Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth
Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibod...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 45; no. 5; pp. 1108 - 1121 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.
•CD4bs antibody N6 potently neutralizes 98% of HIV isolates•N6 potently neutralizes isolates resistant to other CD4bs antibodies•N6 evolved from an early intermediate within a VRC01-class antibody lineage•Unique structural features circumvent mechanisms of resistance to the VRC01 class
Detailed studies of broadly neutralizing antibodies are providing important information for the development of therapies, prophylaxis, and vaccines for HIV-1. Huang et al. report a CD4-binding-site antibody that evolved to circumvent common mechanisms of resistance, resulting in an antibody that achieves potent, near-pan neutralization of HIV-1. |
---|---|
AbstractList | Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.
•CD4bs antibody N6 potently neutralizes 98% of HIV isolates•N6 potently neutralizes isolates resistant to other CD4bs antibodies•N6 evolved from an early intermediate within a VRC01-class antibody lineage•Unique structural features circumvent mechanisms of resistance to the VRC01 class
Detailed studies of broadly neutralizing antibodies are providing important information for the development of therapies, prophylaxis, and vaccines for HIV-1. Huang et al. report a CD4-binding-site antibody that evolved to circumvent common mechanisms of resistance, resulting in an antibody that achieves potent, near-pan neutralization of HIV-1. Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis. Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis. Detailed studies of broadly neutralizing antibodies are providing important information for the development of therapies, prophylaxis, and vaccines for HIV-1. Huang et al. report a CD4-binding-site antibody that evolved to circumvent common mechanisms of resistance, resulting in an antibody that achieves potent, near-pan neutralization of HIV-1. Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis. Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis. |
Author | Migueles, Stephen A. Zhang, Baoshan Douek, Daniel C. Parks, Robert Joyce, M. Gordon Darko, Sam Connors, Mark Kelsoe, Garnett Louder, Mark K. Von Holle, Tarra Kwong, Peter D. Huang, Jinghe Griesman, Trevor Asokan, Mangaiarkarasi Kang, Byong H. McKee, Krisha Sheng, Zizhang Alam, S. Munir Druz, Aliaksandr Georgiev, Ivelin S. Wu, Fan O’Dell, Sijy Bailer, Robert T. Ransier, Amy Mascola, John R. Haynes, Barton F. Chuang, Gwo-Yu Ishida, Elise Doria-Rose, Nicole A. Zhou, Tongqing Seaman, Michael S. Schramm, Chaim A. Hirsch, Vanessa Shapiro, Lawrence Zheng, Anqi |
AuthorAffiliation | 3 Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA 5 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA 7 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA 4 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA 1 HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA 2 Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA 6 Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA |
AuthorAffiliation_xml | – name: 1 HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – name: 2 Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – name: 3 Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – name: 7 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – name: 4 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – name: 5 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA – name: 6 Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA |
Author_xml | – sequence: 1 givenname: Jinghe surname: Huang fullname: Huang, Jinghe organization: HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 2 givenname: Byong H. surname: Kang fullname: Kang, Byong H. organization: HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 3 givenname: Elise surname: Ishida fullname: Ishida, Elise organization: HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 4 givenname: Tongqing surname: Zhou fullname: Zhou, Tongqing organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 5 givenname: Trevor surname: Griesman fullname: Griesman, Trevor organization: HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 6 givenname: Zizhang surname: Sheng fullname: Sheng, Zizhang organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 7 givenname: Fan surname: Wu fullname: Wu, Fan organization: Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 8 givenname: Nicole A. surname: Doria-Rose fullname: Doria-Rose, Nicole A. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 9 givenname: Baoshan surname: Zhang fullname: Zhang, Baoshan organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 10 givenname: Krisha surname: McKee fullname: McKee, Krisha organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 11 givenname: Sijy surname: O’Dell fullname: O’Dell, Sijy organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 12 givenname: Gwo-Yu surname: Chuang fullname: Chuang, Gwo-Yu organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 13 givenname: Aliaksandr surname: Druz fullname: Druz, Aliaksandr organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 14 givenname: Ivelin S. surname: Georgiev fullname: Georgiev, Ivelin S. organization: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA – sequence: 15 givenname: Chaim A. surname: Schramm fullname: Schramm, Chaim A. organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 16 givenname: Anqi surname: Zheng fullname: Zheng, Anqi organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 17 givenname: M. Gordon surname: Joyce fullname: Joyce, M. Gordon organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 18 givenname: Mangaiarkarasi surname: Asokan fullname: Asokan, Mangaiarkarasi organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 19 givenname: Amy surname: Ransier fullname: Ransier, Amy organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 20 givenname: Sam surname: Darko fullname: Darko, Sam organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 21 givenname: Stephen A. surname: Migueles fullname: Migueles, Stephen A. organization: HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 22 givenname: Robert T. surname: Bailer fullname: Bailer, Robert T. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 23 givenname: Mark K. surname: Louder fullname: Louder, Mark K. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 24 givenname: S. Munir surname: Alam fullname: Alam, S. Munir organization: Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA – sequence: 25 givenname: Robert surname: Parks fullname: Parks, Robert organization: Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA – sequence: 26 givenname: Garnett surname: Kelsoe fullname: Kelsoe, Garnett organization: Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA – sequence: 27 givenname: Tarra surname: Von Holle fullname: Von Holle, Tarra organization: Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA – sequence: 28 givenname: Barton F. surname: Haynes fullname: Haynes, Barton F. organization: Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA – sequence: 29 givenname: Daniel C. surname: Douek fullname: Douek, Daniel C. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 30 givenname: Vanessa surname: Hirsch fullname: Hirsch, Vanessa organization: Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 31 givenname: Michael S. surname: Seaman fullname: Seaman, Michael S. organization: Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 32 givenname: Lawrence surname: Shapiro fullname: Shapiro, Lawrence organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 33 givenname: John R. surname: Mascola fullname: Mascola, John R. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 34 givenname: Peter D. surname: Kwong fullname: Kwong, Peter D. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 35 givenname: Mark surname: Connors fullname: Connors, Mark email: mconnors@nih.gov organization: HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27851912$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1338973$$D View this record in Osti.gov |
BookMark | eNqNkktv1DAUhS1URB_wDxCKYMMmg29etlkgtUOhI1WAxGNrefzoeJTYxXZGKr8epxkq6AJYxbG_e-xz7j1GB847jdBTwAvA0L3aLuwwjM4uqvyXtxa4Ig_QEWBGygYoPpjWpClJB_UhOo5xizE0LcOP0GFFaAsMqiMkVkq7ZI2VIlnvCm8KUSzfNuWZdcq6q_KzTbo4zcjaq5si-eJi9a1IG5GK853vd1oVH7QI5Sfh8mJMQfT2xyx1FrRQafMYPTSij_rJ_nuCvr47_7K8KC8_vl8tTy9L2baQSmVIJVpimBaSMUOpAIYZFUTVUgIhDDJmKgCxNpWiknZUMdZgIMrIztT1CXoz616P60ErmW3lx_DrYAcRbrgXlv954uyGX_kdbwnB0FZZ4Pks4GOyPMpsXG6kd07LxKGuKSPTLS_3twT_fdQx8cFGqfteOO3HyIE2XZNfidn_oJBluwpn9MU9dOvH4HJctxSZmDZTz353eGftVzcz0MyADD7GoM0dAphPQ8O3fB4aPg3NtJuHJpe9vleWvd_2MOdk-38V72PXubc7q8OUnHZSKxum4JS3fxf4CVzE3g0 |
CitedBy_id | crossref_primary_10_18632_oncotarget_18594 crossref_primary_10_1016_j_celrep_2022_110485 crossref_primary_10_1007_s11684_019_0721_9 crossref_primary_10_1371_journal_ppat_1008026 crossref_primary_10_1016_j_isci_2023_107403 crossref_primary_10_1371_journal_pcbi_1006952 crossref_primary_10_1002_adhm_202002090 crossref_primary_10_1080_19420862_2021_1946918 crossref_primary_10_1016_j_celrep_2019_03_039 crossref_primary_10_1038_s41591_022_01762_x crossref_primary_10_1016_j_isci_2021_102861 crossref_primary_10_3389_fimmu_2019_01722 crossref_primary_10_2174_1570162X15666171124122044 crossref_primary_10_3390_v12020163 crossref_primary_10_1155_2018_8724549 crossref_primary_10_1016_j_celrep_2024_115010 crossref_primary_10_1111_imr_12861 crossref_primary_10_1038_s41467_022_28307_7 crossref_primary_10_1126_scitranslmed_adn0223 crossref_primary_10_1097_COH_0000000000000556 crossref_primary_10_3389_fimmu_2017_01655 crossref_primary_10_7554_eLife_70873 crossref_primary_10_3390_v11080705 crossref_primary_10_1016_j_celrep_2022_111335 crossref_primary_10_1038_s41590_018_0235_7 crossref_primary_10_1016_j_celrep_2021_109084 crossref_primary_10_3389_fimmu_2024_1443377 crossref_primary_10_1016_j_cell_2020_01_010 crossref_primary_10_1080_14728222_2020_1752183 crossref_primary_10_1097_COH_0000000000000440 crossref_primary_10_1038_s41467_018_03335_4 crossref_primary_10_1371_journal_ppat_1010574 crossref_primary_10_1038_nri_2017_148 crossref_primary_10_1016_j_celrep_2018_01_023 crossref_primary_10_1128_JVI_01656_18 crossref_primary_10_1128_mBio_02424_20 crossref_primary_10_3390_vaccines9091001 crossref_primary_10_1128_jvi_01730_24 crossref_primary_10_1016_j_immuni_2020_08_001 crossref_primary_10_1016_j_celrep_2021_110199 crossref_primary_10_1038_s41426_018_0175_1 crossref_primary_10_1016_j_immuni_2018_07_005 crossref_primary_10_3389_fimmu_2021_708227 crossref_primary_10_3389_fimmu_2021_697683 crossref_primary_10_1371_journal_ppat_1009339 crossref_primary_10_1177_11769343241272415 crossref_primary_10_1039_C9CP04613E crossref_primary_10_1016_j_smim_2021_101475 crossref_primary_10_1016_j_biotechadv_2023_108143 crossref_primary_10_1016_j_celrep_2023_113450 crossref_primary_10_1073_pnas_2112887119 crossref_primary_10_1371_journal_ppat_1006860 crossref_primary_10_3389_fimmu_2021_662909 crossref_primary_10_1016_j_immuni_2020_12_014 crossref_primary_10_1038_s41421_019_0086_x crossref_primary_10_1084_jem_20161765 crossref_primary_10_1038_s41467_019_08415_7 crossref_primary_10_1080_14787210_2017_1353911 crossref_primary_10_1371_journal_ppat_1007024 crossref_primary_10_29235_1561_8323_2019_63_5_561_571 crossref_primary_10_1016_j_chembiol_2022_03_009 crossref_primary_10_1016_j_jviromet_2024_114883 crossref_primary_10_1186_s12985_022_01876_1 crossref_primary_10_1038_s41422_022_00631_z crossref_primary_10_1093_bioinformatics_btae103 crossref_primary_10_1016_j_coi_2018_08_002 crossref_primary_10_3389_fcimb_2020_00176 crossref_primary_10_1016_j_chom_2023_06_006 crossref_primary_10_1371_journal_ppat_1007819 crossref_primary_10_1128_mbio_03384_21 crossref_primary_10_1073_pnas_2404728121 crossref_primary_10_1128_jvi_01851_21 crossref_primary_10_1097_COH_0000000000000548 crossref_primary_10_1016_j_immuni_2019_02_005 crossref_primary_10_3389_fimmu_2021_710044 crossref_primary_10_3390_polym13040601 crossref_primary_10_1016_j_celrep_2021_109611 crossref_primary_10_1093_infdis_jiab229 crossref_primary_10_1038_s41467_024_51656_4 crossref_primary_10_3389_fimmu_2018_00618 crossref_primary_10_1038_s41467_019_08658_4 crossref_primary_10_1126_sciadv_abk2039 crossref_primary_10_1016_j_immuni_2020_09_007 crossref_primary_10_3389_fmicb_2018_02940 crossref_primary_10_1016_j_virusres_2020_198001 crossref_primary_10_1128_JVI_01492_18 crossref_primary_10_3390_v14091910 crossref_primary_10_7554_eLife_37688 crossref_primary_10_1016_j_immuni_2017_04_011 crossref_primary_10_1146_annurev_immunol_080219_023629 crossref_primary_10_3389_fimmu_2017_01057 crossref_primary_10_1128_jvi_00744_24 crossref_primary_10_1038_s41590_018_0233_9 crossref_primary_10_1128_JVI_00443_19 crossref_primary_10_1016_j_celrep_2021_109167 crossref_primary_10_1021_acs_nanolett_4c00142 crossref_primary_10_3389_fimmu_2016_00661 crossref_primary_10_1016_j_isci_2023_107579 crossref_primary_10_1038_s41596_021_00554_w crossref_primary_10_1016_j_bj_2020_11_011 crossref_primary_10_1038_s41467_023_39690_0 crossref_primary_10_1146_annurev_virology_101416_041929 crossref_primary_10_1186_s12977_018_0439_9 crossref_primary_10_3390_molecules26071964 crossref_primary_10_1016_j_virusres_2021_198470 crossref_primary_10_1073_pnas_2217883120 crossref_primary_10_3389_fimmu_2017_02009 crossref_primary_10_1089_aid_2020_0299 crossref_primary_10_1093_cid_ciac751 crossref_primary_10_1128_JVI_00878_18 crossref_primary_10_1371_journal_ppat_1007238 crossref_primary_10_3390_vaccines12010019 crossref_primary_10_1080_19420862_2020_1840005 crossref_primary_10_1093_infdis_jiad503 crossref_primary_10_1186_s12977_018_0443_0 crossref_primary_10_1097_QAD_0000000000001869 crossref_primary_10_4049_jimmunol_2001082 crossref_primary_10_1016_j_immuni_2017_11_023 crossref_primary_10_1016_j_molmed_2019_01_007 crossref_primary_10_1001_jama_2018_8431 crossref_primary_10_1128_JVI_02011_17 crossref_primary_10_1038_s41467_022_28424_3 crossref_primary_10_1038_nchembio_2460 crossref_primary_10_1016_j_str_2022_03_012 crossref_primary_10_1038_srep45163 crossref_primary_10_1126_sciadv_abp8155 crossref_primary_10_1172_jci_insight_130153 crossref_primary_10_1016_j_jmb_2021_167395 crossref_primary_10_1080_19420862_2023_2223350 crossref_primary_10_4049_jimmunol_2400131 crossref_primary_10_1016_j_omtn_2018_09_003 crossref_primary_10_1021_acsomega_2c07933 crossref_primary_10_1038_s41467_024_48514_8 crossref_primary_10_1128_mbio_02686_23 crossref_primary_10_1016_j_omtm_2022_04_007 crossref_primary_10_1073_pnas_2018338118 crossref_primary_10_1126_sciimmunol_adn0622 crossref_primary_10_1128_JVI_00498_17 crossref_primary_10_1073_pnas_1709203114 crossref_primary_10_1128_JVI_01883_17 crossref_primary_10_1371_journal_ppat_1011717 crossref_primary_10_1021_acsinfecdis_2c00573 crossref_primary_10_1021_acsinfecdis_0c00899 crossref_primary_10_3390_v16111706 crossref_primary_10_1128_JVI_00895_18 crossref_primary_10_1038_s41541_021_00376_7 crossref_primary_10_1128_AAC_01084_19 crossref_primary_10_1097_QAD_0000000000002988 crossref_primary_10_1111_boc_202200082 crossref_primary_10_1016_j_clinthera_2020_01_009 crossref_primary_10_1016_j_vaccine_2018_07_071 crossref_primary_10_1038_s41541_021_00387_4 crossref_primary_10_1038_s41467_022_33860_2 crossref_primary_10_1128_JVI_00304_19 crossref_primary_10_1371_journal_pmed_1002435 crossref_primary_10_1371_journal_pmed_1002436 crossref_primary_10_1073_pnas_2011653118 crossref_primary_10_1016_j_cobme_2017_03_002 crossref_primary_10_1038_s44298_024_00082_w crossref_primary_10_1128_mbio_01274_21 crossref_primary_10_1172_JCI164501 crossref_primary_10_12688_wellcomeopenres_11386_1 crossref_primary_10_1089_aid_2017_0063 crossref_primary_10_1016_j_immuni_2016_10_033 crossref_primary_10_1016_j_chom_2018_09_010 crossref_primary_10_3389_fimmu_2021_737973 crossref_primary_10_2139_ssrn_3805158 crossref_primary_10_3389_fimmu_2018_02429 crossref_primary_10_1093_infdis_jiz532 crossref_primary_10_1038_s41467_022_32208_0 crossref_primary_10_12688_wellcomeopenres_11386_2 crossref_primary_10_1128_mbio_03839_24 crossref_primary_10_4049_jimmunol_1800708 crossref_primary_10_1016_j_celrep_2021_109922 crossref_primary_10_1038_s41467_023_42906_y crossref_primary_10_1080_22221751_2021_2011616 crossref_primary_10_1016_j_xcrm_2022_100635 crossref_primary_10_1186_s12977_018_0453_y crossref_primary_10_1016_j_celrep_2019_04_108 crossref_primary_10_3390_antib11040067 crossref_primary_10_1016_j_celrep_2022_111624 crossref_primary_10_1007_s13361_018_1968_0 crossref_primary_10_1080_25740881_2025_2472400 crossref_primary_10_29235_1561_8323_2019_63_4_445_456 crossref_primary_10_1371_journal_ppat_1007431 crossref_primary_10_3389_fmed_2022_1036874 crossref_primary_10_1016_j_virol_2023_03_011 crossref_primary_10_1126_sciimmunol_adk9550 crossref_primary_10_4049_jimmunol_1901051 crossref_primary_10_1016_j_chom_2018_05_001 crossref_primary_10_1016_j_omtm_2022_01_015 crossref_primary_10_1097_COH_0000000000000817 crossref_primary_10_1038_s41467_019_14196_w crossref_primary_10_1097_COH_0000000000000819 crossref_primary_10_3390_vaccines7030074 crossref_primary_10_1128_JVI_01446_18 crossref_primary_10_1186_s12977_018_0449_7 crossref_primary_10_1016_j_immuni_2019_06_004 crossref_primary_10_1371_journal_ppat_1008082 crossref_primary_10_1016_j_celrep_2017_04_013 crossref_primary_10_1128_JVI_00384_18 crossref_primary_10_1155_2024_2147912 crossref_primary_10_1016_j_celrep_2020_108432 crossref_primary_10_1016_j_clp_2021_03_004 crossref_primary_10_1128_jvi_01016_24 crossref_primary_10_1089_aid_2018_0102 crossref_primary_10_1038_s42003_024_06659_8 crossref_primary_10_1039_C8ME00080H crossref_primary_10_1142_S0219720018400073 crossref_primary_10_1093_infdis_jiaa165 crossref_primary_10_1038_s41586_023_06639_8 crossref_primary_10_3390_polym12102392 crossref_primary_10_1016_j_xcrm_2023_101003 crossref_primary_10_1016_j_ymeth_2018_10_010 crossref_primary_10_1080_14712598_2021_1865302 crossref_primary_10_1073_pnas_2008190117 crossref_primary_10_1039_D3LC00749A crossref_primary_10_1371_journal_ppat_1009958 crossref_primary_10_1016_j_cell_2020_06_044 crossref_primary_10_1038_s41591_019_0412_8 crossref_primary_10_3390_v16081296 crossref_primary_10_3390_vaccines12091043 crossref_primary_10_3390_pharmaceutics13111798 crossref_primary_10_1073_pnas_1919269117 crossref_primary_10_1172_JCI139123 crossref_primary_10_1093_jpids_piaf002 crossref_primary_10_1126_sciadv_abm3948 crossref_primary_10_1089_aid_2019_0179 crossref_primary_10_1097_COH_0000000000000360 crossref_primary_10_1128_JVI_00159_21 crossref_primary_10_1126_scitranslmed_aaz2254 crossref_primary_10_1128_JVI_02350_20 crossref_primary_10_15252_embj_2020105926 crossref_primary_10_1084_jem_20190446 crossref_primary_10_1016_j_cell_2018_03_061 crossref_primary_10_1016_j_str_2018_10_007 crossref_primary_10_1126_scitranslmed_aat0381 crossref_primary_10_1097_COH_0000000000000802 crossref_primary_10_17537_2019_14_430 crossref_primary_10_1128_mbio_02428_23 crossref_primary_10_1080_19420862_2020_1836719 crossref_primary_10_1016_j_molimm_2022_12_011 crossref_primary_10_1097_COH_0000000000000367 crossref_primary_10_1016_S2352_3018_18_30174_7 crossref_primary_10_1080_14760584_2019_1690458 crossref_primary_10_1016_j_chom_2018_12_001 crossref_primary_10_1016_j_celrep_2021_109110 crossref_primary_10_1016_j_virol_2021_03_013 crossref_primary_10_3390_cells11010077 crossref_primary_10_1089_aid_2018_0097 crossref_primary_10_1097_QCO_0000000000000803 crossref_primary_10_1172_JCI132779 crossref_primary_10_1073_pnas_2004489117 crossref_primary_10_1186_s12977_021_00560_6 crossref_primary_10_1128_cmr_00152_22 crossref_primary_10_1016_j_clim_2023_109809 crossref_primary_10_1016_j_isci_2022_105473 crossref_primary_10_1038_s41467_023_42098_5 crossref_primary_10_3390_vaccines8020284 crossref_primary_10_1016_j_immuni_2018_04_029 crossref_primary_10_1038_s41421_022_00401_6 crossref_primary_10_3390_vaccines9040311 crossref_primary_10_1038_s41592_021_01169_5 crossref_primary_10_1016_j_cell_2019_04_012 crossref_primary_10_1126_sciadv_aba0468 crossref_primary_10_3390_vaccines8010013 crossref_primary_10_3389_fcimb_2020_00410 crossref_primary_10_1186_s12977_019_0493_y crossref_primary_10_1371_journal_ppat_1009807 crossref_primary_10_22328_2077_9828_2021_13_3_81_95 crossref_primary_10_1016_j_celrep_2021_108937 crossref_primary_10_1016_j_virol_2017_02_024 crossref_primary_10_3389_fmicb_2019_01096 crossref_primary_10_1016_j_chom_2019_08_014 crossref_primary_10_1080_13543776_2018_1495708 crossref_primary_10_3389_fimmu_2017_01568 crossref_primary_10_1002_advs_202309268 crossref_primary_10_1172_jci_insight_97018 |
Cites_doi | 10.1371/journal.ppat.1001211 10.1038/nprot.2013.117 10.1128/JVI.02378-14 10.1128/JVI.02036-08 10.1016/j.immuni.2013.04.012 10.1128/JVI.01548-10 10.1038/nature13764 10.1016/j.cell.2015.05.007 10.1038/nature13036 10.1128/JVI.07139-11 10.1128/JVI.78.9.4675-4683.2004 10.1073/pnas.0630530100 10.1371/journal.ppat.1004932 10.1038/nm.2985 10.1128/JVI.01482-09 10.1016/j.cell.2015.03.004 10.1371/journal.ppat.1003738 10.1084/jem.20130221 10.1128/JVI.00110-09 10.1371/journal.ppat.1005276 10.1016/j.immuni.2015.11.007 10.1084/jem.20141050 10.1128/JVI.03608-14 10.1016/j.coi.2015.05.007 10.1038/nsmb1161 10.1126/science.1213782 10.1007/s11904-016-0299-7 10.1126/science.1233989 10.1128/JVI.79.16.10108-10125.2005 10.1038/nm.4187 10.1128/JVI.00754-11 10.1038/ni.3158 10.1097/COH.0000000000000148 10.1038/nature01470 10.1016/j.cell.2016.04.010 10.1016/j.cell.2014.06.022 10.1016/j.immuni.2016.04.016 10.1128/JVI.02213-14 |
ContentType | Journal Article |
Copyright | 2016 Published by Elsevier Inc. Copyright Elsevier Limited Nov 15, 2016 |
Copyright_xml | – notice: 2016 – notice: Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 15, 2016 |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 OTOTI 5PM |
DOI | 10.1016/j.immuni.2016.10.027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 1121 |
ExternalDocumentID | PMC5770152 1338973 4256409661 27851912 10_1016_j_immuni_2016_10_027 S1074761316304381 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA AI001090 – fundername: Intramural NIH HHS grantid: ZIA AI000855 – fundername: Intramural NIH HHS grantid: Z99 AI999999 |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 3V. 4.4 457 4G. 53G 5GY 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I 5VS AAEDT AAIKJ AALRI AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 ABPTK ABQIS OTOTI PQEST PQUKI 5PM |
ID | FETCH-LOGICAL-c551t-df72a57f9eac99f88a19098a7d3cc17791551f211abf2d8c868d994017dfc6f33 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 18:22:55 EDT 2025 Thu May 18 18:36:01 EDT 2023 Thu Jul 10 18:07:22 EDT 2025 Mon Jul 21 10:08:37 EDT 2025 Fri Jul 25 11:11:09 EDT 2025 Mon Jul 21 06:01:41 EDT 2025 Tue Jul 01 01:58:38 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Fri Feb 23 02:28:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | vaccine envelope antibody HIV immunotherapy neutralizing CD4-binding site prophylaxis resistance structure |
Language | English |
License | This article is made available under the Elsevier license. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c551t-df72a57f9eac99f88a19098a7d3cc17791551f211abf2d8c868d994017dfc6f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Lead Contact Co-first author |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761316304381 |
PMID | 27851912 |
PQID | 1841762035 |
PQPubID | 2031079 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5770152 osti_scitechconnect_1338973 proquest_miscellaneous_1846421109 proquest_miscellaneous_1841133620 proquest_journals_1841762035 pubmed_primary_27851912 crossref_primary_10_1016_j_immuni_2016_10_027 crossref_citationtrail_10_1016_j_immuni_2016_10_027 elsevier_sciencedirect_doi_10_1016_j_immuni_2016_10_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-15 |
PublicationDateYYYYMMDD | 2016-11-15 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Stephenson, Barouch (bib29) 2016; 13 Pappas, Foglierini, Piccoli, Kallewaard, Turrini, Silacci, Fernandez-Rodriguez, Agatic, Giacchetto-Sasselli, Pellicciotta (bib21) 2014; 516 Das, Puigbò, Hensley, Hurt, Bennink, Yewdell (bib3) 2010; 6 Zlateva, Lemey, Vandamme, Van Ranst (bib38) 2004; 78 Simek, Rida, Priddy, Pung, Carrow, Laufer, Lehrman, Boaz, Tarragona-Fiol, Miiro (bib27) 2009; 83 Wu, Zhang, Schramm, Joyce, Kwon, Zhou, Sheng, Zhang, O’Dell, McKee (bib35) 2015; 161 Moore, Gray, Wibmer, Bhiman, Nonyane, Sheward, Hermanus, Bajimaya, Tumba, Abrahams (bib20) 2012; 18 Doria-Rose, Klein, Daniels, O’Dell, Nason, Lapedes, Bhattacharya, Migueles, Wyatt, Korber (bib6) 2010; 84 Wibmer, Bhiman, Gray, Tumba, Abdool Karim, Williamson, Morris, Moore (bib33) 2013; 9 Rudicell, Kwon, Ko, Pegu, Louder, Georgiev, Wu, Zhu, Boyington, Chen (bib23) 2014; 88 Rusert, Kouyos, Kadelka, Ebner, Schanz, Huber, Braun, Hozé, Scherrer, Magnus (bib24) 2016 Lynch, Wong, Tran, O’Dell, Nason, Li, Wu, Mascola (bib18) 2015; 89 Crooks, Tong, Chakrabarti, Narayan, Georgiev, Menis, Huang, Kulp, Osawa, Muranaka (bib2) 2015; 11 Georgiev, Doria-Rose, Zhou, Kwon, Staupe, Moquin, Chuang, Louder, Schmidt, Altae-Tran (bib10) 2013; 340 Klein, Nogueira, Nishimura, Phad, West, Halper-Stromberg, Horwitz, Gazumyan, Liu, Eisenreich (bib14) 2014; 211 Huang, Doria-Rose, Longo, Laub, Lin, Turk, Kang, Migueles, Bailer, Mascola, Connors (bib13) 2013; 8 Stewart-Jones, Soto, Lemmin, Chuang, Druz, Kong, Thomas, Wagh, Zhou, Behrens (bib30) 2016; 165 Li, O’Dell, Walker, Wu, Guenaga, Feng, Schmidt, McKee, Louder, Ledgerwood (bib16) 2011; 85 Wu, Wang, O’Dell, Li, Keele, Yang, Imamichi, Doria-Rose, Hoxie, Connors (bib34) 2012; 86 Helle, Vieyres, Elkrief, Popescu, Wychowski, Descamps, Castelain, Roingeard, Duverlie, Dubuisson (bib12) 2010; 84 Gao, Bonsignori, Liao, Kumar, Xia, Lu, Cai, Hwang, Song, Zhou (bib8) 2014; 158 Zhou, Zhu, Wu, Moquin, Zhang, Acharya, Georgiev, Altae-Tran, Chuang, Joyce (bib36) 2013; 39 Liu, Yang, Wiehe, Nicely, Vandergrift, Rountree, Bonsignori, Alam, Gao, Haynes, Kelsoe (bib17) 2015; 89 Doria-Rose, Schramm, Gorman, Moore, Bhiman, DeKosky, Ernandes, Georgiev, Kim, Pancera (bib7) 2014; 509 Richman, Wrin, Little, Petropoulos (bib22) 2003; 100 Haynes (bib11) 2015; 35 Diskin, Scheid, Marcovecchio, West, Klein, Gao, Gnanapragasam, Abadir, Seaman, Nussenzweig, Bjorkman (bib4) 2011; 334 Burton, Mascola (bib1) 2015; 16 Sommerstein, Flatz, Remy, Malinge, Magistrelli, Fischer, Sahin, Bergthaler, Igonet, Ter Meulen (bib28) 2015; 11 MacLeod, Choi, Briney, Garces, Ver, Landais, Murrell, Wrin, Kilembe, Liang (bib19) 2016; 44 Sievers, Scharf, West, Bjorkman (bib26) 2015; 10 Li, Gao, Mascola, Stamatatos, Polonis, Koutsoukos, Voss, Goepfert, Gilbert, Greene (bib15) 2005; 79 Szakonyi, Klein, Hannan, Young, Ma, Asokan, Holers, Chen (bib31) 2006; 13 Wei, Decker, Wang, Hui, Kappes, Wu, Salazar-Gonzalez, Salazar, Kilby, Saag (bib32) 2003; 422 Garces, Lee, de Val, de la Pena, Kong, Puchades, Hua, Stanfield, Burton, Moore (bib9) 2015; 43 Zhou, Lynch, Chen, Acharya, Wu, Doria-Rose, Joyce, Lingwood, Soto, Bailer (bib37) 2015; 161 Sather, Armann, Ching, Mavrantoni, Sellhorn, Caldwell, Yu, Wood, Self, Kalams, Stamatatos (bib25) 2009; 83 Diskin, Klein, Horwitz, Halper-Stromberg, Sather, Marcovecchio, Lee, West, Gao, Seaman (bib5) 2013; 210 Zlateva (10.1016/j.immuni.2016.10.027_bib38) 2004; 78 Sather (10.1016/j.immuni.2016.10.027_bib25) 2009; 83 Moore (10.1016/j.immuni.2016.10.027_bib20) 2012; 18 Haynes (10.1016/j.immuni.2016.10.027_bib11) 2015; 35 Stewart-Jones (10.1016/j.immuni.2016.10.027_bib30) 2016; 165 Doria-Rose (10.1016/j.immuni.2016.10.027_bib6) 2010; 84 Wu (10.1016/j.immuni.2016.10.027_bib35) 2015; 161 MacLeod (10.1016/j.immuni.2016.10.027_bib19) 2016; 44 Gao (10.1016/j.immuni.2016.10.027_bib8) 2014; 158 Klein (10.1016/j.immuni.2016.10.027_bib14) 2014; 211 Simek (10.1016/j.immuni.2016.10.027_bib27) 2009; 83 Huang (10.1016/j.immuni.2016.10.027_bib13) 2013; 8 Doria-Rose (10.1016/j.immuni.2016.10.027_bib7) 2014; 509 Richman (10.1016/j.immuni.2016.10.027_bib22) 2003; 100 Georgiev (10.1016/j.immuni.2016.10.027_bib10) 2013; 340 Li (10.1016/j.immuni.2016.10.027_bib15) 2005; 79 Stephenson (10.1016/j.immuni.2016.10.027_bib29) 2016; 13 Rudicell (10.1016/j.immuni.2016.10.027_bib23) 2014; 88 Wei (10.1016/j.immuni.2016.10.027_bib32) 2003; 422 Helle (10.1016/j.immuni.2016.10.027_bib12) 2010; 84 Szakonyi (10.1016/j.immuni.2016.10.027_bib31) 2006; 13 Sievers (10.1016/j.immuni.2016.10.027_bib26) 2015; 10 Zhou (10.1016/j.immuni.2016.10.027_bib36) 2013; 39 Crooks (10.1016/j.immuni.2016.10.027_bib2) 2015; 11 Rusert (10.1016/j.immuni.2016.10.027_bib24) 2016 Wu (10.1016/j.immuni.2016.10.027_bib34) 2012; 86 Burton (10.1016/j.immuni.2016.10.027_bib1) 2015; 16 Li (10.1016/j.immuni.2016.10.027_bib16) 2011; 85 Zhou (10.1016/j.immuni.2016.10.027_bib37) 2015; 161 Sommerstein (10.1016/j.immuni.2016.10.027_bib28) 2015; 11 Das (10.1016/j.immuni.2016.10.027_bib3) 2010; 6 Diskin (10.1016/j.immuni.2016.10.027_bib5) 2013; 210 Lynch (10.1016/j.immuni.2016.10.027_bib18) 2015; 89 Garces (10.1016/j.immuni.2016.10.027_bib9) 2015; 43 Wibmer (10.1016/j.immuni.2016.10.027_bib33) 2013; 9 Liu (10.1016/j.immuni.2016.10.027_bib17) 2015; 89 Pappas (10.1016/j.immuni.2016.10.027_bib21) 2014; 516 Diskin (10.1016/j.immuni.2016.10.027_bib4) 2011; 334 27851923 - Immunity. 2016 Nov 15;45(5):958-960. doi: 10.1016/j.immuni.2016.10.033. |
References_xml | – volume: 211 start-page: 2361 year: 2014 end-page: 2372 ident: bib14 article-title: Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants publication-title: J. Exp. Med. – volume: 10 start-page: 151 year: 2015 end-page: 159 ident: bib26 article-title: Antibody engineering for increased potency, breadth and half-life publication-title: Curr. Opin. HIV AIDS – volume: 89 start-page: 784 year: 2015 end-page: 798 ident: bib17 article-title: Polyreactivity and autoreactivity among HIV-1 antibodies publication-title: J. Virol. – volume: 35 start-page: 39 year: 2015 end-page: 47 ident: bib11 article-title: New approaches to HIV vaccine development publication-title: Curr. Opin. Immunol. – volume: 43 start-page: 1053 year: 2015 end-page: 1063 ident: bib9 article-title: Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans publication-title: Immunity – volume: 18 start-page: 1688 year: 2012 end-page: 1692 ident: bib20 article-title: Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape publication-title: Nat. Med. – volume: 13 start-page: 31 year: 2016 end-page: 37 ident: bib29 article-title: Broadly Neutralizing Antibodies for HIV Eradication publication-title: Curr. HIV/AIDS Rep. – volume: 85 start-page: 8954 year: 2011 end-page: 8967 ident: bib16 article-title: Mechanism of neutralization by the broadly neutralizing HIV-1 monoclonal antibody VRC01 publication-title: J. Virol. – volume: 210 start-page: 1235 year: 2013 end-page: 1249 ident: bib5 article-title: Restricting HIV-1 pathways for escape using rationally designed anti-HIV-1 antibodies publication-title: J. Exp. Med. – volume: 422 start-page: 307 year: 2003 end-page: 312 ident: bib32 article-title: Antibody neutralization and escape by HIV-1 publication-title: Nature – volume: 39 start-page: 245 year: 2013 end-page: 258 ident: bib36 article-title: Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies publication-title: Immunity – volume: 161 start-page: 1280 year: 2015 end-page: 1292 ident: bib37 article-title: Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors publication-title: Cell – volume: 158 start-page: 481 year: 2014 end-page: 491 ident: bib8 article-title: Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies publication-title: Cell – volume: 79 start-page: 10108 year: 2005 end-page: 10125 ident: bib15 article-title: Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies publication-title: J. Virol. – volume: 44 start-page: 1215 year: 2016 end-page: 1226 ident: bib19 article-title: Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch publication-title: Immunity – volume: 334 start-page: 1289 year: 2011 end-page: 1293 ident: bib4 article-title: Increasing the potency and breadth of an HIV antibody by using structure-based rational design publication-title: Science – volume: 8 start-page: 1907 year: 2013 end-page: 1915 ident: bib13 article-title: Isolation of human monoclonal antibodies from peripheral blood B cells publication-title: Nat. Protoc. – volume: 340 start-page: 751 year: 2013 end-page: 756 ident: bib10 article-title: Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization publication-title: Science – volume: 84 start-page: 1631 year: 2010 end-page: 1636 ident: bib6 article-title: Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables publication-title: J. Virol. – volume: 83 start-page: 7337 year: 2009 end-page: 7348 ident: bib27 article-title: Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm publication-title: J. Virol. – volume: 13 start-page: 996 year: 2006 end-page: 1001 ident: bib31 article-title: Structure of the Epstein-Barr virus major envelope glycoprotein publication-title: Nat. Struct. Mol. Biol. – volume: 78 start-page: 4675 year: 2004 end-page: 4683 ident: bib38 article-title: Molecular evolution and circulation patterns of human respiratory syncytial virus subgroup a: positively selected sites in the attachment g glycoprotein publication-title: J. Virol. – year: 2016 ident: bib24 article-title: Determinants of HIV-1 broadly neutralizing antibody induction publication-title: Nat. Med. – volume: 100 start-page: 4144 year: 2003 end-page: 4149 ident: bib22 article-title: Rapid evolution of the neutralizing antibody response to HIV type 1 infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 84 start-page: 11905 year: 2010 end-page: 11915 ident: bib12 article-title: Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions publication-title: J. Virol. – volume: 6 start-page: e1001211 year: 2010 ident: bib3 article-title: Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain publication-title: PLoS Pathog. – volume: 16 start-page: 571 year: 2015 end-page: 576 ident: bib1 article-title: Antibody responses to envelope glycoproteins in HIV-1 infection publication-title: Nat. Immunol. – volume: 11 start-page: e1005276 year: 2015 ident: bib28 article-title: Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection publication-title: PLoS Pathog. – volume: 89 start-page: 4201 year: 2015 end-page: 4213 ident: bib18 article-title: HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies publication-title: J. Virol. – volume: 516 start-page: 418 year: 2014 end-page: 422 ident: bib21 article-title: Rapid development of broadly influenza neutralizing antibodies through redundant mutations publication-title: Nature – volume: 86 start-page: 5844 year: 2012 end-page: 5856 ident: bib34 article-title: Selection pressure on HIV-1 envelope by broadly neutralizing antibodies to the conserved CD4-binding site publication-title: J. Virol. – volume: 9 start-page: e1003738 year: 2013 ident: bib33 article-title: Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes publication-title: PLoS Pathog. – volume: 88 start-page: 12669 year: 2014 end-page: 12682 ident: bib23 article-title: Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo publication-title: J. Virol. – volume: 11 start-page: e1004932 year: 2015 ident: bib2 article-title: Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site publication-title: PLoS Pathog. – volume: 165 start-page: 813 year: 2016 end-page: 826 ident: bib30 article-title: Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G publication-title: Cell – volume: 161 start-page: 470 year: 2015 end-page: 485 ident: bib35 article-title: Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection publication-title: Cell – volume: 83 start-page: 757 year: 2009 end-page: 769 ident: bib25 article-title: Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection publication-title: J. Virol. – volume: 509 start-page: 55 year: 2014 end-page: 62 ident: bib7 article-title: Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies publication-title: Nature – volume: 6 start-page: e1001211 year: 2010 ident: 10.1016/j.immuni.2016.10.027_bib3 article-title: Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001211 – volume: 8 start-page: 1907 year: 2013 ident: 10.1016/j.immuni.2016.10.027_bib13 article-title: Isolation of human monoclonal antibodies from peripheral blood B cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.117 – volume: 89 start-page: 784 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib17 article-title: Polyreactivity and autoreactivity among HIV-1 antibodies publication-title: J. Virol. doi: 10.1128/JVI.02378-14 – volume: 83 start-page: 757 year: 2009 ident: 10.1016/j.immuni.2016.10.027_bib25 article-title: Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection publication-title: J. Virol. doi: 10.1128/JVI.02036-08 – volume: 39 start-page: 245 year: 2013 ident: 10.1016/j.immuni.2016.10.027_bib36 article-title: Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies publication-title: Immunity doi: 10.1016/j.immuni.2013.04.012 – volume: 84 start-page: 11905 year: 2010 ident: 10.1016/j.immuni.2016.10.027_bib12 article-title: Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions publication-title: J. Virol. doi: 10.1128/JVI.01548-10 – volume: 516 start-page: 418 year: 2014 ident: 10.1016/j.immuni.2016.10.027_bib21 article-title: Rapid development of broadly influenza neutralizing antibodies through redundant mutations publication-title: Nature doi: 10.1038/nature13764 – volume: 161 start-page: 1280 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib37 article-title: Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors publication-title: Cell doi: 10.1016/j.cell.2015.05.007 – volume: 509 start-page: 55 year: 2014 ident: 10.1016/j.immuni.2016.10.027_bib7 article-title: Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies publication-title: Nature doi: 10.1038/nature13036 – volume: 86 start-page: 5844 year: 2012 ident: 10.1016/j.immuni.2016.10.027_bib34 article-title: Selection pressure on HIV-1 envelope by broadly neutralizing antibodies to the conserved CD4-binding site publication-title: J. Virol. doi: 10.1128/JVI.07139-11 – volume: 78 start-page: 4675 year: 2004 ident: 10.1016/j.immuni.2016.10.027_bib38 article-title: Molecular evolution and circulation patterns of human respiratory syncytial virus subgroup a: positively selected sites in the attachment g glycoprotein publication-title: J. Virol. doi: 10.1128/JVI.78.9.4675-4683.2004 – volume: 100 start-page: 4144 year: 2003 ident: 10.1016/j.immuni.2016.10.027_bib22 article-title: Rapid evolution of the neutralizing antibody response to HIV type 1 infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0630530100 – volume: 11 start-page: e1004932 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib2 article-title: Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004932 – volume: 18 start-page: 1688 year: 2012 ident: 10.1016/j.immuni.2016.10.027_bib20 article-title: Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape publication-title: Nat. Med. doi: 10.1038/nm.2985 – volume: 84 start-page: 1631 year: 2010 ident: 10.1016/j.immuni.2016.10.027_bib6 article-title: Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables publication-title: J. Virol. doi: 10.1128/JVI.01482-09 – volume: 161 start-page: 470 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib35 article-title: Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection publication-title: Cell doi: 10.1016/j.cell.2015.03.004 – volume: 9 start-page: e1003738 year: 2013 ident: 10.1016/j.immuni.2016.10.027_bib33 article-title: Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003738 – volume: 210 start-page: 1235 year: 2013 ident: 10.1016/j.immuni.2016.10.027_bib5 article-title: Restricting HIV-1 pathways for escape using rationally designed anti-HIV-1 antibodies publication-title: J. Exp. Med. doi: 10.1084/jem.20130221 – volume: 83 start-page: 7337 year: 2009 ident: 10.1016/j.immuni.2016.10.027_bib27 article-title: Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm publication-title: J. Virol. doi: 10.1128/JVI.00110-09 – volume: 11 start-page: e1005276 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib28 article-title: Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005276 – volume: 43 start-page: 1053 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib9 article-title: Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans publication-title: Immunity doi: 10.1016/j.immuni.2015.11.007 – volume: 211 start-page: 2361 year: 2014 ident: 10.1016/j.immuni.2016.10.027_bib14 article-title: Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants publication-title: J. Exp. Med. doi: 10.1084/jem.20141050 – volume: 89 start-page: 4201 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib18 article-title: HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.03608-14 – volume: 35 start-page: 39 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib11 article-title: New approaches to HIV vaccine development publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2015.05.007 – volume: 13 start-page: 996 year: 2006 ident: 10.1016/j.immuni.2016.10.027_bib31 article-title: Structure of the Epstein-Barr virus major envelope glycoprotein publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1161 – volume: 334 start-page: 1289 year: 2011 ident: 10.1016/j.immuni.2016.10.027_bib4 article-title: Increasing the potency and breadth of an HIV antibody by using structure-based rational design publication-title: Science doi: 10.1126/science.1213782 – volume: 13 start-page: 31 year: 2016 ident: 10.1016/j.immuni.2016.10.027_bib29 article-title: Broadly Neutralizing Antibodies for HIV Eradication publication-title: Curr. HIV/AIDS Rep. doi: 10.1007/s11904-016-0299-7 – volume: 340 start-page: 751 year: 2013 ident: 10.1016/j.immuni.2016.10.027_bib10 article-title: Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization publication-title: Science doi: 10.1126/science.1233989 – volume: 79 start-page: 10108 year: 2005 ident: 10.1016/j.immuni.2016.10.027_bib15 article-title: Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.79.16.10108-10125.2005 – year: 2016 ident: 10.1016/j.immuni.2016.10.027_bib24 article-title: Determinants of HIV-1 broadly neutralizing antibody induction publication-title: Nat. Med. doi: 10.1038/nm.4187 – volume: 85 start-page: 8954 year: 2011 ident: 10.1016/j.immuni.2016.10.027_bib16 article-title: Mechanism of neutralization by the broadly neutralizing HIV-1 monoclonal antibody VRC01 publication-title: J. Virol. doi: 10.1128/JVI.00754-11 – volume: 16 start-page: 571 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib1 article-title: Antibody responses to envelope glycoproteins in HIV-1 infection publication-title: Nat. Immunol. doi: 10.1038/ni.3158 – volume: 10 start-page: 151 year: 2015 ident: 10.1016/j.immuni.2016.10.027_bib26 article-title: Antibody engineering for increased potency, breadth and half-life publication-title: Curr. Opin. HIV AIDS doi: 10.1097/COH.0000000000000148 – volume: 422 start-page: 307 year: 2003 ident: 10.1016/j.immuni.2016.10.027_bib32 article-title: Antibody neutralization and escape by HIV-1 publication-title: Nature doi: 10.1038/nature01470 – volume: 165 start-page: 813 year: 2016 ident: 10.1016/j.immuni.2016.10.027_bib30 article-title: Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G publication-title: Cell doi: 10.1016/j.cell.2016.04.010 – volume: 158 start-page: 481 year: 2014 ident: 10.1016/j.immuni.2016.10.027_bib8 article-title: Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2014.06.022 – volume: 44 start-page: 1215 year: 2016 ident: 10.1016/j.immuni.2016.10.027_bib19 article-title: Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch publication-title: Immunity doi: 10.1016/j.immuni.2016.04.016 – volume: 88 start-page: 12669 year: 2014 ident: 10.1016/j.immuni.2016.10.027_bib23 article-title: Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo publication-title: J. Virol. doi: 10.1128/JVI.02213-14 – reference: 27851923 - Immunity. 2016 Nov 15;45(5):958-960. doi: 10.1016/j.immuni.2016.10.033. |
SSID | ssj0014590 |
Score | 2.625084 |
Snippet | Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1108 |
SubjectTerms | 60 APPLIED LIFE SCIENCES Antibodies, Neutralizing - immunology antibody Antibody Specificity BASIC BIOLOGICAL SCIENCES Binding sites Binding Sites, Antibody - immunology Bioinformatics CD4-binding site CD4-Positive T-Lymphocytes - immunology Cell Separation Cloning envelope Glycoproteins HIV HIV Antibodies - immunology HIV Envelope Protein gp120 - immunology HIV Infections - immunology HIV-1 - immunology Humans Immunoglobulins Immunotherapy Light neutralizing Patients Phylogenetics Plasmids prophylaxis Proteins resistance structure vaccine Vaccines Viruses |
Title | Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth |
URI | https://dx.doi.org/10.1016/j.immuni.2016.10.027 https://www.ncbi.nlm.nih.gov/pubmed/27851912 https://www.proquest.com/docview/1841762035 https://www.proquest.com/docview/1841133620 https://www.proquest.com/docview/1846421109 https://www.osti.gov/biblio/1338973 https://pubmed.ncbi.nlm.nih.gov/PMC5770152 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIhAvCMZX2JiMxKtp8-Gvx7ZsKkxMiDHoW2THsRqEkmlLkfbfc-d8iKKJSby1yblqfL6738X3OxPyVujMCisES6wTLIOYxrQ3gsVSau8SqxMfun2eidVF9nHN13tkOXBhsKyy9_2dTw_eur8y7WdzellV03MsJYQkPAVEERpVgR9OMxVIfOvFuJOQcT0b6w5BeqDPhRqvKnAwsMBLvMMaLzxb5vbwNGnA4m5DoX8XU_4RnU4ek0c9rKTz7p8_IXtlvU_udwdN3uyTB5_6LfSnxHTUXN-_q6ONp4Yu32dsUQWCCzsHEErnIGIbd0Pbhq4-fKPtxrT0GFzZr9LRM7AO9tnU8GEbXpR0VE66AADq2s0zcnFy_HW5Yv05C6wAvNQy52ViuPQanLDWXikDKEErI11aFKg0hFUeMkVjfeJUoYRyWkNiJp0vhE_T52RSN3X5ktBScW9gcrkD3OA1V167Qtls5qwy3BQRSYfpzYu-CTmehfEzH6rNfuSdUnJUCl4FpUSEjaMuuyYcd8jLQXP5zmLKIU7cMfIAFY2jsIdugcVGMAwTeS3TiBwO-s97U7_OIUWOIaLMUh6RN-NtMFLceTF12Ww7GfgNkPqnDJKO45mOyItuSY0Pm0gAxjpO4MF2FtsogE3Cd-_U1SY0C-dSgjqSV_89JQfkIX5D_mXMD8mkvdqWrwGItfaI3Juffvl-ehQs7jcPWTI- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VII4XBOUKLbBIvC6Jj70em9AqgTZCaovyZq29XsUI2RU4SP33zPgSQRWVeLO8s5a9szPzjXcOgPfSxKlMpeRh6iSP0aZx463kgVLGuzA1oW-qfa7k4jL-tBbrPZj3uTAUVtnp_lanN9q6uzPpVnNyVRSTcwolRCc8QkTRFKq6A3cRDSjq37Bcz4ajhFiY6RB4iOR9_lwT5FU0SRgU4SU_UJAXNZe52T6NKhS5m2Do39GUf5ink8fwqMOV7Kh99Sewl5f7cK_tNHm9D_fPujP0p2Db3Fzf_axjlWeWzT_GfFY0GS78HFEoO0KStHLXrK7YYvmV1Rtbs2PUZb9yx1YoHvyLLfFi2_wpaXM52QwRqKs3z-Dy5PhivuBdowWeIWCqufMqtEJ5g1rYGK-1RZhgtFUuyjLiGuEqj66iTX3odKaldsagZ6acz6SPoucwKqsyfwks18JbXFzhEDh4I7Q3LtNpPHWptsJmY4j65U2yrgo5NcP4nvThZt-SlikJMYXuIlPGwIdZV20VjlvoVc-5ZGc3JWgobpl5QIymWVREN6NoI5xGnrxR0RgOe_4nnaz_TNBHDtCkTCMxhnfDMEopHb3YMq-2LQ0-A6n-SUNZx8HUjOFFu6WGjw0VImMThPhhO5ttIKAq4bsjZbFpqoULpZAd4av_XpK38GBxcXaanC5Xnw_gIY1QMmYgDmFU_9jmrxGV1embRup-A8fJM7o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+a+CD4-Binding-Site+Antibody+to+HIV+that+Evolved+Near-Pan+Neutralization+Breadth&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Huang%2C+Jinghe&rft.au=Kang%2C+Byong+H&rft.au=Ishida%2C+Elise&rft.au=Zhou%2C+Tongqing&rft.date=2016-11-15&rft.pub=Elsevier+Limited&rft.issn=1074-7613&rft.eissn=1097-4180&rft.volume=45&rft.issue=5&rft.spage=1108&rft_id=info:doi/10.1016%2Fj.immuni.2016.10.027&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4256409661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |