Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging

Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward asso...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 22; no. 11; pp. 4563 - 4567
Main Authors Cools, Roshan, Clark, Luke, Owen, Adrian M, Robbins, Trevor W
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 01.06.2002
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task.
AbstractList Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task.Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task.
Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus–reward associations and the reception of negative feedback. Significant signal change in the right ventrolateral prefrontal cortex was demonstrated on trials when subjects stopped responding to the previously relevant stimulus and shifted responding to the newly relevant stimulus. Significant signal change in the region of the ventral striatum was also observed on such reversal errors, from a region of interest analysis. The ventrolateral prefrontal cortex and ventral striatum were not significantly activated by the other, preceding reversal errors, or when subjects received negative feedback for correct responses. Moreover, the response on the final reversal error, before shifting, was not modulated by the number of preceding reversal errors, indicating that error-related activity does not simply accumulate in this network. The signal change in this ventral frontostriatal circuit is therefore associated with reversal learning and is uncontaminated by negative feedback. Overall, these data concur with findings in rodents and nonhuman primates of reversal-learning deficits after damage to ventral frontostriatal circuitry, and also support recent clinical findings using this task.
Author Clark, Luke
Cools, Roshan
Owen, Adrian M
Robbins, Trevor W
AuthorAffiliation 1 Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom, and
2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 2EF, United Kingdom
AuthorAffiliation_xml – name: 1 Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom, and
– name: 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 2EF, United Kingdom
Author_xml – sequence: 1
  fullname: Cools, Roshan
– sequence: 2
  fullname: Clark, Luke
– sequence: 3
  fullname: Owen, Adrian M
– sequence: 4
  fullname: Robbins, Trevor W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12040063$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFv4AiFrDK4EcSJywQaJjCoKFFA7O2bpybxFXilDiZEeLP4zTluYGNLdnfOTpX556RE9tZJOQJo0sWc_H82uLYd06bJechYyGN4kQsOaX8Hll4Igt5RNkJWVAuaZhEMjolZ85dU0olZfIBOWWcRpQmYkG-vcHSWGOrYKgxuPTG0AQfUNdgjWtd0JXBx77LITeNcYPRwQ4P2DsPbRH6W-HeTef6gHYId9jAgEVwMVo9mM5OZlBZnJXOP1iNwaaFymsekvslNA4f3d3nZH-x_rx6F26v3m5Wr7ehjmM2hKXIU0AsGJRcpGmRxZAKiHWiC1lyjASChDzLEyk1aEyxiMqSScxFLuKIZeKcvJx9b8a8xUL7oH5KddObFvqvqgOj_vyxplZVd1CJjNOUUW_w9M6g776M6AbVGqexacBiNzolmUxSLvk_QZZKnsUy9eDj3yP9zPKjGA-8mAHtm3Y9lr8QqqYtUO8v1_vd1afVRnGuGFO3W6CmLfDiV3-JtRlg6sOPZ5r_s3g2W9Smqo-mR-VaaBofl6nj8TjzEy6-AyrazTI
CitedBy_id crossref_primary_10_1016_j_neuroimage_2018_05_074
crossref_primary_10_1016_j_bbr_2012_02_006
crossref_primary_10_1016_j_jad_2016_10_043
crossref_primary_10_1016_S0006_3223_03_00701_7
crossref_primary_10_1016_j_dcn_2012_03_002
crossref_primary_10_1016_j_bbr_2022_113801
crossref_primary_10_1038_nn_2949
crossref_primary_10_1016_j_bandc_2012_02_002
crossref_primary_10_1176_appi_ajp_2007_07020365
crossref_primary_10_1016_j_neuroimage_2007_04_001
crossref_primary_10_1177_1073858410393359
crossref_primary_10_1515_revneuro_2014_0007
crossref_primary_10_1016_j_bbr_2016_10_019
crossref_primary_10_1016_j_pscychresns_2009_03_003
crossref_primary_10_3389_fnbeh_2019_00127
crossref_primary_10_1111_bdi_12132
crossref_primary_10_1038_sj_npp_1300980
crossref_primary_10_1097_WNN_0000000000000303
crossref_primary_10_1002_cbm_2097
crossref_primary_10_1016_j_bbr_2012_09_005
crossref_primary_10_1162_089892904322926791
crossref_primary_10_1093_cercor_bhn098
crossref_primary_10_3389_fphar_2022_898548
crossref_primary_10_1016_j_neuroscience_2009_10_051
crossref_primary_10_1007_s12311_008_0046_8
crossref_primary_10_1371_journal_pone_0180753
crossref_primary_10_1111_j_1749_6632_2011_06230_x
crossref_primary_10_1016_j_jaac_2011_07_011
crossref_primary_10_1016_j_jagp_2025_02_006
crossref_primary_10_1016_j_neubiorev_2014_03_027
crossref_primary_10_1016_j_jecp_2011_02_002
crossref_primary_10_1016_j_neubiorev_2020_09_030
crossref_primary_10_1097_WNR_0b013e32832c5f4d
crossref_primary_10_1016_j_neunet_2011_03_001
crossref_primary_10_1162_0898929052880093
crossref_primary_10_1162_opmi_a_00139
crossref_primary_10_3758_s13428_023_02203_4
crossref_primary_10_1016_j_ridd_2020_103730
crossref_primary_10_3389_fnins_2015_00155
crossref_primary_10_1523_JNEUROSCI_4001_08_2008
crossref_primary_10_1016_S1053_8119_03_00393_8
crossref_primary_10_1016_j_neuroimage_2013_11_034
crossref_primary_10_1162_jocn_a_00057
crossref_primary_10_1177_0269881106072506
crossref_primary_10_1093_brain_awn112
crossref_primary_10_1017_S0954579405050418
crossref_primary_10_1001_archpsyc_65_5_586
crossref_primary_10_1037_0033_295X_113_2_300
crossref_primary_10_1038_s41598_017_16165_z
crossref_primary_10_1007_s00787_015_0769_2
crossref_primary_10_3389_fnins_2020_00542
crossref_primary_10_1016_j_neuropsychologia_2010_03_031
crossref_primary_10_1017_S1355617712001300
crossref_primary_10_1038_sj_npp_1300715
crossref_primary_10_1177_0269881109349841
crossref_primary_10_1016_j_neuron_2007_07_022
crossref_primary_10_1016_j_jneumeth_2013_10_024
crossref_primary_10_1016_j_neuroscience_2013_04_050
crossref_primary_10_1371_journal_pone_0074044
crossref_primary_10_1016_j_cogbrainres_2005_01_010
crossref_primary_10_1002_hbm_22000
crossref_primary_10_3389_fpsyt_2022_960238
crossref_primary_10_3389_fpsyg_2021_679904
crossref_primary_10_1016_j_nicl_2017_04_010
crossref_primary_10_1093_cercor_bhp092
crossref_primary_10_1177_1948550614542348
crossref_primary_10_7554_eLife_93887_3
crossref_primary_10_1016_j_anbehav_2009_06_033
crossref_primary_10_1093_cercor_bhp098
crossref_primary_10_1016_j_appet_2017_12_019
crossref_primary_10_1017_S0033291709992017
crossref_primary_10_1016_j_neurobiolaging_2005_05_001
crossref_primary_10_1038_nrn1343
crossref_primary_10_1523_JNEUROSCI_3366_15_2016
crossref_primary_10_1177_2470547017715645
crossref_primary_10_1016_j_neuroimage_2006_02_035
crossref_primary_10_1016_j_neuron_2011_08_024
crossref_primary_10_1007_s00213_019_05302_3
crossref_primary_10_1016_j_neubiorev_2018_12_013
crossref_primary_10_1162_jocn_2008_20071
crossref_primary_10_1371_journal_pcbi_1012119
crossref_primary_10_1016_j_acra_2004_11_023
crossref_primary_10_1016_j_psychres_2018_08_011
crossref_primary_10_1152_jn_90659_2008
crossref_primary_10_1016_j_pneurobio_2013_06_005
crossref_primary_10_1016_j_biopsych_2011_06_033
crossref_primary_10_1016_j_ynstr_2024_100670
crossref_primary_10_1038_npp_2012_111
crossref_primary_10_1038_s41386_018_0272_9
crossref_primary_10_1152_jn_00086_2014
crossref_primary_10_1523_JNEUROSCI_0963_09_2009
crossref_primary_10_1016_j_pscychresns_2020_111081
crossref_primary_10_1162_jocn_a_00286
crossref_primary_10_3758_CABN_9_4_365
crossref_primary_10_1016_j_neubiorev_2019_04_006
crossref_primary_10_2147_nedt_1_1_9_52299
crossref_primary_10_3758_CABN_8_2_113
crossref_primary_10_1002_hbm_21015
crossref_primary_10_1002_dev_20041
crossref_primary_10_1016_j_brainres_2010_06_056
crossref_primary_10_3389_fnhum_2018_00343
crossref_primary_10_1016_j_tics_2015_11_002
crossref_primary_10_1097_chi_0b013e31802d0b3d
crossref_primary_10_1016_j_neuropsychologia_2011_04_026
crossref_primary_10_1098_rsta_2004_1468
crossref_primary_10_1016_j_neuroscience_2019_01_062
crossref_primary_10_1080_03036758_2020_1784240
crossref_primary_10_1016_j_neuroimage_2021_117913
crossref_primary_10_1016_j_neuroscience_2016_08_008
crossref_primary_10_1073_pnas_1205828109
crossref_primary_10_1196_annals_1401_017
crossref_primary_10_1016_j_neuropsychologia_2006_10_004
crossref_primary_10_1038_s41598_022_26980_8
crossref_primary_10_1196_annals_1416_007
crossref_primary_10_1016_j_neuroimage_2016_08_024
crossref_primary_10_1080_13554790600611288
crossref_primary_10_1111_j_1460_9568_2009_06646_x
crossref_primary_10_7554_eLife_75474
crossref_primary_10_1038_s41593_018_0315_x
crossref_primary_10_1016_j_nlm_2004_06_004
crossref_primary_10_1038_npp_2008_175
crossref_primary_10_1126_science_1145044
crossref_primary_10_1016_j_cognition_2016_04_012
crossref_primary_10_1016_j_neuroimage_2008_05_049
crossref_primary_10_1016_j_tins_2004_06_006
crossref_primary_10_1523_JNEUROSCI_4966_08_2009
crossref_primary_10_1162_jocn_2010_21555
crossref_primary_10_1016_j_neuropsychologia_2012_05_021
crossref_primary_10_1016_j_actpsy_2003_12_008
crossref_primary_10_1016_j_neuroimage_2010_03_036
crossref_primary_10_1002_gps_4877
crossref_primary_10_1007_s43440_023_00563_4
crossref_primary_10_1016_j_brs_2018_12_001
crossref_primary_10_1162_jocn_a_00145
crossref_primary_10_1007_s00213_006_0493_1
crossref_primary_10_1007_s00787_020_01688_0
crossref_primary_10_3233_JHD_160221
crossref_primary_10_1176_appi_ajp_2011_11050711
crossref_primary_10_1016_j_bandc_2004_06_007
crossref_primary_10_1007_s11682_018_9905_1
crossref_primary_10_1111_nyas_12940
crossref_primary_10_1016_j_neuroimage_2015_05_076
crossref_primary_10_4061_2011_572743
crossref_primary_10_1016_j_drugalcdep_2013_09_029
crossref_primary_10_1016_j_jocrd_2016_02_004
crossref_primary_10_4103_1673_5374_389631
crossref_primary_10_1097_FBP_0b013e32832ec5bc
crossref_primary_10_1016_j_brainres_2012_04_010
crossref_primary_10_1016_S0165_0173_03_00204_2
crossref_primary_10_7554_eLife_92700
crossref_primary_10_3389_fnsys_2015_00140
crossref_primary_10_1016_j_neuropsychologia_2010_08_012
crossref_primary_10_1002_hbm_20378
crossref_primary_10_1093_cercor_bhac459
crossref_primary_10_1523_JNEUROSCI_1440_13_2013
crossref_primary_10_1177_1087054716661233
crossref_primary_10_1016_j_neuropsychologia_2006_03_030
crossref_primary_10_1038_s41386_024_01821_6
crossref_primary_10_1002_hbm_20131
crossref_primary_10_1016_j_bpsgos_2023_06_004
crossref_primary_10_1038_nn1918
crossref_primary_10_1016_j_archger_2023_105156
crossref_primary_10_1162_jocn_a_00008
crossref_primary_10_1016_j_bandc_2009_04_003
crossref_primary_10_1016_j_dcn_2021_100920
crossref_primary_10_1002_hbm_23878
crossref_primary_10_3390_ijms25031928
crossref_primary_10_1016_j_bbr_2007_08_034
crossref_primary_10_1016_j_neurobiolaging_2018_05_014
crossref_primary_10_1016_j_neuroscience_2016_06_005
crossref_primary_10_1523_JNEUROSCI_5268_09_2010
crossref_primary_10_1152_jn_00197_2009
crossref_primary_10_1016_j_neuropsychologia_2023_108589
crossref_primary_10_1016_j_neuropsychologia_2013_10_021
crossref_primary_10_1016_j_yhbeh_2017_02_006
crossref_primary_10_1016_j_brs_2019_02_013
crossref_primary_10_1093_cercor_bhy276
crossref_primary_10_1177_1420326X241247218
crossref_primary_10_1016_j_ijpsycho_2017_01_004
crossref_primary_10_1097_MOP_0b013e32834cb9c9
crossref_primary_10_1016_j_neuroscience_2011_07_014
crossref_primary_10_1111_ejn_13401
crossref_primary_10_3389_fnbeh_2016_00154
crossref_primary_10_1016_j_tics_2004_02_010
crossref_primary_10_1016_j_bandc_2014_11_006
crossref_primary_10_3389_fnbeh_2016_00025
crossref_primary_10_1016_j_cub_2014_05_075
crossref_primary_10_1038_npp_2016_95
crossref_primary_10_7554_eLife_66057
crossref_primary_10_1002_syn_21846
crossref_primary_10_1016_j_neuropharm_2012_07_025
crossref_primary_10_1017_S1355617716000084
crossref_primary_10_1016_j_neuroimage_2014_10_025
crossref_primary_10_1111_j_1530_0277_2010_01215_x
crossref_primary_10_1016_j_cortex_2017_08_014
crossref_primary_10_1176_appi_ajp_2011_11010137
crossref_primary_10_1016_j_neuroimage_2006_08_060
crossref_primary_10_1162_jocn_2007_19_2_249
crossref_primary_10_7554_eLife_79642
crossref_primary_10_1016_j_neuroimage_2003_10_032
crossref_primary_10_1007_s00213_016_4322_x
crossref_primary_10_1016_j_euroneuro_2018_11_788
crossref_primary_10_1016_j_neuropsychologia_2004_07_003
crossref_primary_10_1016_j_neuropsychologia_2015_07_019
crossref_primary_10_1002_eat_24231
crossref_primary_10_1093_ijnp_pyab041
crossref_primary_10_1016_j_euroneuro_2018_08_005
crossref_primary_10_1016_j_neuron_2015_08_026
crossref_primary_10_1523_JNEUROSCI_2265_08_2008
crossref_primary_10_1073_pnas_0905191106
crossref_primary_10_1016_j_bbr_2011_03_016
crossref_primary_10_1016_j_nicl_2016_12_019
crossref_primary_10_1016_j_bbr_2007_07_017
crossref_primary_10_1016_j_neuropsychologia_2013_11_015
crossref_primary_10_1038_sj_npp_1300663
crossref_primary_10_1016_j_neuroimage_2005_11_005
crossref_primary_10_1007_s00221_011_2736_6
crossref_primary_10_3389_fneur_2021_639179
crossref_primary_10_1007_s10803_017_3152_y
crossref_primary_10_1196_annals_1390_022
crossref_primary_10_1523_JNEUROSCI_1010_06_2006
crossref_primary_10_1016_j_mri_2012_06_020
crossref_primary_10_1111_j_1399_5618_2006_00282_x
crossref_primary_10_1017_S0033291709991462
crossref_primary_10_1371_journal_pone_0036509
crossref_primary_10_1038_npp_2010_233
crossref_primary_10_1016_j_biopsych_2007_06_003
crossref_primary_10_1523_JNEUROSCI_5195_08_2009
crossref_primary_10_1016_j_neuron_2013_11_028
crossref_primary_10_1098_rstb_2002_1220
crossref_primary_10_1016_j_cortex_2021_04_008
crossref_primary_10_1162_089892904322984553
crossref_primary_10_1177_2045125312470130
crossref_primary_10_1016_j_bbr_2010_02_027
crossref_primary_10_1016_j_neuropsychologia_2006_02_002
crossref_primary_10_1016_j_neuropsychologia_2009_07_011
crossref_primary_10_1080_13803395_2010_524150
crossref_primary_10_1016_j_jpsychires_2025_01_051
crossref_primary_10_1038_s41386_018_0229_z
crossref_primary_10_1111_ejn_14414
crossref_primary_10_1111_ejn_12234
crossref_primary_10_1007_s00213_009_1586_4
crossref_primary_10_1007_s40429_025_00621_2
crossref_primary_10_1007_s40167_013_0003_3
crossref_primary_10_1007_s00213_020_05478_z
crossref_primary_10_1016_j_paid_2009_09_006
crossref_primary_10_1176_appi_ajp_2016_16070839
crossref_primary_10_1300_J069v26S01_04
crossref_primary_10_1016_j_neuroscience_2017_07_001
crossref_primary_10_1016_j_neuroimage_2004_04_012
crossref_primary_10_1016_j_neuroimage_2015_10_005
crossref_primary_10_1016_j_neuropsychologia_2011_01_032
crossref_primary_10_1016_j_pnpbp_2017_07_004
crossref_primary_10_3389_fpsyg_2014_00871
crossref_primary_10_1016_j_neuroimage_2006_06_011
crossref_primary_10_1521_pedi_2020_34_475
crossref_primary_10_1016_j_neuroscience_2008_04_076
crossref_primary_10_3389_fpsyt_2016_00034
crossref_primary_10_1177_17456916221120033
crossref_primary_10_1007_s00426_022_01763_y
crossref_primary_10_1002_mds_25687
crossref_primary_10_1007_s00213_016_4497_1
crossref_primary_10_1016_j_neuropsychologia_2010_06_008
crossref_primary_10_1162_jocn_2009_21052
crossref_primary_10_1016_j_biopsych_2009_05_016
crossref_primary_10_1016_j_psychres_2013_12_026
crossref_primary_10_1016_j_bbr_2010_10_005
crossref_primary_10_1016_j_neuroimage_2003_09_060
crossref_primary_10_1016_S0006_3223_02_01786_9
crossref_primary_10_1162_jocn_2006_18_7_1198
crossref_primary_10_1016_j_cortex_2012_12_003
crossref_primary_10_1016_j_neuroimage_2003_09_063
crossref_primary_10_3758_s13423_015_0827_2
crossref_primary_10_1016_j_nicl_2015_11_006
crossref_primary_10_1162_jocn_a_00516
crossref_primary_10_1016_j_neuroimage_2006_06_021
crossref_primary_10_1093_scan_nsy066
crossref_primary_10_3390_ijms23073452
crossref_primary_10_1098_rstb_2008_0102
crossref_primary_10_1038_sj_npp_1301153
crossref_primary_10_1093_scan_nsx096
crossref_primary_10_1017_S109285291500036X
crossref_primary_10_1093_cercor_bhw113
crossref_primary_10_1176_appi_ajp_162_10_1975
crossref_primary_10_1097_CHI_0b013e318185d2d1
crossref_primary_10_3389_fnhum_2023_1104614
crossref_primary_10_1016_j_pbb_2009_02_008
crossref_primary_10_1016_j_neuroimage_2010_07_001
crossref_primary_10_3390_life13081729
crossref_primary_10_1523_JNEUROSCI_1521_08_2008
crossref_primary_10_1371_journal_pone_0079272
crossref_primary_10_1073_pnas_0606297104
crossref_primary_10_1016_j_neuropsychologia_2011_08_005
crossref_primary_10_1016_j_schres_2007_03_010
crossref_primary_10_1002_hbm_22944
crossref_primary_10_1007_s10015_020_00674_8
crossref_primary_10_1111_j_1600_0447_2008_01286_x
crossref_primary_10_1016_j_neuroimage_2009_12_109
crossref_primary_10_1038_s41583_018_0013_4
crossref_primary_10_1016_j_neuroimage_2007_08_002
crossref_primary_10_1016_j_bbi_2007_03_004
crossref_primary_10_1016_j_neuroimage_2019_116018
crossref_primary_10_1016_j_tics_2010_04_002
crossref_primary_10_1007_s00213_006_0411_6
crossref_primary_10_1016_j_neuron_2010_03_025
crossref_primary_10_1016_j_psychres_2021_113795
crossref_primary_10_1016_j_neucli_2021_08_001
crossref_primary_10_1080_17470218_2013_867518
crossref_primary_10_1523_JNEUROSCI_3401_04_2005
crossref_primary_10_1152_jn_01051_2010
crossref_primary_10_1016_j_brainres_2007_10_002
crossref_primary_10_1523_JNEUROSCI_3537_17_2018
crossref_primary_10_1017_S0033291721003524
crossref_primary_10_1371_journal_pbio_3000908
crossref_primary_10_3758_s13415_016_0410_y
crossref_primary_10_1016_j_pnpbp_2019_03_016
crossref_primary_10_1080_13803395_2014_955784
crossref_primary_10_1371_journal_pone_0057257
crossref_primary_10_1016_j_bbr_2010_10_030
crossref_primary_10_1523_JNEUROSCI_5227_06_2007
crossref_primary_10_1016_j_addbeh_2022_107599
crossref_primary_10_1016_j_neuroimage_2010_09_051
crossref_primary_10_1016_S0278_2626_03_00284_7
crossref_primary_10_1016_j_neuroscience_2016_04_007
crossref_primary_10_1162_jocn_2009_21138
crossref_primary_10_7554_eLife_93887
crossref_primary_10_1016_j_neuroimage_2010_08_018
crossref_primary_10_1016_j_biopsych_2009_04_014
crossref_primary_10_1371_journal_pone_0123073
crossref_primary_10_1002_aur_1613
crossref_primary_10_1038_s42003_020_01611_y
crossref_primary_10_1016_j_jagp_2024_11_017
crossref_primary_10_1016_j_bbr_2010_09_033
crossref_primary_10_1016_j_isci_2023_106599
crossref_primary_10_1017_S0033291724003106
crossref_primary_10_1523_JNEUROSCI_4655_08_2009
crossref_primary_10_3389_fnhum_2014_00839
crossref_primary_10_1523_ENEURO_0382_17_2018
crossref_primary_10_1162_CPSY_a_00028
crossref_primary_10_1016_j_neubiorev_2008_08_011
crossref_primary_10_1523_JNEUROSCI_0559_21_2021
crossref_primary_10_1093_cercor_bhz309
crossref_primary_10_1111_j_1460_9568_2006_05084_x
crossref_primary_10_1162_jocn_2009_21092
crossref_primary_10_1523_JNEUROSCI_1958_10_2010
crossref_primary_10_1016_j_euroneuro_2013_06_007
crossref_primary_10_1016_j_neuroscience_2008_04_046
crossref_primary_10_1016_j_conb_2011_05_009
crossref_primary_10_1111_j_1460_9568_2005_04152_x
crossref_primary_10_1016_j_neubiorev_2005_03_024
crossref_primary_10_1016_j_jpsychires_2014_06_013
crossref_primary_10_1523_JNEUROSCI_1120_15_2015
crossref_primary_10_1177_10298649211013409
crossref_primary_10_1016_j_neuroscience_2016_03_021
crossref_primary_10_1016_j_jad_2016_05_046
crossref_primary_10_1016_j_psyneuen_2010_05_003
crossref_primary_10_3389_fnagi_2016_00307
crossref_primary_10_1016_j_cortex_2021_06_016
crossref_primary_10_1038_s41398_019_0674_4
crossref_primary_10_1016_j_cortex_2009_11_007
crossref_primary_10_1080_14740338_2020_1804550
crossref_primary_10_1192_bjo_2023_611
crossref_primary_10_1037_0894_4105_20_3_280
crossref_primary_10_3389_fpsyt_2014_00032
crossref_primary_10_1007_s00213_007_1051_1
crossref_primary_10_1162_CPSY_a_00002
crossref_primary_10_1002_hbm_20754
crossref_primary_10_1186_1744_9081_7_38
crossref_primary_10_1016_j_neubiorev_2021_07_016
crossref_primary_10_1016_j_neubiorev_2023_105511
crossref_primary_10_1016_j_neuroimage_2015_03_053
crossref_primary_10_1016_j_euroneuro_2016_06_009
crossref_primary_10_1002_bsl_750
crossref_primary_10_1016_j_brainresbull_2024_111011
crossref_primary_10_1038_sj_npp_1301337
crossref_primary_10_1523_JNEUROSCI_5058_13_2014
crossref_primary_10_1371_journal_pone_0286208
crossref_primary_10_1523_JNEUROSCI_2631_10_2010
crossref_primary_10_1162_jocn_2009_21062
crossref_primary_10_1016_j_bpsc_2019_10_007
crossref_primary_10_1017_S1461145711001441
crossref_primary_10_1523_JNEUROSCI_1874_20_2020
crossref_primary_10_1111_adb_12143
crossref_primary_10_1016_j_brainres_2009_06_080
crossref_primary_10_1177_1745691616677828
crossref_primary_10_1016_j_paid_2016_11_004
crossref_primary_10_3389_fpsyg_2016_00655
crossref_primary_10_1093_scan_nsw171
crossref_primary_10_1016_j_neuroimage_2008_08_021
crossref_primary_10_1093_scan_nsw053
crossref_primary_10_1016_j_biopsych_2003_11_008
crossref_primary_10_1016_j_cub_2018_01_051
crossref_primary_10_1111_j_1460_9568_2007_05947_x
crossref_primary_10_1088_1741_2552_ac16b3
crossref_primary_10_1016_j_psychres_2024_115717
crossref_primary_10_1196_annals_1301_022
crossref_primary_10_3390_languages9040136
crossref_primary_10_1176_appi_ajp_2009_09030407
crossref_primary_10_1002_hbm_20930
crossref_primary_10_5334_joc_120
crossref_primary_10_1192_bjp_bp_114_152223
crossref_primary_10_1016_j_neuropsychologia_2014_01_021
crossref_primary_10_1016_j_neubiorev_2017_11_022
crossref_primary_10_1162_jocn_2010_21456
crossref_primary_10_1002_aur_2403
crossref_primary_10_1002_mds_25152
crossref_primary_10_1007_s42113_020_00083_x
crossref_primary_10_1016_j_neuroimage_2007_10_004
crossref_primary_10_1016_j_brainresrev_2008_07_004
crossref_primary_10_1016_j_neuropsychologia_2006_06_014
crossref_primary_10_1093_cercor_bhi127
crossref_primary_10_1093_texcom_tgac006
crossref_primary_10_1136_bmjopen_2021_050951
crossref_primary_10_1371_journal_pone_0061108
crossref_primary_10_1016_j_neuroimage_2016_09_022
crossref_primary_10_1007_s11065_018_9387_3
crossref_primary_10_1016_j_bandl_2014_03_003
crossref_primary_10_1523_JNEUROSCI_4312_03_2004
crossref_primary_10_1016_j_physbeh_2016_03_034
crossref_primary_10_1093_cercor_bhh189
crossref_primary_10_1080_17470218_2017_1350871
crossref_primary_10_1016_j_bandc_2018_07_001
crossref_primary_10_1523_JNEUROSCI_23_21_07931_2003
crossref_primary_10_1007_s00213_023_06460_1
crossref_primary_10_1016_j_neubiorev_2017_04_025
crossref_primary_10_1053_j_semnuclmed_2008_12_004
crossref_primary_10_1016_j_concog_2005_06_004
crossref_primary_10_1016_j_neuroscience_2016_09_022
crossref_primary_10_1007_s00213_006_0559_0
crossref_primary_10_1007_s00213_011_2318_0
crossref_primary_10_1016_j_nlm_2011_07_002
crossref_primary_10_1016_j_neubiorev_2012_04_006
crossref_primary_10_1016_j_neuroscience_2009_07_033
crossref_primary_10_1098_rstb_2007_2097
crossref_primary_10_1016_j_dr_2015_09_001
crossref_primary_10_1017_neu_2022_16
crossref_primary_10_1162_jocn_2008_20062
crossref_primary_10_1016_j_neuroimage_2009_09_013
crossref_primary_10_1016_j_biopsych_2012_02_021
crossref_primary_10_1016_j_cortex_2007_11_005
crossref_primary_10_1371_journal_pone_0016173
crossref_primary_10_1142_S021963521650028X
crossref_primary_10_1016_j_neuroimage_2011_04_051
crossref_primary_10_1017_S0033291708005072
crossref_primary_10_3390_ijms23052469
crossref_primary_10_1016_j_cobeha_2024_101402
crossref_primary_10_1348_000712609X418480
crossref_primary_10_1016_j_neubiorev_2024_105747
crossref_primary_10_1016_j_neulet_2021_135711
crossref_primary_10_1371_journal_pone_0237032
crossref_primary_10_1016_j_neubiorev_2018_10_008
crossref_primary_10_1016_j_beproc_2018_12_016
crossref_primary_10_3389_fpsyt_2022_912397
crossref_primary_10_1111_j_1469_7610_2004_00398_x
crossref_primary_10_1371_journal_pbio_0020140
crossref_primary_10_1126_science_1100301
crossref_primary_10_1016_j_neuropsychologia_2012_07_014
crossref_primary_10_1002_bsl_802
crossref_primary_10_1016_j_bandc_2004_09_016
crossref_primary_10_1101_lm_042085_116
crossref_primary_10_3389_fnhum_2017_00540
crossref_primary_10_1016_j_neubiorev_2013_10_005
crossref_primary_10_1017_S0033291710000309
crossref_primary_10_1371_journal_pone_0260444
crossref_primary_10_1111_j_1749_6632_2011_06267_x
crossref_primary_10_1016_j_neubiorev_2012_10_002
crossref_primary_10_1016_j_euroneuro_2020_12_004
crossref_primary_10_1007_s00221_020_05825_8
crossref_primary_10_3389_fnhum_2014_00784
crossref_primary_10_1136_bmjment_2023_300885
crossref_primary_10_1098_rstb_2008_0027
crossref_primary_10_1162_jocn_2008_20115
crossref_primary_10_1186_s13063_022_06413_7
crossref_primary_10_1016_j_nicl_2021_102751
crossref_primary_10_1371_journal_pcbi_1005418
crossref_primary_10_1177_1533317507308781
crossref_primary_10_1016_j_neuroimage_2010_01_026
crossref_primary_10_1111_bph_15613
crossref_primary_10_1016_S0028_3932_03_00117_9
crossref_primary_10_1037_0021_843X_115_3_552
crossref_primary_10_1523_ENEURO_0154_19_2019
crossref_primary_10_1017_S0033291712000797
crossref_primary_10_1038_sj_npp_1301182
crossref_primary_10_1111_j_1469_7610_2006_01596_x
crossref_primary_10_1016_j_neuroimage_2011_10_072
crossref_primary_10_1016_j_neuron_2006_12_014
crossref_primary_10_1016_j_neuroimage_2014_07_013
crossref_primary_10_1371_journal_pone_0082169
crossref_primary_10_1016_j_biopsych_2018_02_008
crossref_primary_10_1523_JNEUROSCI_3048_05_2006
crossref_primary_10_1016_j_tics_2007_10_011
crossref_primary_10_1007_s00213_016_4283_0
crossref_primary_10_1093_brain_awr075
crossref_primary_10_1111_acer_12393
crossref_primary_10_1016_j_psychres_2007_06_002
crossref_primary_10_1523_JNEUROSCI_23_35_11189_2003
crossref_primary_10_1016_j_neuroimage_2011_10_083
crossref_primary_10_1016_j_neuroimage_2010_09_017
crossref_primary_10_1146_annurev_clinpsy_032816_044941
crossref_primary_10_1002_cne_20717
crossref_primary_10_1093_brain_awh169
crossref_primary_10_1016_j_addbeh_2020_106534
crossref_primary_10_3389_fnbeh_2022_732375
crossref_primary_10_1016_j_celrep_2024_114355
crossref_primary_10_1016_j_paid_2018_02_036
crossref_primary_10_1007_s40263_023_01044_1
crossref_primary_10_1016_j_pscychresns_2007_10_003
ContentType Journal Article
Copyright Copyright © 2002 Society for Neuroscience 2002
Copyright_xml – notice: Copyright © 2002 Society for Neuroscience 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/jneurosci.22-11-04563.2002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 4567
ExternalDocumentID PMC6758810
12040063
10_1523_JNEUROSCI_22_11_04563_2002
www22_11_4563
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AI.
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c551t-f3b8aeed1af2388d95a83a5c6cd7f2e43ea7ab9b677cace8ed4ff17eb3b354193
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:33:48 EDT 2025
Fri Jul 11 04:12:47 EDT 2025
Fri Jul 11 14:53:15 EDT 2025
Wed Feb 19 01:32:00 EST 2025
Tue Jul 01 04:15:28 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Tue Nov 10 19:48:38 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c551t-f3b8aeed1af2388d95a83a5c6cd7f2e43ea7ab9b677cace8ed4ff17eb3b354193
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/22/11/4563.full.pdf
PMID 12040063
PQID 18729578
PQPubID 23462
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6758810
proquest_miscellaneous_71768272
proquest_miscellaneous_18729578
pubmed_primary_12040063
crossref_primary_10_1523_JNEUROSCI_22_11_04563_2002
crossref_citationtrail_10_1523_JNEUROSCI_22_11_04563_2002
highwire_smallpub1_www22_11_4563
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20020601
2002-06-01
2002-Jun-01
PublicationDateYYYYMMDD 2002-06-01
PublicationDate_xml – month: 06
  year: 2002
  text: 20020601
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2002
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
SSID ssj0007017
Score 2.3144655
Snippet Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4563
SubjectTerms Adult
Behavior
Brain - anatomy & histology
Brain - physiology
Brain Mapping
Corpus Striatum - physiology
Feedback, Psychological - physiology
Female
Humans
Magnetic Resonance Imaging
Male
Neural Inhibition - physiology
Neurons - physiology
Prefrontal Cortex - physiology
Probability Learning
Reversal Learning - physiology
Reward
Title Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging
URI http://www.jneurosci.org/cgi/content/abstract/22/11/4563
https://www.ncbi.nlm.nih.gov/pubmed/12040063
https://www.proquest.com/docview/18729578
https://www.proquest.com/docview/71768272
https://pubmed.ncbi.nlm.nih.gov/PMC6758810
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEZVz8g3jIaJ6nTx6q02sZWBLRS3yLbscdQm6C1UwX8ec5x4jhBnRhIVdSmdpL2fD43nwshbxKeg9wxYWBELMBAiWWQRnkSSJHzJJdGCon5zmfT_tE8PlkkC-_MsdklG3mofu7MK_kfqsI5oCtmyf4DZZuLwgl4D_SFI1AYjjei8XttbH-HOlLRVtA405jLe7FeVeFtl7BeMf4VyzHjRgBoe-i6dg6RKmJgjEGPgY2LA_1zAqKu9hCeifNCVzNRZUcmcLyyfY3aSq1PL7OKbatEZoOaUVkuu_GJNjDIpz2gn3dbscCh99B-LqWsHeKzKhSw8VAwH0lVMzLGwUSNq248jusy1kZX2OKhoNJFLXkMH_lOXp_YmhPf3I86BKsa3b043YaeeAnndvWnH7PJ_PQ0m40Xs9vkDgPLAlnjh0--wDzv2SbNzSPXdWrhXu-uv1NXp3F1pnfZLH-G3rZ0mdl9cq-mFR1WiHpAbuniIdkfFmJTrn7Qt9SGBdv9ln3yy4GMAshoBTLqQUZLQzsgow5k1IGMWpDRDsioBxl1IKMNyGgNskdkPhnPRkdB3bEjUKB5bwITyVSA1hUKA6pgmg8SkUYiUX2Vc8N0HGnBhRzIPudKKJ3qPDYm5FpGMkpisCUek72iLPRTQmWPGaZAAqkEGAi81GCgjJJ52EtBQLMDMnD_eabqcvbYVWWZoVkL9MpOphgM-2V0nDEGhm5m6YVtV2Fu1Mz9XhV1udEs6kibrVdiuQRKhtl2u60G4rgD8tqRPAM2jXtvotDl1ToLU7BiQTpeP4KHYPkzDrd5UkHEPxpDSYtX5x3wNAOwRHz3m-Liqy0Vj-6ANOw9--tzPSd3_dJ9QfY2l1f6JajbG_nKLpDfEP_aTw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defining+the+Neural+Mechanisms+of+Probabilistic+Reversal+Learning+Using+Event-Related+Functional+Magnetic+Resonance+Imaging&rft.jtitle=The+Journal+of+neuroscience&rft.au=Cools%2C+R&rft.au=Clark%2C+L&rft.au=Owen%2C+A+M&rft.au=Robbins%2C+T+W&rft.date=2002-06-01&rft.issn=0270-6474&rft.volume=22&rft.issue=11&rft.spage=4563&rft.epage=4567&rft_id=info:doi/10.1523%2Fjneurosci.22-11-04563.2002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon