Review of Monte Carlo modeling of light transport in tissues
A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the development of methods for speeding up MC simulations. The principles of MC modeling for the simulation of light transport in tissues, which inclu...
Saved in:
Published in | Journal of biomedical optics Vol. 18; no. 5; p. 050902 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the development of methods for speeding up MC simulations. The principles of MC modeling for the simulation of light transport in tissues, which includes the general procedure of tracking an individual photon packet, common light-tissue interactions that can be simulated, frequently used tissue models, common contact/noncontact illumination and detection setups, and the treatment of time-resolved and frequency-domain optical measurements, are briefly described to help interested readers achieve a quick start. Following that, a variety of methods for speeding up MC simulations, which includes scaling methods, perturbation methods, hybrid methods, variance reduction techniques, parallel computation, and special methods for fluorescence simulations, as well as their respective advantages and disadvantages are discussed. Then the applications of MC methods in tissue optics, laser Doppler flowmetry, photodynamic therapy, optical coherence tomography, and diffuse optical tomography are briefly surveyed. Finally, the potential directions for the future development of the MC method in tissue optics are discussed. |
---|---|
AbstractList | A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the development of methods for speeding up MC simulations. The principles of MC modeling for the simulation of light transport in tissues, which includes the general procedure of tracking an individual photon packet, common light-tissue interactions that can be simulated, frequently used tissue models, common contact/noncontact illumination and detection setups, and the treatment of time-resolved and frequency-domain optical measurements, are briefly described to help interested readers achieve a quick start. Following that, a variety of methods for speeding up MC simulations, which includes scaling methods, perturbation methods, hybrid methods, variance reduction techniques, parallel computation, and special methods for fluorescence simulations, as well as their respective advantages and disadvantages are discussed. Then the applications of MC methods in tissue optics, laser Doppler flowmetry, photodynamic therapy, optical coherence tomography, and diffuse optical tomography are briefly surveyed. Finally, the potential directions for the future development of the MC method in tissue optics are discussed. A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the development of methods for speeding up MC simulations. The principles of MC modeling for the simulation of light transport in tissues, which includes the general procedure of tracking an individual photon packet, common light-tissue interactions that can be simulated, frequently used tissue models, common contact/noncontact illumination and detection setups, and the treatment of time-resolved and frequency-domain optical measurements, are briefly described to help interested readers achieve a quick start. Following that, a variety of methods for speeding up MC simulations, which includes scaling methods, perturbation methods, hybrid methods, variance reduction techniques, parallel computation, and special methods for fluorescence simulations, as well as their respective advantages and disadvantages are discussed. Then the applications of MC methods in tissue optics, laser Doppler flowmetry, photodynamic therapy, optical coherence tomography, and diffuse optical tomography are briefly surveyed. Finally, the potential directions for the future development of the MC method in tissue optics are discussed.A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the development of methods for speeding up MC simulations. The principles of MC modeling for the simulation of light transport in tissues, which includes the general procedure of tracking an individual photon packet, common light-tissue interactions that can be simulated, frequently used tissue models, common contact/noncontact illumination and detection setups, and the treatment of time-resolved and frequency-domain optical measurements, are briefly described to help interested readers achieve a quick start. Following that, a variety of methods for speeding up MC simulations, which includes scaling methods, perturbation methods, hybrid methods, variance reduction techniques, parallel computation, and special methods for fluorescence simulations, as well as their respective advantages and disadvantages are discussed. Then the applications of MC methods in tissue optics, laser Doppler flowmetry, photodynamic therapy, optical coherence tomography, and diffuse optical tomography are briefly surveyed. Finally, the potential directions for the future development of the MC method in tissue optics are discussed. |
Author | Liu, Quan Zhu, Caigang |
Author_xml | – sequence: 1 givenname: Caigang surname: Zhu fullname: Zhu, Caigang organization: Nanyang Technological University, School of Chemical and Biomedical Engineering, Division of Bioengineering, 637457 Singapore – sequence: 2 givenname: Quan surname: Liu fullname: Liu, Quan email: quanliu@ntu.edu.sg organization: Nanyang Technological University, School of Chemical and Biomedical Engineering, Division of Bioengineering, 637457 Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23698318$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtP3TAQRi1Exav8ADYoy26SzsTxIxIbelv6EBVV1XZrOY4NRrlxavu2Kr-e3F7oAirY2Nb4nBnpm32yPYbREnKEUCGieI3VpzcXFcqKVcCghXqL7CHjUNa1xO35DZKWlHO5S_ZTugYAyVu-Q3ZryltJUe6Rk6_2l7e_i-CKz2HMtljoOIRiGXo7-PFyXR_85VUuctRjmkLMhR-L7FNa2fSSvHB6SPbw7j4g38_efVt8KM8v3n9cnJ6XhjHMJe8YAO01WKcb0xsqW4EUHG8cMNH11DSuFtw0CKYDIUGyngJta8ZqYzpHD8irTd8php_z3KyWPhk7DHq0YZUUciFa5Cia51HWYMOgRvo8ShlrBJd0jR7foatuaXs1Rb_U8Y-6z3EGxAYwMaQUrVPGZ539HGnUflAIar0xhWremEKpmNpsbDbxgXnf_Cmn2jhp8lZdh1Uc5_ifFH78T_iH3fhpPh9Yf6unMXsz2C9vzx59T72jtwrsv9A |
CitedBy_id | crossref_primary_10_1002_lsm_22739 crossref_primary_10_1088_0031_9155_60_7_2921 crossref_primary_10_1109_RBME_2017_2739801 crossref_primary_10_1364_OE_22_031948 crossref_primary_10_1117_1_JBO_21_7_071117 crossref_primary_10_1117_1_JBO_20_12_121310 crossref_primary_10_1002_lsm_23391 crossref_primary_10_1016_j_anucene_2018_05_006 crossref_primary_10_1111_jmi_13109 crossref_primary_10_1002_mp_13557 crossref_primary_10_1364_BOE_484865 crossref_primary_10_1142_S0129626415500048 crossref_primary_10_1109_ACCESS_2024_3441571 crossref_primary_10_1134_S1024856018020100 crossref_primary_10_1118_1_4937598 crossref_primary_10_1016_j_pacs_2020_100222 crossref_primary_10_1088_1674_1056_acef05 crossref_primary_10_1016_j_bbrc_2021_05_023 crossref_primary_10_1364_AO_55_002921 crossref_primary_10_1364_JOSAA_36_000628 crossref_primary_10_1364_AO_54_002400 crossref_primary_10_1016_j_pacs_2020_100181 crossref_primary_10_1016_j_micron_2021_103160 crossref_primary_10_1117_1_JBO_27_9_096005 crossref_primary_10_1142_S1793545824300040 crossref_primary_10_3390_s21144918 crossref_primary_10_1002_jbio_201900175 crossref_primary_10_1109_JBHI_2023_3276422 crossref_primary_10_1088_1612_202X_aaea74 crossref_primary_10_1364_BOE_7_000171 crossref_primary_10_1117_1_NPh_7_1_015009 crossref_primary_10_1002_lpor_201500284 crossref_primary_10_1007_s12161_021_02212_z crossref_primary_10_31857_S1028096023040209 crossref_primary_10_1364_AO_435596 crossref_primary_10_3390_s21186033 crossref_primary_10_1364_BOE_411898 crossref_primary_10_3390_photonics8120540 crossref_primary_10_1007_s10439_015_1511_4 crossref_primary_10_1016_j_radonc_2017_11_016 crossref_primary_10_1117_1_JBO_29_S1_S11509 crossref_primary_10_3390_s19040789 crossref_primary_10_1364_JOSAA_34_002138 crossref_primary_10_1364_JOSAA_36_000877 crossref_primary_10_1038_s41598_023_39026_4 crossref_primary_10_1364_BOE_528666 crossref_primary_10_1364_OE_398083 crossref_primary_10_1134_S1027451023020386 crossref_primary_10_1080_15368378_2021_1958339 crossref_primary_10_1103_PhysRevE_91_063310 crossref_primary_10_3390_s18114081 crossref_primary_10_1002_adom_201500652 crossref_primary_10_18632_oncotarget_2350 crossref_primary_10_1117_1_JBO_21_12_126004 crossref_primary_10_3390_s22031175 crossref_primary_10_1117_1_JBO_24_2_020503 crossref_primary_10_1016_j_mbs_2015_08_017 crossref_primary_10_1364_BOE_9_001389 crossref_primary_10_1088_1612_202X_ac4be8 crossref_primary_10_1117_1_JBO_23_7_075005 crossref_primary_10_1364_OE_25_008638 crossref_primary_10_1016_j_rio_2023_100410 crossref_primary_10_1364_OE_25_026728 crossref_primary_10_1016_j_jqsrt_2015_07_015 crossref_primary_10_1109_JSTQE_2013_2289985 crossref_primary_10_1364_BOE_8_003828 crossref_primary_10_1364_OE_22_024582 crossref_primary_10_1117_1_JBO_22_8_085003 crossref_primary_10_1364_BOE_495489 crossref_primary_10_1007_s13534_019_00123_x crossref_primary_10_1038_s41598_019_51850_1 crossref_primary_10_3390_ma15165696 crossref_primary_10_1002_mp_15350 crossref_primary_10_1016_j_cmpb_2017_01_010 crossref_primary_10_1016_j_ijthermalsci_2021_106924 crossref_primary_10_1016_j_optcom_2015_11_055 crossref_primary_10_1007_s11082_014_0058_1 crossref_primary_10_1126_sciadv_1601814 crossref_primary_10_3390_foods13172688 crossref_primary_10_1016_j_jphotobiol_2016_04_014 crossref_primary_10_1016_j_cis_2022_102753 crossref_primary_10_1016_j_saa_2020_119218 crossref_primary_10_1117_1_JBO_19_4_045003 crossref_primary_10_1364_BOE_469419 crossref_primary_10_7498_aps_65_064205 crossref_primary_10_1364_BOE_9_002765 crossref_primary_10_21122_2220_9506_2021_12_4_259_271 crossref_primary_10_1002_lsm_22938 crossref_primary_10_1364_OE_25_025741 crossref_primary_10_3390_bios13020265 crossref_primary_10_1016_j_neuroimage_2024_120793 crossref_primary_10_1364_OE_485235 crossref_primary_10_1002_jbio_202000377 crossref_primary_10_34133_ultrafastscience_0043 crossref_primary_10_1117_1_NPh_9_S2_S24001 crossref_primary_10_1364_BOE_475428 crossref_primary_10_1364_OL_532793 crossref_primary_10_3788_CJL230532 crossref_primary_10_1038_s41598_022_22649_4 crossref_primary_10_1364_BOE_8_004872 crossref_primary_10_1088_0031_9155_61_13_4840 crossref_primary_10_1016_j_jqsrt_2019_106744 crossref_primary_10_1364_BOE_8_002339 crossref_primary_10_1364_JOSAA_33_000426 crossref_primary_10_1117_1_JBO_20_2_025006 crossref_primary_10_1155_2018_8903413 crossref_primary_10_3390_s23104945 crossref_primary_10_3390_bios15010017 crossref_primary_10_1016_j_cmpb_2017_08_001 crossref_primary_10_1080_09500340_2016_1260776 crossref_primary_10_1364_OE_550649 crossref_primary_10_1111_cgf_14023 crossref_primary_10_1073_pnas_2015551118 crossref_primary_10_1364_BOE_504061 crossref_primary_10_1364_JOSAA_31_002394 crossref_primary_10_1364_OE_24_026261 crossref_primary_10_1145_2661229_2661251 crossref_primary_10_1088_2057_1976_aa7b8f crossref_primary_10_1364_OSAC_422281 crossref_primary_10_1088_1742_6596_1151_1_012005 crossref_primary_10_1364_BOE_9_000041 crossref_primary_10_3390_s24113525 crossref_primary_10_1016_j_compbiomed_2015_02_014 crossref_primary_10_1364_BOE_9_001531 crossref_primary_10_1364_JOSAA_387558 crossref_primary_10_1371_journal_pcbi_1006079 crossref_primary_10_1007_s10043_014_0028_7 crossref_primary_10_1016_j_bbe_2021_03_001 crossref_primary_10_3390_app9194008 crossref_primary_10_1117_1_JBO_19_2_026004 crossref_primary_10_1016_j_jqsrt_2024_109063 crossref_primary_10_1007_s10812_020_00971_x crossref_primary_10_1002_jbio_201800036 crossref_primary_10_1016_j_jcp_2017_05_004 crossref_primary_10_1088_1361_6463_ac1137 crossref_primary_10_1038_s41377_020_00444_y crossref_primary_10_1364_JOSAA_454463 crossref_primary_10_1016_j_ijleo_2020_164660 crossref_primary_10_3390_s130607345 crossref_primary_10_3390_s25020559 crossref_primary_10_1117_1_JBO_21_3_036003 crossref_primary_10_1088_0031_9155_61_6_2265 crossref_primary_10_1364_OE_426711 crossref_primary_10_1111_cgf_13700 crossref_primary_10_3390_s24185879 crossref_primary_10_1117_1_JBO_23_5_050901 crossref_primary_10_1117_1_JBO_24_1_017002 crossref_primary_10_1088_2057_1976_2_6_065018 crossref_primary_10_1002_lsm_23335 crossref_primary_10_1016_j_ijleo_2021_167981 crossref_primary_10_1364_BOE_402181 crossref_primary_10_1117_1_JBO_19_2_025005 crossref_primary_10_3390_app9153047 crossref_primary_10_1364_OSAC_2_000957 crossref_primary_10_1080_09500340_2019_1609617 crossref_primary_10_3390_photonics6020061 crossref_primary_10_1016_j_softx_2024_101672 crossref_primary_10_1364_OE_23_025996 crossref_primary_10_1109_ACCESS_2021_3118302 crossref_primary_10_1016_j_media_2020_101699 crossref_primary_10_1063_5_0138347 crossref_primary_10_1088_0031_9155_60_10_4059 crossref_primary_10_1109_TMI_2020_2983129 crossref_primary_10_3390_electronics11030305 crossref_primary_10_1016_j_saa_2023_122520 crossref_primary_10_1088_1742_6596_673_1_012014 crossref_primary_10_1364_OL_43_004835 crossref_primary_10_1134_S0030400X18020108 crossref_primary_10_3390_app13063782 crossref_primary_10_1016_j_pdpdt_2019_04_020 crossref_primary_10_3390_photonics2020375 crossref_primary_10_1117_1_AP_2_1_014003 crossref_primary_10_1016_j_tifs_2020_05_006 crossref_primary_10_1016_j_pacs_2021_100275 crossref_primary_10_1117_1_JBO_27_8_083019 crossref_primary_10_1364_BOE_9_004588 crossref_primary_10_3390_rs12172820 crossref_primary_10_1016_j_optcom_2014_09_058 crossref_primary_10_1117_1_JBO_19_7_071406 crossref_primary_10_3390_photonics6020056 crossref_primary_10_7554_eLife_59841 crossref_primary_10_1016_j_energy_2023_129744 crossref_primary_10_1109_TIM_2022_3157343 crossref_primary_10_1364_AO_55_003887 crossref_primary_10_1016_j_jqsrt_2020_107065 |
ContentType | Journal Article |
Copyright | The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
Copyright_xml | – notice: The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SP 7U5 8FD F28 FR3 L7M |
DOI | 10.1117/1.JBO.18.5.050902 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology Physics |
EISSN | 1560-2281 |
EndPage | 050902 |
ExternalDocumentID | 23698318 10_1117_1_JBO_18_5_050902 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Education in Singapore grantid: RG47/09; MOE 2010-T2-1-049 |
GroupedDBID | - 0R 29J 4.4 53G 5GY ABPTK ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P FQ0 GROUPED_DOAJ HYE HZ M4W M4X NU. O9- OK1 P2P RNS RPM SPBNH UNR UPT UT2 W2D --- 0R~ AAFWJ AAYXX ACBEA ACGFO AFPKN AKROS CITATION HZ~ PBYJJ YQT ADBBV AEUYN AFKRA BBNVY BCNDV BENPR BHPHI CCPQU CGR CUY CVF ECM EIF EMOBN HCIFZ M7P NPM PIMPY 7X8 7SP 7U5 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c551t-6b5003da0efa4cdc3897130f64f057bd3c4f276c410cb078085d30392552ccbf3 |
ISSN | 1083-3668 1560-2281 |
IngestDate | Fri Jul 11 08:17:56 EDT 2025 Fri Jul 11 14:25:00 EDT 2025 Fri Jul 11 03:20:53 EDT 2025 Thu Jan 02 22:13:11 EST 2025 Tue Jul 01 03:17:08 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Fri Jan 15 20:10:20 EST 2021 Fri May 31 16:21:59 EDT 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | optical spectroscopy Monte Carlo tissue optics light transport in tissues numerical simulation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c551t-6b5003da0efa4cdc3897130f64f057bd3c4f276c410cb078085d30392552ccbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://www.dx.doi.org/10.1117/1.JBO.18.5.050902 |
PMID | 23698318 |
PQID | 1355476833 |
PQPubID | 23500 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1117_1_JBO_18_5_050902 spie_journals_10_1117_1_JBO_18_5_050902 proquest_miscellaneous_1541450213 proquest_miscellaneous_1677916174 crossref_citationtrail_10_1117_1_JBO_18_5_050902 proquest_miscellaneous_1355476833 pubmed_primary_23698318 |
ProviderPackageCode | FQ0 SPBNH UT2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomedical optics |
PublicationTitleAlternate | J. Biomed. Opt |
PublicationYear | 2013 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
SSID | ssj0008696 |
Score | 2.5256557 |
SecondaryResourceType | review_article |
Snippet | A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the... |
SourceID | proquest pubmed crossref spie |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 050902 |
SubjectTerms | Animals Computer Simulation Doppler effect Humans Illumination Laser-Doppler Flowmetry Mathematical models Monte Carlo Method Monte Carlo methods Photochemotherapy Readers Reduction Tomography, Optical Transport |
Title | Review of Monte Carlo modeling of light transport in tissues |
URI | http://www.dx.doi.org/10.1117/1.JBO.18.5.050902 https://www.ncbi.nlm.nih.gov/pubmed/23698318 https://www.proquest.com/docview/1355476833 https://www.proquest.com/docview/1541450213 https://www.proquest.com/docview/1677916174 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCAkeJhgwCgwFCQkJKSFxnJu0l8FWTdO2AmqlihcrvgQiVUlE04ft13N8SdrSrRq8WNXJaeOez5fP9vE5CL3nKpkDI4krkyx2oYWELsskdoNA5FwSwVOmNvQvLuPTCTmbRtNlykt9u6RlHr--8V7J_6AKMsBV3ZL9B2T7HwUBfAZ8oQSEobwTxt_7eycXKsiU8t6Y1Sa5jXVmnqm1t8oDYSKYa69Gber5LazUXMfXyNVNu-IK_-PXwjiIlD9zO9spP55SS78tbCOz-wfBirdeN-TFvouxSZziyRtkG-Pk8iRaD3qR8u28ZTjWF_q9s88jL0i9yPN73fXQ15cjOpycn9PxyXR8Hz3AwPlxt_Vip9U01snW-qrZI2p4xaeNF6yTjI2Vg_Laa0q5QiTGT9CutbVzZOB8iu7Jag89NDlBr_bQ45UIkSDXHrp8_gwdGrCdunA02I4G2-nAVnINttOD7ZSVY8F-jibDk_GXU9emvnA5UNjWjVkEw63IfVnkhAsOtDIBtlHEpACCzUTISYGTmJPA5wxYHhBnAWQkgwUi5pwV4Qu0U9WVfIkcIiVPMpExjDPCgzwTwhdA-otUhCxkZID8zlaU27jwKj3JjJr1YUIDCualQUojasw7QB_7rzQmKMo25XcdABSGLnUelVeyXsxpoLguLHfDcIuOSlMfARHdphMnSabW6fBf9g3CfbVwGGcpzFsD9EFBTm3vnW-r72hds39-XTZQ_qWupbbJfD0ebjxuRPHqDhZ4jR4tO-cbtNP-XsgDoLste6u7wR8nbqJt |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Monte+Carlo+modeling+of+light+transport+in+tissues&rft.jtitle=Journal+of+biomedical+optics&rft.au=Zhu%2C+Caigang&rft.au=Liu%2C+Quan&rft.date=2013-05-01&rft.issn=1560-2281&rft.eissn=1560-2281&rft.volume=18&rft.issue=5&rft.spage=50902&rft_id=info:doi/10.1117%2F1.JBO.18.5.050902&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon |