Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth
Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis,...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 4409 - 16 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.02.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer. |
---|---|
AbstractList | Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer. Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer. Abstract Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer. Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer. |
ArticleNumber | 4409 |
Author | Jin, Liang Shima, Hiroki Pan, Yijun Abe, Takaaki Suda, Akane Yamamoto, Yui Igarashi, Kazuhiko Sun, Jiaqi Furukawa, Toru Saiki, Yuriko Suzuki, Chitose Kagawa, Yoshiteru Owada, Yuji Umaru, Banlanjo Abdulaziz Low, Yi Ling Clare |
Author_xml | – sequence: 1 givenname: Akane surname: Suda fullname: Suda, Akane organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Department of Organ Anatomy, Graduate School of Medicine, Tohoku University – sequence: 2 givenname: Banlanjo Abdulaziz surname: Umaru fullname: Umaru, Banlanjo Abdulaziz organization: Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Center for Childhood Cancer Research, Nationwide Children’s Hospital – sequence: 3 givenname: Yui surname: Yamamoto fullname: Yamamoto, Yui organization: Department of Organ Anatomy, Graduate School of Medicine, Tohoku University – sequence: 4 givenname: Hiroki surname: Shima fullname: Shima, Hiroki organization: Department of Biochemistry, Tohoku University Graduate School of Medicine – sequence: 5 givenname: Yuriko surname: Saiki fullname: Saiki, Yuriko organization: Department of Investigative Pathology, Tohoku University Graduate School of Medicine – sequence: 6 givenname: Yijun surname: Pan fullname: Pan, Yijun organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University – sequence: 7 givenname: Liang surname: Jin fullname: Jin, Liang organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University – sequence: 8 givenname: Jiaqi surname: Sun fullname: Sun, Jiaqi organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne – sequence: 9 givenname: Yi Ling Clare surname: Low fullname: Low, Yi Ling Clare organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne – sequence: 10 givenname: Chitose surname: Suzuki fullname: Suzuki, Chitose organization: Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine – sequence: 11 givenname: Takaaki surname: Abe fullname: Abe, Takaaki organization: Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine – sequence: 12 givenname: Kazuhiko surname: Igarashi fullname: Igarashi, Kazuhiko organization: Department of Biochemistry, Tohoku University Graduate School of Medicine – sequence: 13 givenname: Toru surname: Furukawa fullname: Furukawa, Toru organization: Department of Investigative Pathology, Tohoku University Graduate School of Medicine – sequence: 14 givenname: Yuji surname: Owada fullname: Owada, Yuji organization: Department of Organ Anatomy, Graduate School of Medicine, Tohoku University – sequence: 15 givenname: Yoshiteru surname: Kagawa fullname: Kagawa, Yoshiteru email: yoshiteru.kagawa@florey.edu.au organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Department of Organ Anatomy, Graduate School of Medicine, Tohoku University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38388563$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNUbK39Ay5kwI2b0XzOJEspVgsFBdt1yCQn11zmTsYkg9x_39w7tUoXzSI5HJ73fOR9jU6mOAFCbwn-SDCTnzInQskWU94KgQVu-Qt0RjEXLWWUnvwXn6KLnLe4HkEVJ-oVOmWSSSk6doZ-_ojjfpmyKUsyBVzjTSn7xtjgchsmt9hDDlKKc4k55CYv85wgZ8jNbCabwJRgG1tDSM0mxT_l1xv00psxw8XDe47urr7cXn5rb75_vb78fNNaIUhpB6a8IpwR02FLKB-wr7cgtJcDsRSAdo6DxbwD17EOG-Z65hn3gyMcKGbn6Hqt66LZ6jmFnUl7HU3Qx0RMG21SnW4EPWAiPbcd9GrgkoLk1HHha2-hlBOHWh_WWnOKvxfIRe9CtjCOZoK4ZE0Vo5j0uKcVff8E3cYlTXXTA4UZF-pIvXuglmEH7nG8v19fAboCNsWcE_hHhGB9sFivFutqsT5arHkVySciG0p1IE4lmTA-L2WrNNc-0wbSv7GfUd0DpCC5KQ |
CitedBy_id | crossref_primary_10_1016_j_tips_2024_04_007 crossref_primary_10_1039_D4FO05606J crossref_primary_10_1093_carcin_bgae081 crossref_primary_10_1080_07853890_2024_2445774 crossref_primary_10_3390_nu16111737 crossref_primary_10_1016_j_jlr_2025_100765 crossref_primary_10_1038_s41419_024_07150_2 crossref_primary_10_1002_lipd_12420 crossref_primary_10_1016_j_jlr_2024_100657 crossref_primary_10_3390_toxics12070493 |
Cites_doi | 10.1007/s12035-020-02057-3 10.1016/S0140-6736(16)00141-0 10.1074/jbc.M113.484576 10.1038/s41580-020-00324-8 10.1111/febs.16672 10.1016/j.ccell.2022.02.003 10.1016/j.chembiol.2021.01.006 10.1016/j.bbrc.2012.03.122 10.1529/biophysj.107.112565 10.1194/jlr.R120000800 10.1016/j.freeradbiomed.2018.09.014 10.1038/s41420-022-01212-0 10.1016/j.cell.2013.12.010 10.1016/j.cmet.2021.05.016 10.1038/nature24297 10.1042/BST20160474 10.1186/s13045-019-0720-y 10.1016/j.clinthera.2017.08.015 10.1038/s41419-023-05930-w 10.1038/s41556-019-0305-6 10.1016/j.ebiom.2023.104510 10.1021/acscentsci.7b00028 10.1038/s41556-020-0565-1 10.1371/journal.pmed.1000267 10.1016/j.plipres.2019.101017 10.5114/aoms.2015.54865 10.1152/physrev.00003.2009 10.1016/bs.pmbts.2016.09.008 10.1620/tjem.150.231 10.21873/anticanres.16079 10.1016/j.cell.2017.09.021 10.1194/jlr.M200356-JLR200 10.1016/j.redox.2022.102546 10.1056/NEJMoa1011923 10.1038/nchembio.2238 10.1016/j.redox.2023.102840 10.1093/jmcb/mjaa055 10.1016/j.bbrc.2016.10.086 10.1007/s11095-021-03009-9 10.1038/s41418-022-01096-8 10.1016/S1470-2045(16)00172-8 10.1073/pnas.2006828117 10.1016/j.cell.2009.05.021 10.3945/jn.111.149328 10.7314/apjcp.2015.16.14.5619 10.1016/s1388-1981(99)00137-7 10.1016/j.chembiol.2018.11.016 10.1111/cas.14181 10.1620/tjem.143.33 10.1038/s41586-019-1705-2 10.3390/molecules27051677 10.1038/sj.onc.1206952 10.1007/s12017-008-8036-z 10.1038/s41575-018-0005-x 10.1038/s41423-020-00630-3 10.1074/jbc.M112.415729 10.1038/nchembio.2239 10.1038/s41586-020-2732-8 10.1186/1741-7015-10-50 10.1038/s41571-020-00462-0 10.1016/j.cmet.2020.06.002 10.1016/j.devcel.2021.04.013 10.1016/j.bbalip.2017.12.006 10.1021/ja411006a 10.1038/nature23007 10.1038/s41419-019-1984-4 10.1056/NEJMoa1304369 10.1158/1535-7163.MCT-09-0551 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-024-55050-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_b018f4c6e79b482e842d45f31a599d50 38388563 10_1038_s41598_024_55050_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 20KK0225; 20K11527 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Takeda Science Foundation funderid: http://dx.doi.org/10.13039/100007449 – fundername: Japan Society for the Promotion of Science grantid: 20KK0225 – fundername: Japan Society for the Promotion of Science grantid: 20K11527 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c551t-b39f91431a60c124b0f12451278b1c2ee26d4ec046ed6360a3d73f34fbd14e203 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:06 EDT 2025 Mon Jul 21 09:23:50 EDT 2025 Wed Aug 13 04:10:57 EDT 2025 Mon Jul 21 05:51:00 EDT 2025 Tue Jul 01 00:51:27 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Fri Feb 21 02:37:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Ferroptosis Drug resistance α-Linolenic acid Pancreatic cancer Poly unsaturated fatty acids Linoleic acid |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c551t-b39f91431a60c124b0f12451278b1c2ee26d4ec046ed6360a3d73f34fbd14e203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2930345972?pq-origsite=%requestingapplication% |
PMID | 38388563 |
PQID | 2930345972 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b018f4c6e79b482e842d45f31a599d50 proquest_miscellaneous_2932017072 proquest_journals_2930345972 pubmed_primary_38388563 crossref_primary_10_1038_s41598_024_55050_4 crossref_citationtrail_10_1038_s41598_024_55050_4 springer_journals_10_1038_s41598_024_55050_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-22 |
PublicationDateYYYYMMDD | 2024-02-22 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Yang (CR18) 2014; 156 Von Hoff (CR7) 2013; 369 Chen (CR31) 2023; 14 Muller (CR15) 2022 Saiki (CR34) 2012; 421 Kagawa (CR72) 2020; 57 Riegman (CR9) 2020; 22 Lim (CR20) 2013; 288 Ma (CR41) 2022; 8 Wang (CR68) 2019; 10 Lim, Han, Dai, Shen, Wu (CR35) 2009; 8 Kobari, Matsuno, Sato, Kan, Tachibana (CR71) 1984; 143 Dyall, Michael-Titus (CR63) 2008; 10 de Lorgeril, Salen (CR64) 2012; 10 Chu (CR40) 2019; 21 Damaraju (CR52) 2003; 22 Cheng (CR56) 2020; 32 Kagan (CR28) 2017; 13 Conroy (CR6) 2011; 364 Mou (CR13) 2019; 12 Tong (CR38) 2023; 65 Zilka (CR47) 2017; 3 Else (CR23) 2020; 77 Chen, Kang, Kroemer, Tang (CR36) 2021; 18 Glatz, Luiken, Bonen (CR62) 2010; 90 Doll (CR27) 2017; 13 Abumrad, Coburn, Ibrahimi (CR61) 1999; 1441 Arora (CR54) 2013; 288 Bersuker (CR12) 2019; 575 Dierge (CR60) 2021; 33 Gillen, Schuster, MeyerZumBuschenfelde, Friess, Kleeff (CR4) 2010; 7 Kuang, Liu, Xie, Tang, Kang (CR50) 2021; 28 Haycock (CR42) 2023; 91 Broadfield, Pane, Talebi, Swinnen, Fendt (CR44) 2021; 56 Wong-Ekkabut (CR46) 2007; 93 Seibt, Proneth, Conrad (CR11) 2019; 133 Ng, Tsao, Chow, Hedley (CR53) 2000; 60 Lee (CR66) 2020; 117 Harayama, Shimizu (CR22) 2020; 61 Calder (CR24) 2017; 45 Neoptolemos (CR51) 2018; 15 Yu (CR19) 2019; 110 Hangauer (CR17) 2017; 551 Zhang (CR43) 2015; 11 He (CR33) 2009; 137 Skouta (CR48) 2014; 136 Gaschler, Stockwell (CR45) 2017; 482 Yang (CR55) 2011; 2 Jarc (CR57) 1863; 247–265 Jarc, Petan (CR58) 2019; 92 Grant, Hua, Singh (CR3) 2016; 144 Liao (CR65) 2022; 40 Funari, Barcelo, Escriba (CR21) 2003; 44 Ye (CR49) 2020; 10 Sugezawa (CR14) 2022; 42 Bertheloot, Latz, Franklin (CR30) 2021; 18 Yuan (CR16) 2022; 58 Magtanong (CR29) 2019; 26 Kamisawa, Wood, Itoi, Takaori (CR1) 2016; 388 Stockwell (CR37) 2017; 171 Ferreira, Falcato, Bandarra, Rauter (CR25) 2022; 27 Umaru (CR59) 2023; 290 Goral (CR2) 2015; 16 Saung, Zheng (CR8) 2017; 39 Kobari (CR70) 1986; 150 Li, Tong, Zhang, Wei, Wei (CR32) 2021; 13 Decker, Akoh, Wilkes (CR26) 2012; 142 Viswanathan (CR67) 2017; 547 Zou (CR39) 2020; 585 Umaru (CR69) 2021; 38 Suker (CR5) 2016; 17 Jiang, Stockwell, Conrad (CR10) 2021; 22 T Conroy (55050_CR6) 2011; 364 M Kobari (55050_CR70) 1986; 150 TJ Grant (55050_CR3) 2016; 144 Y Zou (55050_CR39) 2020; 585 Z Chen (55050_CR31) 2023; 14 Y Saiki (55050_CR34) 2012; 421 D Bertheloot (55050_CR30) 2021; 18 VL Damaraju (55050_CR52) 2003; 22 X Jiang (55050_CR10) 2021; 22 PC Calder (55050_CR24) 2017; 45 F Kuang (55050_CR50) 2021; 28 Y Yang (55050_CR55) 2011; 2 JP Neoptolemos (55050_CR51) 2018; 15 T Ma (55050_CR41) 2022; 8 O Zilka (55050_CR47) 2017; 3 X Cheng (55050_CR56) 2020; 32 PL Else (55050_CR23) 2020; 77 VE Kagan (55050_CR28) 2017; 13 T Kamisawa (55050_CR1) 2016; 388 L Li (55050_CR32) 2021; 13 K Lim (55050_CR35) 2009; 8 JF Glatz (55050_CR62) 2010; 90 MT Saung (55050_CR8) 2017; 39 T Harayama (55050_CR22) 2020; 61 Y Mou (55050_CR13) 2019; 12 Y Kagawa (55050_CR72) 2020; 57 S Doll (55050_CR27) 2017; 13 V Goral (55050_CR2) 2015; 16 JH Lim (55050_CR20) 2013; 288 L Magtanong (55050_CR29) 2019; 26 PC Haycock (55050_CR42) 2023; 91 BR Stockwell (55050_CR37) 2017; 171 P Liao (55050_CR65) 2022; 40 M Yu (55050_CR19) 2019; 110 JY Lee (55050_CR66) 2020; 117 EA Decker (55050_CR26) 2012; 142 E Jarc (55050_CR58) 2019; 92 J Yuan (55050_CR16) 2022; 58 Y Tong (55050_CR38) 2023; 65 BA Umaru (55050_CR59) 2023; 290 M Riegman (55050_CR9) 2020; 22 LA Broadfield (55050_CR44) 2021; 56 E Dierge (55050_CR60) 2021; 33 K Sugezawa (55050_CR14) 2022; 42 WS Yang (55050_CR18) 2014; 156 SS Funari (55050_CR21) 2003; 44 SSW Ng (55050_CR53) 2000; 60 S He (55050_CR33) 2009; 137 F Muller (55050_CR15) 2022 K Bersuker (55050_CR12) 2019; 575 MJ Hangauer (55050_CR17) 2017; 551 I Ferreira (55050_CR25) 2022; 27 C Zhang (55050_CR43) 2015; 11 MM Gaschler (55050_CR45) 2017; 482 BA Umaru (55050_CR69) 2021; 38 J Wong-Ekkabut (55050_CR46) 2007; 93 DD Von Hoff (55050_CR7) 2013; 369 VS Viswanathan (55050_CR67) 2017; 547 TX Wang (55050_CR68) 2019; 10 M Suker (55050_CR5) 2016; 17 E Jarc (55050_CR57) 1863; 247–265 SC Dyall (55050_CR63) 2008; 10 Z Ye (55050_CR49) 2020; 10 X Chen (55050_CR36) 2021; 18 S Arora (55050_CR54) 2013; 288 M de Lorgeril (55050_CR64) 2012; 10 B Chu (55050_CR40) 2019; 21 R Skouta (55050_CR48) 2014; 136 N Abumrad (55050_CR61) 1999; 1441 TM Seibt (55050_CR11) 2019; 133 S Gillen (55050_CR4) 2010; 7 M Kobari (55050_CR71) 1984; 143 |
References_xml | – volume: 2 start-page: 89 year: 2011 end-page: 98 ident: CR55 article-title: Role of fatty acid synthase in gemcitabine and radiation resistance of pancreatic cancers publication-title: Int. J. Biochem. Mol. Biol. – volume: 57 start-page: 4891 year: 2020 end-page: 4910 ident: CR72 article-title: FABP7 regulates acetyl-CoA metabolism through the interaction with ACLY in the nucleus of astrocytes publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02057-3 – volume: 388 start-page: 73 year: 2016 end-page: 85 ident: CR1 article-title: Pancreatic cancer publication-title: Lancet doi: 10.1016/S0140-6736(16)00141-0 – volume: 288 start-page: 21197 year: 2013 end-page: 21207 ident: CR54 article-title: An undesired effect of chemotherapy: Gemcitabine promotes pancreatic cancer cell invasiveness through reactive oxygen species-dependent, nuclear factor kappaB- and hypoxia-inducible factor 1alpha-mediated up-regulation of CXCR4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.484576 – volume: 22 start-page: 266 year: 2021 end-page: 282 ident: CR10 article-title: Ferroptosis: Mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00324-8 – volume: 290 start-page: 1798 year: 2023 end-page: 1821 ident: CR59 article-title: Oleic acid-bound FABP7 drives glioma cell proliferation through regulation of nuclear lipid droplet formation publication-title: FEBS J. doi: 10.1111/febs.16672 – volume: 40 start-page: e366 issue: 365–378 year: 2022 ident: CR65 article-title: CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.02.003 – volume: 28 start-page: 765 year: 2021 end-page: 775 ident: CR50 article-title: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2021.01.006 – volume: 421 start-page: 98 year: 2012 end-page: 104 ident: CR34 article-title: DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.03.122 – volume: 93 start-page: 4225 year: 2007 end-page: 4236 ident: CR46 article-title: Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study publication-title: Biophys. J. doi: 10.1529/biophysj.107.112565 – volume: 61 start-page: 1150 year: 2020 end-page: 1160 ident: CR22 article-title: Roles of polyunsaturated fatty acids, from mediators to membranes publication-title: J. Lipid Res. doi: 10.1194/jlr.R120000800 – volume: 133 start-page: 144 year: 2019 end-page: 152 ident: CR11 article-title: Role of GPX4 in ferroptosis and its pharmacological implication publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.09.014 – volume: 8 start-page: 434 year: 2022 ident: CR41 article-title: GPX4-independent ferroptosis-a new strategy in disease’s therapy publication-title: Cell Death Discov. doi: 10.1038/s41420-022-01212-0 – volume: 156 start-page: 317 year: 2014 end-page: 331 ident: CR18 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 33 start-page: 1701 year: 2021 end-page: 1715 ident: CR60 article-title: Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.05.016 – volume: 551 start-page: 247 year: 2017 end-page: 250 ident: CR17 article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition publication-title: Nature doi: 10.1038/nature24297 – volume: 45 start-page: 1105 year: 2017 end-page: 1115 ident: CR24 article-title: Omega-3 fatty acids and inflammatory processes: From molecules to man publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20160474 – volume: 12 start-page: 34 year: 2019 ident: CR13 article-title: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0720-y – volume: 39 start-page: 2125 year: 2017 end-page: 2134 ident: CR8 article-title: Current standards of chemotherapy for pancreatic cancer publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2017.08.015 – volume: 14 start-page: 460 year: 2023 ident: CR31 article-title: Ferroptosis as a potential target for cancer therapy publication-title: Cell Death Dis. doi: 10.1038/s41419-023-05930-w – volume: 21 start-page: 579 year: 2019 end-page: 591 ident: CR40 article-title: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0305-6 – volume: 91 start-page: 104510 year: 2023 ident: CR42 article-title: The association between genetically elevated polyunsaturated fatty acids and risk of cancer publication-title: EBioMedicine doi: 10.1016/j.ebiom.2023.104510 – volume: 3 start-page: 232 year: 2017 end-page: 243 ident: CR47 article-title: On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00028 – volume: 22 start-page: 1042 year: 2020 end-page: 1048 ident: CR9 article-title: Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0565-1 – volume: 7 start-page: e1000267 year: 2010 ident: CR4 article-title: Preoperative/neoadjuvant therapy in pancreatic cancer: A systematic review and meta-analysis of response and resection percentages publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000267 – volume: 77 start-page: 101017 year: 2020 ident: CR23 article-title: The highly unnatural fatty acid profile of cells in culture publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2019.101017 – volume: 11 start-page: 1081 year: 2015 end-page: 1094 ident: CR43 article-title: Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2015.54865 – volume: 90 start-page: 367 year: 2010 end-page: 417 ident: CR62 article-title: Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00003.2009 – volume: 144 start-page: 241 year: 2016 end-page: 275 ident: CR3 article-title: Molecular pathogenesis of pancreatic cancer publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/bs.pmbts.2016.09.008 – volume: 150 start-page: 231 year: 1986 end-page: 248 ident: CR70 article-title: Establishment of six human pancreatic cancer cell lines and their sensitivities to anti-tumor drugs publication-title: Tohoku J. Exp. Med. doi: 10.1620/tjem.150.231 – volume: 42 start-page: 5719 year: 2022 end-page: 5729 ident: CR14 article-title: GPX4 regulates tumor cell proliferation via suppressing ferroptosis and exhibits prognostic significance in gastric cancer publication-title: Anticancer Res. doi: 10.21873/anticanres.16079 – volume: 171 start-page: 273 year: 2017 end-page: 285 ident: CR37 article-title: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 44 start-page: 567 year: 2003 end-page: 575 ident: CR21 article-title: Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes publication-title: J. Lipid Res. doi: 10.1194/jlr.M200356-JLR200 – volume: 58 start-page: 102546 year: 2022 ident: CR16 article-title: HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma publication-title: Redox Biol. doi: 10.1016/j.redox.2022.102546 – volume: 364 start-page: 1817 year: 2011 end-page: 1825 ident: CR6 article-title: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1011923 – volume: 13 start-page: 81 year: 2017 end-page: 90 ident: CR28 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2238 – volume: 65 start-page: 102840 year: 2023 ident: CR38 article-title: Comparative mechanistic study of RPE cell death induced by different oxidative stresses publication-title: Redox Biol. doi: 10.1016/j.redox.2023.102840 – volume: 13 start-page: 3 year: 2021 end-page: 14 ident: CR32 article-title: The molecular mechanisms of MLKL-dependent and MLKL-independent necrosis publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjaa055 – volume: 482 start-page: 419 year: 2017 end-page: 425 ident: CR45 article-title: Lipid peroxidation in cell death publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.10.086 – volume: 38 start-page: 479 year: 2021 end-page: 490 ident: CR69 article-title: Ligand bound fatty acid binding protein 7 (FABP7) drives melanoma cell proliferation via modulation of Wnt/beta-catenin signaling publication-title: Pharm. Res. doi: 10.1007/s11095-021-03009-9 – year: 2022 ident: CR15 article-title: Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation publication-title: Cell Death Differ. doi: 10.1038/s41418-022-01096-8 – volume: 17 start-page: 801 year: 2016 end-page: 810 ident: CR5 article-title: FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)00172-8 – volume: 117 start-page: 32433 year: 2020 end-page: 32442 ident: CR66 article-title: Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2006828117 – volume: 137 start-page: 1100 year: 2009 end-page: 1111 ident: CR33 article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 142 start-page: 610S year: 2012 end-page: 613S ident: CR26 article-title: Incorporation of (n-3) fatty acids in foods: challenges and opportunities publication-title: J. Nutr. doi: 10.3945/jn.111.149328 – volume: 16 start-page: 5619 year: 2015 end-page: 5624 ident: CR2 article-title: Pancreatic cancer: Pathogenesis and diagnosis publication-title: Asian Pac. J. Cancer Prev. doi: 10.7314/apjcp.2015.16.14.5619 – volume: 1441 start-page: 4 year: 1999 end-page: 13 ident: CR61 article-title: Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36 FATP and FABPm publication-title: Biochim. Biophys. Acta doi: 10.1016/s1388-1981(99)00137-7 – volume: 26 start-page: 420 year: 2019 end-page: 432 ident: CR29 article-title: Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.11.016 – volume: 110 start-page: 3173 year: 2019 end-page: 3182 ident: CR19 article-title: Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells publication-title: Cancer Sci. doi: 10.1111/cas.14181 – volume: 92 start-page: 435 year: 2019 end-page: 452 ident: CR58 article-title: Lipid droplets and the management of cellular stress publication-title: Yale J. Biol. Med. – volume: 143 start-page: 33 year: 1984 end-page: 46 ident: CR71 article-title: Establishment of a human pancreatic cancer cell line and detection of pancreatic cancer associated antigen publication-title: Tohoku J. Exp. Med. doi: 10.1620/tjem.143.33 – volume: 575 start-page: 688 year: 2019 end-page: 692 ident: CR12 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 27 start-page: 1677 year: 2022 ident: CR25 article-title: Resolvins, protectins, and maresins: DHA-derived specialized pro-resolving mediators, biosynthetic pathways, synthetic approaches, and their role in inflammation publication-title: Molecules doi: 10.3390/molecules27051677 – volume: 22 start-page: 7524 year: 2003 end-page: 7536 ident: CR52 article-title: Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy publication-title: Oncogene doi: 10.1038/sj.onc.1206952 – volume: 10 start-page: 219 year: 2008 end-page: 235 ident: CR63 article-title: Neurological benefits of omega-3 fatty acids publication-title: Neuromol. Med. doi: 10.1007/s12017-008-8036-z – volume: 15 start-page: 333 year: 2018 end-page: 348 ident: CR51 article-title: Therapeutic developments in pancreatic cancer: Current and future perspectives publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-018-0005-x – volume: 18 start-page: 1106 year: 2021 end-page: 1121 ident: CR30 article-title: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-020-00630-3 – volume: 288 start-page: 7117 year: 2013 end-page: 7126 ident: CR20 article-title: Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1alpha complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.415729 – volume: 13 start-page: 91 year: 2017 end-page: 98 ident: CR27 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 585 start-page: 603 year: 2020 end-page: 608 ident: CR39 article-title: Plasticity of ether lipids promotes ferroptosis susceptibility and evasion publication-title: Nature doi: 10.1038/s41586-020-2732-8 – volume: 10 start-page: 50 year: 2012 ident: CR64 article-title: New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids publication-title: BMC Med. doi: 10.1186/1741-7015-10-50 – volume: 18 start-page: 280 year: 2021 end-page: 296 ident: CR36 article-title: Broadening horizons: The role of ferroptosis in cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-00462-0 – volume: 32 start-page: 229 year: 2020 end-page: 242 ident: CR56 article-title: Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.06.002 – volume: 56 start-page: 1363 year: 2021 end-page: 1393 ident: CR44 article-title: Lipid metabolism in cancer: New perspectives and emerging mechanisms publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.04.013 – volume: 247–265 start-page: 2018 year: 1863 ident: CR57 article-title: Lipid droplets induced by secreted phospholipase A(2) and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2017.12.006 – volume: 136 start-page: 4551 year: 2014 end-page: 4556 ident: CR48 article-title: Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411006a – volume: 547 start-page: 453 year: 2017 end-page: 457 ident: CR67 article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway publication-title: Nature doi: 10.1038/nature23007 – volume: 10 start-page: 755 year: 2019 ident: CR68 article-title: The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1984-4 – volume: 10 start-page: 1182 year: 2020 end-page: 1193 ident: CR49 article-title: Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells publication-title: Am. J. Cancer Res. – volume: 60 start-page: 5451 year: 2000 end-page: 5455 ident: CR53 article-title: Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells publication-title: Cancer Res. – volume: 369 start-page: 1691 year: 2013 end-page: 1703 ident: CR7 article-title: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1304369 – volume: 8 start-page: 3046 year: 2009 end-page: 3055 ident: CR35 article-title: Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-09-0551 – volume: 17 start-page: 801 year: 2016 ident: 55050_CR5 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)00172-8 – volume: 150 start-page: 231 year: 1986 ident: 55050_CR70 publication-title: Tohoku J. Exp. Med. doi: 10.1620/tjem.150.231 – volume: 45 start-page: 1105 year: 2017 ident: 55050_CR24 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20160474 – volume: 27 start-page: 1677 year: 2022 ident: 55050_CR25 publication-title: Molecules doi: 10.3390/molecules27051677 – volume: 33 start-page: 1701 year: 2021 ident: 55050_CR60 publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.05.016 – volume: 8 start-page: 434 year: 2022 ident: 55050_CR41 publication-title: Cell Death Discov. doi: 10.1038/s41420-022-01212-0 – volume: 32 start-page: 229 year: 2020 ident: 55050_CR56 publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.06.002 – volume: 143 start-page: 33 year: 1984 ident: 55050_CR71 publication-title: Tohoku J. Exp. Med. doi: 10.1620/tjem.143.33 – volume: 18 start-page: 280 year: 2021 ident: 55050_CR36 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-00462-0 – volume: 92 start-page: 435 year: 2019 ident: 55050_CR58 publication-title: Yale J. Biol. Med. – volume: 547 start-page: 453 year: 2017 ident: 55050_CR67 publication-title: Nature doi: 10.1038/nature23007 – volume: 8 start-page: 3046 year: 2009 ident: 55050_CR35 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-09-0551 – volume: 136 start-page: 4551 year: 2014 ident: 55050_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411006a – volume: 56 start-page: 1363 year: 2021 ident: 55050_CR44 publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.04.013 – volume: 11 start-page: 1081 year: 2015 ident: 55050_CR43 publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2015.54865 – volume: 61 start-page: 1150 year: 2020 ident: 55050_CR22 publication-title: J. Lipid Res. doi: 10.1194/jlr.R120000800 – volume: 18 start-page: 1106 year: 2021 ident: 55050_CR30 publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-020-00630-3 – volume: 10 start-page: 50 year: 2012 ident: 55050_CR64 publication-title: BMC Med. doi: 10.1186/1741-7015-10-50 – volume: 369 start-page: 1691 year: 2013 ident: 55050_CR7 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1304369 – volume: 117 start-page: 32433 year: 2020 ident: 55050_CR66 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2006828117 – volume: 65 start-page: 102840 year: 2023 ident: 55050_CR38 publication-title: Redox Biol. doi: 10.1016/j.redox.2023.102840 – volume: 21 start-page: 579 year: 2019 ident: 55050_CR40 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0305-6 – volume: 144 start-page: 241 year: 2016 ident: 55050_CR3 publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/bs.pmbts.2016.09.008 – volume: 13 start-page: 91 year: 2017 ident: 55050_CR27 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 13 start-page: 3 year: 2021 ident: 55050_CR32 publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjaa055 – volume: 77 start-page: 101017 year: 2020 ident: 55050_CR23 publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2019.101017 – volume: 288 start-page: 21197 year: 2013 ident: 55050_CR54 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.484576 – volume: 142 start-page: 610S year: 2012 ident: 55050_CR26 publication-title: J. Nutr. doi: 10.3945/jn.111.149328 – volume: 421 start-page: 98 year: 2012 ident: 55050_CR34 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.03.122 – volume: 247–265 start-page: 2018 year: 1863 ident: 55050_CR57 publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2017.12.006 – volume: 13 start-page: 81 year: 2017 ident: 55050_CR28 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2238 – volume: 171 start-page: 273 year: 2017 ident: 55050_CR37 publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 57 start-page: 4891 year: 2020 ident: 55050_CR72 publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02057-3 – volume: 12 start-page: 34 year: 2019 ident: 55050_CR13 publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0720-y – volume: 90 start-page: 367 year: 2010 ident: 55050_CR62 publication-title: Physiol. Rev. doi: 10.1152/physrev.00003.2009 – volume: 10 start-page: 1182 year: 2020 ident: 55050_CR49 publication-title: Am. J. Cancer Res. – volume: 15 start-page: 333 year: 2018 ident: 55050_CR51 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-018-0005-x – volume: 3 start-page: 232 year: 2017 ident: 55050_CR47 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00028 – volume: 1441 start-page: 4 year: 1999 ident: 55050_CR61 publication-title: Biochim. Biophys. Acta doi: 10.1016/s1388-1981(99)00137-7 – volume: 16 start-page: 5619 year: 2015 ident: 55050_CR2 publication-title: Asian Pac. J. Cancer Prev. doi: 10.7314/apjcp.2015.16.14.5619 – volume: 156 start-page: 317 year: 2014 ident: 55050_CR18 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 93 start-page: 4225 year: 2007 ident: 55050_CR46 publication-title: Biophys. J. doi: 10.1529/biophysj.107.112565 – volume: 22 start-page: 266 year: 2021 ident: 55050_CR10 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00324-8 – volume: 42 start-page: 5719 year: 2022 ident: 55050_CR14 publication-title: Anticancer Res. doi: 10.21873/anticanres.16079 – volume: 38 start-page: 479 year: 2021 ident: 55050_CR69 publication-title: Pharm. Res. doi: 10.1007/s11095-021-03009-9 – volume: 7 start-page: e1000267 year: 2010 ident: 55050_CR4 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000267 – volume: 60 start-page: 5451 year: 2000 ident: 55050_CR53 publication-title: Cancer Res. – volume: 10 start-page: 219 year: 2008 ident: 55050_CR63 publication-title: Neuromol. Med. doi: 10.1007/s12017-008-8036-z – volume: 22 start-page: 1042 year: 2020 ident: 55050_CR9 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0565-1 – volume: 22 start-page: 7524 year: 2003 ident: 55050_CR52 publication-title: Oncogene doi: 10.1038/sj.onc.1206952 – volume: 133 start-page: 144 year: 2019 ident: 55050_CR11 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.09.014 – volume: 14 start-page: 460 year: 2023 ident: 55050_CR31 publication-title: Cell Death Dis. doi: 10.1038/s41419-023-05930-w – volume: 91 start-page: 104510 year: 2023 ident: 55050_CR42 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2023.104510 – volume: 58 start-page: 102546 year: 2022 ident: 55050_CR16 publication-title: Redox Biol. doi: 10.1016/j.redox.2022.102546 – volume: 2 start-page: 89 year: 2011 ident: 55050_CR55 publication-title: Int. J. Biochem. Mol. Biol. – volume: 28 start-page: 765 year: 2021 ident: 55050_CR50 publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2021.01.006 – volume: 110 start-page: 3173 year: 2019 ident: 55050_CR19 publication-title: Cancer Sci. doi: 10.1111/cas.14181 – volume: 10 start-page: 755 year: 2019 ident: 55050_CR68 publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1984-4 – volume: 290 start-page: 1798 year: 2023 ident: 55050_CR59 publication-title: FEBS J. doi: 10.1111/febs.16672 – volume: 388 start-page: 73 year: 2016 ident: 55050_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(16)00141-0 – volume: 40 start-page: e366 issue: 365–378 year: 2022 ident: 55050_CR65 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.02.003 – year: 2022 ident: 55050_CR15 publication-title: Cell Death Differ. doi: 10.1038/s41418-022-01096-8 – volume: 551 start-page: 247 year: 2017 ident: 55050_CR17 publication-title: Nature doi: 10.1038/nature24297 – volume: 288 start-page: 7117 year: 2013 ident: 55050_CR20 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.415729 – volume: 137 start-page: 1100 year: 2009 ident: 55050_CR33 publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 482 start-page: 419 year: 2017 ident: 55050_CR45 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.10.086 – volume: 575 start-page: 688 year: 2019 ident: 55050_CR12 publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 39 start-page: 2125 year: 2017 ident: 55050_CR8 publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2017.08.015 – volume: 585 start-page: 603 year: 2020 ident: 55050_CR39 publication-title: Nature doi: 10.1038/s41586-020-2732-8 – volume: 364 start-page: 1817 year: 2011 ident: 55050_CR6 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1011923 – volume: 44 start-page: 567 year: 2003 ident: 55050_CR21 publication-title: J. Lipid Res. doi: 10.1194/jlr.M200356-JLR200 – volume: 26 start-page: 420 year: 2019 ident: 55050_CR29 publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.11.016 |
SSID | ssj0000529419 |
Score | 2.4859004 |
Snippet | Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early... Abstract Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4409 |
SubjectTerms | 631/337 631/67 631/80 692/4028 Adenocarcinoma Cell death Cell proliferation Chemotherapy Drug resistance Ferroptosis Gemcitabine Humanities and Social Sciences Linoleic acid Linolenic acid Lipid peroxidation Medical technology multidisciplinary Pancreatic cancer Peroxidation Phosphorylation Poly unsaturated fatty acids Polyunsaturated fatty acids Science Science (multidisciplinary) Survival Tumor cell lines Tumors α-Linolenic acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUOiltE3aOi9cyK0VsR72SscmJIRASyEN5Cb0GLWBYC9r72H_fUaWd5vSNr304oM8NtLMSPMN0nwi5HgmI7jILK2DxQQlCk-V4w2Fuhah8rgwulQo_PlLc3kjr27r20dXfaUzYZkeOCvuxFVMRekbmGknFQcleZB1FMzWWoecrWPMe5RMZVZvriXTU5VMJdRJj5EqVZNxSRMor6j8JRKNhP1_Qpm_7ZCOgefiJXkxIcbyU-7pK7IF7WvyLN8hudoh11-7-9Wy7RNBJ-LGUEY7DKvS-rvQU0y40XTYBotFNx-6_q4v--V8PPwKfYkrQQaNvvTJ-ovyO2blw49dcnNx_u3skk43JVCPiGegTuioEfkw21QeI7arIj4xls-UY54D8CZI8JgLQ0gEYVaEmYhCRheYBF6JN2S77Vp4R0odhIsK81alo3R1o1Xg1ioRAYAxGwvC1lozfqIRT7dZ3JtxO1sokzVtUNNm1LSRBfmw-WaeSTSelD5NxthIJgLssQHdwkxuYf7lFgU5WJvSTLOyNwhtKiExheIFeb95jfMpbZLYFrrlKMMTp1CSeZtdYNOTpBVVN6IgH9c-8fPnfx_Q3v8Y0D55zpPzpmp6fkC2h8USDhEPDe5odP0HeJMDmw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEF5qRfCleDe1SgTfdDV7S3YfpFSxFKEi6IG-LXuthUNymuRAz793Npcj4rEvedjMhmRmducbNvMNQm8qHoONxGDhDSQokTksLS1xEIL5wsHGaFOh8Pm38mzBv16Iiz00tzuaFNjtTO1SP6lFu3x_c705hgX_cSwZlx86CEKpUIxynPB2gfkddBciU5UW6vkE90eub6o4UVPtzO6pf8WngcZ_F_b859x0CEenD9DBhCPzk9HwD9FeqB-he2Nnyc1j9ON7s9ys6y7RdgKa9Hk0fb_JjbvyHYY0HAwKY6Ftm1XfdFdd3q1Xwy-xocthfxihpMtd8ok2v4Rcvf_1BC1Ov_z8fIan_gnYAQ7qsWUqKsBDxJSFgzhuiwhXiPCVtMTREGjpeXCQIQefaMMM8xWLjEfrCQ-0YE_Rft3U4TnKlWc2SshmpYrcilJJT42RLIYQCDExQ2TWmnYTuXjqcbHUwyE3k3rUtAZN60HTmmfo7XbOaqTWuFX6UzLGVjLRYg8DTXupp1WmbUFk5K4MlbJc0iA59VxE0IBQyosiQ0ezKfXsahoAT8E4JFY0Q6-3t2GVpaMTU4dmPcjQxDSUZJ6NLrB9k6QVKUqWoXezT_x5-P8_6PD2d3mB7tPklql6nh6h_b5dh5eAf3r7anDq38AM_ss priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61Ivgitl66vcgKvmkwm8ue5FEPliJUBC30LeRaC2X3sLvn4fx7J9mLiFXwZR-ykyWZmWS-2clMEHqz4jHYWBksvAEHJTKHpaU1DkIwTxxsjDYlCl9-qS-u-Odrcb2H6JwLkw_t55KWeZueT4e978HQpGQwynHC1ATzB-hhKt2etHpdr5f_KilyxSs15ccQJu_p-psNyqX678OXf8RGs8k5f4qeTFix_DCO7gDtheYQPRpvj9w9Q9--tne7bdOneQBi9GU0w7Arjbv1PQZXG4QGbaHr2s3Q9rd92W83-dhr6EvYA0a46EqX5N6VN-CPDz-eo6vzT9_XF3i6IwE7wDoDtkxFBZinMjVxYKstifAEK76StnI0BFp7Hhx4wcGn0mCG-RWLjEfrKx4oYS_QftM24QiVyjMbJXisUkVuRa2kp8ZIFkMIVWVigaqZa9pNBcTTPRZ3OgeymdQjpzVwWmdOa16gt0ufzVg-45_UH5MwFspU-jo3tN2NnlRBW1LJyF0dVspySYPk1HMRgQNCKS9IgU5nUeppPfYaQA1hHJwnWqDXy2tYSSk8YprQbjMNTdWEEs3LUQWWkSSuSFGzAr2bdeLXx_8-oeP_Iz9Bj2lS05QxT0_R_tBtwxlgnsG-ykr-E3ar-Wc priority: 102 providerName: Springer Nature |
Title | Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth |
URI | https://link.springer.com/article/10.1038/s41598-024-55050-4 https://www.ncbi.nlm.nih.gov/pubmed/38388563 https://www.proquest.com/docview/2930345972 https://www.proquest.com/docview/2932017072 https://doaj.org/article/b018f4c6e79b482e842d45f31a599d50 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDdby2AvY99L1x0Z7G0zTWwncZ7G9WgpBy1lXeHeTPzVFUpyS3IP999XcnIpY1tfEnCc4Eiy9JNlS4R8KYR32qcVzWwFDornhkrNcuqyjNvEgGLUeFD4_CI_uxbLVbYaF9y6cVvlTicGRW0bg2vkR2CWEi4A_rLv698Uq0ZhdHUsofGU7GPqMtzSVayKaY0Fo1giLcezMgmXRx3YKzxTxgRFaJ5Q8Yc9Cmn7_4U1_4qTBvNz-pK8GHFjPB8Y_Yo8cfVr8myoJLl9Q64um7vtpu4wTSegRxv7qu-3cWVubUfB7QYGQptr22bdN91tF3ebddgC67oY9MEAHU1sUAba-AZ88_7XW3J9evJzcUbHegnUAO7pqealLwH_pFWeGLDbOvFwBYteSJ0a5hzLrXAGPGJnMU1YxW3BPRde21Q4lvB3ZK9uaveBxKXl2kvwXmXphc7yUlpWVZJ751yaVj4i6Y5qyozJxLGmxZ0KQW0u1UBpBZRWgdJKROTr9M56SKXxaO9jZMbUE9Ngh4amvVHjrFI6SaUXJndFqYVkTgpmReaBAllZ2iyJyOGOlWqcm516kKSIfJ4ew6zCUElVu2YT-jDMLIR93g8iMI0EqSKznEfk204mHj7-_x86eHwsH8lzhmKJp-XZIdnr2437BHin17Mg1DOyP58vr5ZwPz65uPwBrYt8MQtrCHA9F_IezpUBhA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiDeBAkGCE0RNbCfrHBCi0GpL21UFrdSb8bOtVCXbJKtq_xS_kXFeFQJ66yUHx7Gc8ed5eDwzAG8nzFnlEhmlRqKB4qiOuCJZZNOUmlgjY1Q-UHh_lk2P2Lfj9HgFfg2xMP5a5cATW0ZtSu3PyDdQLMWUofpLPs0vIl81yntXhxIaHSx27fISTbb6485XXN93hGxvHX6ZRn1VgUijdtBEiuYuRy0hkVmsUbqp2OET5d6Eq0QTa0lmmNVoN1rjk2lJaibUUeaUSZglMcVxb8Eaw1fICNY2t2YH38dTHe83Y0neR-fElG_UKCF9FBthkTcG4oj9IQHbQgH_0m7_8sy2Am_7PtzrNdXwcwetB7Bii4dwu6tduXwEPw7K8-WiqH1iUNRXTehk0yxDqc9MHaGhj5DBNltV5bwp67M6rBfz9tKtrUPkQJ2yqkPtUVeFJ1V52Zw-hqMboeUTWC3Kwj6DMDdUOY72Ms8dU2mWc0Ok5NRZa5NEugCSgWpC9-nLfRWNc9G60SkXHaUFUlq0lBYsgPfjN_Muece1vTf9Yow9feLttqGsTkS_j4WKE-6YzuwkV4wTyxkxLHVIgTTPTRoHsD4spei5QS2usBvAm_E17mPvnJGFLRdtH-JzGfk-TzsIjDPxVOFpRgP4MGDiavD__9Dz6-fyGu5MD_f3xN7ObPcF3CUeoj5Wn6zDalMt7EvUthr1qod4CD9velf9BrZ8OKs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2gQJDgBNHGjyTOASGgrFoKVSWotDcTv9pKVbJNsqr2r_HrmMmrQkBvveSQOJYz_uaV8cwQ8ioT3mlPiyixBTgonptIapZGLkm4jQ0IRo2Jwt_2051D8WWRLDbIrzEXBo9VjjKxE9S2MviPfAZqKeYCzF8288OxiIPt-fvlWYQdpDDSOrbT6CGy59bn4L4173a3Ya9fMzb__OPTTjR0GIgMWAptpHnuc7AYaJHGBjSdjj1cQQdmUlPDnGOpFc6AD-ksFtYquM2458JrS4VjMYd5r5HrGU8o8li2yKb_OxhBEzQf8nRiLmcN6ErMZ2MiQrcgjsQfurBrGfAvO_evGG2n-uZ3yO3BZg0_9CC7SzZceY_c6LtYru-T7wfV6XpVNlgiFCxXG_qibddhYU5sE4HLD-CBe66uq2VbNSdN2KyW3fFb14Qgi3qz1YQG8VeHR3V13h4_IIdXQsmHZLOsSveYhLnl2kvwnGXuhU7SXFpWFJJ75xylhQ8IHammzFDIHPtpnKouoM6l6imtgNKqo7QSAXkzvbPsy3hcOvojbsY0Ektwdzeq-kgNHK10TKUXJnVZroVkTgpmReKBAkme2yQOyNa4lWqQC426QHFAXk6PgaMxTFOUrlp1YxhWNcIxj3oITCtBqsgk5QF5O2LiYvL_f9CTy9fygtwEXlJfd_f3npJbDBGKSftsi2y29co9A7Or1c87fIfk51Uz1G8Jrzt7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyunsaturated+fatty+acids-induced+ferroptosis+suppresses+pancreatic+cancer+growth&rft.jtitle=Scientific+reports&rft.au=Suda%2C+Akane&rft.au=Umaru%2C+Banlanjo+Abdulaziz&rft.au=Yamamoto%2C+Yui&rft.au=Shima%2C+Hiroki&rft.date=2024-02-22&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=4409&rft_id=info:doi/10.1038%2Fs41598-024-55050-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |