Variant Aldehyde Dehydrogenase 2 (ALDH22) in East Asians Interactively Exacerbates Tobacco Smoking Risk for Coronary Spasm ― Possible Role of Reactive Aldehydes
Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians....
Saved in:
Published in | Circulation Journal Vol. 81; no. 1; pp. 96 - 102 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Circulation Society
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.Conclusions:ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes. |
---|---|
AbstractList | Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.Conclusions:ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes. Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.BACKGROUNDCoronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes.CONCLUSIONSALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes. Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis. The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each. ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes. |
Author | Kinoshita, Kenji Harada, Eisaku Hokimoto, Seiji Yasue, Hirofumi Mizuno, Yuji Yoshimura, Michihiro |
Author_xml | – sequence: 1 fullname: Mizuno, Yuji organization: Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute – sequence: 1 fullname: Harada, Eisaku organization: Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute – sequence: 1 fullname: Kinoshita, Kenji organization: School of Pharmaceutical Sciences, Mukogawa Women’s University – sequence: 1 fullname: Yoshimura, Michihiro organization: Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine – sequence: 1 fullname: Hokimoto, Seiji organization: Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University – sequence: 1 fullname: Yasue, Hirofumi organization: Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27904031$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhUeoiP7AnhXysiym2B7PTGYZpSltFQmUFrbWHftO6nTGDraDyC4vwRvwZPAizDRpK7Fgc68X5zvyuec4ObDOYpK8ZfSM8Tz7oIxXy7PJdcqKlFZF9SI5YpkoUzHi9ODhXaTVSGSHyXEIS0p5RfPqVXLIy4oKmrGj5NdX8AZsJONW491GIzkflncLtBCQcHI6np1fcv6eGEumEHpl6IFArmxEDyqa79huyPQHKPQ1RAzk1tWglCM3nbs3dkHmJtyTxnkycd5Z8Btys4LQ_dluf29_ks8uBFO3SOauH64hc9y5Pn0pvE5eNtAGfLPfJ8mXi-nt5DKdffp4NRnPUpXnLKaYibqiTGmKGpjCShWKaaahTwtVWQolihoazoXONOVlUzJa6ywrB6Io6uwkOd35rrz7tsYQZWeCwrYFi24dJBuJnOesEqKXvttL13WHWq686fpk8vGyvaDYCZTvA3pspDIRonE2ejCtZFQOFcqHCuXkWrJCDhX2IP0HfPT-D3KxQ5YhwgKfAPDRqBb3wIhJNoxn8FlwB16izf4CJBG8eA |
CitedBy_id | crossref_primary_10_15829_1728_8800_2020_1_2391 crossref_primary_10_1016_j_jjcc_2023_06_009 crossref_primary_10_1536_ihj_17_165 crossref_primary_10_1265_ehpm_24_00214 crossref_primary_10_1007_s12265_023_10439_w crossref_primary_10_1253_circj_CJ_23_0926 crossref_primary_10_1253_circj_CJ_19_0989 crossref_primary_10_1253_circj_CJ_22_0779 crossref_primary_10_2147_JIR_S311885 crossref_primary_10_1136_bcr_2024_260281 crossref_primary_10_3390_ijms24087530 crossref_primary_10_1080_14728222_2018_1439922 crossref_primary_10_1253_circj_CJ_19_0323 crossref_primary_10_3390_vaccines10121998 crossref_primary_10_15829_1728_8800_2020_1_99_105 crossref_primary_10_3390_diseases12100231 crossref_primary_10_3390_vaccines10060866 crossref_primary_10_1253_circj_CJ_18_0516 crossref_primary_10_1265_jjh_73_9 crossref_primary_10_2147_IJGM_S461004 crossref_primary_10_3390_biomedicines10102349 |
Cites_doi | 10.1253/circj.CJ-09-0033 10.1253/circj.CJ-66-0098 10.1016/j.freeradbiomed.2012.11.010 10.1111/j.1469-1809.2009.00517.x 10.1089/152308604771978363 10.1161/01.CIR.101.10.1102 10.1021/tx2005184 10.2169/internalmedicine.53.2705 10.1161/01.CIR.99.22.2864 10.1016/j.ehj.2004.02.020 10.3109/10715762.2013.864761 10.1016/S0021-9150(97)06106-6 10.1161/01.CIR.0000014613.36469.3F 10.1093/eurheartj/ehu208 10.1016/0002-8703(84)90128-5 10.1161/CIRCINTERVENTIONS.108.803767 10.1152/physrev.00017.2013 10.1515/em-2013-0005 10.2169/internalmedicine.52.0894 10.1161/01.CIR.94.1.19 10.1152/ajpheart.1994.266.3.H874 10.2116/analsci.30.427 10.1016/j.jjcc.2008.01.001 10.1093/eurheartj/ehq253 10.1016/j.jacc.2003.12.047 10.1161/ATVBAHA.113.300156 10.1161/CIRCRESAHA.109.209791 10.1620/tjem.187.311 10.1161/CIRCULATIONAHA.114.013120 10.1007/s00439-001-0654-6 10.1079/PNS2003311 10.2302/kjm.59.115 10.1016/j.redox.2013.04.001 10.1253/circj.71.1074 10.1016/S0735-1097(96)00325-7 |
ContentType | Journal Article |
Copyright | 2017 THE JAPANESE CIRCULATION SOCIETY |
Copyright_xml | – notice: 2017 THE JAPANESE CIRCULATION SOCIETY |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1253/circj.CJ-16-0969 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-4820 |
EndPage | 102 |
ExternalDocumentID | 27904031 10_1253_circj_CJ_16_0969 article_circj_81_1_81_CJ_16_0969_article_char_en |
Genre | Clinical Trial Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- .55 29B 2WC 53G 5GY 5RE 6J9 ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 OVT P2P RJT RNS RZJ TR2 W2D X7M XSB ZXP .GJ 3O- AAYXX CITATION TKC CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c551t-e34b901cd0eda1ce9c6c1d1da790a9774c46baf224d3d027f710bd337cd0e66b3 |
ISSN | 1346-9843 1347-4820 |
IngestDate | Fri Jul 11 07:17:39 EDT 2025 Thu Apr 03 06:54:25 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Tue Jul 01 02:01:19 EDT 2025 Wed Sep 03 06:30:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c551t-e34b901cd0eda1ce9c6c1d1da790a9774c46baf224d3d027f710bd337cd0e66b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/circj/81/1/81_CJ-16-0969/_article/-char/en |
PMID | 27904031 |
PQID | 1845251944 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1845251944 pubmed_primary_27904031 crossref_citationtrail_10_1253_circj_CJ_16_0969 crossref_primary_10_1253_circj_CJ_16_0969 jstage_primary_article_circj_81_1_81_CJ_16_0969_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Circulation Journal |
PublicationTitleAlternate | Circ J |
PublicationYear | 2017 |
Publisher | The Japanese Circulation Society |
Publisher_xml | – name: The Japanese Circulation Society |
References | 31. Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1: 319–331. 2. Maseri A, Beltrame JF, Shimokawa H. Role of coronary vasoconstriction in ischemic heart disease and search for novel therapeutic targets. Circ J 2009; 73: 394–403. 8. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol Rev 2014; 94: 1–34. 6. Hill BG, Bhatnagar A. Beyond reactive oxygen species: Aldehydes as arbitrators of alarm and adaptation. Circ Res 2009; 105: 1044–1046. 30. Yoval-Sanchez B, Rodriguez-Zavala JS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol 2012; 25: 722–729. 33. Miyamoto S, Kawano H, Sakamoto T, Soejima H, Kajiwara I, Hokamaki J, et al. Increased plasma levels of thioredoxin in patients with coronary spastic angina. Antioxid Redox Signal 2004; 6: 75–80. 4. Morita S, Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Saito Y, et al. Differences and interactions between risk factors for coronary spasm and atherosclerosis: Smoking, aging, inflammation, and blood pressure. Intern Med 2014; 53: 2663–2670. 32. Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2014; 48: 251–263. 26. Kugiyama K, Yasue H, Ohgushi M, Motoyama T, Kawano H, Inobe Y, et al. Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers. J Am Coll Cardiol 1996; 28: 1161–1167. 9. Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet 2009; 73: 335–345. 10. Yokoyama A, Omori T, Yokoyama T. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians. Keio J Med 2010; 59: 115–130. 22. Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. Enhanced activity of variant phospholipase C-delta1 protein (R257H) detected in patienTS with coronary artery spasm. Circulation 2002; 105: 2024–2029. 27. Ota Y, Kugiyama K, Sugiyama S, Ohgushi M, Matsumura T, Doi H, et al. Impairment of endothelium-dependent relaxation of rabbit aortas by cigarette smoke extract--role of free radicals and attenuation by captopril. Atherosclerosis 1997; 131: 195–202. 16. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J 2014; 35: 1917–1924. 36. Ma H, Guo R, Yu L, Zhang Y, Ren J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: Role of autophagy paradox and toxic aldehyde. Eur Heart J 2011; 32: 1025–1038. 5. Pristipino C, Beltrame JF, Finocchiaro ML, Hattori R, Fujita M, Mongiardo R, et al. Major racial differences in coronary constrictor response between Japanese and Caucasians with recent myocardial infarction. Circulation 2000; 101: 1102–1108. 21. Murase Y, Yamada Y, Hirashiki A, Ichihara S, Kanda H, Watarai M, et al. Genetic risk and gene-environment interaction in coronary artery spasm in Japanese men and women. Eur Heart J 2004; 25: 970–977. 13. Mizuno Y, Morita S, Harada E, Shono M, Morikawa Y, Murohara T, et al. Alcohol flushing and positive ethanol patch test in patients with coronary spastic angina: Possible role of aldehyde dehydrogenase 2 polymorphisms. Intern Med 2013; 52: 2593–2598. 24. Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Yasue H. Cigarette smoke extract contracts isolated porcine coronary arteries by superoxide anion-mediated degradation of EDRF. Am J Physiol 1994; 266: H874–H880. 19. Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, et al. T-786→C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999; 99: 2864–2870. 29. Messner B, Bernhard D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34: 509–515. 14. Mizuno Y, Harada E, Morita S, Kinoshita K, Hayashida M, Shono M, et al. East Asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: Possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 2015; 131: 1665–1673. 18. VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiol Methods 2014; 3: 33. 23. Nakagawa H, Morikawa Y, Mizuno Y, Harada E, Ito T, Matsui K, et al. Coronary spasm preferentially occurs at branch points: An angiographic comparison with atherosclerotic plaque. Circ Cardiovasc Interv 2009; 2: 97–104. 11. Takizawa A, Yasue H, Omote S, Nagao M, Hyon H, Nishida S, et al. Variant angina induced by alcohol ingestion. Am Heart J 1984; 107: 25–27. 34. Itoh T, Mizuno Y, Harada E, Yoshimura M, Ogawa H, Yasue H. Coronary spasm is associated with chronic low-grade inflammation. Circ J 2007; 71: 1074–1078. 7. Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56: 89–101. 12. Seki T, Okayama H, Isoyama S, Kagaya Y, Shirato K, Munakata K, et al. The role of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 genotypes in alcohol-induced vasospastic angina. Tohoku J Exp Med 1999; 187: 311–322. 15. Hayashida M, Ota T, Ishii M, Iwao-Koizumi K, Murata S, Kinoshita K. Direct detection of single nucleotide polymorphism (SNP) by the TaqMan PCR assay using dried saliva on water-soluble paper and hair-rooTS, without DNA extraction. Anal Sci 2014; 30: 427–429. 3. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2013): Digest version. Circ J 2014; 78: 2779–2801. 20. Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, et al. Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet 2002; 110: 89–94. 17. Talmud PJ. How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc 2004; 63: 5–10. 28. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J Am Coll Cardiol 2004; 43: 1731–1737. 35. World Health Organization. WHO Report on the global tobacco epidemic. 2008; 67176. http://www.who.int/tobacco/global_report/summary/en/# (accessed February 16, 2016). 25. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 1996; 94: 19–25. 1. Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm: Clinical features, diagnosis, pathogenesis, and treatment. J Cardiol 2008; 51: 2–17. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 6. Hill BG, Bhatnagar A. Beyond reactive oxygen species: Aldehydes as arbitrators of alarm and adaptation. Circ Res 2009; 105: 1044–1046. – reference: 31. Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1: 319–331. – reference: 12. Seki T, Okayama H, Isoyama S, Kagaya Y, Shirato K, Munakata K, et al. The role of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 genotypes in alcohol-induced vasospastic angina. Tohoku J Exp Med 1999; 187: 311–322. – reference: 14. Mizuno Y, Harada E, Morita S, Kinoshita K, Hayashida M, Shono M, et al. East Asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: Possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 2015; 131: 1665–1673. – reference: 3. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2013): Digest version. Circ J 2014; 78: 2779–2801. – reference: 10. Yokoyama A, Omori T, Yokoyama T. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians. Keio J Med 2010; 59: 115–130. – reference: 15. Hayashida M, Ota T, Ishii M, Iwao-Koizumi K, Murata S, Kinoshita K. Direct detection of single nucleotide polymorphism (SNP) by the TaqMan PCR assay using dried saliva on water-soluble paper and hair-rooTS, without DNA extraction. Anal Sci 2014; 30: 427–429. – reference: 16. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J 2014; 35: 1917–1924. – reference: 29. Messner B, Bernhard D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34: 509–515. – reference: 20. Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, et al. Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet 2002; 110: 89–94. – reference: 24. Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Yasue H. Cigarette smoke extract contracts isolated porcine coronary arteries by superoxide anion-mediated degradation of EDRF. Am J Physiol 1994; 266: H874–H880. – reference: 11. Takizawa A, Yasue H, Omote S, Nagao M, Hyon H, Nishida S, et al. Variant angina induced by alcohol ingestion. Am Heart J 1984; 107: 25–27. – reference: 19. Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, et al. T-786→C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999; 99: 2864–2870. – reference: 2. Maseri A, Beltrame JF, Shimokawa H. Role of coronary vasoconstriction in ischemic heart disease and search for novel therapeutic targets. Circ J 2009; 73: 394–403. – reference: 30. Yoval-Sanchez B, Rodriguez-Zavala JS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol 2012; 25: 722–729. – reference: 18. VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiol Methods 2014; 3: 33. – reference: 32. Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2014; 48: 251–263. – reference: 5. Pristipino C, Beltrame JF, Finocchiaro ML, Hattori R, Fujita M, Mongiardo R, et al. Major racial differences in coronary constrictor response between Japanese and Caucasians with recent myocardial infarction. Circulation 2000; 101: 1102–1108. – reference: 27. Ota Y, Kugiyama K, Sugiyama S, Ohgushi M, Matsumura T, Doi H, et al. Impairment of endothelium-dependent relaxation of rabbit aortas by cigarette smoke extract--role of free radicals and attenuation by captopril. Atherosclerosis 1997; 131: 195–202. – reference: 1. Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm: Clinical features, diagnosis, pathogenesis, and treatment. J Cardiol 2008; 51: 2–17. – reference: 36. Ma H, Guo R, Yu L, Zhang Y, Ren J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: Role of autophagy paradox and toxic aldehyde. Eur Heart J 2011; 32: 1025–1038. – reference: 7. Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56: 89–101. – reference: 21. Murase Y, Yamada Y, Hirashiki A, Ichihara S, Kanda H, Watarai M, et al. Genetic risk and gene-environment interaction in coronary artery spasm in Japanese men and women. Eur Heart J 2004; 25: 970–977. – reference: 17. Talmud PJ. How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc 2004; 63: 5–10. – reference: 4. Morita S, Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Saito Y, et al. Differences and interactions between risk factors for coronary spasm and atherosclerosis: Smoking, aging, inflammation, and blood pressure. Intern Med 2014; 53: 2663–2670. – reference: 28. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J Am Coll Cardiol 2004; 43: 1731–1737. – reference: 33. Miyamoto S, Kawano H, Sakamoto T, Soejima H, Kajiwara I, Hokamaki J, et al. Increased plasma levels of thioredoxin in patients with coronary spastic angina. Antioxid Redox Signal 2004; 6: 75–80. – reference: 25. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 1996; 94: 19–25. – reference: 22. Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. Enhanced activity of variant phospholipase C-delta1 protein (R257H) detected in patienTS with coronary artery spasm. Circulation 2002; 105: 2024–2029. – reference: 34. Itoh T, Mizuno Y, Harada E, Yoshimura M, Ogawa H, Yasue H. Coronary spasm is associated with chronic low-grade inflammation. Circ J 2007; 71: 1074–1078. – reference: 26. Kugiyama K, Yasue H, Ohgushi M, Motoyama T, Kawano H, Inobe Y, et al. Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers. J Am Coll Cardiol 1996; 28: 1161–1167. – reference: 23. Nakagawa H, Morikawa Y, Mizuno Y, Harada E, Ito T, Matsui K, et al. Coronary spasm preferentially occurs at branch points: An angiographic comparison with atherosclerotic plaque. Circ Cardiovasc Interv 2009; 2: 97–104. – reference: 35. World Health Organization. WHO Report on the global tobacco epidemic. 2008; 67176. http://www.who.int/tobacco/global_report/summary/en/# (accessed February 16, 2016). – reference: 13. Mizuno Y, Morita S, Harada E, Shono M, Morikawa Y, Murohara T, et al. Alcohol flushing and positive ethanol patch test in patients with coronary spastic angina: Possible role of aldehyde dehydrogenase 2 polymorphisms. Intern Med 2013; 52: 2593–2598. – reference: 8. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol Rev 2014; 94: 1–34. – reference: 9. Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet 2009; 73: 335–345. – ident: 2 doi: 10.1253/circj.CJ-09-0033 – ident: 3 doi: 10.1253/circj.CJ-66-0098 – ident: 7 doi: 10.1016/j.freeradbiomed.2012.11.010 – ident: 9 doi: 10.1111/j.1469-1809.2009.00517.x – ident: 35 – ident: 33 doi: 10.1089/152308604771978363 – ident: 5 doi: 10.1161/01.CIR.101.10.1102 – ident: 30 doi: 10.1021/tx2005184 – ident: 4 doi: 10.2169/internalmedicine.53.2705 – ident: 19 doi: 10.1161/01.CIR.99.22.2864 – ident: 21 doi: 10.1016/j.ehj.2004.02.020 – ident: 32 doi: 10.3109/10715762.2013.864761 – ident: 27 doi: 10.1016/S0021-9150(97)06106-6 – ident: 22 doi: 10.1161/01.CIR.0000014613.36469.3F – ident: 16 doi: 10.1093/eurheartj/ehu208 – ident: 11 doi: 10.1016/0002-8703(84)90128-5 – ident: 23 doi: 10.1161/CIRCINTERVENTIONS.108.803767 – ident: 8 doi: 10.1152/physrev.00017.2013 – ident: 18 doi: 10.1515/em-2013-0005 – ident: 13 doi: 10.2169/internalmedicine.52.0894 – ident: 25 doi: 10.1161/01.CIR.94.1.19 – ident: 24 doi: 10.1152/ajpheart.1994.266.3.H874 – ident: 15 doi: 10.2116/analsci.30.427 – ident: 1 doi: 10.1016/j.jjcc.2008.01.001 – ident: 36 doi: 10.1093/eurheartj/ehq253 – ident: 28 doi: 10.1016/j.jacc.2003.12.047 – ident: 29 doi: 10.1161/ATVBAHA.113.300156 – ident: 6 doi: 10.1161/CIRCRESAHA.109.209791 – ident: 12 doi: 10.1620/tjem.187.311 – ident: 14 doi: 10.1161/CIRCULATIONAHA.114.013120 – ident: 20 doi: 10.1007/s00439-001-0654-6 – ident: 17 doi: 10.1079/PNS2003311 – ident: 10 doi: 10.2302/kjm.59.115 – ident: 31 doi: 10.1016/j.redox.2013.04.001 – ident: 34 doi: 10.1253/circj.71.1074 – ident: 26 doi: 10.1016/S0735-1097(96)00325-7 |
SSID | ssj0029059 |
Score | 2.3041937 |
Snippet | Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2... Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2)... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 96 |
SubjectTerms | Aged Aldehyde dehydrogenase 2 Aldehyde Dehydrogenase, Mitochondrial - genetics Aldehyde Dehydrogenase, Mitochondrial - metabolism Aldehydes - blood Angina Pectoris - blood Angina Pectoris - enzymology Angina Pectoris - etiology Angina Pectoris - genetics Asian People Cholesterol, HDL - blood Coronary spastic angina Coronary Vasospasm - blood Coronary Vasospasm - enzymology Coronary Vasospasm - etiology Coronary Vasospasm - genetics East Asians Female Genotype Humans Japan Male Middle Aged Reactive aldehydes Sex Factors Smoking - adverse effects Smoking - blood Smoking - genetics Tobacco smoking Uric Acid - blood |
Title | Variant Aldehyde Dehydrogenase 2 (ALDH22) in East Asians Interactively Exacerbates Tobacco Smoking Risk for Coronary Spasm ― Possible Role of Reactive Aldehydes |
URI | https://www.jstage.jst.go.jp/article/circj/81/1/81_CJ-16-0969/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/27904031 https://www.proquest.com/docview/1845251944 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Circulation Journal, 2016/12/22, Vol.81(1), pp.96-102 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2gRAviOsoNxkJJKYoXe2kuTyhqhSmivGwCxpPkWO7LFvXTE0rsT3tT_AP-GXwRzgndtJsY4ghVWnl-jhOzmefc5LPPoS8Cj3w0rmMXBUw4fojrtxoxJnLU6_rqTgSowDXO29-CjZ2_eFed29pudVgLc1naVue_nFdyf9oFcpAr7hK9hqarRuFAvgN-oUjaBiO_6TjzxDowp1xemOl908UUoDga5qDABgnh6P72Pv4boNzDP6ziTMQBdTGdZOFeRYoyulufOIMvgkJdxg9T2cHxriUubN9lB-W7DyknyMdsY_bHSDNbvtYFEevBx7yJOBjCRNdTP0LQ2ysnS1LWtzS5gx1F4umN9zPptKmD6u3sLhqXwt0kIdg2TFjptMUtLzTGjnZ6bxMJ-58mR9kNWrhSgCUZfm2zhp_iKlQpQM9yApxOF9wEiZ5sZ8Z3xqskZWwz0dY2Hg-YqZ0zw_cODKbQbV1VRa6fsQ7TTsQsUt4N5N6HDTcA1YuEL9seXiZPkTC5R-0-0OXBS4Eh_HCylbMggvGt6ZEYjAGbSRlC0l_mLAgwRaWyQ0OERAm5_iwV7OXeNwp8wDWF2ffwEML6xf7cM7junkAQcdXfXU8VfpVO3fJHRsQ0Z5B9z2ypCf3ya1NS_l4QH5YkNMKQfQcyCmnbwzE12g2oQhwagBOzwGcNgBOLcCpBThFgFMAOK0ATkuA_zo7-3n2nVagpghqmo9oBeq6S8VDsvt-sNPfcG1qEVdCiDBzteen4AlL1dFKMKljGUimmBJh3BEYEkk_SMUI_FvlqQ4PR-CIp8rzQpQIgtR7RFYm-UQ_JjQOdUeDFFIAQAzXckc6hXoKIotIqRZZr24_KNfwazD9yzi5SuUtslZLHJs9Z_5S963RaF3Tzka2ZsQShoeFxKLCvpjCLNoiLysoJGBa8H0hDOV8XiQsQtIDi32_RVYNRuqzcLhRPjgET67R16fk9mKAPiMrs-lcPweXfpa-KMH9G7Xn-6o |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variant+Aldehyde+Dehydrogenase+2+%28ALDH22%29+in+East+Asians+Interactively+Exacerbates+Tobacco+Smoking+Risk+for+Coronary+Spasm%E3%80%80%E2%80%95+Possible+Role+of+Reactive+Aldehydes&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Mizuno%2C+Yuji&rft.au=Hokimoto%2C+Seiji&rft.au=Harada%2C+Eisaku&rft.au=Kinoshita%2C+Kenji&rft.date=2017-01-01&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=81&rft.issue=1&rft.spage=96&rft.epage=102&rft_id=info:doi/10.1253%2Fcircj.CJ-16-0969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_16_0969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |