Variant Aldehyde Dehydrogenase 2 (ALDH22) in East Asians Interactively Exacerbates Tobacco Smoking Risk for Coronary Spasm ― Possible Role of Reactive Aldehydes

Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians....

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 81; no. 1; pp. 96 - 102
Main Authors Mizuno, Yuji, Harada, Eisaku, Kinoshita, Kenji, Yoshimura, Michihiro, Hokimoto, Seiji, Yasue, Hirofumi
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.Conclusions:ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes.
AbstractList Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.Conclusions:ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes.
Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.BACKGROUNDCoronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis.Methods and Results:The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each.ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes.CONCLUSIONSALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes.
Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2) plays a key role in removing reactive toxic aldehydes and a deficient variant ALDH2 genotype (ALDH2*2) is prevalent among East Asians. We examined the interaction between TS andALDH2*2as a risk factor for CSA to better understand the disease pathogenesis. The study subjects comprised 410 patients (258 men, 152 women; mean age, 66.3±11.5) in whom intracoronary injection of acetylcholine was performed on suspicion of CSA.ALDH2genotyping was performed by direct application of the Taqman polymerase chain reaction system. Of the study subjects, 244 had CSA proven and 166 were non-CSA. The frequencies of male sex,ALDH2*2, alcohol flushing syndrome, TS, coronary organic stenosis, and plasma levels of uric acid were higher (P<0.001, P<0.001, P<0.001, P<0.001, P<0.001, and P=0.015, respectively) and that of high-density lipoprotein cholesterol lower (P=0.002) in the CSA than non-CSA group. Multivariable logistic regression analysis revealed thatALDH2*2and TS were significant risk factors for CSA (P<0.001 and P=0.002, respectively).ALDH2*2exacerbated TS risk for CSA more than the multiplicative effects of each. ALDH2*2synergistically exacerbates TS risk for CSA, probably through aldehydes.
Author Kinoshita, Kenji
Harada, Eisaku
Hokimoto, Seiji
Yasue, Hirofumi
Mizuno, Yuji
Yoshimura, Michihiro
Author_xml – sequence: 1
  fullname: Mizuno, Yuji
  organization: Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute
– sequence: 1
  fullname: Harada, Eisaku
  organization: Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute
– sequence: 1
  fullname: Kinoshita, Kenji
  organization: School of Pharmaceutical Sciences, Mukogawa Women’s University
– sequence: 1
  fullname: Yoshimura, Michihiro
  organization: Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
– sequence: 1
  fullname: Hokimoto, Seiji
  organization: Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
– sequence: 1
  fullname: Yasue, Hirofumi
  organization: Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27904031$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhUeoiP7AnhXysiym2B7PTGYZpSltFQmUFrbWHftO6nTGDraDyC4vwRvwZPAizDRpK7Fgc68X5zvyuec4ObDOYpK8ZfSM8Tz7oIxXy7PJdcqKlFZF9SI5YpkoUzHi9ODhXaTVSGSHyXEIS0p5RfPqVXLIy4oKmrGj5NdX8AZsJONW491GIzkflncLtBCQcHI6np1fcv6eGEumEHpl6IFArmxEDyqa79huyPQHKPQ1RAzk1tWglCM3nbs3dkHmJtyTxnkycd5Z8Btys4LQ_dluf29_ks8uBFO3SOauH64hc9y5Pn0pvE5eNtAGfLPfJ8mXi-nt5DKdffp4NRnPUpXnLKaYibqiTGmKGpjCShWKaaahTwtVWQolihoazoXONOVlUzJa6ywrB6Io6uwkOd35rrz7tsYQZWeCwrYFi24dJBuJnOesEqKXvttL13WHWq686fpk8vGyvaDYCZTvA3pspDIRonE2ejCtZFQOFcqHCuXkWrJCDhX2IP0HfPT-D3KxQ5YhwgKfAPDRqBb3wIhJNoxn8FlwB16izf4CJBG8eA
CitedBy_id crossref_primary_10_15829_1728_8800_2020_1_2391
crossref_primary_10_1016_j_jjcc_2023_06_009
crossref_primary_10_1536_ihj_17_165
crossref_primary_10_1265_ehpm_24_00214
crossref_primary_10_1007_s12265_023_10439_w
crossref_primary_10_1253_circj_CJ_23_0926
crossref_primary_10_1253_circj_CJ_19_0989
crossref_primary_10_1253_circj_CJ_22_0779
crossref_primary_10_2147_JIR_S311885
crossref_primary_10_1136_bcr_2024_260281
crossref_primary_10_3390_ijms24087530
crossref_primary_10_1080_14728222_2018_1439922
crossref_primary_10_1253_circj_CJ_19_0323
crossref_primary_10_3390_vaccines10121998
crossref_primary_10_15829_1728_8800_2020_1_99_105
crossref_primary_10_3390_diseases12100231
crossref_primary_10_3390_vaccines10060866
crossref_primary_10_1253_circj_CJ_18_0516
crossref_primary_10_1265_jjh_73_9
crossref_primary_10_2147_IJGM_S461004
crossref_primary_10_3390_biomedicines10102349
Cites_doi 10.1253/circj.CJ-09-0033
10.1253/circj.CJ-66-0098
10.1016/j.freeradbiomed.2012.11.010
10.1111/j.1469-1809.2009.00517.x
10.1089/152308604771978363
10.1161/01.CIR.101.10.1102
10.1021/tx2005184
10.2169/internalmedicine.53.2705
10.1161/01.CIR.99.22.2864
10.1016/j.ehj.2004.02.020
10.3109/10715762.2013.864761
10.1016/S0021-9150(97)06106-6
10.1161/01.CIR.0000014613.36469.3F
10.1093/eurheartj/ehu208
10.1016/0002-8703(84)90128-5
10.1161/CIRCINTERVENTIONS.108.803767
10.1152/physrev.00017.2013
10.1515/em-2013-0005
10.2169/internalmedicine.52.0894
10.1161/01.CIR.94.1.19
10.1152/ajpheart.1994.266.3.H874
10.2116/analsci.30.427
10.1016/j.jjcc.2008.01.001
10.1093/eurheartj/ehq253
10.1016/j.jacc.2003.12.047
10.1161/ATVBAHA.113.300156
10.1161/CIRCRESAHA.109.209791
10.1620/tjem.187.311
10.1161/CIRCULATIONAHA.114.013120
10.1007/s00439-001-0654-6
10.1079/PNS2003311
10.2302/kjm.59.115
10.1016/j.redox.2013.04.001
10.1253/circj.71.1074
10.1016/S0735-1097(96)00325-7
ContentType Journal Article
Copyright 2017 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2017 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-16-0969
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 102
ExternalDocumentID 27904031
10_1253_circj_CJ_16_0969
article_circj_81_1_81_CJ_16_0969_article_char_en
Genre Clinical Trial
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
.55
29B
2WC
53G
5GY
5RE
6J9
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
ZXP
.GJ
3O-
AAYXX
CITATION
TKC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c551t-e34b901cd0eda1ce9c6c1d1da790a9774c46baf224d3d027f710bd337cd0e66b3
ISSN 1346-9843
1347-4820
IngestDate Fri Jul 11 07:17:39 EDT 2025
Thu Apr 03 06:54:25 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Tue Jul 01 02:01:19 EDT 2025
Wed Sep 03 06:30:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c551t-e34b901cd0eda1ce9c6c1d1da790a9774c46baf224d3d027f710bd337cd0e66b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/81/1/81_CJ-16-0969/_article/-char/en
PMID 27904031
PQID 1845251944
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1845251944
pubmed_primary_27904031
crossref_citationtrail_10_1253_circj_CJ_16_0969
crossref_primary_10_1253_circj_CJ_16_0969
jstage_primary_article_circj_81_1_81_CJ_16_0969_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2017
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 31. Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1: 319–331.
2. Maseri A, Beltrame JF, Shimokawa H. Role of coronary vasoconstriction in ischemic heart disease and search for novel therapeutic targets. Circ J 2009; 73: 394–403.
8. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol Rev 2014; 94: 1–34.
6. Hill BG, Bhatnagar A. Beyond reactive oxygen species: Aldehydes as arbitrators of alarm and adaptation. Circ Res 2009; 105: 1044–1046.
30. Yoval-Sanchez B, Rodriguez-Zavala JS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol 2012; 25: 722–729.
33. Miyamoto S, Kawano H, Sakamoto T, Soejima H, Kajiwara I, Hokamaki J, et al. Increased plasma levels of thioredoxin in patients with coronary spastic angina. Antioxid Redox Signal 2004; 6: 75–80.
4. Morita S, Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Saito Y, et al. Differences and interactions between risk factors for coronary spasm and atherosclerosis: Smoking, aging, inflammation, and blood pressure. Intern Med 2014; 53: 2663–2670.
32. Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2014; 48: 251–263.
26. Kugiyama K, Yasue H, Ohgushi M, Motoyama T, Kawano H, Inobe Y, et al. Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers. J Am Coll Cardiol 1996; 28: 1161–1167.
9. Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet 2009; 73: 335–345.
10. Yokoyama A, Omori T, Yokoyama T. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians. Keio J Med 2010; 59: 115–130.
22. Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. Enhanced activity of variant phospholipase C-delta1 protein (R257H) detected in patienTS with coronary artery spasm. Circulation 2002; 105: 2024–2029.
27. Ota Y, Kugiyama K, Sugiyama S, Ohgushi M, Matsumura T, Doi H, et al. Impairment of endothelium-dependent relaxation of rabbit aortas by cigarette smoke extract--role of free radicals and attenuation by captopril. Atherosclerosis 1997; 131: 195–202.
16. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J 2014; 35: 1917–1924.
36. Ma H, Guo R, Yu L, Zhang Y, Ren J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: Role of autophagy paradox and toxic aldehyde. Eur Heart J 2011; 32: 1025–1038.
5. Pristipino C, Beltrame JF, Finocchiaro ML, Hattori R, Fujita M, Mongiardo R, et al. Major racial differences in coronary constrictor response between Japanese and Caucasians with recent myocardial infarction. Circulation 2000; 101: 1102–1108.
21. Murase Y, Yamada Y, Hirashiki A, Ichihara S, Kanda H, Watarai M, et al. Genetic risk and gene-environment interaction in coronary artery spasm in Japanese men and women. Eur Heart J 2004; 25: 970–977.
13. Mizuno Y, Morita S, Harada E, Shono M, Morikawa Y, Murohara T, et al. Alcohol flushing and positive ethanol patch test in patients with coronary spastic angina: Possible role of aldehyde dehydrogenase 2 polymorphisms. Intern Med 2013; 52: 2593–2598.
24. Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Yasue H. Cigarette smoke extract contracts isolated porcine coronary arteries by superoxide anion-mediated degradation of EDRF. Am J Physiol 1994; 266: H874–H880.
19. Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, et al. T-786→C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999; 99: 2864–2870.
29. Messner B, Bernhard D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34: 509–515.
14. Mizuno Y, Harada E, Morita S, Kinoshita K, Hayashida M, Shono M, et al. East Asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: Possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 2015; 131: 1665–1673.
18. VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiol Methods 2014; 3: 33.
23. Nakagawa H, Morikawa Y, Mizuno Y, Harada E, Ito T, Matsui K, et al. Coronary spasm preferentially occurs at branch points: An angiographic comparison with atherosclerotic plaque. Circ Cardiovasc Interv 2009; 2: 97–104.
11. Takizawa A, Yasue H, Omote S, Nagao M, Hyon H, Nishida S, et al. Variant angina induced by alcohol ingestion. Am Heart J 1984; 107: 25–27.
34. Itoh T, Mizuno Y, Harada E, Yoshimura M, Ogawa H, Yasue H. Coronary spasm is associated with chronic low-grade inflammation. Circ J 2007; 71: 1074–1078.
7. Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56: 89–101.
12. Seki T, Okayama H, Isoyama S, Kagaya Y, Shirato K, Munakata K, et al. The role of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 genotypes in alcohol-induced vasospastic angina. Tohoku J Exp Med 1999; 187: 311–322.
15. Hayashida M, Ota T, Ishii M, Iwao-Koizumi K, Murata S, Kinoshita K. Direct detection of single nucleotide polymorphism (SNP) by the TaqMan PCR assay using dried saliva on water-soluble paper and hair-rooTS, without DNA extraction. Anal Sci 2014; 30: 427–429.
3. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2013): Digest version. Circ J 2014; 78: 2779–2801.
20. Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, et al. Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet 2002; 110: 89–94.
17. Talmud PJ. How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc 2004; 63: 5–10.
28. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J Am Coll Cardiol 2004; 43: 1731–1737.
35. World Health Organization. WHO Report on the global tobacco epidemic. 2008; 67176. http://www.who.int/tobacco/global_report/summary/en/# (accessed February 16, 2016).
25. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 1996; 94: 19–25.
1. Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm: Clinical features, diagnosis, pathogenesis, and treatment. J Cardiol 2008; 51: 2–17.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 6. Hill BG, Bhatnagar A. Beyond reactive oxygen species: Aldehydes as arbitrators of alarm and adaptation. Circ Res 2009; 105: 1044–1046.
– reference: 31. Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1: 319–331.
– reference: 12. Seki T, Okayama H, Isoyama S, Kagaya Y, Shirato K, Munakata K, et al. The role of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 genotypes in alcohol-induced vasospastic angina. Tohoku J Exp Med 1999; 187: 311–322.
– reference: 14. Mizuno Y, Harada E, Morita S, Kinoshita K, Hayashida M, Shono M, et al. East Asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: Possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 2015; 131: 1665–1673.
– reference: 3. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2013): Digest version. Circ J 2014; 78: 2779–2801.
– reference: 10. Yokoyama A, Omori T, Yokoyama T. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians. Keio J Med 2010; 59: 115–130.
– reference: 15. Hayashida M, Ota T, Ishii M, Iwao-Koizumi K, Murata S, Kinoshita K. Direct detection of single nucleotide polymorphism (SNP) by the TaqMan PCR assay using dried saliva on water-soluble paper and hair-rooTS, without DNA extraction. Anal Sci 2014; 30: 427–429.
– reference: 16. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J 2014; 35: 1917–1924.
– reference: 29. Messner B, Bernhard D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34: 509–515.
– reference: 20. Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, et al. Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet 2002; 110: 89–94.
– reference: 24. Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Yasue H. Cigarette smoke extract contracts isolated porcine coronary arteries by superoxide anion-mediated degradation of EDRF. Am J Physiol 1994; 266: H874–H880.
– reference: 11. Takizawa A, Yasue H, Omote S, Nagao M, Hyon H, Nishida S, et al. Variant angina induced by alcohol ingestion. Am Heart J 1984; 107: 25–27.
– reference: 19. Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, et al. T-786→C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999; 99: 2864–2870.
– reference: 2. Maseri A, Beltrame JF, Shimokawa H. Role of coronary vasoconstriction in ischemic heart disease and search for novel therapeutic targets. Circ J 2009; 73: 394–403.
– reference: 30. Yoval-Sanchez B, Rodriguez-Zavala JS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol 2012; 25: 722–729.
– reference: 18. VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiol Methods 2014; 3: 33.
– reference: 32. Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2014; 48: 251–263.
– reference: 5. Pristipino C, Beltrame JF, Finocchiaro ML, Hattori R, Fujita M, Mongiardo R, et al. Major racial differences in coronary constrictor response between Japanese and Caucasians with recent myocardial infarction. Circulation 2000; 101: 1102–1108.
– reference: 27. Ota Y, Kugiyama K, Sugiyama S, Ohgushi M, Matsumura T, Doi H, et al. Impairment of endothelium-dependent relaxation of rabbit aortas by cigarette smoke extract--role of free radicals and attenuation by captopril. Atherosclerosis 1997; 131: 195–202.
– reference: 1. Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm: Clinical features, diagnosis, pathogenesis, and treatment. J Cardiol 2008; 51: 2–17.
– reference: 36. Ma H, Guo R, Yu L, Zhang Y, Ren J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: Role of autophagy paradox and toxic aldehyde. Eur Heart J 2011; 32: 1025–1038.
– reference: 7. Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56: 89–101.
– reference: 21. Murase Y, Yamada Y, Hirashiki A, Ichihara S, Kanda H, Watarai M, et al. Genetic risk and gene-environment interaction in coronary artery spasm in Japanese men and women. Eur Heart J 2004; 25: 970–977.
– reference: 17. Talmud PJ. How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc 2004; 63: 5–10.
– reference: 4. Morita S, Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Saito Y, et al. Differences and interactions between risk factors for coronary spasm and atherosclerosis: Smoking, aging, inflammation, and blood pressure. Intern Med 2014; 53: 2663–2670.
– reference: 28. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J Am Coll Cardiol 2004; 43: 1731–1737.
– reference: 33. Miyamoto S, Kawano H, Sakamoto T, Soejima H, Kajiwara I, Hokamaki J, et al. Increased plasma levels of thioredoxin in patients with coronary spastic angina. Antioxid Redox Signal 2004; 6: 75–80.
– reference: 25. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 1996; 94: 19–25.
– reference: 22. Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. Enhanced activity of variant phospholipase C-delta1 protein (R257H) detected in patienTS with coronary artery spasm. Circulation 2002; 105: 2024–2029.
– reference: 34. Itoh T, Mizuno Y, Harada E, Yoshimura M, Ogawa H, Yasue H. Coronary spasm is associated with chronic low-grade inflammation. Circ J 2007; 71: 1074–1078.
– reference: 26. Kugiyama K, Yasue H, Ohgushi M, Motoyama T, Kawano H, Inobe Y, et al. Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers. J Am Coll Cardiol 1996; 28: 1161–1167.
– reference: 23. Nakagawa H, Morikawa Y, Mizuno Y, Harada E, Ito T, Matsui K, et al. Coronary spasm preferentially occurs at branch points: An angiographic comparison with atherosclerotic plaque. Circ Cardiovasc Interv 2009; 2: 97–104.
– reference: 35. World Health Organization. WHO Report on the global tobacco epidemic. 2008; 67176. http://www.who.int/tobacco/global_report/summary/en/# (accessed February 16, 2016).
– reference: 13. Mizuno Y, Morita S, Harada E, Shono M, Morikawa Y, Murohara T, et al. Alcohol flushing and positive ethanol patch test in patients with coronary spastic angina: Possible role of aldehyde dehydrogenase 2 polymorphisms. Intern Med 2013; 52: 2593–2598.
– reference: 8. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol Rev 2014; 94: 1–34.
– reference: 9. Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet 2009; 73: 335–345.
– ident: 2
  doi: 10.1253/circj.CJ-09-0033
– ident: 3
  doi: 10.1253/circj.CJ-66-0098
– ident: 7
  doi: 10.1016/j.freeradbiomed.2012.11.010
– ident: 9
  doi: 10.1111/j.1469-1809.2009.00517.x
– ident: 35
– ident: 33
  doi: 10.1089/152308604771978363
– ident: 5
  doi: 10.1161/01.CIR.101.10.1102
– ident: 30
  doi: 10.1021/tx2005184
– ident: 4
  doi: 10.2169/internalmedicine.53.2705
– ident: 19
  doi: 10.1161/01.CIR.99.22.2864
– ident: 21
  doi: 10.1016/j.ehj.2004.02.020
– ident: 32
  doi: 10.3109/10715762.2013.864761
– ident: 27
  doi: 10.1016/S0021-9150(97)06106-6
– ident: 22
  doi: 10.1161/01.CIR.0000014613.36469.3F
– ident: 16
  doi: 10.1093/eurheartj/ehu208
– ident: 11
  doi: 10.1016/0002-8703(84)90128-5
– ident: 23
  doi: 10.1161/CIRCINTERVENTIONS.108.803767
– ident: 8
  doi: 10.1152/physrev.00017.2013
– ident: 18
  doi: 10.1515/em-2013-0005
– ident: 13
  doi: 10.2169/internalmedicine.52.0894
– ident: 25
  doi: 10.1161/01.CIR.94.1.19
– ident: 24
  doi: 10.1152/ajpheart.1994.266.3.H874
– ident: 15
  doi: 10.2116/analsci.30.427
– ident: 1
  doi: 10.1016/j.jjcc.2008.01.001
– ident: 36
  doi: 10.1093/eurheartj/ehq253
– ident: 28
  doi: 10.1016/j.jacc.2003.12.047
– ident: 29
  doi: 10.1161/ATVBAHA.113.300156
– ident: 6
  doi: 10.1161/CIRCRESAHA.109.209791
– ident: 12
  doi: 10.1620/tjem.187.311
– ident: 14
  doi: 10.1161/CIRCULATIONAHA.114.013120
– ident: 20
  doi: 10.1007/s00439-001-0654-6
– ident: 17
  doi: 10.1079/PNS2003311
– ident: 10
  doi: 10.2302/kjm.59.115
– ident: 31
  doi: 10.1016/j.redox.2013.04.001
– ident: 34
  doi: 10.1253/circj.71.1074
– ident: 26
  doi: 10.1016/S0735-1097(96)00325-7
SSID ssj0029059
Score 2.3041937
Snippet Background:Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2...
Coronary spastic angina (CSA) is common among East Asians and tobacco smoking (TS) is an established risk factor for CSA. Aldehyde dehydrogenase 2 (ALDH2)...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms Aged
Aldehyde dehydrogenase 2
Aldehyde Dehydrogenase, Mitochondrial - genetics
Aldehyde Dehydrogenase, Mitochondrial - metabolism
Aldehydes - blood
Angina Pectoris - blood
Angina Pectoris - enzymology
Angina Pectoris - etiology
Angina Pectoris - genetics
Asian People
Cholesterol, HDL - blood
Coronary spastic angina
Coronary Vasospasm - blood
Coronary Vasospasm - enzymology
Coronary Vasospasm - etiology
Coronary Vasospasm - genetics
East Asians
Female
Genotype
Humans
Japan
Male
Middle Aged
Reactive aldehydes
Sex Factors
Smoking - adverse effects
Smoking - blood
Smoking - genetics
Tobacco smoking
Uric Acid - blood
Title Variant Aldehyde Dehydrogenase 2 (ALDH22) in East Asians Interactively Exacerbates Tobacco Smoking Risk for Coronary Spasm ― Possible Role of Reactive Aldehydes
URI https://www.jstage.jst.go.jp/article/circj/81/1/81_CJ-16-0969/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/27904031
https://www.proquest.com/docview/1845251944
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2016/12/22, Vol.81(1), pp.96-102
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2gRAviOsoNxkJJKYoXe2kuTyhqhSmivGwCxpPkWO7LFvXTE0rsT3tT_AP-GXwRzgndtJsY4ghVWnl-jhOzmefc5LPPoS8Cj3w0rmMXBUw4fojrtxoxJnLU6_rqTgSowDXO29-CjZ2_eFed29pudVgLc1naVue_nFdyf9oFcpAr7hK9hqarRuFAvgN-oUjaBiO_6TjzxDowp1xemOl908UUoDga5qDABgnh6P72Pv4boNzDP6ziTMQBdTGdZOFeRYoyulufOIMvgkJdxg9T2cHxriUubN9lB-W7DyknyMdsY_bHSDNbvtYFEevBx7yJOBjCRNdTP0LQ2ysnS1LWtzS5gx1F4umN9zPptKmD6u3sLhqXwt0kIdg2TFjptMUtLzTGjnZ6bxMJ-58mR9kNWrhSgCUZfm2zhp_iKlQpQM9yApxOF9wEiZ5sZ8Z3xqskZWwz0dY2Hg-YqZ0zw_cODKbQbV1VRa6fsQ7TTsQsUt4N5N6HDTcA1YuEL9seXiZPkTC5R-0-0OXBS4Eh_HCylbMggvGt6ZEYjAGbSRlC0l_mLAgwRaWyQ0OERAm5_iwV7OXeNwp8wDWF2ffwEML6xf7cM7junkAQcdXfXU8VfpVO3fJHRsQ0Z5B9z2ypCf3ya1NS_l4QH5YkNMKQfQcyCmnbwzE12g2oQhwagBOzwGcNgBOLcCpBThFgFMAOK0ATkuA_zo7-3n2nVagpghqmo9oBeq6S8VDsvt-sNPfcG1qEVdCiDBzteen4AlL1dFKMKljGUimmBJh3BEYEkk_SMUI_FvlqQ4PR-CIp8rzQpQIgtR7RFYm-UQ_JjQOdUeDFFIAQAzXckc6hXoKIotIqRZZr24_KNfwazD9yzi5SuUtslZLHJs9Z_5S963RaF3Tzka2ZsQShoeFxKLCvpjCLNoiLysoJGBa8H0hDOV8XiQsQtIDi32_RVYNRuqzcLhRPjgET67R16fk9mKAPiMrs-lcPweXfpa-KMH9G7Xn-6o
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variant+Aldehyde+Dehydrogenase+2+%28ALDH22%29+in+East+Asians+Interactively+Exacerbates+Tobacco+Smoking+Risk+for+Coronary+Spasm%E3%80%80%E2%80%95+Possible+Role+of+Reactive+Aldehydes&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Mizuno%2C+Yuji&rft.au=Hokimoto%2C+Seiji&rft.au=Harada%2C+Eisaku&rft.au=Kinoshita%2C+Kenji&rft.date=2017-01-01&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=81&rft.issue=1&rft.spage=96&rft.epage=102&rft_id=info:doi/10.1253%2Fcircj.CJ-16-0969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_16_0969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon