30YBHVTgSBD42AeFHnMjXBJrJ3U2qD2VqizXJjl1jquDapEERdWcYGGUZJTY3Up0EyxibNZVNgY33sHVkWMnkwHVt_vD08_t2kLEavqzEsk8LujpEmjhh61lHP03MmBlySFlhThvYmZIU2KqpnGv6zdv4s2_9CCBw_hfm2-sr2K3x7Biiu7sL5Xout-uWAvmS8o9ZH6Ljw4rXmAjSrogi6stfJ2sQ5v8DKj6kY2Ltg3tHY9eiybOjrYRkKfXZTM5GZSVQvQqGld-_kYzm7lr29ApxyXbguYNVlktbFWJYlwTpiwb9CqEfj6gjvJexA2_zXNapxzarfxPW0Rmj0pUl_Rh6RIdQ9etY9MKpCPmwbvLBHr-gnylaNY9WC7oV5aC4RZ2rJvD3bbu7iTKT1jSje-mqVRQs1SVf__I6QmtLoEl7BZ8cL13JLaFkQ4t1riknYAoYgv3ykvvno08Sjxqe0nN656F-4ORifH6fHh8Ggb1qoAN8WhnkJnPr1yz9Aym9udej8w-HLbW_A38B5JRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIqFKiMeWx1JofQAOSFFjx7EdJIQqyqqlUPXQSnsLduKICsguu1uh_Wn8O2acR1kEvfWa2E7keY_H3wA8j02FYbJKo1iXKpLGVZHTRRkJX8ZFZbU0IaH_6VgdnMkP43S8Br-6uzBUVtnpxKCoy0lBOfJdMk1ScBXvVm1VxMn-6O30R0QNpOigteum0XDIkV_-xOht_uZwH0n9QojR-9N3B1HbYCAq0FFYRFWZCCt9lhivjLFoyTXaLx8XpXNeGIvmUSaV00Kik5SV1GRdSXRZXOZdwSuX4Lo34KZOUk4ipsd9rIdeiG5uv3CJO8Cz7kA1DvilQmAMT6G8In20YhJvT-0cqVM1bTX-5ff-Xb75hz0c3YM7rSPL9hrOuw9rvh7A5l6NQfz3JXvJQmlpyNkP4O5Jyw3stAExGMBGr3mXm_AaHzOqc2STin1FvzfgyLKZpytupP7Zec1saadN3QCNmrVVoA_g7Fr2_CGs15PaPwbmbMGdsc7pLJPeSxunFv0bictXwisxhLjb17xoEc-p8ca3vMdqDqTIQ20fkiI3Q3jVT5k2cB9XDd5eIdblDIqaeaKHsNVRL29VwzzvGXkIO_1blGk6qLG1n1zMc55R21Sd_n-EMoRbl-EvPGp44fLbihoYcPy2XuGSfgDhia--qc-_BFxxnoVD7idX_vUO3ELByz8eHh9twUaT6aaE1FNYX8wu_DN00RZuOwgDg8_XLX2_AbhwTBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+kinematic+redundancy+in+adaptation+of+reaching&rft.jtitle=Experimental+brain+research&rft.au=Jeng-Feng%2C+Yang&rft.au=Scholz%2C+John+P&rft.au=Latash%2C+Mark+L&rft.date=2007-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=176&rft.issue=1&rft.spage=54&rft_id=info:doi/10.1007%2Fs00221-006-0602-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1192403781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon