Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis
TNF-α suppresses regulatory T (T reg ) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells, phosphorylation of FOXP3 promotes its transcriptional activity. TNF-α induces protein phosphatase 1 expression, leading to dephosphorylation...
Saved in:
Published in | Nature medicine Vol. 19; no. 3; pp. 322 - 328 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.03.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | TNF-α suppresses regulatory T (T
reg
) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells, phosphorylation of FOXP3 promotes its transcriptional activity. TNF-α induces protein phosphatase 1 expression, leading to dephosphorylation of FOXP3 and inhibition of T
reg
cell function. In individuals with rheumatoid arthritis, TNF-α–specific antibody treatment restores T
reg
cell activity and FOXP3 phosphorylation, suggesting that post-translational modifications, including phosphorylation, regulate FOXP3 activity and T
reg
cell–mediated suppression.
Regulatory T (T
reg
) cells suppress autoimmune disease, and impaired T
reg
cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, T
reg
cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis–derived T
reg
cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired T
reg
cell function. Moreover, TNF-α–induced T
reg
cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)
+
and interferon-γ (IFN-γ)
+
CD4
+
T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α–specific antibody restored T
reg
cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in T
reg
cells. Thus, TNF-α controls the balance between T
reg
cells and pathogenic T
H
17 and T
H
1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation. |
---|---|
AbstractList | Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α-induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)(+) and interferon-γ (IFN-γ)(+)CD4(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation. Regulatory T ([T.sub.reg]) cells suppress autoimmune disease, and impaired [T.sub.reg] cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, [T.sub.reg] cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived [T.sub.reg] cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired [T.sub.reg] cell function. Moreover, TNF-α-induced [T.sub.reg] cell dysfunction correlated with increased numbers of interleukin-17 [(IL-17).sup.+] and interferon-γ [(IFN-γ).sup.+][CD4.sup.+] T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored [T.sub.reg] cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in [T.sub.reg] cells. Thus, TNF-α controls the balance between [T.sub.reg] cells and pathogenic [T.sub.H]17 and [T.sub.H]1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation. Regulatory T (T sub(reg)) cells suppress autoimmune disease, and impaired T sub(reg) cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, T sub(reg) cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived T sub(reg) cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor alpha (TNF- alpha ), leading to impaired T sub(reg) cell function. Moreover, TNF- alpha -induced T sub(reg) cell dysfunction correlated with increased numbers of interleukin-17 (IL-17) super(+) and interferon- gamma (IFN- gamma ) super(+)CD4 super(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF- alpha -specific antibody restored T sub(reg) cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in T sub(reg) cells. Thus, TNF- alpha controls the balance between T sub(reg) cells and pathogenic T sub(H)17 and T sub(H)1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation. Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α-induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)(+) and interferon-γ (IFN-γ)(+)CD4(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α-induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)(+) and interferon-γ (IFN-γ)(+)CD4(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation. TNF-α suppresses regulatory T (T reg ) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells, phosphorylation of FOXP3 promotes its transcriptional activity. TNF-α induces protein phosphatase 1 expression, leading to dephosphorylation of FOXP3 and inhibition of T reg cell function. In individuals with rheumatoid arthritis, TNF-α–specific antibody treatment restores T reg cell activity and FOXP3 phosphorylation, suggesting that post-translational modifications, including phosphorylation, regulate FOXP3 activity and T reg cell–mediated suppression. Regulatory T (T reg ) cells suppress autoimmune disease, and impaired T reg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, T reg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis–derived T reg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired T reg cell function. Moreover, TNF-α–induced T reg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17) + and interferon-γ (IFN-γ) + CD4 + T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α–specific antibody restored T reg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in T reg cells. Thus, TNF-α controls the balance between T reg cells and pathogenic T H 17 and T H 1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation. |
Audience | Academic |
Author | Wan, Bing Chen, Xi Li, Runsheng Xiao, Lianbo Zhang, Jingwu Z Guo, Taylor B He, Dongyi Zheng, Yingxia Nie, Hong Liu, Xuebin Fang, Lei Chin, Y Eugene |
Author_xml | – sequence: 1 givenname: Hong surname: Nie fullname: Nie, Hong organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine – sequence: 2 givenname: Yingxia surname: Zheng fullname: Zheng, Yingxia organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine – sequence: 3 givenname: Runsheng surname: Li fullname: Li, Runsheng organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences – sequence: 4 givenname: Taylor B surname: Guo fullname: Guo, Taylor B organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences – sequence: 5 givenname: Dongyi surname: He fullname: He, Dongyi organization: Department of Medicine, Guanghua Rheumatology Hospital – sequence: 6 givenname: Lei surname: Fang fullname: Fang, Lei organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences – sequence: 7 givenname: Xuebin surname: Liu fullname: Liu, Xuebin organization: GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China – sequence: 8 givenname: Lianbo surname: Xiao fullname: Xiao, Lianbo organization: Department of Surgery, Guanghua Rheumatology Hospital – sequence: 9 givenname: Xi surname: Chen fullname: Chen, Xi organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences – sequence: 10 givenname: Bing surname: Wan fullname: Wan, Bing organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences – sequence: 11 givenname: Y Eugene surname: Chin fullname: Chin, Y Eugene organization: Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Department of Surgery, Brown University School of Medicine-Rhode Island Hospital – sequence: 12 givenname: Jingwu Z surname: Zhang fullname: Zhang, Jingwu Z email: jingwu.z.zang@gsk.com organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Present address: GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23396208$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0s1u1DAQB_AIFdEPEG-ALCHxccgyjhMnOVYVC5UqtoKCerO8zmTjKrEX25HoY_EiPBNOdyms2EOVQyL7N3Y08z9ODow1mCTPKcwosOqdGWYMquJRckSLnKe0hOuD-A1llVZ1wQ-TY-9vAIBBUT9JDjPGap5BdZTYy876dWfdbS-DtobYlswX15eMKGuCs70nDldj3IyEXBGFfU_a0ag7LE1DtCfadHqpAzZkGc2nefrrZ1wjrsNxiIW6IdKFzumg_dPkcSt7j8-275Pk6_z91dnH9GLx4fzs9CJVRUFD2sgMASVSvmQclaqXnOZVI5GzvFIlVDRroGYF1KUsJedQVNi2vOElxg0O7CR5szl37ez3EX0Qg_bTz0uDdvSCsqwqKNQ8fwClBWcsBxrpyw1dyR6FNq0NTqqJi1OWZTXkNUx3p3vUCg062ce5tTou7_jZHh-fBget9ha83SmYRoU_wkqO3ovzL58fbhffdu2rf2yHsg-dt_04zdrvwhfblo3LARuxdnqQ7lb8yVUErzdAOeu9w_aeUBBTYoUZxJTYv826l0qHuyjGJuh-j99Oy8cTzQqduLGjMzFL_9HfkIj1hA |
CitedBy_id | crossref_primary_10_2119_molmed_2015_00057 crossref_primary_10_1111_cei_13357 crossref_primary_10_17826_cumj_978353 crossref_primary_10_1016_j_jneuroim_2013_10_009 crossref_primary_10_4049_jimmunol_1302528 crossref_primary_10_1111_bjh_13126 crossref_primary_10_1186_s12974_022_02620_w crossref_primary_10_3389_fmed_2022_891230 crossref_primary_10_1038_nri3464 crossref_primary_10_2217_imt_2017_0017 crossref_primary_10_3390_ijms222212411 crossref_primary_10_3109_08916934_2016_1166214 crossref_primary_10_3389_fnins_2023_1277399 crossref_primary_10_1016_j_cyto_2014_11_020 crossref_primary_10_3389_fimmu_2022_863753 crossref_primary_10_1371_journal_pone_0156311 crossref_primary_10_3389_fmicb_2017_02595 crossref_primary_10_1007_s10456_015_9487_0 crossref_primary_10_2139_ssrn_3975268 crossref_primary_10_1007_s00441_020_03351_1 crossref_primary_10_1007_s13311_014_0329_3 crossref_primary_10_1016_j_yexcr_2016_02_018 crossref_primary_10_1093_cei_uxad052 crossref_primary_10_1016_j_heliyon_2024_e36512 crossref_primary_10_1002_eji_202048794 crossref_primary_10_1186_ar4567 crossref_primary_10_1080_2162402X_2019_1621676 crossref_primary_10_1111_cei_13256 crossref_primary_10_1016_j_autrev_2013_04_001 crossref_primary_10_1016_j_gene_2020_145362 crossref_primary_10_1111_cei_13259 crossref_primary_10_21053_ceo_2021_00920 crossref_primary_10_1007_s00018_017_2569_y crossref_primary_10_1093_ijnp_pyw001 crossref_primary_10_1038_cmi_2017_138 crossref_primary_10_1128_IAI_00109_18 crossref_primary_10_3390_ijms21093207 crossref_primary_10_1016_j_ajpath_2020_07_012 crossref_primary_10_3389_fimmu_2019_01989 crossref_primary_10_3390_ijms19072036 crossref_primary_10_3389_fimmu_2017_00300 crossref_primary_10_1016_j_autrev_2013_12_004 crossref_primary_10_1038_nm_4019 crossref_primary_10_2174_1573397118666220401145710 crossref_primary_10_1038_s41577_018_0048_9 crossref_primary_10_3390_ijms22189676 crossref_primary_10_1038_nm_4018 crossref_primary_10_1016_j_jep_2022_114993 crossref_primary_10_3390_ijms20030528 crossref_primary_10_1186_s13075_018_1725_6 crossref_primary_10_3324_haematol_2023_282859 crossref_primary_10_1016_j_autrev_2020_102468 crossref_primary_10_1073_pnas_1414189111 crossref_primary_10_1016_j_intimp_2015_03_044 crossref_primary_10_3109_08830185_2013_811657 crossref_primary_10_1038_nrrheum_2013_28 crossref_primary_10_1186_1471_2407_14_489 crossref_primary_10_3389_fimmu_2015_00061 crossref_primary_10_1111_cei_13438 crossref_primary_10_3389_fgene_2014_00346 crossref_primary_10_1084_jem_20151255 crossref_primary_10_1155_2014_126365 crossref_primary_10_1038_s41577_024_01010_y crossref_primary_10_1007_s12016_018_8721_0 crossref_primary_10_18632_oncotarget_8071 crossref_primary_10_1016_j_jgg_2019_11_011 crossref_primary_10_1111_1348_0421_12471 crossref_primary_10_1016_j_crimmu_2020_02_001 crossref_primary_10_1021_acsnano_5b05470 crossref_primary_10_1128_MCB_00063_17 crossref_primary_10_1038_srep07023 crossref_primary_10_1126_scisignal_aaf3957 crossref_primary_10_1093_rheumatology_keu487 crossref_primary_10_1002_eji_201343967 crossref_primary_10_1002_jcp_27180 crossref_primary_10_1038_s41577_020_0296_3 crossref_primary_10_1016_j_ecl_2017_07_010 crossref_primary_10_1038_srep46229 crossref_primary_10_1074_jbc_M114_586651 crossref_primary_10_1016_j_jaut_2025_103395 crossref_primary_10_1016_j_coi_2020_07_006 crossref_primary_10_1016_j_bbagrm_2023_194992 crossref_primary_10_3892_br_2015_561 crossref_primary_10_1038_s41467_018_06603_5 crossref_primary_10_3389_fragi_2022_867950 crossref_primary_10_4049_jimmunol_1302455 crossref_primary_10_1038_s41392_022_00948_6 crossref_primary_10_1074_jbc_M116_717892 crossref_primary_10_1128_IAI_00006_14 crossref_primary_10_3389_fimmu_2024_1404974 crossref_primary_10_3389_fnins_2020_00575 crossref_primary_10_1016_j_cyto_2016_08_014 crossref_primary_10_1097_BCO_0000000000001067 crossref_primary_10_1016_j_jaut_2019_04_018 crossref_primary_10_1016_S2707_3688_23_00013_4 crossref_primary_10_1016_j_clim_2015_07_005 crossref_primary_10_1016_j_clim_2023_109883 crossref_primary_10_1186_s13046_023_02915_7 crossref_primary_10_3389_fimmu_2021_783282 crossref_primary_10_2147_IJN_S388996 crossref_primary_10_2174_0929866527999201113105858 crossref_primary_10_3892_etm_2021_9641 crossref_primary_10_1016_j_ymthe_2017_09_001 crossref_primary_10_1038_nm_3124 crossref_primary_10_1089_jir_2017_0027 crossref_primary_10_3109_02656736_2013_811546 crossref_primary_10_1016_j_cyto_2016_08_003 crossref_primary_10_1002_adhm_201901541 crossref_primary_10_1007_s10067_021_05602_0 crossref_primary_10_1016_j_ajpath_2018_07_011 crossref_primary_10_1111_jth_14659 crossref_primary_10_1080_1744666X_2019_1620602 crossref_primary_10_1038_s41584_021_00639_6 crossref_primary_10_3390_biomedicines11010173 crossref_primary_10_1016_j_imlet_2024_106859 crossref_primary_10_1016_j_jaci_2015_08_014 crossref_primary_10_3389_fimmu_2024_1387975 crossref_primary_10_3390_molecules28031143 crossref_primary_10_15252_embj_201899766 crossref_primary_10_1038_ni_2596 crossref_primary_10_1002_eji_201344205 crossref_primary_10_7554_eLife_58463 crossref_primary_10_1038_s41419_018_1266_6 crossref_primary_10_1177_2040622320986721 crossref_primary_10_1016_j_celrep_2019_02_087 crossref_primary_10_1016_j_jaut_2018_09_011 crossref_primary_10_1017_erm_2021_33 crossref_primary_10_1038_s41598_020_76168_1 crossref_primary_10_1002_eji_202049123 crossref_primary_10_3389_fimmu_2024_1349470 crossref_primary_10_4046_trd_2017_80_2_113 crossref_primary_10_1016_j_cellsig_2014_03_026 crossref_primary_10_1016_j_virusres_2018_04_003 crossref_primary_10_3109_08820139_2013_822762 crossref_primary_10_1021_acsnano_1c03726 crossref_primary_10_3389_fonc_2014_00209 crossref_primary_10_1002_eji_201948270 crossref_primary_10_1016_j_expneurol_2020_113259 crossref_primary_10_3389_fimmu_2021_753754 crossref_primary_10_1134_S0006297914120049 crossref_primary_10_1016_j_jcmgh_2018_08_009 crossref_primary_10_1007_s12016_017_8610_y crossref_primary_10_1038_nrrheum_2013_204 crossref_primary_10_1155_2014_943149 crossref_primary_10_1016_j_clim_2023_109685 crossref_primary_10_1007_s00011_014_0716_6 crossref_primary_10_1038_nrrheum_2013_205 crossref_primary_10_3389_fimmu_2015_00571 crossref_primary_10_1189_jlb_3HI1114_572RR crossref_primary_10_1371_journal_pcbi_1004820 crossref_primary_10_1111_1756_185X_12666 crossref_primary_10_1111_jcmm_15743 crossref_primary_10_1016_j_jtauto_2021_100130 crossref_primary_10_7554_eLife_61841 crossref_primary_10_1074_jbc_M113_467704 crossref_primary_10_1038_nri_2017_75 crossref_primary_10_1186_s13020_021_00448_9 crossref_primary_10_3389_fimmu_2017_01482 crossref_primary_10_1371_journal_pone_0086062 crossref_primary_10_1007_s12035_017_0532_4 crossref_primary_10_1016_j_biocel_2014_11_008 crossref_primary_10_1111_imr_12312 crossref_primary_10_1038_nm_3439 crossref_primary_10_1073_pnas_1815336116 crossref_primary_10_1080_14397595_2017_1416923 crossref_primary_10_1016_j_celrep_2018_01_070 crossref_primary_10_1371_journal_pone_0162101 crossref_primary_10_1016_j_compbiomed_2025_110021 crossref_primary_10_1038_nm_3432 crossref_primary_10_1016_j_talanta_2017_01_025 crossref_primary_10_1016_j_rhum_2014_11_015 crossref_primary_10_3389_fimmu_2018_00573 crossref_primary_10_3389_fimmu_2019_00798 crossref_primary_10_3389_fimmu_2022_932485 crossref_primary_10_1016_j_autrev_2020_102715 crossref_primary_10_1038_srep16801 crossref_primary_10_3389_fimmu_2018_01545 crossref_primary_10_1016_j_scitotenv_2023_166698 crossref_primary_10_2217_imt_13_69 crossref_primary_10_1093_carcin_bgv042 crossref_primary_10_3390_pathogens9121027 crossref_primary_10_3390_ijms222010922 crossref_primary_10_1186_s13023_020_01377_w crossref_primary_10_3390_ijms241814293 crossref_primary_10_1007_s10238_016_0412_7 crossref_primary_10_3390_cells12141905 crossref_primary_10_1186_s12950_017_0154_7 crossref_primary_10_3389_fimmu_2018_01658 crossref_primary_10_1016_j_immuni_2018_04_008 crossref_primary_10_3904_kjim_2021_363 crossref_primary_10_1016_j_intimp_2022_108858 crossref_primary_10_3389_fimmu_2018_00444 crossref_primary_10_1016_j_bbrc_2015_12_024 crossref_primary_10_1093_pcmedi_pbaa001 crossref_primary_10_4049_jimmunol_2300463 crossref_primary_10_1038_s41397_024_00346_x crossref_primary_10_1080_08830185_2019_1621310 crossref_primary_10_1080_08916934_2019_1657098 crossref_primary_10_1016_j_ijpharm_2021_121137 crossref_primary_10_1038_s41598_018_30621_4 crossref_primary_10_1111_phpp_12175 crossref_primary_10_1007_s40272_015_0128_2 crossref_primary_10_1038_s41590_018_0120_4 crossref_primary_10_1016_j_bbamcr_2022_119223 crossref_primary_10_3389_fphar_2021_716081 crossref_primary_10_1016_j_ijbiomac_2024_132030 crossref_primary_10_3389_fimmu_2018_00356 crossref_primary_10_1016_j_cytogfr_2020_10_007 crossref_primary_10_3389_fimmu_2021_679770 crossref_primary_10_18632_oncotarget_11943 crossref_primary_10_4049_jimmunol_1801689 crossref_primary_10_1016_j_bbagrm_2015_11_003 crossref_primary_10_3389_fimmu_2023_1202834 crossref_primary_10_1002_art_39606 crossref_primary_10_3389_fphar_2024_1380335 crossref_primary_10_1016_j_isci_2020_101192 crossref_primary_10_3389_fimmu_2015_00493 crossref_primary_10_3389_fimmu_2023_1280741 crossref_primary_10_1038_s41598_019_46934_x crossref_primary_10_1111_ajt_13456 crossref_primary_10_2217_imt_2023_0023 crossref_primary_10_1038_s41584_024_01190_w crossref_primary_10_1038_ki_2013_234 crossref_primary_10_1016_j_berh_2019_101478 crossref_primary_10_1016_j_bbcan_2024_189211 crossref_primary_10_1007_s12011_017_1224_7 crossref_primary_10_4049_jimmunol_1501973 crossref_primary_10_1016_j_bbcan_2023_189035 crossref_primary_10_1016_j_it_2014_06_005 crossref_primary_10_1016_j_ymthe_2020_07_020 crossref_primary_10_1016_j_autrev_2014_10_012 crossref_primary_10_1186_s13317_020_00135_z crossref_primary_10_1371_journal_pone_0162306 crossref_primary_10_1136_gutjnl_2014_308989 crossref_primary_10_1016_j_autrev_2014_10_011 crossref_primary_10_1155_2020_6134098 crossref_primary_10_1016_j_jri_2018_08_004 crossref_primary_10_1038_ncomms5820 crossref_primary_10_1002_cti2_1011 crossref_primary_10_12659_MSM_896355 crossref_primary_10_3389_fopht_2023_1184937 crossref_primary_10_1136_ard_2023_224878 crossref_primary_10_1111_ajt_13395 crossref_primary_10_1016_j_cellimm_2020_104193 crossref_primary_10_3389_fimmu_2023_1257321 crossref_primary_10_1016_j_clim_2018_09_010 crossref_primary_10_1016_j_imbio_2015_02_006 crossref_primary_10_3389_fimmu_2019_02486 crossref_primary_10_1007_s10875_015_0182_0 crossref_primary_10_1080_14728222_2019_1586886 crossref_primary_10_4049_jimmunol_1400649 crossref_primary_10_1111_imr_12170 crossref_primary_10_1038_s41598_017_14965_x crossref_primary_10_1111_imr_12172 crossref_primary_10_1073_pnas_2208436119 crossref_primary_10_18632_oncotarget_22630 crossref_primary_10_3389_fimmu_2018_01528 crossref_primary_10_1096_fj_202000415R crossref_primary_10_1111_1756_185X_13486 crossref_primary_10_1155_2015_751793 crossref_primary_10_1371_journal_ppat_1006985 crossref_primary_10_3389_fimmu_2024_1312919 crossref_primary_10_1002_art_39408 crossref_primary_10_1007_s10930_018_9777_7 crossref_primary_10_1007_s00109_014_1156_z crossref_primary_10_1586_1744666X_2015_1078729 crossref_primary_10_1155_2014_247372 crossref_primary_10_1016_j_cyto_2017_04_012 crossref_primary_10_3389_fimmu_2021_626172 crossref_primary_10_1016_j_biopha_2021_111436 crossref_primary_10_1073_pnas_1421463112 crossref_primary_10_1016_j_matt_2021_08_015 crossref_primary_10_3389_fimmu_2020_01269 crossref_primary_10_1007_s12032_022_01772_2 crossref_primary_10_3389_fimmu_2018_00784 crossref_primary_10_1002_art_39418 crossref_primary_10_1016_j_clim_2020_108425 crossref_primary_10_1016_j_coi_2016_07_004 crossref_primary_10_1016_j_cyto_2016_09_001 crossref_primary_10_3389_fcell_2021_658820 crossref_primary_10_1186_s12967_018_1611_7 crossref_primary_10_1002_JLB_2MR0120_510R crossref_primary_10_1371_journal_pone_0111163 crossref_primary_10_3390_ncrna10040038 crossref_primary_10_5582_bst_2018_01012 crossref_primary_10_1016_j_jaut_2017_12_006 crossref_primary_10_3892_mmr_2024_13339 crossref_primary_10_1038_s41423_021_00790_w crossref_primary_10_1038_s41577_024_00994_x crossref_primary_10_1038_s41467_024_51781_0 crossref_primary_10_1136_annrheumdis_2013_204228 crossref_primary_10_1182_bloodadvances_2021006797 crossref_primary_10_1007_s10753_016_0470_8 crossref_primary_10_1136_annrheumdis_2018_213511 crossref_primary_10_1111_imm_12595 crossref_primary_10_1002_eji_201948190 crossref_primary_10_1007_s11427_016_5105_7 crossref_primary_10_3389_fimmu_2019_00174 crossref_primary_10_3390_cells9040880 crossref_primary_10_1111_cei_12808 crossref_primary_10_1111_febs_15743 crossref_primary_10_3389_fimmu_2020_01087 crossref_primary_10_1016_j_molmed_2016_01_005 crossref_primary_10_1155_2023_2140327 crossref_primary_10_1038_cmi_2015_10 crossref_primary_10_1038_s41467_022_32754_7 crossref_primary_10_3389_fimmu_2024_1345838 crossref_primary_10_1016_j_jep_2022_115122 crossref_primary_10_1093_bfgp_elae006 crossref_primary_10_1007_s11481_013_9489_x crossref_primary_10_1038_nrrheum_2014_218 crossref_primary_10_3389_fimmu_2018_00626 crossref_primary_10_15789_1563_0625_ANA_2670 crossref_primary_10_1111_imm_12458 crossref_primary_10_1016_j_lfs_2021_120063 crossref_primary_10_3389_fimmu_2017_00605 crossref_primary_10_1080_07853890_2018_1453169 crossref_primary_10_1371_journal_pone_0114621 crossref_primary_10_1002_jssc_201900678 crossref_primary_10_1016_j_jgg_2024_09_014 crossref_primary_10_1016_j_clim_2014_12_012 crossref_primary_10_4049_jimmunol_1400477 crossref_primary_10_2174_1871520621666211015140455 crossref_primary_10_1186_s12951_024_02470_z crossref_primary_10_1186_s13578_020_00448_6 crossref_primary_10_1007_s11154_021_09684_8 crossref_primary_10_1371_journal_pone_0074639 crossref_primary_10_1073_pnas_1617115114 crossref_primary_10_1126_sciimmunol_abl8357 crossref_primary_10_4049_immunohorizons_2000099 crossref_primary_10_1016_j_ejso_2022_01_027 crossref_primary_10_1084_jem_20151563 crossref_primary_10_1111_exd_13145 crossref_primary_10_1016_j_jaut_2024_103333 crossref_primary_10_1128_MCB_00041_18 crossref_primary_10_1016_j_cellimm_2014_05_011 crossref_primary_10_1016_j_bcp_2019_113665 crossref_primary_10_1016_j_biocel_2017_10_016 crossref_primary_10_4049_jimmunol_1502124 crossref_primary_10_1016_j_jaut_2014_05_001 crossref_primary_10_1038_s41392_020_0109_y crossref_primary_10_1016_j_cytogfr_2014_07_016 crossref_primary_10_3389_fimmu_2022_1042622 crossref_primary_10_1016_j_mayocp_2014_01_020 crossref_primary_10_1016_j_molimm_2021_04_001 crossref_primary_10_2217_imt_2020_0071 crossref_primary_10_1007_s12026_023_09444_7 crossref_primary_10_1007_s12192_016_0698_0 crossref_primary_10_1155_2017_2985051 crossref_primary_10_3390_biomedicines11030930 crossref_primary_10_1111_sji_12275 crossref_primary_10_1371_journal_pone_0112110 crossref_primary_10_1002_eji_201343701 crossref_primary_10_1016_j_intimp_2025_114499 crossref_primary_10_14348_molcells_2021_0057 crossref_primary_10_1080_14740338_2018_1549541 crossref_primary_10_1038_gene_2013_69 crossref_primary_10_1038_s41467_020_15525_0 crossref_primary_10_1002_art_39069 crossref_primary_10_1186_s13075_018_1673_1 crossref_primary_10_3389_fmed_2020_00025 crossref_primary_10_1016_j_yexmp_2024_104924 crossref_primary_10_3389_fimmu_2021_686530 crossref_primary_10_1186_s13075_018_1542_y crossref_primary_10_1038_s41423_021_00671_2 crossref_primary_10_1111_cei_12182 crossref_primary_10_1182_blood_2016_04_711275 crossref_primary_10_3389_fimmu_2019_02040 crossref_primary_10_1002_art_41157 crossref_primary_10_18632_aging_102589 crossref_primary_10_3389_fimmu_2019_03136 crossref_primary_10_1016_j_intimp_2021_107828 crossref_primary_10_3390_ijms25115963 crossref_primary_10_1016_j_jcyt_2020_10_002 crossref_primary_10_1111_imm_12754 crossref_primary_10_1016_j_cca_2023_117612 crossref_primary_10_1016_j_cellimm_2021_104441 crossref_primary_10_1002_art_40398 crossref_primary_10_3389_fimmu_2019_03047 crossref_primary_10_1136_annrheumdis_2013_204782 crossref_primary_10_1016_j_jaut_2013_12_015 crossref_primary_10_3389_fcell_2021_698068 crossref_primary_10_1016_j_eng_2019_01_001 crossref_primary_10_1080_14397595_2016_1218598 crossref_primary_10_54097_hset_v36i_6210 crossref_primary_10_1111_imm_12983 crossref_primary_10_1136_annrheumdis_2020_218094 crossref_primary_10_1074_jbc_M115_638221 crossref_primary_10_1136_annrheumdis_2021_220209 crossref_primary_10_1126_scitranslmed_aad4322 crossref_primary_10_1186_2045_3701_4_25 crossref_primary_10_1136_bmjresp_2022_001551 crossref_primary_10_3389_fimmu_2022_911919 crossref_primary_10_1021_acs_jproteome_4c00930 crossref_primary_10_2147_DDDT_S465713 crossref_primary_10_15252_embr_202050308 |
Cites_doi | 10.2217/14622416.6.5.481 10.1016/j.bbrc.2007.07.187 10.1038/ncb1857 10.1038/sj.cdd.4401276 10.1172/JCI8027 10.1146/annurev.immunol.18.1.423 10.1038/nri802 10.1073/pnas.0806726105 10.4049/jimmunol.177.5.3133 10.1111/j.1600-065X.2011.01018.x 10.1073/pnas.0502738102 10.1016/j.cell.2006.05.042 10.1126/science.1186068 10.1172/JCI36389 10.1084/jem.20040165 10.1172/JCI1379 10.1182/blood-2005-11-4567 10.1016/j.immuni.2009.04.006 10.1038/nm1564 10.1016/j.immuni.2009.04.010 10.1038/icb.2008.106 10.1016/S0092-8674(00)81109-5 10.1172/JCI200215606 10.2337/db08-1168 10.1073/pnas.0700298104 10.1128/MCB.25.18.7966-7975.2005 10.1126/science.1176077 10.1074/jbc.M408067200 10.1007/s10875-008-9236-x 10.1016/S1568-9972(03)00048-X 10.1016/j.cellsig.2010.03.017 10.1038/onc.2009.29 10.1038/nm1652 10.1074/jbc.M807322200 10.1002/path.2637 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2013 COPYRIGHT 2013 Nature Publishing Group |
Copyright_xml | – notice: Springer Nature America, Inc. 2013 – notice: COPYRIGHT 2013 Nature Publishing Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 7T5 H94 |
DOI | 10.1038/nm.3085 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1546-170X |
EndPage | 328 |
ExternalDocumentID | A322904900 23396208 10_1038_nm_3085 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACMFV ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT AETEA CGR CUY CVF ECM EIF NFIDA NPM AEIIB PMFND 7X8 PPXIY PQGLB 7T5 H94 |
ID | FETCH-LOGICAL-c551t-da2e0eae16b36ecc9b6148dae6348c70812d0935097a7a66058eff6d67e2d0603 |
ISSN | 1078-8956 1546-170X |
IngestDate | Fri Jul 11 05:22:34 EDT 2025 Thu Jul 10 18:16:51 EDT 2025 Tue Jun 17 20:59:38 EDT 2025 Thu Jun 12 23:55:23 EDT 2025 Tue Jun 10 20:39:33 EDT 2025 Fri Jun 27 04:39:24 EDT 2025 Fri Jun 27 04:55:07 EDT 2025 Thu May 22 21:18:59 EDT 2025 Thu Apr 03 06:59:14 EDT 2025 Tue Jul 01 03:53:34 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Fri Feb 21 02:37:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c551t-da2e0eae16b36ecc9b6148dae6348c70812d0935097a7a66058eff6d67e2d0603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23396208 |
PQID | 1315633401 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1328510964 proquest_miscellaneous_1315633401 gale_infotracmisc_A322904900 gale_infotracgeneralonefile_A322904900 gale_infotracacademiconefile_A322904900 gale_incontextgauss_ISR_A322904900 gale_incontextgauss_IOV_A322904900 gale_healthsolutions_A322904900 pubmed_primary_23396208 crossref_primary_10_1038_nm_3085 crossref_citationtrail_10_1038_nm_3085 springer_journals_10_1038_nm_3085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-01 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature medicine |
PublicationTitleAbbrev | Nat Med |
PublicationTitleAlternate | Nat Med |
PublicationYear | 2013 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Zanin-Zhorov (CR36) 2010; 328 Popivanova (CR9) 2008; 118 Nie (CR34) 2009; 11 Tao (CR20) 2007; 13 Li (CR22) 2007; 104 Matsuzaki (CR35) 2005; 102 Costantino, Baecher-Allan, Hafler (CR13) 2008; 28 Shevach (CR12) 2000; 18 Valencia (CR17) 2006; 108 Hollstein, Hainaut (CR31) 2010; 220 Suryaprasad, Prindiville (CR3) 2003; 2 Ehrenstein (CR4) 2004; 200 Rudensky (CR19) 2011; 241 Ranganathan (CR18) 2005; 6 Huang, Yang, Lamb, Chen (CR32) 2010; 22 Mihindukulasuriya, Zhou, Qin, Tan (CR27) 2004; 279 Chen (CR33) 2005; 25 Korn (CR16) 2007; 13 Brennan, McInnes (CR2) 2008; 118 Kim (CR25) 2007; 362 de Zoeten (CR30) 2009; 284 Puren, Fantuzzi, Gu, Su, Dinarello (CR8) 1998; 101 Wu (CR29) 2006; 126 Feldmann, Brennan, Maini (CR1) 1996; 85 Feldmann (CR5) 2002; 2 Schett, Steiner, Xu, Smolen, Steiner (CR28) 2003; 10 Pan (CR37) 2009; 325 Shevach (CR15) 2009; 30 Putnam (CR24) 2009; 58 Ramesh, Reeves (CR6) 2002; 110 Ali (CR7) 2001; 107 Wicovsky (CR11) 2009; 28 Wang, Tao, Hancock (CR21) 2009; 87 Burstein, Fearon (CR10) 2008; 118 Lopes (CR26) 2006; 177 Samanta (CR23) 2008; 105 Riley, June, Blazar (CR14) 2009; 30 EM Shevach (BFnm3085_CR15) 2009; 30 LF Chen (BFnm3085_CR33) 2005; 25 AL Putnam (BFnm3085_CR24) 2009; 58 B Huang (BFnm3085_CR32) 2010; 22 BK Popivanova (BFnm3085_CR9) 2008; 118 F Pan (BFnm3085_CR37) 2009; 325 Y Wu (BFnm3085_CR29) 2006; 126 L Wang (BFnm3085_CR21) 2009; 87 M Feldmann (BFnm3085_CR1) 1996; 85 E Burstein (BFnm3085_CR10) 2008; 118 R Tao (BFnm3085_CR20) 2007; 13 EM Shevach (BFnm3085_CR12) 2000; 18 A Samanta (BFnm3085_CR23) 2008; 105 JY Kim (BFnm3085_CR25) 2007; 362 A Zanin-Zhorov (BFnm3085_CR36) 2010; 328 JE Lopes (BFnm3085_CR26) 2006; 177 FM Brennan (BFnm3085_CR2) 2008; 118 MR Ehrenstein (BFnm3085_CR4) 2004; 200 A Wicovsky (BFnm3085_CR11) 2009; 28 P Ranganathan (BFnm3085_CR18) 2005; 6 EF de Zoeten (BFnm3085_CR30) 2009; 284 H Matsuzaki (BFnm3085_CR35) 2005; 102 G Ramesh (BFnm3085_CR6) 2002; 110 AJ Puren (BFnm3085_CR8) 1998; 101 CM Costantino (BFnm3085_CR13) 2008; 28 JL Riley (BFnm3085_CR14) 2009; 30 AY Rudensky (BFnm3085_CR19) 2011; 241 KA Mihindukulasuriya (BFnm3085_CR27) 2004; 279 Y Nie (BFnm3085_CR34) 2009; 11 M Ali (BFnm3085_CR7) 2001; 107 B Li (BFnm3085_CR22) 2007; 104 M Hollstein (BFnm3085_CR31) 2010; 220 G Schett (BFnm3085_CR28) 2003; 10 M Feldmann (BFnm3085_CR5) 2002; 2 AG Suryaprasad (BFnm3085_CR3) 2003; 2 T Korn (BFnm3085_CR16) 2007; 13 X Valencia (BFnm3085_CR17) 2006; 108 19696312 - Science. 2009 Aug 28;325(5944):1142-6 16013998 - Pharmacogenomics. 2005 Jul;6(5):481-90 23439034 - Nat Rev Rheumatol. 2013 Apr;9(4):197 14550876 - Autoimmun Rev. 2003 Oct;2(6):346-57 19172156 - Immunol Cell Biol. 2009 Mar-Apr;87(3):195-202 20339032 - Science. 2010 Apr 16;328(5976):372-6 19117830 - J Biol Chem. 2009 Feb 27;284(9):5709-16 16135789 - Mol Cell Biol. 2005 Sep;25(18):7966-75 20363318 - Cell Signal. 2010 Sep;22(9):1282-90 15331607 - J Biol Chem. 2004 Nov 5;279(45):46588-94 19287455 - Oncogene. 2009 Apr 16;28(15):1769-81 18982160 - J Clin Invest. 2008 Nov;118(11):3537-45 14502236 - Cell Death Differ. 2003 Oct;10(10):1126-36 26735402 - Nat Med. 2016 Jan;22(1):16-7 21488902 - Immunol Rev. 2011 May;241(1):260-8 16076959 - Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11278-83 19464988 - Immunity. 2009 May;30(5):656-65 16537805 - Blood. 2006 Jul 1;108(1):253-61 17922010 - Nat Med. 2007 Nov;13(11):1299-307 17360565 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4571-6 23467235 - Nat Med. 2013 Mar;19(3):269-70 19074986 - Diabetes. 2009 Mar;58(3):652-62 12033742 - Nat Rev Immunol. 2002 May;2(5):364-71 12235115 - J Clin Invest. 2002 Sep;110(6):835-42 17384649 - Nat Med. 2007 Apr;13(4):423-31 19464986 - Immunity. 2009 May;30(5):636-45 8616886 - Cell. 1996 May 3;85(3):307-10 18219390 - J Clin Invest. 2008 Feb;118(2):464-7 18219394 - J Clin Invest. 2008 Feb;118(2):560-70 19295512 - Nat Cell Biol. 2009 Apr;11(4):492-500 9449707 - J Clin Invest. 1998 Feb 1;101(3):711-21 17706604 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):44-50 15280421 - J Exp Med. 2004 Aug 2;200(3):277-85 26735403 - Nat Med. 2016 Jan;22(1):18-9 19918835 - J Pathol. 2010 Jan;220(2):164-73 16873067 - Cell. 2006 Jul 28;126(2):375-87 10837065 - Annu Rev Immunol. 2000;18:423-49 16920951 - J Immunol. 2006 Sep 1;177(5):3133-42 18763026 - J Clin Immunol. 2008 Nov;28(6):697-706 18779564 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14023-7 11181651 - J Clin Invest. 2001 Feb;107(4):519-28 |
References_xml | – volume: 6 start-page: 481 year: 2005 end-page: 490 ident: CR18 article-title: Pharmacogenomics of tumor necrosis factor antagonists in rheumatoid arthritis publication-title: Pharmacogenomics doi: 10.2217/14622416.6.5.481 – volume: 118 start-page: 464 year: 2008 end-page: 467 ident: CR10 article-title: Colitis and cancer: a tale of inflammatory cells and their cytokines publication-title: J. Clin. Invest. – volume: 362 start-page: 44 year: 2007 end-page: 50 ident: CR25 article-title: Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (T )-like cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.07.187 – volume: 11 start-page: 492 year: 2009 end-page: 500 ident: CR34 article-title: STAT3 inhibition of gluconeogenesis is downregulated by SirT1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1857 – volume: 10 start-page: 1126 year: 2003 end-page: 1136 ident: CR28 article-title: TNFα mediates susceptibility to heat-induced apoptosis by protein phosphatase-mediated inhibition of the HSF1/hsp70 stress response publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401276 – volume: 107 start-page: 519 year: 2001 end-page: 528 ident: CR7 article-title: Rheumatoid arthritis synovial T cells regulate transcription of several genes associated with antigen-induced anergy publication-title: J. Clin. Invest. doi: 10.1172/JCI8027 – volume: 18 start-page: 423 year: 2000 end-page: 449 ident: CR12 article-title: Regulatory T cells in autoimmunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.18.1.423 – volume: 2 start-page: 364 year: 2002 end-page: 371 ident: CR5 article-title: Development of anti-TNF therapy for rheumatoid arthritis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri802 – volume: 105 start-page: 14023 year: 2008 end-page: 14027 ident: CR23 article-title: TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0806726105 – volume: 177 start-page: 3133 year: 2006 end-page: 3142 ident: CR26 article-title: Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor publication-title: J. Immunol. doi: 10.4049/jimmunol.177.5.3133 – volume: 241 start-page: 260 year: 2011 end-page: 268 ident: CR19 article-title: Regulatory T cells and Foxp3 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01018.x – volume: 102 start-page: 11278 year: 2005 end-page: 11283 ident: CR35 article-title: Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502738102 – volume: 126 start-page: 375 year: 2006 end-page: 387 ident: CR29 article-title: FOXP3 controls regulatory T cell function through cooperation with NFAT publication-title: Cell doi: 10.1016/j.cell.2006.05.042 – volume: 328 start-page: 372 year: 2010 end-page: 376 ident: CR36 article-title: Protein kinase C-θ mediates negative feedback on regulatory T cell function publication-title: Science doi: 10.1126/science.1186068 – volume: 118 start-page: 3537 year: 2008 end-page: 3545 ident: CR2 article-title: Evidence that cytokines play a role in rheumatoid arthritis publication-title: J. Clin. Invest. doi: 10.1172/JCI36389 – volume: 200 start-page: 277 year: 2004 end-page: 285 ident: CR4 article-title: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy publication-title: J. Exp. Med. doi: 10.1084/jem.20040165 – volume: 101 start-page: 711 year: 1998 end-page: 721 ident: CR8 article-title: Interleukin-18 (IFNγ-inducing factor) induces IL-8 and IL-1β via TNFα production from non-CD14 human blood mononuclear cells publication-title: J. Clin. Invest. doi: 10.1172/JCI1379 – volume: 118 start-page: 560 year: 2008 end-page: 570 ident: CR9 article-title: Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis publication-title: J. Clin. Invest. – volume: 220 start-page: 164 year: 2010 end-page: 173 ident: CR31 article-title: Massively regulated genes: the example of TP53 publication-title: J. Pathol. – volume: 108 start-page: 253 year: 2006 end-page: 261 ident: CR17 article-title: TNF downmodulates the function of human CD4 CD25 T-regulatory cells publication-title: Blood doi: 10.1182/blood-2005-11-4567 – volume: 30 start-page: 656 year: 2009 end-page: 665 ident: CR14 article-title: Human T regulatory cell therapy: take a billion or so and call me in the morning publication-title: Immunity doi: 10.1016/j.immuni.2009.04.006 – volume: 13 start-page: 423 year: 2007 end-page: 431 ident: CR16 article-title: Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation publication-title: Nat. Med. doi: 10.1038/nm1564 – volume: 30 start-page: 636 year: 2009 end-page: 645 ident: CR15 article-title: Mechanisms of Foxp3 T regulatory cell-mediated suppression publication-title: Immunity doi: 10.1016/j.immuni.2009.04.010 – volume: 87 start-page: 195 year: 2009 end-page: 202 ident: CR21 article-title: Using histone deacetylase inhibitors to enhance Foxp3 regulatory T-cell function and induce allograft tolerance publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2008.106 – volume: 85 start-page: 307 year: 1996 end-page: 310 ident: CR1 article-title: Rheumatoid arthritis publication-title: Cell doi: 10.1016/S0092-8674(00)81109-5 – volume: 110 start-page: 835 year: 2002 end-page: 842 ident: CR6 article-title: TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity publication-title: J. Clin. Invest. doi: 10.1172/JCI200215606 – volume: 58 start-page: 652 year: 2009 end-page: 662 ident: CR24 article-title: Expansion of human regulatory T-cells from patients with type 1 diabetes publication-title: Diabetes doi: 10.2337/db08-1168 – volume: 104 start-page: 4571 year: 2007 end-page: 4576 ident: CR22 article-title: FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0700298104 – volume: 25 start-page: 7966 year: 2005 end-page: 7975 ident: CR33 article-title: NF-κB RelA phosphorylation regulates RelA acetylation publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.18.7966-7975.2005 – volume: 325 start-page: 1142 year: 2009 end-page: 1146 ident: CR37 article-title: Eos Mediates Foxp3-dependent gene silencing in CD4 regulatory T cells publication-title: Science doi: 10.1126/science.1176077 – volume: 279 start-page: 46588 year: 2004 end-page: 46594 ident: CR27 article-title: Protein phosphatase 4 interacts with and down-regulates insulin receptor substrate 4 following tumor necrosis factor-α stimulation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408067200 – volume: 28 start-page: 697 year: 2008 end-page: 706 ident: CR13 article-title: Multiple sclerosis and regulatory T cells publication-title: J. Clin. Immunol. doi: 10.1007/s10875-008-9236-x – volume: 2 start-page: 346 year: 2003 end-page: 357 ident: CR3 article-title: The biology of TNF blockade publication-title: Autoimmun. Rev. doi: 10.1016/S1568-9972(03)00048-X – volume: 22 start-page: 1282 year: 2010 end-page: 1290 ident: CR32 article-title: Posttranslational modifications of NF-κB: another layer of regulation for NF-κB signaling pathway publication-title: Cell Signal. doi: 10.1016/j.cellsig.2010.03.017 – volume: 28 start-page: 1769 year: 2009 end-page: 1781 ident: CR11 article-title: Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation publication-title: Oncogene doi: 10.1038/onc.2009.29 – volume: 13 start-page: 1299 year: 2007 end-page: 1307 ident: CR20 article-title: Deacetylase inhibition promotes the generation and function of regulatory T cells publication-title: Nat. Med. doi: 10.1038/nm1652 – volume: 284 start-page: 5709 year: 2009 end-page: 5716 ident: CR30 article-title: Foxp3 processing by proprotein convertases and control of regulatory T cell function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807322200 – volume: 108 start-page: 253 year: 2006 ident: BFnm3085_CR17 publication-title: Blood doi: 10.1182/blood-2005-11-4567 – volume: 10 start-page: 1126 year: 2003 ident: BFnm3085_CR28 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401276 – volume: 87 start-page: 195 year: 2009 ident: BFnm3085_CR21 publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2008.106 – volume: 118 start-page: 3537 year: 2008 ident: BFnm3085_CR2 publication-title: J. Clin. Invest. doi: 10.1172/JCI36389 – volume: 200 start-page: 277 year: 2004 ident: BFnm3085_CR4 publication-title: J. Exp. Med. doi: 10.1084/jem.20040165 – volume: 104 start-page: 4571 year: 2007 ident: BFnm3085_CR22 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0700298104 – volume: 328 start-page: 372 year: 2010 ident: BFnm3085_CR36 publication-title: Science doi: 10.1126/science.1186068 – volume: 6 start-page: 481 year: 2005 ident: BFnm3085_CR18 publication-title: Pharmacogenomics doi: 10.2217/14622416.6.5.481 – volume: 58 start-page: 652 year: 2009 ident: BFnm3085_CR24 publication-title: Diabetes doi: 10.2337/db08-1168 – volume: 126 start-page: 375 year: 2006 ident: BFnm3085_CR29 publication-title: Cell doi: 10.1016/j.cell.2006.05.042 – volume: 241 start-page: 260 year: 2011 ident: BFnm3085_CR19 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01018.x – volume: 85 start-page: 307 year: 1996 ident: BFnm3085_CR1 publication-title: Cell doi: 10.1016/S0092-8674(00)81109-5 – volume: 279 start-page: 46588 year: 2004 ident: BFnm3085_CR27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408067200 – volume: 28 start-page: 1769 year: 2009 ident: BFnm3085_CR11 publication-title: Oncogene doi: 10.1038/onc.2009.29 – volume: 107 start-page: 519 year: 2001 ident: BFnm3085_CR7 publication-title: J. Clin. Invest. doi: 10.1172/JCI8027 – volume: 22 start-page: 1282 year: 2010 ident: BFnm3085_CR32 publication-title: Cell Signal. doi: 10.1016/j.cellsig.2010.03.017 – volume: 11 start-page: 492 year: 2009 ident: BFnm3085_CR34 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1857 – volume: 325 start-page: 1142 year: 2009 ident: BFnm3085_CR37 publication-title: Science doi: 10.1126/science.1176077 – volume: 13 start-page: 1299 year: 2007 ident: BFnm3085_CR20 publication-title: Nat. Med. doi: 10.1038/nm1652 – volume: 101 start-page: 711 year: 1998 ident: BFnm3085_CR8 publication-title: J. Clin. Invest. doi: 10.1172/JCI1379 – volume: 177 start-page: 3133 year: 2006 ident: BFnm3085_CR26 publication-title: J. Immunol. doi: 10.4049/jimmunol.177.5.3133 – volume: 30 start-page: 636 year: 2009 ident: BFnm3085_CR15 publication-title: Immunity doi: 10.1016/j.immuni.2009.04.010 – volume: 13 start-page: 423 year: 2007 ident: BFnm3085_CR16 publication-title: Nat. Med. doi: 10.1038/nm1564 – volume: 110 start-page: 835 year: 2002 ident: BFnm3085_CR6 publication-title: J. Clin. Invest. doi: 10.1172/JCI200215606 – volume: 284 start-page: 5709 year: 2009 ident: BFnm3085_CR30 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807322200 – volume: 118 start-page: 464 year: 2008 ident: BFnm3085_CR10 publication-title: J. Clin. Invest. – volume: 2 start-page: 346 year: 2003 ident: BFnm3085_CR3 publication-title: Autoimmun. Rev. doi: 10.1016/S1568-9972(03)00048-X – volume: 118 start-page: 560 year: 2008 ident: BFnm3085_CR9 publication-title: J. Clin. Invest. – volume: 28 start-page: 697 year: 2008 ident: BFnm3085_CR13 publication-title: J. Clin. Immunol. doi: 10.1007/s10875-008-9236-x – volume: 362 start-page: 44 year: 2007 ident: BFnm3085_CR25 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.07.187 – volume: 2 start-page: 364 year: 2002 ident: BFnm3085_CR5 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri802 – volume: 18 start-page: 423 year: 2000 ident: BFnm3085_CR12 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.18.1.423 – volume: 105 start-page: 14023 year: 2008 ident: BFnm3085_CR23 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0806726105 – volume: 30 start-page: 656 year: 2009 ident: BFnm3085_CR14 publication-title: Immunity doi: 10.1016/j.immuni.2009.04.006 – volume: 102 start-page: 11278 year: 2005 ident: BFnm3085_CR35 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502738102 – volume: 220 start-page: 164 year: 2010 ident: BFnm3085_CR31 publication-title: J. Pathol. doi: 10.1002/path.2637 – volume: 25 start-page: 7966 year: 2005 ident: BFnm3085_CR33 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.18.7966-7975.2005 – reference: 17360565 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4571-6 – reference: 10837065 - Annu Rev Immunol. 2000;18:423-49 – reference: 12033742 - Nat Rev Immunol. 2002 May;2(5):364-71 – reference: 19464986 - Immunity. 2009 May;30(5):636-45 – reference: 16013998 - Pharmacogenomics. 2005 Jul;6(5):481-90 – reference: 26735402 - Nat Med. 2016 Jan;22(1):16-7 – reference: 18219394 - J Clin Invest. 2008 Feb;118(2):560-70 – reference: 14502236 - Cell Death Differ. 2003 Oct;10(10):1126-36 – reference: 16873067 - Cell. 2006 Jul 28;126(2):375-87 – reference: 19117830 - J Biol Chem. 2009 Feb 27;284(9):5709-16 – reference: 18219390 - J Clin Invest. 2008 Feb;118(2):464-7 – reference: 20339032 - Science. 2010 Apr 16;328(5976):372-6 – reference: 16135789 - Mol Cell Biol. 2005 Sep;25(18):7966-75 – reference: 19464988 - Immunity. 2009 May;30(5):656-65 – reference: 14550876 - Autoimmun Rev. 2003 Oct;2(6):346-57 – reference: 15280421 - J Exp Med. 2004 Aug 2;200(3):277-85 – reference: 19172156 - Immunol Cell Biol. 2009 Mar-Apr;87(3):195-202 – reference: 11181651 - J Clin Invest. 2001 Feb;107(4):519-28 – reference: 19918835 - J Pathol. 2010 Jan;220(2):164-73 – reference: 21488902 - Immunol Rev. 2011 May;241(1):260-8 – reference: 18982160 - J Clin Invest. 2008 Nov;118(11):3537-45 – reference: 26735403 - Nat Med. 2016 Jan;22(1):18-9 – reference: 19295512 - Nat Cell Biol. 2009 Apr;11(4):492-500 – reference: 19696312 - Science. 2009 Aug 28;325(5944):1142-6 – reference: 17706604 - Biochem Biophys Res Commun. 2007 Oct 12;362(1):44-50 – reference: 19074986 - Diabetes. 2009 Mar;58(3):652-62 – reference: 15331607 - J Biol Chem. 2004 Nov 5;279(45):46588-94 – reference: 23467235 - Nat Med. 2013 Mar;19(3):269-70 – reference: 17384649 - Nat Med. 2007 Apr;13(4):423-31 – reference: 16920951 - J Immunol. 2006 Sep 1;177(5):3133-42 – reference: 12235115 - J Clin Invest. 2002 Sep;110(6):835-42 – reference: 19287455 - Oncogene. 2009 Apr 16;28(15):1769-81 – reference: 16076959 - Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11278-83 – reference: 18763026 - J Clin Immunol. 2008 Nov;28(6):697-706 – reference: 8616886 - Cell. 1996 May 3;85(3):307-10 – reference: 20363318 - Cell Signal. 2010 Sep;22(9):1282-90 – reference: 17922010 - Nat Med. 2007 Nov;13(11):1299-307 – reference: 23439034 - Nat Rev Rheumatol. 2013 Apr;9(4):197 – reference: 16537805 - Blood. 2006 Jul 1;108(1):253-61 – reference: 18779564 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14023-7 – reference: 9449707 - J Clin Invest. 1998 Feb 1;101(3):711-21 |
SSID | ssj0003059 |
Score | 2.5809307 |
Snippet | TNF-α suppresses regulatory T (T
reg
) cell function, however the mechanism remains unclear. Here Jingwu Z Zhang and colleagues find that in activated T cells,... Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that... Regulatory T ([T.sub.reg]) cells suppress autoimmune disease, and impaired [T.sub.reg] cell function is associated with rheumatoid arthritis. Here we... Regulatory T (T sub(reg)) cells suppress autoimmune disease, and impaired T sub(reg) cell function is associated with rheumatoid arthritis. Here we demonstrate... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 322 |
SubjectTerms | 631/250/127/1220 631/250/1619/554/1898/1271 631/250/249/1313/498 631/250/516 Arthritis, Rheumatoid - immunology Arthritis, Rheumatoid - metabolism Biomedicine Cancer Research Cells, Cultured DNA-Binding Proteins - metabolism Forkhead Transcription Factors - chemistry Forkhead Transcription Factors - metabolism Genetic aspects Health aspects Humans Infectious Diseases Interferon-gamma - biosynthesis Interleukin-17 - biosynthesis Interleukin-2 Receptor alpha Subunit - biosynthesis Interleukin-7 Receptor alpha Subunit - biosynthesis Metabolic Diseases Molecular Medicine Neurosciences Phosphorylation Physiological aspects Protein Phosphatase 1 - metabolism Rheumatoid arthritis Risk factors RNA Interference RNA, Small Interfering Synovial Membrane - immunology Synovial Membrane - metabolism T cells T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - metabolism Th1 Cells - immunology Th1 Cells - metabolism Th17 Cells - immunology Th17 Cells - metabolism Tumor necrosis factor Tumor Necrosis Factor-alpha - immunology Tumor Necrosis Factor-alpha - metabolism |
Title | Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis |
URI | https://link.springer.com/article/10.1038/nm.3085 https://www.ncbi.nlm.nih.gov/pubmed/23396208 https://www.proquest.com/docview/1315633401 https://www.proquest.com/docview/1328510964 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgE4gXBONfYQyD2HiYMpI4cZrHbWpVEOuq0qHyFDmJu1bakmlpJMa34ovwmbizkzRpKzR4iaLkYjm5X87n-0vI-zj0J66IHMOKHWY4seCG8D3XEDLy8URYEu0dJ33eO3M-j92ao11ll8zDg-jn2ryS_-EqXAO-YpbsP3C2GhQuwDnwF47AYTjeiseDaZpdTdPrm4tK8euejgesDEBHl4BqNY-O9NE-Gun3cSGblzHIM4zGms5CpXeCIjrqd43d487ukaXyXKYyB4U2ncVYCmmqyh_Vldm-Kgq64p7va5dHLy0WRWWWllqmfIeV8sesWgq-qFiCYZ5kSFDFAuXKfquNCUVb6MIwgU0iWN0wUcxhrTVNy1rQToy2r-uKV8LYr4GO1SSrpdOXVyS-ru-eXB4wU_f-WSqffciwor3jm-ZdsmnDXgKFoTeuduUo8HwdmKpnozOrcdyPxagNlWV54a5pLkuudKWhjB6Rh8XWgh5qnDwmd2SyRe7pZqM3W-T-ScGnJyRdAg5NJ1QBh5bAoQvg0BFF4NASOBSAQ2cZrYBDQ6AB4Pz-BdfoAjS0As1TctbtjI57RtF5w4hAg54bsbClKYW0eMg4_OR-iPViYyE5c9qRB2qkHaMH3fQ94QmOrnU5mfCYexJucJM9IxtJmsgXhFoigtHafoiSn0dcxK5wJHNjU3q20-Ytsld-3CAqytJjd5SLQIVHsHaQXAbIhRahFeGVrsSySvIGuRPoFOLqDw8WGGiRd4oCK58kGFp1LvIsCz6dfrsF0ddhg-hDQTRJYb6RKNJZ4K2xolqDcq9Bea7rya8j3G4QgqCPGrfflqAL8BZGRyYyzbPAYpbLGXNM6280NmyuTJ87LfJcI7b6jDZjPrfNNjxdQjgoxFy2_I1f3vZtXpEHC6mwTTbm17l8DQr8PNxRP-AO2Tzq9AfDPx0B9MY |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+of+FOXP3+controls+regulatory+T+cell+function+and+is+inhibited+by+TNF-%CE%B1+in+rheumatoid+arthritis&rft.jtitle=Nature+medicine&rft.au=Nie%2C+Hong&rft.au=Zheng%2C+Yingxia&rft.au=Li%2C+Runsheng&rft.au=Guo%2C+Taylor+B&rft.date=2013-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.volume=19&rft.issue=3&rft.spage=122&rft_id=info:doi/10.1038%2Fnm.3085&rft.externalDocID=A322904900 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |