Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification From Functional Magnetic Resonance Imaging Data
Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Tow...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 45; no. 12; pp. 2668 - 2679 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD. |
---|---|
AbstractList | Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD. Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD. |
Author | Peng Wang Wilamowski, Bogdan Rangaprakash, D. Deshpande, Gopikrishna |
Author_xml | – sequence: 1 givenname: Gopikrishna surname: Deshpande fullname: Deshpande, Gopikrishna email: gopi@auburn.edu organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA – sequence: 2 surname: Peng Wang fullname: Peng Wang organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA – sequence: 3 givenname: D. surname: Rangaprakash fullname: Rangaprakash, D. organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA – sequence: 4 givenname: Bogdan surname: Wilamowski fullname: Wilamowski, Bogdan organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25576588$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhi1URNulD4CQkCUuvewSx3FsH5csSysVkFA5cIocZ7K4JPZiO6B9JZ4SZ3fbQw-AL-MZf_9vyzPn6MQ6Cwi9INmCkEy-ua2-vl3kGSkWOeWyzMkTdJaTUszznLOTh33JT9FFCHdZWiKVpHiGTnPGeMmEOEO_12Pf73DlrAUdocWVClq1gJc-ms5oo3r8EUa_D_GX89_Tif5mYqJHD7hzHi9jBBuNs3gFkyTiq90WvNLR_DRxh1cmON-Cx1WvQphc1Z5eezfg9Wj1lKULPqiNhWg0_gwhFawGfD2ojbEbvFJRPUdPO9UHuDjGGfqyfndbXc1vPr2_rpY3c80YifOSypwDbVWnNaGy47RpJDQaSioaJSWRqim1KBSUOqW8g4JwLZuilYw3RNIZujz4br37MUKI9WCChr5XFtwYaiIop7RgGf03yrnIWGoS_w-UMprLyXaGXj9C79zo0w9NVCFkWYhseuarIzU2A7T11ptB-V1939sE8AOgvQvBQ1en1ux_Pnpl-ppk9TRI9TRI9TRI9XGQkpI8Ut6b_03z8qAxAPDA8ywjZcHoH_Uz1R0 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2019_108371 crossref_primary_10_1089_cyber_2020_0867 crossref_primary_10_1186_s40708_020_00120_2 crossref_primary_10_1016_j_asoc_2019_105905 crossref_primary_10_1371_journal_pone_0194856 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_18273_revuin_v20n4_2021009 crossref_primary_10_1371_journal_pone_0215720 crossref_primary_10_1007_s11682_019_00191_8 crossref_primary_10_1016_j_heliyon_2024_e32548 crossref_primary_10_1007_s11682_019_00164_x crossref_primary_10_1007_s42979_025_03783_y crossref_primary_10_1016_j_artmed_2020_101813 crossref_primary_10_6339_24_JDS1128 crossref_primary_10_1038_s41380_019_0365_9 crossref_primary_10_1002_hbm_23841 crossref_primary_10_3390_math9182302 crossref_primary_10_1016_j_neubiorev_2017_01_002 crossref_primary_10_1016_j_neuroimage_2016_06_034 crossref_primary_10_1145_3297713 crossref_primary_10_1109_ACCESS_2023_3304236 crossref_primary_10_1016_j_compeleceng_2014_12_016 crossref_primary_10_1093_bioinformatics_btz967 crossref_primary_10_2214_AJR_21_26316 crossref_primary_10_1016_j_bpsc_2018_06_003 crossref_primary_10_1155_2018_2740817 crossref_primary_10_1016_j_eswa_2017_08_044 crossref_primary_10_1177_0892705719847246 crossref_primary_10_1016_j_cmpb_2019_105064 crossref_primary_10_3389_fams_2018_00025 crossref_primary_10_1002_nbm_5138 crossref_primary_10_1016_j_patcog_2016_09_024 crossref_primary_10_1016_j_displa_2023_102583 crossref_primary_10_1111_pcn_12502 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1016_j_jad_2024_03_111 crossref_primary_10_1109_TCYB_2018_2873762 crossref_primary_10_3389_fnhum_2017_00157 crossref_primary_10_1016_j_dib_2020_105213 crossref_primary_10_5765_jkacap_200021 crossref_primary_10_3390_e25040632 crossref_primary_10_1109_ACCESS_2020_3017883 crossref_primary_10_1109_JBHI_2017_2748280 crossref_primary_10_1109_TCYB_2022_3164285 crossref_primary_10_1186_s40537_024_00998_3 crossref_primary_10_3389_fnins_2024_1333712 crossref_primary_10_1016_j_jneumeth_2016_12_019 crossref_primary_10_1093_pcmedi_pbaa029 crossref_primary_10_3390_bioengineering11121210 crossref_primary_10_1016_j_artmed_2019_06_003 crossref_primary_10_2174_0126662558284886240130154414 crossref_primary_10_1016_j_ins_2019_07_026 crossref_primary_10_1093_ijnp_pyx059 crossref_primary_10_3390_biom11081093 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1109_TSMC_2017_2764442 crossref_primary_10_1016_j_bspc_2023_104892 crossref_primary_10_1371_journal_pone_0250222 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1016_j_knosys_2022_109323 crossref_primary_10_1038_nn_4478 crossref_primary_10_1016_j_compbiomed_2022_105525 crossref_primary_10_1109_TSIPN_2024_3430474 crossref_primary_10_1080_21681163_2019_1627910 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_3389_fnins_2020_00251 crossref_primary_10_1007_s11063_024_11655_4 crossref_primary_10_3389_fninf_2019_00070 crossref_primary_10_1038_tp_2017_164 crossref_primary_10_3389_fnins_2023_1138670 crossref_primary_10_1016_j_ynirp_2023_100186 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1109_TSIPN_2017_2672400 crossref_primary_10_1016_j_pneurobio_2019_01_008 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1016_j_media_2022_102430 crossref_primary_10_1007_s11063_017_9588_4 crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_4103_0028_3886_333520 crossref_primary_10_1109_TCYB_2020_3035282 crossref_primary_10_3389_fncom_2021_654315 crossref_primary_10_1109_TCYB_2020_3022647 crossref_primary_10_1177_10870547221146256 crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_1016_j_nicl_2020_102238 crossref_primary_10_1016_j_jneumeth_2019_108506 crossref_primary_10_3389_fnins_2019_00803 crossref_primary_10_1155_2024_8862647 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1007_s41133_020_00042_y crossref_primary_10_1016_j_dscb_2025_100198 crossref_primary_10_1109_TNNLS_2022_3213518 crossref_primary_10_1111_acps_12824 crossref_primary_10_1007_s44244_023_00004_4 crossref_primary_10_1109_TCYB_2020_2978500 crossref_primary_10_31083_j_jin2306121 |
Cites_doi | 10.1109/TCYB.2014.2336876 10.1371/journal.pone.0014277 10.1016/j.cortex.2011.04.007 10.1109/TIE.2008.2003319 10.1093/bioinformatics/bth267 10.1016/j.neuroimage.2010.02.059 10.1016/j.neucom.2007.02.009 10.1103/PhysRevLett.100.144103 10.3389/fnsys.2012.00074 10.1186/1753-4631-5-5 10.1109/MIE.2009.934790 10.1111/j.1460-9568.2010.07110.x 10.1016/j.euroneuro.2012.10.015 10.1080/01621459.1982.10477803 10.1016/j.neubiorev.2012.01.003 10.1002/hbm.20606 10.1007/978-1-4757-2440-0 10.1007/s00726-010-0595-2 10.1016/j.biopsych.2005.01.034 10.1162/NECO_a_00052 10.1109/TII.2012.2187914 10.1016/j.biopsych.2010.07.003 10.1142/3573 10.1109/TCYB.2014.2298235 10.1002/hbm.20622 10.1093/brain/aws059 10.1073/pnas.89.13.5951 10.3389/fnsys.2012.00061 10.1177/070674370905401002 10.3389/fnsys.2012.00078 10.1148/radiol.2251011301 10.1016/j.neuroimage.2011.10.015 10.1109/TBME.2009.2037808 10.1109/TNN.2010.2045657 10.1016/j.biopsych.2007.06.025 10.1186/1471-2105-7-197 10.1371/journal.pone.0036733 10.1002/hbm.21333 10.1016/j.jaac.2012.08.013 10.1109/TNNLS.2013.2295813 10.1055/s-0029-1220686 10.1016/j.neuroimage.2012.05.078 10.1561/2200000006 10.3389/fnsys.2012.00080 10.1109/TMI.2009.2025126 10.1016/j.neuroimage.2013.08.048 10.1103/PhysRevE.77.056215 10.1016/j.neulet.2010.03.080 10.1016/j.biopsych.2010.07.037 10.1038/tp.2013.15 10.1016/j.neuroimage.2004.11.017 10.3389/fnsys.2012.00069 10.1097/WNR.0b013e32834f60a5 10.3389/fpsyt.2012.00002 10.1002/hbm.21108 10.1109/TNNLS.2012.2185059 10.1186/1753-4631-4-S1-S1 10.1109/72.329697 10.1016/j.neucom.2007.10.008 10.1142/S0129065713500032 10.1007/s004220000235 10.2307/1912791 10.1186/1824-7288-36-79 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 7QO P64 |
DOI | 10.1109/TCYB.2014.2379621 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 2679 |
ExternalDocumentID | 3895111771 25576588 10_1109_TCYB_2014_2379621 7001645 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Centre, Kraków, Poland grantid: DEC-2013/11/B/ST6/01337 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 7QO P64 |
ID | FETCH-LOGICAL-c551t-63927e3dafcc139f73bb9ebce638ba9919ab6c84ae6ca997fe417c9b4d957b193 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 11:30:31 EDT 2025 Sun Aug 24 04:11:15 EDT 2025 Thu Jul 10 18:30:23 EDT 2025 Sun Jun 29 12:25:17 EDT 2025 Thu Apr 03 07:01:48 EDT 2025 Tue Jul 01 04:35:05 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Tue Aug 26 16:38:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | functional magnetic resonance imaging (fMRI) Artificial neural networks (ANNs) classification attention deficit hyperactivity disorder (ADHD) support vector machines (SVMs) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c551t-63927e3dafcc139f73bb9ebce638ba9919ab6c84ae6ca997fe417c9b4d957b193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7471-5357 |
PMID | 25576588 |
PQID | 1748964809 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1748964809 proquest_miscellaneous_1837334503 pubmed_primary_25576588 proquest_miscellaneous_1735329450 crossref_primary_10_1109_TCYB_2014_2379621 proquest_miscellaneous_1778052017 crossref_citationtrail_10_1109_TCYB_2014_2379621 ieee_primary_7001645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 (ref49) 2014 ref56 ref12 (ref5) 2014 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref45 ref48 ref47 ref41 ref44 ref43 han (ref2) 0 ref8 ref9 ref4 ref3 ref6 ref40 kaminski (ref42) 2001; 85 cherkasova (ref66) 2009; 54 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 (ref7) 2014 ref39 ref38 mcquarrie (ref46) 1998; 43 ref68 ref24 ref67 ref26 ref25 ref64 ref20 (ref23) 2014 ref63 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref16 doi: 10.1109/TCYB.2014.2336876 – ident: ref3 doi: 10.1371/journal.pone.0014277 – ident: ref65 doi: 10.1016/j.cortex.2011.04.007 – ident: ref21 doi: 10.1109/TIE.2008.2003319 – ident: ref51 doi: 10.1093/bioinformatics/bth267 – ident: ref43 doi: 10.1016/j.neuroimage.2010.02.059 – ident: ref17 doi: 10.1016/j.neucom.2007.02.009 – ident: ref35 doi: 10.1103/PhysRevLett.100.144103 – ident: ref60 doi: 10.3389/fnsys.2012.00074 – ident: ref53 doi: 10.1186/1753-4631-5-5 – ident: ref12 doi: 10.1109/MIE.2009.934790 – ident: ref67 doi: 10.1111/j.1460-9568.2010.07110.x – ident: ref56 doi: 10.1016/j.euroneuro.2012.10.015 – year: 2014 ident: ref49 publication-title: MATLAB SVM Toolbox-Spider – ident: ref32 doi: 10.1080/01621459.1982.10477803 – ident: ref63 doi: 10.1016/j.neubiorev.2012.01.003 – ident: ref31 doi: 10.1002/hbm.20606 – ident: ref15 doi: 10.1007/978-1-4757-2440-0 – ident: ref61 doi: 10.1007/s00726-010-0595-2 – ident: ref68 doi: 10.1016/j.biopsych.2005.01.034 – ident: ref14 doi: 10.1162/NECO_a_00052 – ident: ref11 doi: 10.1109/TII.2012.2187914 – ident: ref47 doi: 10.1016/j.biopsych.2010.07.003 – volume: 43 year: 1998 ident: ref46 publication-title: Regression and Time Series Model Selection doi: 10.1142/3573 – ident: ref19 doi: 10.1109/TCYB.2014.2298235 – ident: ref29 doi: 10.1002/hbm.20622 – ident: ref39 doi: 10.1093/brain/aws059 – ident: ref1 doi: 10.1073/pnas.89.13.5951 – ident: ref6 doi: 10.3389/fnsys.2012.00061 – volume: 54 start-page: 651 year: 2009 ident: ref66 article-title: Neuroimaging in attention-deficit hyperactivity disorder: Beyond the frontostriatal circuitry publication-title: Can J Psych doi: 10.1177/070674370905401002 – year: 2014 ident: ref5 publication-title: The ADHD-200 Global Competition SAMPLE Home – ident: ref9 doi: 10.3389/fnsys.2012.00078 – ident: ref26 doi: 10.1148/radiol.2251011301 – ident: ref41 doi: 10.1016/j.neuroimage.2011.10.015 – ident: ref44 doi: 10.1109/TBME.2009.2037808 – ident: ref22 doi: 10.1109/TNN.2010.2045657 – ident: ref58 doi: 10.1016/j.biopsych.2007.06.025 – ident: ref52 doi: 10.1186/1471-2105-7-197 – ident: ref4 doi: 10.1371/journal.pone.0036733 – ident: ref24 doi: 10.1002/hbm.21333 – ident: ref30 doi: 10.1016/j.jaac.2012.08.013 – ident: ref55 doi: 10.1109/TNNLS.2013.2295813 – ident: ref57 doi: 10.1055/s-0029-1220686 – ident: ref38 doi: 10.1016/j.neuroimage.2012.05.078 – ident: ref13 doi: 10.1561/2200000006 – ident: ref10 doi: 10.3389/fnsys.2012.00080 – ident: ref45 doi: 10.1109/TMI.2009.2025126 – ident: ref50 doi: 10.1016/j.neuroimage.2013.08.048 – ident: ref34 doi: 10.1103/PhysRevE.77.056215 – ident: ref28 doi: 10.1016/j.neulet.2010.03.080 – ident: ref64 doi: 10.1016/j.biopsych.2010.07.037 – year: 2014 ident: ref23 publication-title: ADHD-200 Global Competition Database – year: 0 ident: ref2 article-title: Learning computational models of video memorability from fMRI brain imaging publication-title: IEEE Trans Cybern – ident: ref37 doi: 10.1038/tp.2013.15 – ident: ref25 doi: 10.1016/j.neuroimage.2004.11.017 – year: 2014 ident: ref7 publication-title: The ADHD-200 Global Competition Result – ident: ref8 doi: 10.3389/fnsys.2012.00069 – ident: ref40 doi: 10.1097/WNR.0b013e32834f60a5 – ident: ref59 doi: 10.3389/fpsyt.2012.00002 – ident: ref27 doi: 10.1002/hbm.21108 – ident: ref20 doi: 10.1109/TNNLS.2012.2185059 – ident: ref54 doi: 10.1186/1753-4631-4-S1-S1 – ident: ref48 doi: 10.1109/72.329697 – ident: ref18 doi: 10.1016/j.neucom.2007.10.008 – ident: ref36 doi: 10.1142/S0129065713500032 – volume: 85 start-page: 145 year: 2001 ident: ref42 article-title: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance publication-title: Biol Cybern doi: 10.1007/s004220000235 – ident: ref33 doi: 10.2307/1912791 – ident: ref62 doi: 10.1186/1824-7288-36-79 |
SSID | ssj0000816898 |
Score | 2.4374242 |
Snippet | Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2668 |
SubjectTerms | Accuracy Architecture (computers) Artificial neural networks Artificial neural networks (ANNs) Attention Deficit Disorder with Hyperactivity - diagnosis Attention deficit hyperactivity disorder attention deficit hyperactivity disorder (ADHD) Brain - physiology Cascades Classification Competition Computer architecture Disorders FCC functional magnetic resonance imaging (fMRI) Humans Hyperactivity Image Processing, Computer-Assisted Learning theory Magnetic resonance imaging Magnetic Resonance Imaging - methods Neural networks Neural Networks (Computer) Neurons Signal Processing, Computer-Assisted Support Vector Machine support vector machines (SVMs) Training |
Title | Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification From Functional Magnetic Resonance Imaging Data |
URI | https://ieeexplore.ieee.org/document/7001645 https://www.ncbi.nlm.nih.gov/pubmed/25576588 https://www.proquest.com/docview/1748964809 https://www.proquest.com/docview/1735329450 https://www.proquest.com/docview/1778052017 https://www.proquest.com/docview/1837334503 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXEBSvkIFGQkDoDINomdOD4uW1YL0nJqpXKKbGfSAzSLutkD_KT-ys442QgQrDjF0Y4trzzOPHtm3gC8KpENGW1A62vJbkZqYSHjHAtMfFmiNpwovPxcLM7Vp4v8Yg_ejbkwiBiCz3DCzeDLr1d-w1dlJzoQQuX7sE8Htz5Xa7xPCQUkQunbjBoxoQo9ODHTxJyczb685zguNcmkNkXGBWIITGuyv-VvFimUWPk32gxWZ34Pltv59sEmXyebzk38zz-oHP_3D92HuwP8FNNeXw5hD9sHcDhs8LV4PbBQvzmCGz6c_hAhEMYTLBUzu-ZY-tC3p50QzOwRHiGUXEx_cUoIAsNi2nV9NKU4Re7SiQUde0NeFpesEFvqTxFKc_KoQU_E_Hp1JeZkcfuLSrG0ly0nWwp2NjBDCIqPV6G8kji1nX0I5_MPZ7NFPBR2iD0BtC4mVJRplLVtvCcE2mjpnEHnSUlKZwmxGusKXyrSGk-vukGVam-cqk2uHUHOR3DQrlp8AqJU0ubWpmmBjdIKXa2yTGtnGzK6RZ1FkGwXt_ID6zkX3_hWhdNPYipWjYpVoxpUI4K3Y5fvPeXHLuEjXtZRcFjRCI63GlQNH4V1lTLTT6HKxETwcvyZtjP7aGyLqw3LyFxmRuXJLplQiIK-pTtkSqmlpGFkBI97DR7nuFX8p3-f-zO4Q2PnfczOMRx01xt8Tsircy_ClrsFniEqPg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxELaqcoALUMpPSgEjgQRIm-7a3vXugUNIiBLa9JRK5bTY3gkH2g1qNkLlWXgC3oF3Y8b7I0CQWyVOcRR713JmPJ89M98w9iwFMmSogMYVktyM2IJEBjEkELo0BZ1RovDsOJmcqHen8ekW-9blwgCADz6DPjW9L79YujVdlR1oTwjVhlAewuUXPKCtXk9H-G8-F2L8dj6cBE0NgcAhFqgCNMBCgyzMwjkEOwstrc3AOpxPag2Co8zYxKUKJ-jwq16AirTLrCqyWNuIqJZwg7-GOCMWdXZYd4PjS1b4YrsCGwHiGN24TaMwO5gP37-hyDHVF1JniaCSNAjfNVr89Dcb6Iu6_Bvfejs3vsV-tCtUh7d86q8r23df_yCP_F-X8Da72QBsPqg1YodtQXmH7TRb2Iq_aHi2X-6y73T8vuQ-1Mch8OZDs6JsAT-2JtbgxF3iP3ywPB_84nbhCPf5oKrqeFE-AhpS8Qke7H3mGRXl4C25KffFR-mpXhP4-GJ5zseIKeqrWD4zH0tKJ-XkTiEOFODTc19Aio9MZe6ykytZs3tsu1yW8IDxVEkTGxNFCSyUVmALJYTW1iwQViSF6LGwFabcNbzuVF7kLPfnuzDLSRRzEsW8EcUee9UN-VyTmmzqvEti1HVsJKjH9luJzZttb5VHxGWUqDTMeuxp9zNuWOSFMiUs19RHxlJkKg439fGlNtBabOiTSi0lPkb22P1aY7o5toq29_e5P2HXJ_PZUX40PT58yG7ge-I6QmmfbVcXa3iEOLOyj726c_bhqpXjJ3sFihs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Connected+Cascade+Artificial+Neural+Network+Architecture+for+Attention+Deficit+Hyperactivity+Disorder+Classification+From+Functional+Magnetic+Resonance+Imaging+Data&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Deshpande%2C+Gopikrishna&rft.au=Wang%2C+Peng&rft.au=Rangaprakash%2C+D&rft.au=Wilamowski%2C+Bogdan&rft.date=2015-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=45&rft.issue=12&rft.spage=2668&rft.epage=2679&rft_id=info:doi/10.1109%2FTCYB.2014.2379621&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |