Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification From Functional Magnetic Resonance Imaging Data

Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Tow...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 45; no. 12; pp. 2668 - 2679
Main Authors Deshpande, Gopikrishna, Peng Wang, Rangaprakash, D., Wilamowski, Bogdan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.
AbstractList Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.
Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.
Author Peng Wang
Wilamowski, Bogdan
Rangaprakash, D.
Deshpande, Gopikrishna
Author_xml – sequence: 1
  givenname: Gopikrishna
  surname: Deshpande
  fullname: Deshpande, Gopikrishna
  email: gopi@auburn.edu
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
– sequence: 2
  surname: Peng Wang
  fullname: Peng Wang
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
– sequence: 3
  givenname: D.
  surname: Rangaprakash
  fullname: Rangaprakash, D.
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
– sequence: 4
  givenname: Bogdan
  surname: Wilamowski
  fullname: Wilamowski, Bogdan
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25576588$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhi1URNulD4CQkCUuvewSx3FsH5csSysVkFA5cIocZ7K4JPZiO6B9JZ4SZ3fbQw-AL-MZf_9vyzPn6MQ6Cwi9INmCkEy-ua2-vl3kGSkWOeWyzMkTdJaTUszznLOTh33JT9FFCHdZWiKVpHiGTnPGeMmEOEO_12Pf73DlrAUdocWVClq1gJc-ms5oo3r8EUa_D_GX89_Tif5mYqJHD7hzHi9jBBuNs3gFkyTiq90WvNLR_DRxh1cmON-Cx1WvQphc1Z5eezfg9Wj1lKULPqiNhWg0_gwhFawGfD2ojbEbvFJRPUdPO9UHuDjGGfqyfndbXc1vPr2_rpY3c80YifOSypwDbVWnNaGy47RpJDQaSioaJSWRqim1KBSUOqW8g4JwLZuilYw3RNIZujz4br37MUKI9WCChr5XFtwYaiIop7RgGf03yrnIWGoS_w-UMprLyXaGXj9C79zo0w9NVCFkWYhseuarIzU2A7T11ptB-V1939sE8AOgvQvBQ1en1ux_Pnpl-ppk9TRI9TRI9TRI9XGQkpI8Ut6b_03z8qAxAPDA8ywjZcHoH_Uz1R0
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_jneumeth_2019_108371
crossref_primary_10_1089_cyber_2020_0867
crossref_primary_10_1186_s40708_020_00120_2
crossref_primary_10_1016_j_asoc_2019_105905
crossref_primary_10_1371_journal_pone_0194856
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_18273_revuin_v20n4_2021009
crossref_primary_10_1371_journal_pone_0215720
crossref_primary_10_1007_s11682_019_00191_8
crossref_primary_10_1016_j_heliyon_2024_e32548
crossref_primary_10_1007_s11682_019_00164_x
crossref_primary_10_1007_s42979_025_03783_y
crossref_primary_10_1016_j_artmed_2020_101813
crossref_primary_10_6339_24_JDS1128
crossref_primary_10_1038_s41380_019_0365_9
crossref_primary_10_1002_hbm_23841
crossref_primary_10_3390_math9182302
crossref_primary_10_1016_j_neubiorev_2017_01_002
crossref_primary_10_1016_j_neuroimage_2016_06_034
crossref_primary_10_1145_3297713
crossref_primary_10_1109_ACCESS_2023_3304236
crossref_primary_10_1016_j_compeleceng_2014_12_016
crossref_primary_10_1093_bioinformatics_btz967
crossref_primary_10_2214_AJR_21_26316
crossref_primary_10_1016_j_bpsc_2018_06_003
crossref_primary_10_1155_2018_2740817
crossref_primary_10_1016_j_eswa_2017_08_044
crossref_primary_10_1177_0892705719847246
crossref_primary_10_1016_j_cmpb_2019_105064
crossref_primary_10_3389_fams_2018_00025
crossref_primary_10_1002_nbm_5138
crossref_primary_10_1016_j_patcog_2016_09_024
crossref_primary_10_1016_j_displa_2023_102583
crossref_primary_10_1111_pcn_12502
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1016_j_jad_2024_03_111
crossref_primary_10_1109_TCYB_2018_2873762
crossref_primary_10_3389_fnhum_2017_00157
crossref_primary_10_1016_j_dib_2020_105213
crossref_primary_10_5765_jkacap_200021
crossref_primary_10_3390_e25040632
crossref_primary_10_1109_ACCESS_2020_3017883
crossref_primary_10_1109_JBHI_2017_2748280
crossref_primary_10_1109_TCYB_2022_3164285
crossref_primary_10_1186_s40537_024_00998_3
crossref_primary_10_3389_fnins_2024_1333712
crossref_primary_10_1016_j_jneumeth_2016_12_019
crossref_primary_10_1093_pcmedi_pbaa029
crossref_primary_10_3390_bioengineering11121210
crossref_primary_10_1016_j_artmed_2019_06_003
crossref_primary_10_2174_0126662558284886240130154414
crossref_primary_10_1016_j_ins_2019_07_026
crossref_primary_10_1093_ijnp_pyx059
crossref_primary_10_3390_biom11081093
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1109_TSMC_2017_2764442
crossref_primary_10_1016_j_bspc_2023_104892
crossref_primary_10_1371_journal_pone_0250222
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1016_j_knosys_2022_109323
crossref_primary_10_1038_nn_4478
crossref_primary_10_1016_j_compbiomed_2022_105525
crossref_primary_10_1109_TSIPN_2024_3430474
crossref_primary_10_1080_21681163_2019_1627910
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_3389_fnins_2020_00251
crossref_primary_10_1007_s11063_024_11655_4
crossref_primary_10_3389_fninf_2019_00070
crossref_primary_10_1038_tp_2017_164
crossref_primary_10_3389_fnins_2023_1138670
crossref_primary_10_1016_j_ynirp_2023_100186
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1109_TSIPN_2017_2672400
crossref_primary_10_1016_j_pneurobio_2019_01_008
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1016_j_media_2022_102430
crossref_primary_10_1007_s11063_017_9588_4
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_4103_0028_3886_333520
crossref_primary_10_1109_TCYB_2020_3035282
crossref_primary_10_3389_fncom_2021_654315
crossref_primary_10_1109_TCYB_2020_3022647
crossref_primary_10_1177_10870547221146256
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_1016_j_nicl_2020_102238
crossref_primary_10_1016_j_jneumeth_2019_108506
crossref_primary_10_3389_fnins_2019_00803
crossref_primary_10_1155_2024_8862647
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1007_s41133_020_00042_y
crossref_primary_10_1016_j_dscb_2025_100198
crossref_primary_10_1109_TNNLS_2022_3213518
crossref_primary_10_1111_acps_12824
crossref_primary_10_1007_s44244_023_00004_4
crossref_primary_10_1109_TCYB_2020_2978500
crossref_primary_10_31083_j_jin2306121
Cites_doi 10.1109/TCYB.2014.2336876
10.1371/journal.pone.0014277
10.1016/j.cortex.2011.04.007
10.1109/TIE.2008.2003319
10.1093/bioinformatics/bth267
10.1016/j.neuroimage.2010.02.059
10.1016/j.neucom.2007.02.009
10.1103/PhysRevLett.100.144103
10.3389/fnsys.2012.00074
10.1186/1753-4631-5-5
10.1109/MIE.2009.934790
10.1111/j.1460-9568.2010.07110.x
10.1016/j.euroneuro.2012.10.015
10.1080/01621459.1982.10477803
10.1016/j.neubiorev.2012.01.003
10.1002/hbm.20606
10.1007/978-1-4757-2440-0
10.1007/s00726-010-0595-2
10.1016/j.biopsych.2005.01.034
10.1162/NECO_a_00052
10.1109/TII.2012.2187914
10.1016/j.biopsych.2010.07.003
10.1142/3573
10.1109/TCYB.2014.2298235
10.1002/hbm.20622
10.1093/brain/aws059
10.1073/pnas.89.13.5951
10.3389/fnsys.2012.00061
10.1177/070674370905401002
10.3389/fnsys.2012.00078
10.1148/radiol.2251011301
10.1016/j.neuroimage.2011.10.015
10.1109/TBME.2009.2037808
10.1109/TNN.2010.2045657
10.1016/j.biopsych.2007.06.025
10.1186/1471-2105-7-197
10.1371/journal.pone.0036733
10.1002/hbm.21333
10.1016/j.jaac.2012.08.013
10.1109/TNNLS.2013.2295813
10.1055/s-0029-1220686
10.1016/j.neuroimage.2012.05.078
10.1561/2200000006
10.3389/fnsys.2012.00080
10.1109/TMI.2009.2025126
10.1016/j.neuroimage.2013.08.048
10.1103/PhysRevE.77.056215
10.1016/j.neulet.2010.03.080
10.1016/j.biopsych.2010.07.037
10.1038/tp.2013.15
10.1016/j.neuroimage.2004.11.017
10.3389/fnsys.2012.00069
10.1097/WNR.0b013e32834f60a5
10.3389/fpsyt.2012.00002
10.1002/hbm.21108
10.1109/TNNLS.2012.2185059
10.1186/1753-4631-4-S1-S1
10.1109/72.329697
10.1016/j.neucom.2007.10.008
10.1142/S0129065713500032
10.1007/s004220000235
10.2307/1912791
10.1186/1824-7288-36-79
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
7QO
P64
DOI 10.1109/TCYB.2014.2379621
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Engineering Research Database

Aerospace Database
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2679
ExternalDocumentID 3895111771
25576588
10_1109_TCYB_2014_2379621
7001645
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Centre, Kraków, Poland
  grantid: DEC-2013/11/B/ST6/01337
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
7QO
P64
ID FETCH-LOGICAL-c551t-63927e3dafcc139f73bb9ebce638ba9919ab6c84ae6ca997fe417c9b4d957b193
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 11:30:31 EDT 2025
Sun Aug 24 04:11:15 EDT 2025
Thu Jul 10 18:30:23 EDT 2025
Sun Jun 29 12:25:17 EDT 2025
Thu Apr 03 07:01:48 EDT 2025
Tue Jul 01 04:35:05 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Tue Aug 26 16:38:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords functional magnetic resonance imaging (fMRI)
Artificial neural networks (ANNs)
classification
attention deficit hyperactivity disorder (ADHD)
support vector machines (SVMs)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c551t-63927e3dafcc139f73bb9ebce638ba9919ab6c84ae6ca997fe417c9b4d957b193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7471-5357
PMID 25576588
PQID 1748964809
PQPubID 85422
PageCount 12
ParticipantIDs proquest_journals_1748964809
proquest_miscellaneous_1837334503
pubmed_primary_25576588
proquest_miscellaneous_1735329450
crossref_primary_10_1109_TCYB_2014_2379621
proquest_miscellaneous_1778052017
crossref_citationtrail_10_1109_TCYB_2014_2379621
ieee_primary_7001645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
(ref49) 2014
ref56
ref12
(ref5) 2014
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref45
ref48
ref47
ref41
ref44
ref43
han (ref2) 0
ref8
ref9
ref4
ref3
ref6
ref40
kaminski (ref42) 2001; 85
cherkasova (ref66) 2009; 54
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
(ref7) 2014
ref39
ref38
mcquarrie (ref46) 1998; 43
ref68
ref24
ref67
ref26
ref25
ref64
ref20
(ref23) 2014
ref63
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref16
  doi: 10.1109/TCYB.2014.2336876
– ident: ref3
  doi: 10.1371/journal.pone.0014277
– ident: ref65
  doi: 10.1016/j.cortex.2011.04.007
– ident: ref21
  doi: 10.1109/TIE.2008.2003319
– ident: ref51
  doi: 10.1093/bioinformatics/bth267
– ident: ref43
  doi: 10.1016/j.neuroimage.2010.02.059
– ident: ref17
  doi: 10.1016/j.neucom.2007.02.009
– ident: ref35
  doi: 10.1103/PhysRevLett.100.144103
– ident: ref60
  doi: 10.3389/fnsys.2012.00074
– ident: ref53
  doi: 10.1186/1753-4631-5-5
– ident: ref12
  doi: 10.1109/MIE.2009.934790
– ident: ref67
  doi: 10.1111/j.1460-9568.2010.07110.x
– ident: ref56
  doi: 10.1016/j.euroneuro.2012.10.015
– year: 2014
  ident: ref49
  publication-title: MATLAB SVM Toolbox-Spider
– ident: ref32
  doi: 10.1080/01621459.1982.10477803
– ident: ref63
  doi: 10.1016/j.neubiorev.2012.01.003
– ident: ref31
  doi: 10.1002/hbm.20606
– ident: ref15
  doi: 10.1007/978-1-4757-2440-0
– ident: ref61
  doi: 10.1007/s00726-010-0595-2
– ident: ref68
  doi: 10.1016/j.biopsych.2005.01.034
– ident: ref14
  doi: 10.1162/NECO_a_00052
– ident: ref11
  doi: 10.1109/TII.2012.2187914
– ident: ref47
  doi: 10.1016/j.biopsych.2010.07.003
– volume: 43
  year: 1998
  ident: ref46
  publication-title: Regression and Time Series Model Selection
  doi: 10.1142/3573
– ident: ref19
  doi: 10.1109/TCYB.2014.2298235
– ident: ref29
  doi: 10.1002/hbm.20622
– ident: ref39
  doi: 10.1093/brain/aws059
– ident: ref1
  doi: 10.1073/pnas.89.13.5951
– ident: ref6
  doi: 10.3389/fnsys.2012.00061
– volume: 54
  start-page: 651
  year: 2009
  ident: ref66
  article-title: Neuroimaging in attention-deficit hyperactivity disorder: Beyond the frontostriatal circuitry
  publication-title: Can J Psych
  doi: 10.1177/070674370905401002
– year: 2014
  ident: ref5
  publication-title: The ADHD-200 Global Competition SAMPLE Home
– ident: ref9
  doi: 10.3389/fnsys.2012.00078
– ident: ref26
  doi: 10.1148/radiol.2251011301
– ident: ref41
  doi: 10.1016/j.neuroimage.2011.10.015
– ident: ref44
  doi: 10.1109/TBME.2009.2037808
– ident: ref22
  doi: 10.1109/TNN.2010.2045657
– ident: ref58
  doi: 10.1016/j.biopsych.2007.06.025
– ident: ref52
  doi: 10.1186/1471-2105-7-197
– ident: ref4
  doi: 10.1371/journal.pone.0036733
– ident: ref24
  doi: 10.1002/hbm.21333
– ident: ref30
  doi: 10.1016/j.jaac.2012.08.013
– ident: ref55
  doi: 10.1109/TNNLS.2013.2295813
– ident: ref57
  doi: 10.1055/s-0029-1220686
– ident: ref38
  doi: 10.1016/j.neuroimage.2012.05.078
– ident: ref13
  doi: 10.1561/2200000006
– ident: ref10
  doi: 10.3389/fnsys.2012.00080
– ident: ref45
  doi: 10.1109/TMI.2009.2025126
– ident: ref50
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: ref34
  doi: 10.1103/PhysRevE.77.056215
– ident: ref28
  doi: 10.1016/j.neulet.2010.03.080
– ident: ref64
  doi: 10.1016/j.biopsych.2010.07.037
– year: 2014
  ident: ref23
  publication-title: ADHD-200 Global Competition Database
– year: 0
  ident: ref2
  article-title: Learning computational models of video memorability from fMRI brain imaging
  publication-title: IEEE Trans Cybern
– ident: ref37
  doi: 10.1038/tp.2013.15
– ident: ref25
  doi: 10.1016/j.neuroimage.2004.11.017
– year: 2014
  ident: ref7
  publication-title: The ADHD-200 Global Competition Result
– ident: ref8
  doi: 10.3389/fnsys.2012.00069
– ident: ref40
  doi: 10.1097/WNR.0b013e32834f60a5
– ident: ref59
  doi: 10.3389/fpsyt.2012.00002
– ident: ref27
  doi: 10.1002/hbm.21108
– ident: ref20
  doi: 10.1109/TNNLS.2012.2185059
– ident: ref54
  doi: 10.1186/1753-4631-4-S1-S1
– ident: ref48
  doi: 10.1109/72.329697
– ident: ref18
  doi: 10.1016/j.neucom.2007.10.008
– ident: ref36
  doi: 10.1142/S0129065713500032
– volume: 85
  start-page: 145
  year: 2001
  ident: ref42
  article-title: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance
  publication-title: Biol Cybern
  doi: 10.1007/s004220000235
– ident: ref33
  doi: 10.2307/1912791
– ident: ref62
  doi: 10.1186/1824-7288-36-79
SSID ssj0000816898
Score 2.4374242
Snippet Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2668
SubjectTerms Accuracy
Architecture (computers)
Artificial neural networks
Artificial neural networks (ANNs)
Attention Deficit Disorder with Hyperactivity - diagnosis
Attention deficit hyperactivity disorder
attention deficit hyperactivity disorder (ADHD)
Brain - physiology
Cascades
Classification
Competition
Computer architecture
Disorders
FCC
functional magnetic resonance imaging (fMRI)
Humans
Hyperactivity
Image Processing, Computer-Assisted
Learning theory
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Neural networks
Neural Networks (Computer)
Neurons
Signal Processing, Computer-Assisted
Support Vector Machine
support vector machines (SVMs)
Training
Title Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification From Functional Magnetic Resonance Imaging Data
URI https://ieeexplore.ieee.org/document/7001645
https://www.ncbi.nlm.nih.gov/pubmed/25576588
https://www.proquest.com/docview/1748964809
https://www.proquest.com/docview/1735329450
https://www.proquest.com/docview/1778052017
https://www.proquest.com/docview/1837334503
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXEBSvkIFGQkDoDINomdOD4uW1YL0nJqpXKKbGfSAzSLutkD_KT-ys442QgQrDjF0Y4trzzOPHtm3gC8KpENGW1A62vJbkZqYSHjHAtMfFmiNpwovPxcLM7Vp4v8Yg_ejbkwiBiCz3DCzeDLr1d-w1dlJzoQQuX7sE8Htz5Xa7xPCQUkQunbjBoxoQo9ODHTxJyczb685zguNcmkNkXGBWIITGuyv-VvFimUWPk32gxWZ34Pltv59sEmXyebzk38zz-oHP_3D92HuwP8FNNeXw5hD9sHcDhs8LV4PbBQvzmCGz6c_hAhEMYTLBUzu-ZY-tC3p50QzOwRHiGUXEx_cUoIAsNi2nV9NKU4Re7SiQUde0NeFpesEFvqTxFKc_KoQU_E_Hp1JeZkcfuLSrG0ly0nWwp2NjBDCIqPV6G8kji1nX0I5_MPZ7NFPBR2iD0BtC4mVJRplLVtvCcE2mjpnEHnSUlKZwmxGusKXyrSGk-vukGVam-cqk2uHUHOR3DQrlp8AqJU0ubWpmmBjdIKXa2yTGtnGzK6RZ1FkGwXt_ID6zkX3_hWhdNPYipWjYpVoxpUI4K3Y5fvPeXHLuEjXtZRcFjRCI63GlQNH4V1lTLTT6HKxETwcvyZtjP7aGyLqw3LyFxmRuXJLplQiIK-pTtkSqmlpGFkBI97DR7nuFX8p3-f-zO4Q2PnfczOMRx01xt8Tsircy_ClrsFniEqPg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxELaqcoALUMpPSgEjgQRIm-7a3vXugUNIiBLa9JRK5bTY3gkH2g1qNkLlWXgC3oF3Y8b7I0CQWyVOcRR713JmPJ89M98w9iwFMmSogMYVktyM2IJEBjEkELo0BZ1RovDsOJmcqHen8ekW-9blwgCADz6DPjW9L79YujVdlR1oTwjVhlAewuUXPKCtXk9H-G8-F2L8dj6cBE0NgcAhFqgCNMBCgyzMwjkEOwstrc3AOpxPag2Co8zYxKUKJ-jwq16AirTLrCqyWNuIqJZwg7-GOCMWdXZYd4PjS1b4YrsCGwHiGN24TaMwO5gP37-hyDHVF1JniaCSNAjfNVr89Dcb6Iu6_Bvfejs3vsV-tCtUh7d86q8r23df_yCP_F-X8Da72QBsPqg1YodtQXmH7TRb2Iq_aHi2X-6y73T8vuQ-1Mch8OZDs6JsAT-2JtbgxF3iP3ywPB_84nbhCPf5oKrqeFE-AhpS8Qke7H3mGRXl4C25KffFR-mpXhP4-GJ5zseIKeqrWD4zH0tKJ-XkTiEOFODTc19Aio9MZe6ykytZs3tsu1yW8IDxVEkTGxNFCSyUVmALJYTW1iwQViSF6LGwFabcNbzuVF7kLPfnuzDLSRRzEsW8EcUee9UN-VyTmmzqvEti1HVsJKjH9luJzZttb5VHxGWUqDTMeuxp9zNuWOSFMiUs19RHxlJkKg439fGlNtBabOiTSi0lPkb22P1aY7o5toq29_e5P2HXJ_PZUX40PT58yG7ge-I6QmmfbVcXa3iEOLOyj726c_bhqpXjJ3sFihs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Connected+Cascade+Artificial+Neural+Network+Architecture+for+Attention+Deficit+Hyperactivity+Disorder+Classification+From+Functional+Magnetic+Resonance+Imaging+Data&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Deshpande%2C+Gopikrishna&rft.au=Wang%2C+Peng&rft.au=Rangaprakash%2C+D&rft.au=Wilamowski%2C+Bogdan&rft.date=2015-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=45&rft.issue=12&rft.spage=2668&rft.epage=2679&rft_id=info:doi/10.1109%2FTCYB.2014.2379621&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon