Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis

TNF-α suppresses regulatory T (T reg ) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells, phosphorylation of FOXP3 promotes its transcriptional activity. TNF-α induces protein phosphatase 1 expression, leading to dephosphorylation...

Full description

Saved in:
Bibliographic Details
Published inNature medicine Vol. 19; no. 3; pp. 322 - 328
Main Authors Nie, Hong, Zheng, Yingxia, Li, Runsheng, Guo, Taylor B, He, Dongyi, Fang, Lei, Liu, Xuebin, Xiao, Lianbo, Chen, Xi, Wan, Bing, Chin, Y Eugene, Zhang, Jingwu Z
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TNF-α suppresses regulatory T (T reg ) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells, phosphorylation of FOXP3 promotes its transcriptional activity. TNF-α induces protein phosphatase 1 expression, leading to dephosphorylation of FOXP3 and inhibition of T reg cell function. In individuals with rheumatoid arthritis, TNF-α–specific antibody treatment restores T reg cell activity and FOXP3 phosphorylation, suggesting that post-translational modifications, including phosphorylation, regulate FOXP3 activity and T reg cell–mediated suppression. Regulatory T (T reg ) cells suppress autoimmune disease, and impaired T reg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, T reg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis–derived T reg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired T reg cell function. Moreover, TNF-α–induced T reg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17) + and interferon-γ (IFN-γ) + CD4 + T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α–specific antibody restored T reg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in T reg cells. Thus, TNF-α controls the balance between T reg cells and pathogenic T H 17 and T H 1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.
AbstractList Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α-induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)(+) and interferon-γ (IFN-γ)(+)CD4(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.
Regulatory T ([T.sub.reg]) cells suppress autoimmune disease, and impaired [T.sub.reg] cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, [T.sub.reg] cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived [T.sub.reg] cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired [T.sub.reg] cell function. Moreover, TNF-α-induced [T.sub.reg] cell dysfunction correlated with increased numbers of interleukin-17 [(IL-17).sup.+] and interferon-γ [(IFN-γ).sup.+][CD4.sup.+] T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored [T.sub.reg] cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in [T.sub.reg] cells. Thus, TNF-α controls the balance between [T.sub.reg] cells and pathogenic [T.sub.H]17 and [T.sub.H]1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.
Regulatory T (T sub(reg)) cells suppress autoimmune disease, and impaired T sub(reg) cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, T sub(reg) cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived T sub(reg) cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor alpha (TNF- alpha ), leading to impaired T sub(reg) cell function. Moreover, TNF- alpha -induced T sub(reg) cell dysfunction correlated with increased numbers of interleukin-17 (IL-17) super(+) and interferon- gamma (IFN- gamma ) super(+)CD4 super(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF- alpha -specific antibody restored T sub(reg) cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in T sub(reg) cells. Thus, TNF- alpha controls the balance between T sub(reg) cells and pathogenic T sub(H)17 and T sub(H)1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.
Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α-induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)(+) and interferon-γ (IFN-γ)(+)CD4(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α-induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)(+) and interferon-γ (IFN-γ)(+)CD4(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.
TNF-α suppresses regulatory T (T reg ) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells, phosphorylation of FOXP3 promotes its transcriptional activity. TNF-α induces protein phosphatase 1 expression, leading to dephosphorylation of FOXP3 and inhibition of T reg cell function. In individuals with rheumatoid arthritis, TNF-α–specific antibody treatment restores T reg cell activity and FOXP3 phosphorylation, suggesting that post-translational modifications, including phosphorylation, regulate FOXP3 activity and T reg cell–mediated suppression. Regulatory T (T reg ) cells suppress autoimmune disease, and impaired T reg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, T reg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis–derived T reg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired T reg cell function. Moreover, TNF-α–induced T reg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17) + and interferon-γ (IFN-γ) + CD4 + T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α–specific antibody restored T reg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in T reg cells. Thus, TNF-α controls the balance between T reg cells and pathogenic T H 17 and T H 1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.
Audience Academic
Author Wan, Bing
Chen, Xi
Li, Runsheng
Xiao, Lianbo
Zhang, Jingwu Z
Guo, Taylor B
He, Dongyi
Zheng, Yingxia
Nie, Hong
Liu, Xuebin
Fang, Lei
Chin, Y Eugene
Author_xml – sequence: 1
  givenname: Hong
  surname: Nie
  fullname: Nie, Hong
  organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine
– sequence: 2
  givenname: Yingxia
  surname: Zheng
  fullname: Zheng, Yingxia
  organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine
– sequence: 3
  givenname: Runsheng
  surname: Li
  fullname: Li, Runsheng
  organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences
– sequence: 4
  givenname: Taylor B
  surname: Guo
  fullname: Guo, Taylor B
  organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences
– sequence: 5
  givenname: Dongyi
  surname: He
  fullname: He, Dongyi
  organization: Department of Medicine, Guanghua Rheumatology Hospital
– sequence: 6
  givenname: Lei
  surname: Fang
  fullname: Fang, Lei
  organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences
– sequence: 7
  givenname: Xuebin
  surname: Liu
  fullname: Liu, Xuebin
  organization: GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China
– sequence: 8
  givenname: Lianbo
  surname: Xiao
  fullname: Xiao, Lianbo
  organization: Department of Surgery, Guanghua Rheumatology Hospital
– sequence: 9
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences
– sequence: 10
  givenname: Bing
  surname: Wan
  fullname: Wan, Bing
  organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences
– sequence: 11
  givenname: Y Eugene
  surname: Chin
  fullname: Chin, Y Eugene
  organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Department of Surgery, Brown University School of Medicine-Rhode Island Hospital
– sequence: 12
  givenname: Jingwu Z
  surname: Zhang
  fullname: Zhang, Jingwu Z
  email: jingwu.z.zang@gsk.com
  organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Present address: GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23396208$$D View this record in MEDLINE/PubMed
BookMark eNqN0s1u1DAQB_AIFdEPEG-ALCHxccgyjhMnOVYVC5UqtoKCerO8zmTjKrEX25HoY_EiPBNOdyms2EOVQyL7N3Y08z9ODow1mCTPKcwosOqdGWYMquJRckSLnKe0hOuD-A1llVZ1wQ-TY-9vAIBBUT9JDjPGap5BdZTYy876dWfdbS-DtobYlswX15eMKGuCs70nDldj3IyEXBGFfU_a0ag7LE1DtCfadHqpAzZkGc2nefrrZ1wjrsNxiIW6IdKFzumg_dPkcSt7j8-275Pk6_z91dnH9GLx4fzs9CJVRUFD2sgMASVSvmQclaqXnOZVI5GzvFIlVDRroGYF1KUsJedQVNi2vOElxg0O7CR5szl37ez3EX0Qg_bTz0uDdvSCsqwqKNQ8fwClBWcsBxrpyw1dyR6FNq0NTqqJi1OWZTXkNUx3p3vUCg062ce5tTou7_jZHh-fBget9ha83SmYRoU_wkqO3ovzL58fbhffdu2rf2yHsg-dt_04zdrvwhfblo3LARuxdnqQ7lb8yVUErzdAOeu9w_aeUBBTYoUZxJTYv826l0qHuyjGJuh-j99Oy8cTzQqduLGjMzFL_9HfkIj1hA
CitedBy_id crossref_primary_10_2119_molmed_2015_00057
crossref_primary_10_1111_cei_13357
crossref_primary_10_17826_cumj_978353
crossref_primary_10_1016_j_jneuroim_2013_10_009
crossref_primary_10_4049_jimmunol_1302528
crossref_primary_10_1111_bjh_13126
crossref_primary_10_1186_s12974_022_02620_w
crossref_primary_10_3389_fmed_2022_891230
crossref_primary_10_1038_nri3464
crossref_primary_10_2217_imt_2017_0017
crossref_primary_10_3390_ijms222212411
crossref_primary_10_3109_08916934_2016_1166214
crossref_primary_10_3389_fnins_2023_1277399
crossref_primary_10_1016_j_cyto_2014_11_020
crossref_primary_10_3389_fimmu_2022_863753
crossref_primary_10_1371_journal_pone_0156311
crossref_primary_10_3389_fmicb_2017_02595
crossref_primary_10_1007_s10456_015_9487_0
crossref_primary_10_2139_ssrn_3975268
crossref_primary_10_1007_s00441_020_03351_1
crossref_primary_10_1007_s13311_014_0329_3
crossref_primary_10_1016_j_yexcr_2016_02_018
crossref_primary_10_1093_cei_uxad052
crossref_primary_10_1016_j_heliyon_2024_e36512
crossref_primary_10_1002_eji_202048794
crossref_primary_10_1186_ar4567
crossref_primary_10_1080_2162402X_2019_1621676
crossref_primary_10_1111_cei_13256
crossref_primary_10_1016_j_autrev_2013_04_001
crossref_primary_10_1016_j_gene_2020_145362
crossref_primary_10_1111_cei_13259
crossref_primary_10_21053_ceo_2021_00920
crossref_primary_10_1007_s00018_017_2569_y
crossref_primary_10_1093_ijnp_pyw001
crossref_primary_10_1038_cmi_2017_138
crossref_primary_10_1128_IAI_00109_18
crossref_primary_10_3390_ijms21093207
crossref_primary_10_1016_j_ajpath_2020_07_012
crossref_primary_10_3389_fimmu_2019_01989
crossref_primary_10_3390_ijms19072036
crossref_primary_10_3389_fimmu_2017_00300
crossref_primary_10_1016_j_autrev_2013_12_004
crossref_primary_10_1038_nm_4019
crossref_primary_10_2174_1573397118666220401145710
crossref_primary_10_1038_s41577_018_0048_9
crossref_primary_10_3390_ijms22189676
crossref_primary_10_1038_nm_4018
crossref_primary_10_1016_j_jep_2022_114993
crossref_primary_10_3390_ijms20030528
crossref_primary_10_1186_s13075_018_1725_6
crossref_primary_10_3324_haematol_2023_282859
crossref_primary_10_1016_j_autrev_2020_102468
crossref_primary_10_1073_pnas_1414189111
crossref_primary_10_1016_j_intimp_2015_03_044
crossref_primary_10_3109_08830185_2013_811657
crossref_primary_10_1038_nrrheum_2013_28
crossref_primary_10_1186_1471_2407_14_489
crossref_primary_10_3389_fimmu_2015_00061
crossref_primary_10_1111_cei_13438
crossref_primary_10_3389_fgene_2014_00346
crossref_primary_10_1084_jem_20151255
crossref_primary_10_1155_2014_126365
crossref_primary_10_1038_s41577_024_01010_y
crossref_primary_10_1007_s12016_018_8721_0
crossref_primary_10_18632_oncotarget_8071
crossref_primary_10_1016_j_jgg_2019_11_011
crossref_primary_10_1111_1348_0421_12471
crossref_primary_10_1016_j_crimmu_2020_02_001
crossref_primary_10_1021_acsnano_5b05470
crossref_primary_10_1128_MCB_00063_17
crossref_primary_10_1038_srep07023
crossref_primary_10_1126_scisignal_aaf3957
crossref_primary_10_1093_rheumatology_keu487
crossref_primary_10_1002_eji_201343967
crossref_primary_10_1002_jcp_27180
crossref_primary_10_1038_s41577_020_0296_3
crossref_primary_10_1016_j_ecl_2017_07_010
crossref_primary_10_1038_srep46229
crossref_primary_10_1074_jbc_M114_586651
crossref_primary_10_1016_j_jaut_2025_103395
crossref_primary_10_1016_j_coi_2020_07_006
crossref_primary_10_1016_j_bbagrm_2023_194992
crossref_primary_10_3892_br_2015_561
crossref_primary_10_1038_s41467_018_06603_5
crossref_primary_10_3389_fragi_2022_867950
crossref_primary_10_4049_jimmunol_1302455
crossref_primary_10_1038_s41392_022_00948_6
crossref_primary_10_1074_jbc_M116_717892
crossref_primary_10_1128_IAI_00006_14
crossref_primary_10_3389_fimmu_2024_1404974
crossref_primary_10_3389_fnins_2020_00575
crossref_primary_10_1016_j_cyto_2016_08_014
crossref_primary_10_1097_BCO_0000000000001067
crossref_primary_10_1016_j_jaut_2019_04_018
crossref_primary_10_1016_S2707_3688_23_00013_4
crossref_primary_10_1016_j_clim_2015_07_005
crossref_primary_10_1016_j_clim_2023_109883
crossref_primary_10_1186_s13046_023_02915_7
crossref_primary_10_3389_fimmu_2021_783282
crossref_primary_10_2147_IJN_S388996
crossref_primary_10_2174_0929866527999201113105858
crossref_primary_10_3892_etm_2021_9641
crossref_primary_10_1016_j_ymthe_2017_09_001
crossref_primary_10_1038_nm_3124
crossref_primary_10_1089_jir_2017_0027
crossref_primary_10_3109_02656736_2013_811546
crossref_primary_10_1016_j_cyto_2016_08_003
crossref_primary_10_1002_adhm_201901541
crossref_primary_10_1007_s10067_021_05602_0
crossref_primary_10_1016_j_ajpath_2018_07_011
crossref_primary_10_1111_jth_14659
crossref_primary_10_1080_1744666X_2019_1620602
crossref_primary_10_1038_s41584_021_00639_6
crossref_primary_10_3390_biomedicines11010173
crossref_primary_10_1016_j_imlet_2024_106859
crossref_primary_10_1016_j_jaci_2015_08_014
crossref_primary_10_3389_fimmu_2024_1387975
crossref_primary_10_3390_molecules28031143
crossref_primary_10_15252_embj_201899766
crossref_primary_10_1038_ni_2596
crossref_primary_10_1002_eji_201344205
crossref_primary_10_7554_eLife_58463
crossref_primary_10_1038_s41419_018_1266_6
crossref_primary_10_1177_2040622320986721
crossref_primary_10_1016_j_celrep_2019_02_087
crossref_primary_10_1016_j_jaut_2018_09_011
crossref_primary_10_1017_erm_2021_33
crossref_primary_10_1038_s41598_020_76168_1
crossref_primary_10_1002_eji_202049123
crossref_primary_10_3389_fimmu_2024_1349470
crossref_primary_10_4046_trd_2017_80_2_113
crossref_primary_10_1016_j_cellsig_2014_03_026
crossref_primary_10_1016_j_virusres_2018_04_003
crossref_primary_10_3109_08820139_2013_822762
crossref_primary_10_1021_acsnano_1c03726
crossref_primary_10_3389_fonc_2014_00209
crossref_primary_10_1002_eji_201948270
crossref_primary_10_1016_j_expneurol_2020_113259
crossref_primary_10_3389_fimmu_2021_753754
crossref_primary_10_1134_S0006297914120049
crossref_primary_10_1016_j_jcmgh_2018_08_009
crossref_primary_10_1007_s12016_017_8610_y
crossref_primary_10_1038_nrrheum_2013_204
crossref_primary_10_1155_2014_943149
crossref_primary_10_1016_j_clim_2023_109685
crossref_primary_10_1007_s00011_014_0716_6
crossref_primary_10_1038_nrrheum_2013_205
crossref_primary_10_3389_fimmu_2015_00571
crossref_primary_10_1189_jlb_3HI1114_572RR
crossref_primary_10_1371_journal_pcbi_1004820
crossref_primary_10_1111_1756_185X_12666
crossref_primary_10_1111_jcmm_15743
crossref_primary_10_1016_j_jtauto_2021_100130
crossref_primary_10_7554_eLife_61841
crossref_primary_10_1074_jbc_M113_467704
crossref_primary_10_1038_nri_2017_75
crossref_primary_10_1186_s13020_021_00448_9
crossref_primary_10_3389_fimmu_2017_01482
crossref_primary_10_1371_journal_pone_0086062
crossref_primary_10_1007_s12035_017_0532_4
crossref_primary_10_1016_j_biocel_2014_11_008
crossref_primary_10_1111_imr_12312
crossref_primary_10_1038_nm_3439
crossref_primary_10_1073_pnas_1815336116
crossref_primary_10_1080_14397595_2017_1416923
crossref_primary_10_1016_j_celrep_2018_01_070
crossref_primary_10_1371_journal_pone_0162101
crossref_primary_10_1016_j_compbiomed_2025_110021
crossref_primary_10_1038_nm_3432
crossref_primary_10_1016_j_talanta_2017_01_025
crossref_primary_10_1016_j_rhum_2014_11_015
crossref_primary_10_3389_fimmu_2018_00573
crossref_primary_10_3389_fimmu_2019_00798
crossref_primary_10_3389_fimmu_2022_932485
crossref_primary_10_1016_j_autrev_2020_102715
crossref_primary_10_1038_srep16801
crossref_primary_10_3389_fimmu_2018_01545
crossref_primary_10_1016_j_scitotenv_2023_166698
crossref_primary_10_2217_imt_13_69
crossref_primary_10_1093_carcin_bgv042
crossref_primary_10_3390_pathogens9121027
crossref_primary_10_3390_ijms222010922
crossref_primary_10_1186_s13023_020_01377_w
crossref_primary_10_3390_ijms241814293
crossref_primary_10_1007_s10238_016_0412_7
crossref_primary_10_3390_cells12141905
crossref_primary_10_1186_s12950_017_0154_7
crossref_primary_10_3389_fimmu_2018_01658
crossref_primary_10_1016_j_immuni_2018_04_008
crossref_primary_10_3904_kjim_2021_363
crossref_primary_10_1016_j_intimp_2022_108858
crossref_primary_10_3389_fimmu_2018_00444
crossref_primary_10_1016_j_bbrc_2015_12_024
crossref_primary_10_1093_pcmedi_pbaa001
crossref_primary_10_4049_jimmunol_2300463
crossref_primary_10_1038_s41397_024_00346_x
crossref_primary_10_1080_08830185_2019_1621310
crossref_primary_10_1080_08916934_2019_1657098
crossref_primary_10_1016_j_ijpharm_2021_121137
crossref_primary_10_1038_s41598_018_30621_4
crossref_primary_10_1111_phpp_12175
crossref_primary_10_1007_s40272_015_0128_2
crossref_primary_10_1038_s41590_018_0120_4
crossref_primary_10_1016_j_bbamcr_2022_119223
crossref_primary_10_3389_fphar_2021_716081
crossref_primary_10_1016_j_ijbiomac_2024_132030
crossref_primary_10_3389_fimmu_2018_00356
crossref_primary_10_1016_j_cytogfr_2020_10_007
crossref_primary_10_3389_fimmu_2021_679770
crossref_primary_10_18632_oncotarget_11943
crossref_primary_10_4049_jimmunol_1801689
crossref_primary_10_1016_j_bbagrm_2015_11_003
crossref_primary_10_3389_fimmu_2023_1202834
crossref_primary_10_1002_art_39606
crossref_primary_10_3389_fphar_2024_1380335
crossref_primary_10_1016_j_isci_2020_101192
crossref_primary_10_3389_fimmu_2015_00493
crossref_primary_10_3389_fimmu_2023_1280741
crossref_primary_10_1038_s41598_019_46934_x
crossref_primary_10_1111_ajt_13456
crossref_primary_10_2217_imt_2023_0023
crossref_primary_10_1038_s41584_024_01190_w
crossref_primary_10_1038_ki_2013_234
crossref_primary_10_1016_j_berh_2019_101478
crossref_primary_10_1016_j_bbcan_2024_189211
crossref_primary_10_1007_s12011_017_1224_7
crossref_primary_10_4049_jimmunol_1501973
crossref_primary_10_1016_j_bbcan_2023_189035
crossref_primary_10_1016_j_it_2014_06_005
crossref_primary_10_1016_j_ymthe_2020_07_020
crossref_primary_10_1016_j_autrev_2014_10_012
crossref_primary_10_1186_s13317_020_00135_z
crossref_primary_10_1371_journal_pone_0162306
crossref_primary_10_1136_gutjnl_2014_308989
crossref_primary_10_1016_j_autrev_2014_10_011
crossref_primary_10_1155_2020_6134098
crossref_primary_10_1016_j_jri_2018_08_004
crossref_primary_10_1038_ncomms5820
crossref_primary_10_1002_cti2_1011
crossref_primary_10_12659_MSM_896355
crossref_primary_10_3389_fopht_2023_1184937
crossref_primary_10_1136_ard_2023_224878
crossref_primary_10_1111_ajt_13395
crossref_primary_10_1016_j_cellimm_2020_104193
crossref_primary_10_3389_fimmu_2023_1257321
crossref_primary_10_1016_j_clim_2018_09_010
crossref_primary_10_1016_j_imbio_2015_02_006
crossref_primary_10_3389_fimmu_2019_02486
crossref_primary_10_1007_s10875_015_0182_0
crossref_primary_10_1080_14728222_2019_1586886
crossref_primary_10_4049_jimmunol_1400649
crossref_primary_10_1111_imr_12170
crossref_primary_10_1038_s41598_017_14965_x
crossref_primary_10_1111_imr_12172
crossref_primary_10_1073_pnas_2208436119
crossref_primary_10_18632_oncotarget_22630
crossref_primary_10_3389_fimmu_2018_01528
crossref_primary_10_1096_fj_202000415R
crossref_primary_10_1111_1756_185X_13486
crossref_primary_10_1155_2015_751793
crossref_primary_10_1371_journal_ppat_1006985
crossref_primary_10_3389_fimmu_2024_1312919
crossref_primary_10_1002_art_39408
crossref_primary_10_1007_s10930_018_9777_7
crossref_primary_10_1007_s00109_014_1156_z
crossref_primary_10_1586_1744666X_2015_1078729
crossref_primary_10_1155_2014_247372
crossref_primary_10_1016_j_cyto_2017_04_012
crossref_primary_10_3389_fimmu_2021_626172
crossref_primary_10_1016_j_biopha_2021_111436
crossref_primary_10_1073_pnas_1421463112
crossref_primary_10_1016_j_matt_2021_08_015
crossref_primary_10_3389_fimmu_2020_01269
crossref_primary_10_1007_s12032_022_01772_2
crossref_primary_10_3389_fimmu_2018_00784
crossref_primary_10_1002_art_39418
crossref_primary_10_1016_j_clim_2020_108425
crossref_primary_10_1016_j_coi_2016_07_004
crossref_primary_10_1016_j_cyto_2016_09_001
crossref_primary_10_3389_fcell_2021_658820
crossref_primary_10_1186_s12967_018_1611_7
crossref_primary_10_1002_JLB_2MR0120_510R
crossref_primary_10_1371_journal_pone_0111163
crossref_primary_10_3390_ncrna10040038
crossref_primary_10_5582_bst_2018_01012
crossref_primary_10_1016_j_jaut_2017_12_006
crossref_primary_10_3892_mmr_2024_13339
crossref_primary_10_1038_s41423_021_00790_w
crossref_primary_10_1038_s41577_024_00994_x
crossref_primary_10_1038_s41467_024_51781_0
crossref_primary_10_1136_annrheumdis_2013_204228
crossref_primary_10_1182_bloodadvances_2021006797
crossref_primary_10_1007_s10753_016_0470_8
crossref_primary_10_1136_annrheumdis_2018_213511
crossref_primary_10_1111_imm_12595
crossref_primary_10_1002_eji_201948190
crossref_primary_10_1007_s11427_016_5105_7
crossref_primary_10_3389_fimmu_2019_00174
crossref_primary_10_3390_cells9040880
crossref_primary_10_1111_cei_12808
crossref_primary_10_1111_febs_15743
crossref_primary_10_3389_fimmu_2020_01087
crossref_primary_10_1016_j_molmed_2016_01_005
crossref_primary_10_1155_2023_2140327
crossref_primary_10_1038_cmi_2015_10
crossref_primary_10_1038_s41467_022_32754_7
crossref_primary_10_3389_fimmu_2024_1345838
crossref_primary_10_1016_j_jep_2022_115122
crossref_primary_10_1093_bfgp_elae006
crossref_primary_10_1007_s11481_013_9489_x
crossref_primary_10_1038_nrrheum_2014_218
crossref_primary_10_3389_fimmu_2018_00626
crossref_primary_10_15789_1563_0625_ANA_2670
crossref_primary_10_1111_imm_12458
crossref_primary_10_1016_j_lfs_2021_120063
crossref_primary_10_3389_fimmu_2017_00605
crossref_primary_10_1080_07853890_2018_1453169
crossref_primary_10_1371_journal_pone_0114621
crossref_primary_10_1002_jssc_201900678
crossref_primary_10_1016_j_jgg_2024_09_014
crossref_primary_10_1016_j_clim_2014_12_012
crossref_primary_10_4049_jimmunol_1400477
crossref_primary_10_2174_1871520621666211015140455
crossref_primary_10_1186_s12951_024_02470_z
crossref_primary_10_1186_s13578_020_00448_6
crossref_primary_10_1007_s11154_021_09684_8
crossref_primary_10_1371_journal_pone_0074639
crossref_primary_10_1073_pnas_1617115114
crossref_primary_10_1126_sciimmunol_abl8357
crossref_primary_10_4049_immunohorizons_2000099
crossref_primary_10_1016_j_ejso_2022_01_027
crossref_primary_10_1084_jem_20151563
crossref_primary_10_1111_exd_13145
crossref_primary_10_1016_j_jaut_2024_103333
crossref_primary_10_1128_MCB_00041_18
crossref_primary_10_1016_j_cellimm_2014_05_011
crossref_primary_10_1016_j_bcp_2019_113665
crossref_primary_10_1016_j_biocel_2017_10_016
crossref_primary_10_4049_jimmunol_1502124
crossref_primary_10_1016_j_jaut_2014_05_001
crossref_primary_10_1038_s41392_020_0109_y
crossref_primary_10_1016_j_cytogfr_2014_07_016
crossref_primary_10_3389_fimmu_2022_1042622
crossref_primary_10_1016_j_mayocp_2014_01_020
crossref_primary_10_1016_j_molimm_2021_04_001
crossref_primary_10_2217_imt_2020_0071
crossref_primary_10_1007_s12026_023_09444_7
crossref_primary_10_1007_s12192_016_0698_0
crossref_primary_10_1155_2017_2985051
crossref_primary_10_3390_biomedicines11030930
crossref_primary_10_1111_sji_12275
crossref_primary_10_1371_journal_pone_0112110
crossref_primary_10_1002_eji_201343701
crossref_primary_10_1016_j_intimp_2025_114499
crossref_primary_10_14348_molcells_2021_0057
crossref_primary_10_1080_14740338_2018_1549541
crossref_primary_10_1038_gene_2013_69
crossref_primary_10_1038_s41467_020_15525_0
crossref_primary_10_1002_art_39069
crossref_primary_10_1186_s13075_018_1673_1
crossref_primary_10_3389_fmed_2020_00025
crossref_primary_10_1016_j_yexmp_2024_104924
crossref_primary_10_3389_fimmu_2021_686530
crossref_primary_10_1186_s13075_018_1542_y
crossref_primary_10_1038_s41423_021_00671_2
crossref_primary_10_1111_cei_12182
crossref_primary_10_1182_blood_2016_04_711275
crossref_primary_10_3389_fimmu_2019_02040
crossref_primary_10_1002_art_41157
crossref_primary_10_18632_aging_102589
crossref_primary_10_3389_fimmu_2019_03136
crossref_primary_10_1016_j_intimp_2021_107828
crossref_primary_10_3390_ijms25115963
crossref_primary_10_1016_j_jcyt_2020_10_002
crossref_primary_10_1111_imm_12754
crossref_primary_10_1016_j_cca_2023_117612
crossref_primary_10_1016_j_cellimm_2021_104441
crossref_primary_10_1002_art_40398
crossref_primary_10_3389_fimmu_2019_03047
crossref_primary_10_1136_annrheumdis_2013_204782
crossref_primary_10_1016_j_jaut_2013_12_015
crossref_primary_10_3389_fcell_2021_698068
crossref_primary_10_1016_j_eng_2019_01_001
crossref_primary_10_1080_14397595_2016_1218598
crossref_primary_10_54097_hset_v36i_6210
crossref_primary_10_1111_imm_12983
crossref_primary_10_1136_annrheumdis_2020_218094
crossref_primary_10_1074_jbc_M115_638221
crossref_primary_10_1136_annrheumdis_2021_220209
crossref_primary_10_1126_scitranslmed_aad4322
crossref_primary_10_1186_2045_3701_4_25
crossref_primary_10_1136_bmjresp_2022_001551
crossref_primary_10_3389_fimmu_2022_911919
crossref_primary_10_1021_acs_jproteome_4c00930
crossref_primary_10_2147_DDDT_S465713
crossref_primary_10_15252_embr_202050308
Cites_doi 10.2217/14622416.6.5.481
10.1016/j.bbrc.2007.07.187
10.1038/ncb1857
10.1038/sj.cdd.4401276
10.1172/JCI8027
10.1146/annurev.immunol.18.1.423
10.1038/nri802
10.1073/pnas.0806726105
10.4049/jimmunol.177.5.3133
10.1111/j.1600-065X.2011.01018.x
10.1073/pnas.0502738102
10.1016/j.cell.2006.05.042
10.1126/science.1186068
10.1172/JCI36389
10.1084/jem.20040165
10.1172/JCI1379
10.1182/blood-2005-11-4567
10.1016/j.immuni.2009.04.006
10.1038/nm1564
10.1016/j.immuni.2009.04.010
10.1038/icb.2008.106
10.1016/S0092-8674(00)81109-5
10.1172/JCI200215606
10.2337/db08-1168
10.1073/pnas.0700298104
10.1128/MCB.25.18.7966-7975.2005
10.1126/science.1176077
10.1074/jbc.M408067200
10.1007/s10875-008-9236-x
10.1016/S1568-9972(03)00048-X
10.1016/j.cellsig.2010.03.017
10.1038/onc.2009.29
10.1038/nm1652
10.1074/jbc.M807322200
10.1002/path.2637
ContentType Journal Article
Copyright Springer Nature America, Inc. 2013
COPYRIGHT 2013 Nature Publishing Group
Copyright_xml – notice: Springer Nature America, Inc. 2013
– notice: COPYRIGHT 2013 Nature Publishing Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
7T5
H94
DOI 10.1038/nm.3085
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList MEDLINE

AIDS and Cancer Research Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 328
ExternalDocumentID A322904900
23396208
10_1038_nm_3085
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AETEA
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AEIIB
PMFND
7X8
PPXIY
PQGLB
7T5
H94
ID FETCH-LOGICAL-c551t-da2e0eae16b36ecc9b6148dae6348c70812d0935097a7a66058eff6d67e2d0603
ISSN 1078-8956
1546-170X
IngestDate Fri Jul 11 05:22:34 EDT 2025
Thu Jul 10 18:16:51 EDT 2025
Tue Jun 17 20:59:38 EDT 2025
Thu Jun 12 23:55:23 EDT 2025
Tue Jun 10 20:39:33 EDT 2025
Fri Jun 27 04:39:24 EDT 2025
Fri Jun 27 04:55:07 EDT 2025
Thu May 22 21:18:59 EDT 2025
Thu Apr 03 06:59:14 EDT 2025
Tue Jul 01 03:53:34 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Fri Feb 21 02:37:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c551t-da2e0eae16b36ecc9b6148dae6348c70812d0935097a7a66058eff6d67e2d0603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23396208
PQID 1315633401
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1328510964
proquest_miscellaneous_1315633401
gale_infotracmisc_A322904900
gale_infotracgeneralonefile_A322904900
gale_infotracacademiconefile_A322904900
gale_incontextgauss_ISR_A322904900
gale_incontextgauss_IOV_A322904900
gale_healthsolutions_A322904900
pubmed_primary_23396208
crossref_primary_10_1038_nm_3085
crossref_citationtrail_10_1038_nm_3085
springer_journals_10_1038_nm_3085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2013
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Zanin-Zhorov (CR36) 2010; 328
Popivanova (CR9) 2008; 118
Nie (CR34) 2009; 11
Tao (CR20) 2007; 13
Li (CR22) 2007; 104
Matsuzaki (CR35) 2005; 102
Costantino, Baecher-Allan, Hafler (CR13) 2008; 28
Shevach (CR12) 2000; 18
Valencia (CR17) 2006; 108
Hollstein, Hainaut (CR31) 2010; 220
Suryaprasad, Prindiville (CR3) 2003; 2
Ehrenstein (CR4) 2004; 200
Rudensky (CR19) 2011; 241
Ranganathan (CR18) 2005; 6
Huang, Yang, Lamb, Chen (CR32) 2010; 22
Mihindukulasuriya, Zhou, Qin, Tan (CR27) 2004; 279
Chen (CR33) 2005; 25
Korn (CR16) 2007; 13
Brennan, McInnes (CR2) 2008; 118
Kim (CR25) 2007; 362
de Zoeten (CR30) 2009; 284
Puren, Fantuzzi, Gu, Su, Dinarello (CR8) 1998; 101
Wu (CR29) 2006; 126
Feldmann, Brennan, Maini (CR1) 1996; 85
Feldmann (CR5) 2002; 2
Schett, Steiner, Xu, Smolen, Steiner (CR28) 2003; 10
Pan (CR37) 2009; 325
Shevach (CR15) 2009; 30
Putnam (CR24) 2009; 58
Ramesh, Reeves (CR6) 2002; 110
Ali (CR7) 2001; 107
Wicovsky (CR11) 2009; 28
Wang, Tao, Hancock (CR21) 2009; 87
Burstein, Fearon (CR10) 2008; 118
Lopes (CR26) 2006; 177
Samanta (CR23) 2008; 105
Riley, June, Blazar (CR14) 2009; 30
EM Shevach (BFnm3085_CR15) 2009; 30
LF Chen (BFnm3085_CR33) 2005; 25
AL Putnam (BFnm3085_CR24) 2009; 58
B Huang (BFnm3085_CR32) 2010; 22
BK Popivanova (BFnm3085_CR9) 2008; 118
F Pan (BFnm3085_CR37) 2009; 325
Y Wu (BFnm3085_CR29) 2006; 126
L Wang (BFnm3085_CR21) 2009; 87
M Feldmann (BFnm3085_CR1) 1996; 85
E Burstein (BFnm3085_CR10) 2008; 118
R Tao (BFnm3085_CR20) 2007; 13
EM Shevach (BFnm3085_CR12) 2000; 18
A Samanta (BFnm3085_CR23) 2008; 105
JY Kim (BFnm3085_CR25) 2007; 362
A Zanin-Zhorov (BFnm3085_CR36) 2010; 328
JE Lopes (BFnm3085_CR26) 2006; 177
FM Brennan (BFnm3085_CR2) 2008; 118
MR Ehrenstein (BFnm3085_CR4) 2004; 200
A Wicovsky (BFnm3085_CR11) 2009; 28
P Ranganathan (BFnm3085_CR18) 2005; 6
EF de Zoeten (BFnm3085_CR30) 2009; 284
H Matsuzaki (BFnm3085_CR35) 2005; 102
G Ramesh (BFnm3085_CR6) 2002; 110
AJ Puren (BFnm3085_CR8) 1998; 101
CM Costantino (BFnm3085_CR13) 2008; 28
JL Riley (BFnm3085_CR14) 2009; 30
AY Rudensky (BFnm3085_CR19) 2011; 241
KA Mihindukulasuriya (BFnm3085_CR27) 2004; 279
Y Nie (BFnm3085_CR34) 2009; 11
M Ali (BFnm3085_CR7) 2001; 107
B Li (BFnm3085_CR22) 2007; 104
M Hollstein (BFnm3085_CR31) 2010; 220
G Schett (BFnm3085_CR28) 2003; 10
M Feldmann (BFnm3085_CR5) 2002; 2
AG Suryaprasad (BFnm3085_CR3) 2003; 2
T Korn (BFnm3085_CR16) 2007; 13
X Valencia (BFnm3085_CR17) 2006; 108
19696312 - Science. 2009 Aug 28;325(5944):1142-6
16013998 - Pharmacogenomics. 2005 Jul;6(5):481-90
23439034 - Nat Rev Rheumatol. 2013 Apr;9(4):197
14550876 - Autoimmun Rev. 2003 Oct;2(6):346-57
19172156 - Immunol Cell Biol. 2009 Mar-Apr;87(3):195-202
20339032 - Science. 2010 Apr 16;328(5976):372-6
19117830 - J Biol Chem. 2009 Feb 27;284(9):5709-16
16135789 - Mol Cell Biol. 2005 Sep;25(18):7966-75
20363318 - Cell Signal. 2010 Sep;22(9):1282-90
15331607 - J Biol Chem. 2004 Nov 5;279(45):46588-94
19287455 - Oncogene. 2009 Apr 16;28(15):1769-81
18982160 - J Clin Invest. 2008 Nov;118(11):3537-45
14502236 - Cell Death Differ. 2003 Oct;10(10):1126-36
26735402 - Nat Med. 2016 Jan;22(1):16-7
21488902 - Immunol Rev. 2011 May;241(1):260-8
16076959 - Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11278-83
19464988 - Immunity. 2009 May;30(5):656-65
16537805 - Blood. 2006 Jul 1;108(1):253-61
17922010 - Nat Med. 2007 Nov;13(11):1299-307
17360565 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4571-6
23467235 - Nat Med. 2013 Mar;19(3):269-70
19074986 - Diabetes. 2009 Mar;58(3):652-62
12033742 - Nat Rev Immunol. 2002 May;2(5):364-71
12235115 - J Clin Invest. 2002 Sep;110(6):835-42
17384649 - Nat Med. 2007 Apr;13(4):423-31
19464986 - Immunity. 2009 May;30(5):636-45
8616886 - Cell. 1996 May 3;85(3):307-10
18219390 - J Clin Invest. 2008 Feb;118(2):464-7
18219394 - J Clin Invest. 2008 Feb;118(2):560-70
19295512 - Nat Cell Biol. 2009 Apr;11(4):492-500
9449707 - J Clin Invest. 1998 Feb 1;101(3):711-21
17706604 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):44-50
15280421 - J Exp Med. 2004 Aug 2;200(3):277-85
26735403 - Nat Med. 2016 Jan;22(1):18-9
19918835 - J Pathol. 2010 Jan;220(2):164-73
16873067 - Cell. 2006 Jul 28;126(2):375-87
10837065 - Annu Rev Immunol. 2000;18:423-49
16920951 - J Immunol. 2006 Sep 1;177(5):3133-42
18763026 - J Clin Immunol. 2008 Nov;28(6):697-706
18779564 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14023-7
11181651 - J Clin Invest. 2001 Feb;107(4):519-28
References_xml – volume: 6
  start-page: 481
  year: 2005
  end-page: 490
  ident: CR18
  article-title: Pharmacogenomics of tumor necrosis factor antagonists in rheumatoid arthritis
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.6.5.481
– volume: 118
  start-page: 464
  year: 2008
  end-page: 467
  ident: CR10
  article-title: Colitis and cancer: a tale of inflammatory cells and their cytokines
  publication-title: J. Clin. Invest.
– volume: 362
  start-page: 44
  year: 2007
  end-page: 50
  ident: CR25
  article-title: Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (T )-like cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.07.187
– volume: 11
  start-page: 492
  year: 2009
  end-page: 500
  ident: CR34
  article-title: STAT3 inhibition of gluconeogenesis is downregulated by SirT1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1857
– volume: 10
  start-page: 1126
  year: 2003
  end-page: 1136
  ident: CR28
  article-title: TNFα mediates susceptibility to heat-induced apoptosis by protein phosphatase-mediated inhibition of the HSF1/hsp70 stress response
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401276
– volume: 107
  start-page: 519
  year: 2001
  end-page: 528
  ident: CR7
  article-title: Rheumatoid arthritis synovial T cells regulate transcription of several genes associated with antigen-induced anergy
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI8027
– volume: 18
  start-page: 423
  year: 2000
  end-page: 449
  ident: CR12
  article-title: Regulatory T cells in autoimmunity
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.18.1.423
– volume: 2
  start-page: 364
  year: 2002
  end-page: 371
  ident: CR5
  article-title: Development of anti-TNF therapy for rheumatoid arthritis
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri802
– volume: 105
  start-page: 14023
  year: 2008
  end-page: 14027
  ident: CR23
  article-title: TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0806726105
– volume: 177
  start-page: 3133
  year: 2006
  end-page: 3142
  ident: CR26
  article-title: Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.5.3133
– volume: 241
  start-page: 260
  year: 2011
  end-page: 268
  ident: CR19
  article-title: Regulatory T cells and Foxp3
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01018.x
– volume: 102
  start-page: 11278
  year: 2005
  end-page: 11283
  ident: CR35
  article-title: Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502738102
– volume: 126
  start-page: 375
  year: 2006
  end-page: 387
  ident: CR29
  article-title: FOXP3 controls regulatory T cell function through cooperation with NFAT
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.042
– volume: 328
  start-page: 372
  year: 2010
  end-page: 376
  ident: CR36
  article-title: Protein kinase C-θ mediates negative feedback on regulatory T cell function
  publication-title: Science
  doi: 10.1126/science.1186068
– volume: 118
  start-page: 3537
  year: 2008
  end-page: 3545
  ident: CR2
  article-title: Evidence that cytokines play a role in rheumatoid arthritis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI36389
– volume: 200
  start-page: 277
  year: 2004
  end-page: 285
  ident: CR4
  article-title: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040165
– volume: 101
  start-page: 711
  year: 1998
  end-page: 721
  ident: CR8
  article-title: Interleukin-18 (IFNγ-inducing factor) induces IL-8 and IL-1β via TNFα production from non-CD14 human blood mononuclear cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI1379
– volume: 118
  start-page: 560
  year: 2008
  end-page: 570
  ident: CR9
  article-title: Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis
  publication-title: J. Clin. Invest.
– volume: 220
  start-page: 164
  year: 2010
  end-page: 173
  ident: CR31
  article-title: Massively regulated genes: the example of TP53
  publication-title: J. Pathol.
– volume: 108
  start-page: 253
  year: 2006
  end-page: 261
  ident: CR17
  article-title: TNF downmodulates the function of human CD4 CD25 T-regulatory cells
  publication-title: Blood
  doi: 10.1182/blood-2005-11-4567
– volume: 30
  start-page: 656
  year: 2009
  end-page: 665
  ident: CR14
  article-title: Human T regulatory cell therapy: take a billion or so and call me in the morning
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.006
– volume: 13
  start-page: 423
  year: 2007
  end-page: 431
  ident: CR16
  article-title: Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation
  publication-title: Nat. Med.
  doi: 10.1038/nm1564
– volume: 30
  start-page: 636
  year: 2009
  end-page: 645
  ident: CR15
  article-title: Mechanisms of Foxp3 T regulatory cell-mediated suppression
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.010
– volume: 87
  start-page: 195
  year: 2009
  end-page: 202
  ident: CR21
  article-title: Using histone deacetylase inhibitors to enhance Foxp3 regulatory T-cell function and induce allograft tolerance
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2008.106
– volume: 85
  start-page: 307
  year: 1996
  end-page: 310
  ident: CR1
  article-title: Rheumatoid arthritis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81109-5
– volume: 110
  start-page: 835
  year: 2002
  end-page: 842
  ident: CR6
  article-title: TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200215606
– volume: 58
  start-page: 652
  year: 2009
  end-page: 662
  ident: CR24
  article-title: Expansion of human regulatory T-cells from patients with type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db08-1168
– volume: 104
  start-page: 4571
  year: 2007
  end-page: 4576
  ident: CR22
  article-title: FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0700298104
– volume: 25
  start-page: 7966
  year: 2005
  end-page: 7975
  ident: CR33
  article-title: NF-κB RelA phosphorylation regulates RelA acetylation
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.18.7966-7975.2005
– volume: 325
  start-page: 1142
  year: 2009
  end-page: 1146
  ident: CR37
  article-title: Eos Mediates Foxp3-dependent gene silencing in CD4 regulatory T cells
  publication-title: Science
  doi: 10.1126/science.1176077
– volume: 279
  start-page: 46588
  year: 2004
  end-page: 46594
  ident: CR27
  article-title: Protein phosphatase 4 interacts with and down-regulates insulin receptor substrate 4 following tumor necrosis factor-α stimulation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408067200
– volume: 28
  start-page: 697
  year: 2008
  end-page: 706
  ident: CR13
  article-title: Multiple sclerosis and regulatory T cells
  publication-title: J. Clin. Immunol.
  doi: 10.1007/s10875-008-9236-x
– volume: 2
  start-page: 346
  year: 2003
  end-page: 357
  ident: CR3
  article-title: The biology of TNF blockade
  publication-title: Autoimmun. Rev.
  doi: 10.1016/S1568-9972(03)00048-X
– volume: 22
  start-page: 1282
  year: 2010
  end-page: 1290
  ident: CR32
  article-title: Posttranslational modifications of NF-κB: another layer of regulation for NF-κB signaling pathway
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2010.03.017
– volume: 28
  start-page: 1769
  year: 2009
  end-page: 1781
  ident: CR11
  article-title: Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation
  publication-title: Oncogene
  doi: 10.1038/onc.2009.29
– volume: 13
  start-page: 1299
  year: 2007
  end-page: 1307
  ident: CR20
  article-title: Deacetylase inhibition promotes the generation and function of regulatory T cells
  publication-title: Nat. Med.
  doi: 10.1038/nm1652
– volume: 284
  start-page: 5709
  year: 2009
  end-page: 5716
  ident: CR30
  article-title: Foxp3 processing by proprotein convertases and control of regulatory T cell function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807322200
– volume: 108
  start-page: 253
  year: 2006
  ident: BFnm3085_CR17
  publication-title: Blood
  doi: 10.1182/blood-2005-11-4567
– volume: 10
  start-page: 1126
  year: 2003
  ident: BFnm3085_CR28
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401276
– volume: 87
  start-page: 195
  year: 2009
  ident: BFnm3085_CR21
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2008.106
– volume: 118
  start-page: 3537
  year: 2008
  ident: BFnm3085_CR2
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI36389
– volume: 200
  start-page: 277
  year: 2004
  ident: BFnm3085_CR4
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040165
– volume: 104
  start-page: 4571
  year: 2007
  ident: BFnm3085_CR22
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0700298104
– volume: 328
  start-page: 372
  year: 2010
  ident: BFnm3085_CR36
  publication-title: Science
  doi: 10.1126/science.1186068
– volume: 6
  start-page: 481
  year: 2005
  ident: BFnm3085_CR18
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.6.5.481
– volume: 58
  start-page: 652
  year: 2009
  ident: BFnm3085_CR24
  publication-title: Diabetes
  doi: 10.2337/db08-1168
– volume: 126
  start-page: 375
  year: 2006
  ident: BFnm3085_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.042
– volume: 241
  start-page: 260
  year: 2011
  ident: BFnm3085_CR19
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01018.x
– volume: 85
  start-page: 307
  year: 1996
  ident: BFnm3085_CR1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81109-5
– volume: 279
  start-page: 46588
  year: 2004
  ident: BFnm3085_CR27
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408067200
– volume: 28
  start-page: 1769
  year: 2009
  ident: BFnm3085_CR11
  publication-title: Oncogene
  doi: 10.1038/onc.2009.29
– volume: 107
  start-page: 519
  year: 2001
  ident: BFnm3085_CR7
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI8027
– volume: 22
  start-page: 1282
  year: 2010
  ident: BFnm3085_CR32
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2010.03.017
– volume: 11
  start-page: 492
  year: 2009
  ident: BFnm3085_CR34
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1857
– volume: 325
  start-page: 1142
  year: 2009
  ident: BFnm3085_CR37
  publication-title: Science
  doi: 10.1126/science.1176077
– volume: 13
  start-page: 1299
  year: 2007
  ident: BFnm3085_CR20
  publication-title: Nat. Med.
  doi: 10.1038/nm1652
– volume: 101
  start-page: 711
  year: 1998
  ident: BFnm3085_CR8
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI1379
– volume: 177
  start-page: 3133
  year: 2006
  ident: BFnm3085_CR26
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.5.3133
– volume: 30
  start-page: 636
  year: 2009
  ident: BFnm3085_CR15
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.010
– volume: 13
  start-page: 423
  year: 2007
  ident: BFnm3085_CR16
  publication-title: Nat. Med.
  doi: 10.1038/nm1564
– volume: 110
  start-page: 835
  year: 2002
  ident: BFnm3085_CR6
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200215606
– volume: 284
  start-page: 5709
  year: 2009
  ident: BFnm3085_CR30
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807322200
– volume: 118
  start-page: 464
  year: 2008
  ident: BFnm3085_CR10
  publication-title: J. Clin. Invest.
– volume: 2
  start-page: 346
  year: 2003
  ident: BFnm3085_CR3
  publication-title: Autoimmun. Rev.
  doi: 10.1016/S1568-9972(03)00048-X
– volume: 118
  start-page: 560
  year: 2008
  ident: BFnm3085_CR9
  publication-title: J. Clin. Invest.
– volume: 28
  start-page: 697
  year: 2008
  ident: BFnm3085_CR13
  publication-title: J. Clin. Immunol.
  doi: 10.1007/s10875-008-9236-x
– volume: 362
  start-page: 44
  year: 2007
  ident: BFnm3085_CR25
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.07.187
– volume: 2
  start-page: 364
  year: 2002
  ident: BFnm3085_CR5
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri802
– volume: 18
  start-page: 423
  year: 2000
  ident: BFnm3085_CR12
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.18.1.423
– volume: 105
  start-page: 14023
  year: 2008
  ident: BFnm3085_CR23
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0806726105
– volume: 30
  start-page: 656
  year: 2009
  ident: BFnm3085_CR14
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.006
– volume: 102
  start-page: 11278
  year: 2005
  ident: BFnm3085_CR35
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502738102
– volume: 220
  start-page: 164
  year: 2010
  ident: BFnm3085_CR31
  publication-title: J. Pathol.
  doi: 10.1002/path.2637
– volume: 25
  start-page: 7966
  year: 2005
  ident: BFnm3085_CR33
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.18.7966-7975.2005
– reference: 17360565 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4571-6
– reference: 10837065 - Annu Rev Immunol. 2000;18:423-49
– reference: 12033742 - Nat Rev Immunol. 2002 May;2(5):364-71
– reference: 19464986 - Immunity. 2009 May;30(5):636-45
– reference: 16013998 - Pharmacogenomics. 2005 Jul;6(5):481-90
– reference: 26735402 - Nat Med. 2016 Jan;22(1):16-7
– reference: 18219394 - J Clin Invest. 2008 Feb;118(2):560-70
– reference: 14502236 - Cell Death Differ. 2003 Oct;10(10):1126-36
– reference: 16873067 - Cell. 2006 Jul 28;126(2):375-87
– reference: 19117830 - J Biol Chem. 2009 Feb 27;284(9):5709-16
– reference: 18219390 - J Clin Invest. 2008 Feb;118(2):464-7
– reference: 20339032 - Science. 2010 Apr 16;328(5976):372-6
– reference: 16135789 - Mol Cell Biol. 2005 Sep;25(18):7966-75
– reference: 19464988 - Immunity. 2009 May;30(5):656-65
– reference: 14550876 - Autoimmun Rev. 2003 Oct;2(6):346-57
– reference: 15280421 - J Exp Med. 2004 Aug 2;200(3):277-85
– reference: 19172156 - Immunol Cell Biol. 2009 Mar-Apr;87(3):195-202
– reference: 11181651 - J Clin Invest. 2001 Feb;107(4):519-28
– reference: 19918835 - J Pathol. 2010 Jan;220(2):164-73
– reference: 21488902 - Immunol Rev. 2011 May;241(1):260-8
– reference: 18982160 - J Clin Invest. 2008 Nov;118(11):3537-45
– reference: 26735403 - Nat Med. 2016 Jan;22(1):18-9
– reference: 19295512 - Nat Cell Biol. 2009 Apr;11(4):492-500
– reference: 19696312 - Science. 2009 Aug 28;325(5944):1142-6
– reference: 17706604 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):44-50
– reference: 19074986 - Diabetes. 2009 Mar;58(3):652-62
– reference: 15331607 - J Biol Chem. 2004 Nov 5;279(45):46588-94
– reference: 23467235 - Nat Med. 2013 Mar;19(3):269-70
– reference: 17384649 - Nat Med. 2007 Apr;13(4):423-31
– reference: 16920951 - J Immunol. 2006 Sep 1;177(5):3133-42
– reference: 12235115 - J Clin Invest. 2002 Sep;110(6):835-42
– reference: 19287455 - Oncogene. 2009 Apr 16;28(15):1769-81
– reference: 16076959 - Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11278-83
– reference: 18763026 - J Clin Immunol. 2008 Nov;28(6):697-706
– reference: 8616886 - Cell. 1996 May 3;85(3):307-10
– reference: 20363318 - Cell Signal. 2010 Sep;22(9):1282-90
– reference: 17922010 - Nat Med. 2007 Nov;13(11):1299-307
– reference: 23439034 - Nat Rev Rheumatol. 2013 Apr;9(4):197
– reference: 16537805 - Blood. 2006 Jul 1;108(1):253-61
– reference: 18779564 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14023-7
– reference: 9449707 - J Clin Invest. 1998 Feb 1;101(3):711-21
SSID ssj0003059
Score 2.5809307
Snippet TNF-α suppresses regulatory T (T reg ) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells,...
Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that...
Regulatory T ([T.sub.reg]) cells suppress autoimmune disease, and impaired [T.sub.reg] cell function is associated with rheumatoid arthritis. Here we...
Regulatory T (T sub(reg)) cells suppress autoimmune disease, and impaired T sub(reg) cell function is associated with rheumatoid arthritis. Here we demonstrate...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 322
SubjectTerms 631/250/127/1220
631/250/1619/554/1898/1271
631/250/249/1313/498
631/250/516
Arthritis, Rheumatoid - immunology
Arthritis, Rheumatoid - metabolism
Biomedicine
Cancer Research
Cells, Cultured
DNA-Binding Proteins - metabolism
Forkhead Transcription Factors - chemistry
Forkhead Transcription Factors - metabolism
Genetic aspects
Health aspects
Humans
Infectious Diseases
Interferon-gamma - biosynthesis
Interleukin-17 - biosynthesis
Interleukin-2 Receptor alpha Subunit - biosynthesis
Interleukin-7 Receptor alpha Subunit - biosynthesis
Metabolic Diseases
Molecular Medicine
Neurosciences
Phosphorylation
Physiological aspects
Protein Phosphatase 1 - metabolism
Rheumatoid arthritis
Risk factors
RNA Interference
RNA, Small Interfering
Synovial Membrane - immunology
Synovial Membrane - metabolism
T cells
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - metabolism
Th1 Cells - immunology
Th1 Cells - metabolism
Th17 Cells - immunology
Th17 Cells - metabolism
Tumor necrosis factor
Tumor Necrosis Factor-alpha - immunology
Tumor Necrosis Factor-alpha - metabolism
Title Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis
URI https://link.springer.com/article/10.1038/nm.3085
https://www.ncbi.nlm.nih.gov/pubmed/23396208
https://www.proquest.com/docview/1315633401
https://www.proquest.com/docview/1328510964
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgE4gXBONfYQyD2HiYMpI4cZrHbWpVEOuq0qHyFDmJu1bakmlpJMa34ovwmbizkzRpKzR4iaLkYjm5X87n-0vI-zj0J66IHMOKHWY4seCG8D3XEDLy8URYEu0dJ33eO3M-j92ao11ll8zDg-jn2ryS_-EqXAO-YpbsP3C2GhQuwDnwF47AYTjeiseDaZpdTdPrm4tK8euejgesDEBHl4BqNY-O9NE-Gun3cSGblzHIM4zGms5CpXeCIjrqd43d487ukaXyXKYyB4U2ncVYCmmqyh_Vldm-Kgq64p7va5dHLy0WRWWWllqmfIeV8sesWgq-qFiCYZ5kSFDFAuXKfquNCUVb6MIwgU0iWN0wUcxhrTVNy1rQToy2r-uKV8LYr4GO1SSrpdOXVyS-ru-eXB4wU_f-WSqffciwor3jm-ZdsmnDXgKFoTeuduUo8HwdmKpnozOrcdyPxagNlWV54a5pLkuudKWhjB6Rh8XWgh5qnDwmd2SyRe7pZqM3W-T-ScGnJyRdAg5NJ1QBh5bAoQvg0BFF4NASOBSAQ2cZrYBDQ6AB4Pz-BdfoAjS0As1TctbtjI57RtF5w4hAg54bsbClKYW0eMg4_OR-iPViYyE5c9qRB2qkHaMH3fQ94QmOrnU5mfCYexJucJM9IxtJmsgXhFoigtHafoiSn0dcxK5wJHNjU3q20-Ytsld-3CAqytJjd5SLQIVHsHaQXAbIhRahFeGVrsSySvIGuRPoFOLqDw8WGGiRd4oCK58kGFp1LvIsCz6dfrsF0ddhg-hDQTRJYb6RKNJZ4K2xolqDcq9Bea7rya8j3G4QgqCPGrfflqAL8BZGRyYyzbPAYpbLGXNM6280NmyuTJ87LfJcI7b6jDZjPrfNNjxdQjgoxFy2_I1f3vZtXpEHC6mwTTbm17l8DQr8PNxRP-AO2Tzq9AfDPx0B9MY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+of+FOXP3+controls+regulatory+T+cell+function+and+is+inhibited+by+TNF-%CE%B1+in+rheumatoid+arthritis&rft.jtitle=Nature+medicine&rft.au=Nie%2C+Hong&rft.au=Zheng%2C+Yingxia&rft.au=Li%2C+Runsheng&rft.au=Guo%2C+Taylor+B&rft.date=2013-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.volume=19&rft.issue=3&rft.spage=122&rft_id=info:doi/10.1038%2Fnm.3085&rft.externalDocID=A322904900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon