Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging
Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward asso...
Saved in:
Published in | The Journal of neuroscience Vol. 22; no. 11; pp. 4563 - 4567 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
01.06.2002
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task. |
---|---|
AbstractList | Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task.Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task. Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus–reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task. |
Author | Clark, Luke Cools, Roshan Owen, Adrian M Robbins, Trevor W |
AuthorAffiliation | 1 Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom, and 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 2EF, United Kingdom |
AuthorAffiliation_xml | – name: 1 Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom, and – name: 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 2EF, United Kingdom |
Author_xml | – sequence: 1 fullname: Cools, Roshan – sequence: 2 fullname: Clark, Luke – sequence: 3 fullname: Owen, Adrian M – sequence: 4 fullname: Robbins, Trevor W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12040063$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFv4AiFrDK4EcSJywQaJjCoKFFA7O2bpybxFXilDiZEeLP4zTluYGNLdnfOTpX556RE9tZJOQJo0sWc_H82uLYd06bJechYyGN4kQsOaX8Hll4Igt5RNkJWVAuaZhEMjolZ85dU0olZfIBOWWcRpQmYkG-vcHSWGOrYKgxuPTG0AQfUNdgjWtd0JXBx77LITeNcYPRwQ4P2DsPbRH6W-HeTef6gHYId9jAgEVwMVo9mM5OZlBZnJXOP1iNwaaFymsekvslNA4f3d3nZH-x_rx6F26v3m5Wr7ehjmM2hKXIU0AsGJRcpGmRxZAKiHWiC1lyjASChDzLEyk1aEyxiMqSScxFLuKIZeKcvJx9b8a8xUL7oH5KddObFvqvqgOj_vyxplZVd1CJjNOUUW_w9M6g776M6AbVGqexacBiNzolmUxSLvk_QZZKnsUy9eDj3yP9zPKjGA-8mAHtm3Y9lr8QqqYtUO8v1_vd1afVRnGuGFO3W6CmLfDiV3-JtRlg6sOPZ5r_s3g2W9Smqo-mR-VaaBofl6nj8TjzEy6-AyrazTI |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2018_05_074 crossref_primary_10_1016_j_bbr_2012_02_006 crossref_primary_10_1016_j_jad_2016_10_043 crossref_primary_10_1016_S0006_3223_03_00701_7 crossref_primary_10_1016_j_dcn_2012_03_002 crossref_primary_10_1016_j_bbr_2022_113801 crossref_primary_10_1038_nn_2949 crossref_primary_10_1016_j_bandc_2012_02_002 crossref_primary_10_1176_appi_ajp_2007_07020365 crossref_primary_10_1016_j_neuroimage_2007_04_001 crossref_primary_10_1177_1073858410393359 crossref_primary_10_1515_revneuro_2014_0007 crossref_primary_10_1016_j_bbr_2016_10_019 crossref_primary_10_1016_j_pscychresns_2009_03_003 crossref_primary_10_3389_fnbeh_2019_00127 crossref_primary_10_1111_bdi_12132 crossref_primary_10_1038_sj_npp_1300980 crossref_primary_10_1097_WNN_0000000000000303 crossref_primary_10_1002_cbm_2097 crossref_primary_10_1016_j_bbr_2012_09_005 crossref_primary_10_1162_089892904322926791 crossref_primary_10_1093_cercor_bhn098 crossref_primary_10_3389_fphar_2022_898548 crossref_primary_10_1016_j_neuroscience_2009_10_051 crossref_primary_10_1007_s12311_008_0046_8 crossref_primary_10_1371_journal_pone_0180753 crossref_primary_10_1111_j_1749_6632_2011_06230_x crossref_primary_10_1016_j_jaac_2011_07_011 crossref_primary_10_1016_j_jagp_2025_02_006 crossref_primary_10_1016_j_neubiorev_2014_03_027 crossref_primary_10_1016_j_jecp_2011_02_002 crossref_primary_10_1016_j_neubiorev_2020_09_030 crossref_primary_10_1097_WNR_0b013e32832c5f4d crossref_primary_10_1016_j_neunet_2011_03_001 crossref_primary_10_1162_0898929052880093 crossref_primary_10_1162_opmi_a_00139 crossref_primary_10_3758_s13428_023_02203_4 crossref_primary_10_1016_j_ridd_2020_103730 crossref_primary_10_3389_fnins_2015_00155 crossref_primary_10_1523_JNEUROSCI_4001_08_2008 crossref_primary_10_1016_S1053_8119_03_00393_8 crossref_primary_10_1016_j_neuroimage_2013_11_034 crossref_primary_10_1162_jocn_a_00057 crossref_primary_10_1177_0269881106072506 crossref_primary_10_1093_brain_awn112 crossref_primary_10_1017_S0954579405050418 crossref_primary_10_1001_archpsyc_65_5_586 crossref_primary_10_1037_0033_295X_113_2_300 crossref_primary_10_1038_s41598_017_16165_z crossref_primary_10_1007_s00787_015_0769_2 crossref_primary_10_3389_fnins_2020_00542 crossref_primary_10_1016_j_neuropsychologia_2010_03_031 crossref_primary_10_1017_S1355617712001300 crossref_primary_10_1038_sj_npp_1300715 crossref_primary_10_1177_0269881109349841 crossref_primary_10_1016_j_neuron_2007_07_022 crossref_primary_10_1016_j_jneumeth_2013_10_024 crossref_primary_10_1016_j_neuroscience_2013_04_050 crossref_primary_10_1371_journal_pone_0074044 crossref_primary_10_1016_j_cogbrainres_2005_01_010 crossref_primary_10_1002_hbm_22000 crossref_primary_10_3389_fpsyt_2022_960238 crossref_primary_10_3389_fpsyg_2021_679904 crossref_primary_10_1016_j_nicl_2017_04_010 crossref_primary_10_1093_cercor_bhp092 crossref_primary_10_1177_1948550614542348 crossref_primary_10_7554_eLife_93887_3 crossref_primary_10_1016_j_anbehav_2009_06_033 crossref_primary_10_1093_cercor_bhp098 crossref_primary_10_1016_j_appet_2017_12_019 crossref_primary_10_1017_S0033291709992017 crossref_primary_10_1016_j_neurobiolaging_2005_05_001 crossref_primary_10_1038_nrn1343 crossref_primary_10_1523_JNEUROSCI_3366_15_2016 crossref_primary_10_1177_2470547017715645 crossref_primary_10_1016_j_neuroimage_2006_02_035 crossref_primary_10_1016_j_neuron_2011_08_024 crossref_primary_10_1007_s00213_019_05302_3 crossref_primary_10_1016_j_neubiorev_2018_12_013 crossref_primary_10_1162_jocn_2008_20071 crossref_primary_10_1371_journal_pcbi_1012119 crossref_primary_10_1016_j_acra_2004_11_023 crossref_primary_10_1016_j_psychres_2018_08_011 crossref_primary_10_1152_jn_90659_2008 crossref_primary_10_1016_j_pneurobio_2013_06_005 crossref_primary_10_1016_j_biopsych_2011_06_033 crossref_primary_10_1016_j_ynstr_2024_100670 crossref_primary_10_1038_npp_2012_111 crossref_primary_10_1038_s41386_018_0272_9 crossref_primary_10_1152_jn_00086_2014 crossref_primary_10_1523_JNEUROSCI_0963_09_2009 crossref_primary_10_1016_j_pscychresns_2020_111081 crossref_primary_10_1162_jocn_a_00286 crossref_primary_10_3758_CABN_9_4_365 crossref_primary_10_1016_j_neubiorev_2019_04_006 crossref_primary_10_2147_nedt_1_1_9_52299 crossref_primary_10_3758_CABN_8_2_113 crossref_primary_10_1002_hbm_21015 crossref_primary_10_1002_dev_20041 crossref_primary_10_1016_j_brainres_2010_06_056 crossref_primary_10_3389_fnhum_2018_00343 crossref_primary_10_1016_j_tics_2015_11_002 crossref_primary_10_1097_chi_0b013e31802d0b3d crossref_primary_10_1016_j_neuropsychologia_2011_04_026 crossref_primary_10_1098_rsta_2004_1468 crossref_primary_10_1016_j_neuroscience_2019_01_062 crossref_primary_10_1080_03036758_2020_1784240 crossref_primary_10_1016_j_neuroimage_2021_117913 crossref_primary_10_1016_j_neuroscience_2016_08_008 crossref_primary_10_1073_pnas_1205828109 crossref_primary_10_1196_annals_1401_017 crossref_primary_10_1016_j_neuropsychologia_2006_10_004 crossref_primary_10_1038_s41598_022_26980_8 crossref_primary_10_1196_annals_1416_007 crossref_primary_10_1016_j_neuroimage_2016_08_024 crossref_primary_10_1080_13554790600611288 crossref_primary_10_1111_j_1460_9568_2009_06646_x crossref_primary_10_7554_eLife_75474 crossref_primary_10_1038_s41593_018_0315_x crossref_primary_10_1016_j_nlm_2004_06_004 crossref_primary_10_1038_npp_2008_175 crossref_primary_10_1126_science_1145044 crossref_primary_10_1016_j_cognition_2016_04_012 crossref_primary_10_1016_j_neuroimage_2008_05_049 crossref_primary_10_1016_j_tins_2004_06_006 crossref_primary_10_1523_JNEUROSCI_4966_08_2009 crossref_primary_10_1162_jocn_2010_21555 crossref_primary_10_1016_j_neuropsychologia_2012_05_021 crossref_primary_10_1016_j_actpsy_2003_12_008 crossref_primary_10_1016_j_neuroimage_2010_03_036 crossref_primary_10_1002_gps_4877 crossref_primary_10_1007_s43440_023_00563_4 crossref_primary_10_1016_j_brs_2018_12_001 crossref_primary_10_1162_jocn_a_00145 crossref_primary_10_1007_s00213_006_0493_1 crossref_primary_10_1007_s00787_020_01688_0 crossref_primary_10_3233_JHD_160221 crossref_primary_10_1176_appi_ajp_2011_11050711 crossref_primary_10_1016_j_bandc_2004_06_007 crossref_primary_10_1007_s11682_018_9905_1 crossref_primary_10_1111_nyas_12940 crossref_primary_10_1016_j_neuroimage_2015_05_076 crossref_primary_10_4061_2011_572743 crossref_primary_10_1016_j_drugalcdep_2013_09_029 crossref_primary_10_1016_j_jocrd_2016_02_004 crossref_primary_10_4103_1673_5374_389631 crossref_primary_10_1097_FBP_0b013e32832ec5bc crossref_primary_10_1016_j_brainres_2012_04_010 crossref_primary_10_1016_S0165_0173_03_00204_2 crossref_primary_10_7554_eLife_92700 crossref_primary_10_3389_fnsys_2015_00140 crossref_primary_10_1016_j_neuropsychologia_2010_08_012 crossref_primary_10_1002_hbm_20378 crossref_primary_10_1093_cercor_bhac459 crossref_primary_10_1523_JNEUROSCI_1440_13_2013 crossref_primary_10_1177_1087054716661233 crossref_primary_10_1016_j_neuropsychologia_2006_03_030 crossref_primary_10_1038_s41386_024_01821_6 crossref_primary_10_1002_hbm_20131 crossref_primary_10_1016_j_bpsgos_2023_06_004 crossref_primary_10_1038_nn1918 crossref_primary_10_1016_j_archger_2023_105156 crossref_primary_10_1162_jocn_a_00008 crossref_primary_10_1016_j_bandc_2009_04_003 crossref_primary_10_1016_j_dcn_2021_100920 crossref_primary_10_1002_hbm_23878 crossref_primary_10_3390_ijms25031928 crossref_primary_10_1016_j_bbr_2007_08_034 crossref_primary_10_1016_j_neurobiolaging_2018_05_014 crossref_primary_10_1016_j_neuroscience_2016_06_005 crossref_primary_10_1523_JNEUROSCI_5268_09_2010 crossref_primary_10_1152_jn_00197_2009 crossref_primary_10_1016_j_neuropsychologia_2023_108589 crossref_primary_10_1016_j_neuropsychologia_2013_10_021 crossref_primary_10_1016_j_yhbeh_2017_02_006 crossref_primary_10_1016_j_brs_2019_02_013 crossref_primary_10_1093_cercor_bhy276 crossref_primary_10_1177_1420326X241247218 crossref_primary_10_1016_j_ijpsycho_2017_01_004 crossref_primary_10_1097_MOP_0b013e32834cb9c9 crossref_primary_10_1016_j_neuroscience_2011_07_014 crossref_primary_10_1111_ejn_13401 crossref_primary_10_3389_fnbeh_2016_00154 crossref_primary_10_1016_j_tics_2004_02_010 crossref_primary_10_1016_j_bandc_2014_11_006 crossref_primary_10_3389_fnbeh_2016_00025 crossref_primary_10_1016_j_cub_2014_05_075 crossref_primary_10_1038_npp_2016_95 crossref_primary_10_7554_eLife_66057 crossref_primary_10_1002_syn_21846 crossref_primary_10_1016_j_neuropharm_2012_07_025 crossref_primary_10_1017_S1355617716000084 crossref_primary_10_1016_j_neuroimage_2014_10_025 crossref_primary_10_1111_j_1530_0277_2010_01215_x crossref_primary_10_1016_j_cortex_2017_08_014 crossref_primary_10_1176_appi_ajp_2011_11010137 crossref_primary_10_1016_j_neuroimage_2006_08_060 crossref_primary_10_1162_jocn_2007_19_2_249 crossref_primary_10_7554_eLife_79642 crossref_primary_10_1016_j_neuroimage_2003_10_032 crossref_primary_10_1007_s00213_016_4322_x crossref_primary_10_1016_j_euroneuro_2018_11_788 crossref_primary_10_1016_j_neuropsychologia_2004_07_003 crossref_primary_10_1016_j_neuropsychologia_2015_07_019 crossref_primary_10_1002_eat_24231 crossref_primary_10_1093_ijnp_pyab041 crossref_primary_10_1016_j_euroneuro_2018_08_005 crossref_primary_10_1016_j_neuron_2015_08_026 crossref_primary_10_1523_JNEUROSCI_2265_08_2008 crossref_primary_10_1073_pnas_0905191106 crossref_primary_10_1016_j_bbr_2011_03_016 crossref_primary_10_1016_j_nicl_2016_12_019 crossref_primary_10_1016_j_bbr_2007_07_017 crossref_primary_10_1016_j_neuropsychologia_2013_11_015 crossref_primary_10_1038_sj_npp_1300663 crossref_primary_10_1016_j_neuroimage_2005_11_005 crossref_primary_10_1007_s00221_011_2736_6 crossref_primary_10_3389_fneur_2021_639179 crossref_primary_10_1007_s10803_017_3152_y crossref_primary_10_1196_annals_1390_022 crossref_primary_10_1523_JNEUROSCI_1010_06_2006 crossref_primary_10_1016_j_mri_2012_06_020 crossref_primary_10_1111_j_1399_5618_2006_00282_x crossref_primary_10_1017_S0033291709991462 crossref_primary_10_1371_journal_pone_0036509 crossref_primary_10_1038_npp_2010_233 crossref_primary_10_1016_j_biopsych_2007_06_003 crossref_primary_10_1523_JNEUROSCI_5195_08_2009 crossref_primary_10_1016_j_neuron_2013_11_028 crossref_primary_10_1098_rstb_2002_1220 crossref_primary_10_1016_j_cortex_2021_04_008 crossref_primary_10_1162_089892904322984553 crossref_primary_10_1177_2045125312470130 crossref_primary_10_1016_j_bbr_2010_02_027 crossref_primary_10_1016_j_neuropsychologia_2006_02_002 crossref_primary_10_1016_j_neuropsychologia_2009_07_011 crossref_primary_10_1080_13803395_2010_524150 crossref_primary_10_1016_j_jpsychires_2025_01_051 crossref_primary_10_1038_s41386_018_0229_z crossref_primary_10_1111_ejn_14414 crossref_primary_10_1111_ejn_12234 crossref_primary_10_1007_s00213_009_1586_4 crossref_primary_10_1007_s40429_025_00621_2 crossref_primary_10_1007_s40167_013_0003_3 crossref_primary_10_1007_s00213_020_05478_z crossref_primary_10_1016_j_paid_2009_09_006 crossref_primary_10_1176_appi_ajp_2016_16070839 crossref_primary_10_1300_J069v26S01_04 crossref_primary_10_1016_j_neuroscience_2017_07_001 crossref_primary_10_1016_j_neuroimage_2004_04_012 crossref_primary_10_1016_j_neuroimage_2015_10_005 crossref_primary_10_1016_j_neuropsychologia_2011_01_032 crossref_primary_10_1016_j_pnpbp_2017_07_004 crossref_primary_10_3389_fpsyg_2014_00871 crossref_primary_10_1016_j_neuroimage_2006_06_011 crossref_primary_10_1521_pedi_2020_34_475 crossref_primary_10_1016_j_neuroscience_2008_04_076 crossref_primary_10_3389_fpsyt_2016_00034 crossref_primary_10_1177_17456916221120033 crossref_primary_10_1007_s00426_022_01763_y crossref_primary_10_1002_mds_25687 crossref_primary_10_1007_s00213_016_4497_1 crossref_primary_10_1016_j_neuropsychologia_2010_06_008 crossref_primary_10_1162_jocn_2009_21052 crossref_primary_10_1016_j_biopsych_2009_05_016 crossref_primary_10_1016_j_psychres_2013_12_026 crossref_primary_10_1016_j_bbr_2010_10_005 crossref_primary_10_1016_j_neuroimage_2003_09_060 crossref_primary_10_1016_S0006_3223_02_01786_9 crossref_primary_10_1162_jocn_2006_18_7_1198 crossref_primary_10_1016_j_cortex_2012_12_003 crossref_primary_10_1016_j_neuroimage_2003_09_063 crossref_primary_10_3758_s13423_015_0827_2 crossref_primary_10_1016_j_nicl_2015_11_006 crossref_primary_10_1162_jocn_a_00516 crossref_primary_10_1016_j_neuroimage_2006_06_021 crossref_primary_10_1093_scan_nsy066 crossref_primary_10_3390_ijms23073452 crossref_primary_10_1098_rstb_2008_0102 crossref_primary_10_1038_sj_npp_1301153 crossref_primary_10_1093_scan_nsx096 crossref_primary_10_1017_S109285291500036X crossref_primary_10_1093_cercor_bhw113 crossref_primary_10_1176_appi_ajp_162_10_1975 crossref_primary_10_1097_CHI_0b013e318185d2d1 crossref_primary_10_3389_fnhum_2023_1104614 crossref_primary_10_1016_j_pbb_2009_02_008 crossref_primary_10_1016_j_neuroimage_2010_07_001 crossref_primary_10_3390_life13081729 crossref_primary_10_1523_JNEUROSCI_1521_08_2008 crossref_primary_10_1371_journal_pone_0079272 crossref_primary_10_1073_pnas_0606297104 crossref_primary_10_1016_j_neuropsychologia_2011_08_005 crossref_primary_10_1016_j_schres_2007_03_010 crossref_primary_10_1002_hbm_22944 crossref_primary_10_1007_s10015_020_00674_8 crossref_primary_10_1111_j_1600_0447_2008_01286_x crossref_primary_10_1016_j_neuroimage_2009_12_109 crossref_primary_10_1038_s41583_018_0013_4 crossref_primary_10_1016_j_neuroimage_2007_08_002 crossref_primary_10_1016_j_bbi_2007_03_004 crossref_primary_10_1016_j_neuroimage_2019_116018 crossref_primary_10_1016_j_tics_2010_04_002 crossref_primary_10_1007_s00213_006_0411_6 crossref_primary_10_1016_j_neuron_2010_03_025 crossref_primary_10_1016_j_psychres_2021_113795 crossref_primary_10_1016_j_neucli_2021_08_001 crossref_primary_10_1080_17470218_2013_867518 crossref_primary_10_1523_JNEUROSCI_3401_04_2005 crossref_primary_10_1152_jn_01051_2010 crossref_primary_10_1016_j_brainres_2007_10_002 crossref_primary_10_1523_JNEUROSCI_3537_17_2018 crossref_primary_10_1017_S0033291721003524 crossref_primary_10_1371_journal_pbio_3000908 crossref_primary_10_3758_s13415_016_0410_y crossref_primary_10_1016_j_pnpbp_2019_03_016 crossref_primary_10_1080_13803395_2014_955784 crossref_primary_10_1371_journal_pone_0057257 crossref_primary_10_1016_j_bbr_2010_10_030 crossref_primary_10_1523_JNEUROSCI_5227_06_2007 crossref_primary_10_1016_j_addbeh_2022_107599 crossref_primary_10_1016_j_neuroimage_2010_09_051 crossref_primary_10_1016_S0278_2626_03_00284_7 crossref_primary_10_1016_j_neuroscience_2016_04_007 crossref_primary_10_1162_jocn_2009_21138 crossref_primary_10_7554_eLife_93887 crossref_primary_10_1016_j_neuroimage_2010_08_018 crossref_primary_10_1016_j_biopsych_2009_04_014 crossref_primary_10_1371_journal_pone_0123073 crossref_primary_10_1002_aur_1613 crossref_primary_10_1038_s42003_020_01611_y crossref_primary_10_1016_j_jagp_2024_11_017 crossref_primary_10_1016_j_bbr_2010_09_033 crossref_primary_10_1016_j_isci_2023_106599 crossref_primary_10_1017_S0033291724003106 crossref_primary_10_1523_JNEUROSCI_4655_08_2009 crossref_primary_10_3389_fnhum_2014_00839 crossref_primary_10_1523_ENEURO_0382_17_2018 crossref_primary_10_1162_CPSY_a_00028 crossref_primary_10_1016_j_neubiorev_2008_08_011 crossref_primary_10_1523_JNEUROSCI_0559_21_2021 crossref_primary_10_1093_cercor_bhz309 crossref_primary_10_1111_j_1460_9568_2006_05084_x crossref_primary_10_1162_jocn_2009_21092 crossref_primary_10_1523_JNEUROSCI_1958_10_2010 crossref_primary_10_1016_j_euroneuro_2013_06_007 crossref_primary_10_1016_j_neuroscience_2008_04_046 crossref_primary_10_1016_j_conb_2011_05_009 crossref_primary_10_1111_j_1460_9568_2005_04152_x crossref_primary_10_1016_j_neubiorev_2005_03_024 crossref_primary_10_1016_j_jpsychires_2014_06_013 crossref_primary_10_1523_JNEUROSCI_1120_15_2015 crossref_primary_10_1177_10298649211013409 crossref_primary_10_1016_j_neuroscience_2016_03_021 crossref_primary_10_1016_j_jad_2016_05_046 crossref_primary_10_1016_j_psyneuen_2010_05_003 crossref_primary_10_3389_fnagi_2016_00307 crossref_primary_10_1016_j_cortex_2021_06_016 crossref_primary_10_1038_s41398_019_0674_4 crossref_primary_10_1016_j_cortex_2009_11_007 crossref_primary_10_1080_14740338_2020_1804550 crossref_primary_10_1192_bjo_2023_611 crossref_primary_10_1037_0894_4105_20_3_280 crossref_primary_10_3389_fpsyt_2014_00032 crossref_primary_10_1007_s00213_007_1051_1 crossref_primary_10_1162_CPSY_a_00002 crossref_primary_10_1002_hbm_20754 crossref_primary_10_1186_1744_9081_7_38 crossref_primary_10_1016_j_neubiorev_2021_07_016 crossref_primary_10_1016_j_neubiorev_2023_105511 crossref_primary_10_1016_j_neuroimage_2015_03_053 crossref_primary_10_1016_j_euroneuro_2016_06_009 crossref_primary_10_1002_bsl_750 crossref_primary_10_1016_j_brainresbull_2024_111011 crossref_primary_10_1038_sj_npp_1301337 crossref_primary_10_1523_JNEUROSCI_5058_13_2014 crossref_primary_10_1371_journal_pone_0286208 crossref_primary_10_1523_JNEUROSCI_2631_10_2010 crossref_primary_10_1162_jocn_2009_21062 crossref_primary_10_1016_j_bpsc_2019_10_007 crossref_primary_10_1017_S1461145711001441 crossref_primary_10_1523_JNEUROSCI_1874_20_2020 crossref_primary_10_1111_adb_12143 crossref_primary_10_1016_j_brainres_2009_06_080 crossref_primary_10_1177_1745691616677828 crossref_primary_10_1016_j_paid_2016_11_004 crossref_primary_10_3389_fpsyg_2016_00655 crossref_primary_10_1093_scan_nsw171 crossref_primary_10_1016_j_neuroimage_2008_08_021 crossref_primary_10_1093_scan_nsw053 crossref_primary_10_1016_j_biopsych_2003_11_008 crossref_primary_10_1016_j_cub_2018_01_051 crossref_primary_10_1111_j_1460_9568_2007_05947_x crossref_primary_10_1088_1741_2552_ac16b3 crossref_primary_10_1016_j_psychres_2024_115717 crossref_primary_10_1196_annals_1301_022 crossref_primary_10_3390_languages9040136 crossref_primary_10_1176_appi_ajp_2009_09030407 crossref_primary_10_1002_hbm_20930 crossref_primary_10_5334_joc_120 crossref_primary_10_1192_bjp_bp_114_152223 crossref_primary_10_1016_j_neuropsychologia_2014_01_021 crossref_primary_10_1016_j_neubiorev_2017_11_022 crossref_primary_10_1162_jocn_2010_21456 crossref_primary_10_1002_aur_2403 crossref_primary_10_1002_mds_25152 crossref_primary_10_1007_s42113_020_00083_x crossref_primary_10_1016_j_neuroimage_2007_10_004 crossref_primary_10_1016_j_brainresrev_2008_07_004 crossref_primary_10_1016_j_neuropsychologia_2006_06_014 crossref_primary_10_1093_cercor_bhi127 crossref_primary_10_1093_texcom_tgac006 crossref_primary_10_1136_bmjopen_2021_050951 crossref_primary_10_1371_journal_pone_0061108 crossref_primary_10_1016_j_neuroimage_2016_09_022 crossref_primary_10_1007_s11065_018_9387_3 crossref_primary_10_1016_j_bandl_2014_03_003 crossref_primary_10_1523_JNEUROSCI_4312_03_2004 crossref_primary_10_1016_j_physbeh_2016_03_034 crossref_primary_10_1093_cercor_bhh189 crossref_primary_10_1080_17470218_2017_1350871 crossref_primary_10_1016_j_bandc_2018_07_001 crossref_primary_10_1523_JNEUROSCI_23_21_07931_2003 crossref_primary_10_1007_s00213_023_06460_1 crossref_primary_10_1016_j_neubiorev_2017_04_025 crossref_primary_10_1053_j_semnuclmed_2008_12_004 crossref_primary_10_1016_j_concog_2005_06_004 crossref_primary_10_1016_j_neuroscience_2016_09_022 crossref_primary_10_1007_s00213_006_0559_0 crossref_primary_10_1007_s00213_011_2318_0 crossref_primary_10_1016_j_nlm_2011_07_002 crossref_primary_10_1016_j_neubiorev_2012_04_006 crossref_primary_10_1016_j_neuroscience_2009_07_033 crossref_primary_10_1098_rstb_2007_2097 crossref_primary_10_1016_j_dr_2015_09_001 crossref_primary_10_1017_neu_2022_16 crossref_primary_10_1162_jocn_2008_20062 crossref_primary_10_1016_j_neuroimage_2009_09_013 crossref_primary_10_1016_j_biopsych_2012_02_021 crossref_primary_10_1016_j_cortex_2007_11_005 crossref_primary_10_1371_journal_pone_0016173 crossref_primary_10_1142_S021963521650028X crossref_primary_10_1016_j_neuroimage_2011_04_051 crossref_primary_10_1017_S0033291708005072 crossref_primary_10_3390_ijms23052469 crossref_primary_10_1016_j_cobeha_2024_101402 crossref_primary_10_1348_000712609X418480 crossref_primary_10_1016_j_neubiorev_2024_105747 crossref_primary_10_1016_j_neulet_2021_135711 crossref_primary_10_1371_journal_pone_0237032 crossref_primary_10_1016_j_neubiorev_2018_10_008 crossref_primary_10_1016_j_beproc_2018_12_016 crossref_primary_10_3389_fpsyt_2022_912397 crossref_primary_10_1111_j_1469_7610_2004_00398_x crossref_primary_10_1371_journal_pbio_0020140 crossref_primary_10_1126_science_1100301 crossref_primary_10_1016_j_neuropsychologia_2012_07_014 crossref_primary_10_1002_bsl_802 crossref_primary_10_1016_j_bandc_2004_09_016 crossref_primary_10_1101_lm_042085_116 crossref_primary_10_3389_fnhum_2017_00540 crossref_primary_10_1016_j_neubiorev_2013_10_005 crossref_primary_10_1017_S0033291710000309 crossref_primary_10_1371_journal_pone_0260444 crossref_primary_10_1111_j_1749_6632_2011_06267_x crossref_primary_10_1016_j_neubiorev_2012_10_002 crossref_primary_10_1016_j_euroneuro_2020_12_004 crossref_primary_10_1007_s00221_020_05825_8 crossref_primary_10_3389_fnhum_2014_00784 crossref_primary_10_1136_bmjment_2023_300885 crossref_primary_10_1098_rstb_2008_0027 crossref_primary_10_1162_jocn_2008_20115 crossref_primary_10_1186_s13063_022_06413_7 crossref_primary_10_1016_j_nicl_2021_102751 crossref_primary_10_1371_journal_pcbi_1005418 crossref_primary_10_1177_1533317507308781 crossref_primary_10_1016_j_neuroimage_2010_01_026 crossref_primary_10_1111_bph_15613 crossref_primary_10_1016_S0028_3932_03_00117_9 crossref_primary_10_1037_0021_843X_115_3_552 crossref_primary_10_1523_ENEURO_0154_19_2019 crossref_primary_10_1017_S0033291712000797 crossref_primary_10_1038_sj_npp_1301182 crossref_primary_10_1111_j_1469_7610_2006_01596_x crossref_primary_10_1016_j_neuroimage_2011_10_072 crossref_primary_10_1016_j_neuron_2006_12_014 crossref_primary_10_1016_j_neuroimage_2014_07_013 crossref_primary_10_1371_journal_pone_0082169 crossref_primary_10_1016_j_biopsych_2018_02_008 crossref_primary_10_1523_JNEUROSCI_3048_05_2006 crossref_primary_10_1016_j_tics_2007_10_011 crossref_primary_10_1007_s00213_016_4283_0 crossref_primary_10_1093_brain_awr075 crossref_primary_10_1111_acer_12393 crossref_primary_10_1016_j_psychres_2007_06_002 crossref_primary_10_1523_JNEUROSCI_23_35_11189_2003 crossref_primary_10_1016_j_neuroimage_2011_10_083 crossref_primary_10_1016_j_neuroimage_2010_09_017 crossref_primary_10_1146_annurev_clinpsy_032816_044941 crossref_primary_10_1002_cne_20717 crossref_primary_10_1093_brain_awh169 crossref_primary_10_1016_j_addbeh_2020_106534 crossref_primary_10_3389_fnbeh_2022_732375 crossref_primary_10_1016_j_celrep_2024_114355 crossref_primary_10_1016_j_paid_2018_02_036 crossref_primary_10_1007_s40263_023_01044_1 crossref_primary_10_1016_j_pscychresns_2007_10_003 |
ContentType | Journal Article |
Copyright | Copyright © 2002 Society for Neuroscience 2002 |
Copyright_xml | – notice: Copyright © 2002 Society for Neuroscience 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/jneurosci.22-11-04563.2002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 4567 |
ExternalDocumentID | PMC6758810 12040063 10_1523_JNEUROSCI_22_11_04563_2002 www22_11_4563 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AI. AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK AFHIN CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c551t-f3b8aeed1af2388d95a83a5c6cd7f2e43ea7ab9b677cace8ed4ff17eb3b354193 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:33:48 EDT 2025 Fri Jul 11 04:12:47 EDT 2025 Fri Jul 11 14:53:15 EDT 2025 Wed Feb 19 01:32:00 EST 2025 Tue Jul 01 04:15:28 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Tue Nov 10 19:48:38 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c551t-f3b8aeed1af2388d95a83a5c6cd7f2e43ea7ab9b677cace8ed4ff17eb3b354193 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/22/11/4563.full.pdf |
PMID | 12040063 |
PQID | 18729578 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6758810 proquest_miscellaneous_71768272 proquest_miscellaneous_18729578 pubmed_primary_12040063 crossref_primary_10_1523_JNEUROSCI_22_11_04563_2002 crossref_citationtrail_10_1523_JNEUROSCI_22_11_04563_2002 highwire_smallpub1_www22_11_4563 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20020601 2002-06-01 2002-Jun-01 |
PublicationDateYYYYMMDD | 2002-06-01 |
PublicationDate_xml | – month: 06 year: 2002 text: 20020601 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2002 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
SSID | ssj0007017 |
Score | 2.3144655 |
Snippet | Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4563 |
SubjectTerms | Adult Behavior Brain - anatomy & histology Brain - physiology Brain Mapping Corpus Striatum - physiology Feedback, Psychological - physiology Female Humans Magnetic Resonance Imaging Male Neural Inhibition - physiology Neurons - physiology Prefrontal Cortex - physiology Probability Learning Reversal Learning - physiology Reward |
Title | Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging |
URI | http://www.jneurosci.org/cgi/content/abstract/22/11/4563 https://www.ncbi.nlm.nih.gov/pubmed/12040063 https://www.proquest.com/docview/18729578 https://www.proquest.com/docview/71768272 https://pubmed.ncbi.nlm.nih.gov/PMC6758810 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEZVz8g3jIaJ6nTx6q02sZWBLRS3yLbscdQm6C1UwX8ec5x4jhBnRhIVdSmdpL2fD43nwshbxKeg9wxYWBELMBAiWWQRnkSSJHzJJdGCon5zmfT_tE8PlkkC-_MsdklG3mofu7MK_kfqsI5oCtmyf4DZZuLwgl4D_SFI1AYjjei8XttbH-HOlLRVtA405jLe7FeVeFtl7BeMf4VyzHjRgBoe-i6dg6RKmJgjEGPgY2LA_1zAqKu9hCeifNCVzNRZUcmcLyyfY3aSq1PL7OKbatEZoOaUVkuu_GJNjDIpz2gn3dbscCh99B-LqWsHeKzKhSw8VAwH0lVMzLGwUSNq248jusy1kZX2OKhoNJFLXkMH_lOXp_YmhPf3I86BKsa3b043YaeeAnndvWnH7PJ_PQ0m40Xs9vkDgPLAlnjh0--wDzv2SbNzSPXdWrhXu-uv1NXp3F1pnfZLH-G3rZ0mdl9cq-mFR1WiHpAbuniIdkfFmJTrn7Qt9SGBdv9ln3yy4GMAshoBTLqQUZLQzsgow5k1IGMWpDRDsioBxl1IKMNyGgNskdkPhnPRkdB3bEjUKB5bwITyVSA1hUKA6pgmg8SkUYiUX2Vc8N0HGnBhRzIPudKKJ3qPDYm5FpGMkpisCUek72iLPRTQmWPGaZAAqkEGAi81GCgjJJ52EtBQLMDMnD_eabqcvbYVWWZoVkL9MpOphgM-2V0nDEGhm5m6YVtV2Fu1Mz9XhV1udEs6kibrVdiuQRKhtl2u60G4rgD8tqRPAM2jXtvotDl1ToLU7BiQTpeP4KHYPkzDrd5UkHEPxpDSYtX5x3wNAOwRHz3m-Liqy0Vj-6ANOw9--tzPSd3_dJ9QfY2l1f6JajbG_nKLpDfEP_aTw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+the+Neural+Mechanisms+of+Probabilistic+Reversal+Learning+Using+Event-Related+Functional+Magnetic+Resonance+Imaging&rft.jtitle=The+Journal+of+neuroscience&rft.au=Cools%2C+R&rft.au=Clark%2C+L&rft.au=Owen%2C+A+M&rft.au=Robbins%2C+T+W&rft.date=2002-06-01&rft.issn=0270-6474&rft.volume=22&rft.issue=11&rft.spage=4563&rft.epage=4567&rft_id=info:doi/10.1523%2Fjneurosci.22-11-04563.2002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |