H3K4 demethylase SsJMJ11 negatively regulates drought-tolerance responses in sugarcane

Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and pa...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 25; no. 1; pp. 814 - 14
Main Authors Yu, Guangrun, Wu, Xiaoge, Ye, Meiling, Fang, Yuan, Wang, Qiongli
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.07.2025
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive. We show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci. Our results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane.
AbstractList Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive. We show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci. Our results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane.
Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive.BACKGROUNDDrought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive.We show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci.RESULTSWe show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci.Our results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane.CONCLUSIONSOur results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane.
Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive. We show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci. Our results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane.
Abstract Background Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive. Results We show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci. Conclusions Our results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane.
BackgroundDrought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive.ResultsWe show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci.ConclusionsOur results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane.
Background Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated activity of methyltransferases and demethylases. We previously demonstrated that SsJMJ11 is an H3K4me3 demethylase in Saccharum spontaneum and participates in regulating flowering time. However, the role of H3K4me3 regulators in regulating drought-stress responses in sugarcane (Saccharum spp.) remains elusive. Results We show that SsJMJ11 negatively regulates drought-stress responses by acting as an H3K4me3 demethylase. Ectopic overexpression of SsJMJ11 in Arabidopsis thaliana resulted in a hypersensitivity to soil drought stress as well as abscisic acid (ABA) and mannitol. Meanwhile, the drought-induced expression of AtRD20 and AtDREB2A, two well-known positive regulators of drought tolerance, was repressed by SsJMJ11 overexpression. In S. spontaneum, the ABA- and dehydration-induced transcription of SsRD20 and SsDREB2A was associated with increased H3K4me3 levels at these loci. Furthermore, transient overexpression of SsJMJ11 in S. spontaneum protoplasts reduced the ABA-induced transcription of SsRD20 and SsDREB2A, paralleling reduced H3K4me3 levels at these loci. Conclusions Our results suggest that SsJMJ11-mediated dynamic deposition of H3K4me3 is required for proper adaptation to drought stress in sugarcane. Keywords: Drought stress, Histone demethylase, JmjC protein, H3K4me3, Saccharum spontaneum
ArticleNumber 814
Audience Academic
Author Wang, Qiongli
Wu, Xiaoge
Yu, Guangrun
Fang, Yuan
Ye, Meiling
Author_xml – sequence: 1
  givenname: Guangrun
  surname: Yu
  fullname: Yu, Guangrun
– sequence: 2
  givenname: Xiaoge
  surname: Wu
  fullname: Wu, Xiaoge
– sequence: 3
  givenname: Meiling
  surname: Ye
  fullname: Ye, Meiling
– sequence: 4
  givenname: Yuan
  surname: Fang
  fullname: Fang, Yuan
– sequence: 5
  givenname: Qiongli
  surname: Wang
  fullname: Wang, Qiongli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40604414$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEYhS1URNvAC7BAI7GBxRTfZ7xCVQU0pQiJAlvLt5lMNLFT21ORPj1OU0qDkBe-_J-P7eNzDA588A6AlwieINTydwnhtoE1xKyGvCW4vn0CjhBtUI0xFgePxofgOKUlhKhpqXgGDinkkFJEj8DPc_KZVtatXF5sRpVcdZUuvlwgVHnXqzzcuHFTRddPo8ouVTaGqV_kOofRReWNK7W0Dj6V2uCrNPUqGuXdc_C0U2NyL-77Gfjx8cP3s_P68uun-dnpZW0YQ7mmjliiuUBMYE1tJyxqqILEaG2ZsEp0VmisuWVaI4e4Mkp3TekZE4ThlszAfKdrg1rKdRxWKm5kUIO8WwixlyrmwYxOktYYAw1pjLMUsUZhTHSZKyYU52UyA-93WutJr5w1zueoxj3R_YofFrIPNxIViyFtRVF4c68Qw_XkUparIRk3jsWRMCVJMObl9qQlBX39D7oMU_TFqy3VcEq4aP5SvSovGHwXysFmKypPW8opFRBujz35D1Va-dbBlMx0Q1nf2_B2b0NhsvuVezWlJOdX3_bZV49debDjT4QKgHeAiSGl6LoHBEG5zanc5VSWnMq7nMpb8huiA9iD
Cites_doi 10.1038/nsmb1216
10.1105/tpc.105.035881
10.1016/j.plantsci.2023.111920
10.1038/nature16467
10.1111/nph.17177
10.1111/jipb.13474
10.1007/s12355-023-01352-2
10.1016/j.plaphy.2018.09.007
10.1093/plphys/kiab020
10.1111/j.1744-7909.2008.00692.x
10.1016/j.cell.2007.02.017
10.1073/pnas.190309197
10.1371/journal.pgen.1002664
10.1016/0092-8674(91)90436-3
10.1093/jxb/erae037
10.1038/cr.2010.27
10.1126/science.adf8822
10.1093/plphys/kiae461
10.1038/s41477-025-01924-y
10.1093/pcp/pcs053
10.1186/1471-2229-10-238
10.1093/nar/gku1382
10.1016/j.pbi.2022.102211
10.1016/j.cj.2020.05.006
10.1046/j.0960-7412.2001.01227.x
10.1146/annurev.arplant.043008.091939
10.1074/jbc.275.3.1723
10.1105/tpc.104.025353
10.1038/s41588-018-0237-2
10.1016/j.pbi.2016.08.002
10.1111/nph.15874
10.1046/j.1365-313X.1994.6020259.x
10.1093/pcp/pcq155
10.1073/pnas.0605639103
10.1111/nph.17593
10.1007/s11427-024-2784-3
10.1105/tpc.18.00693
10.1038/s41467-021-23766-w
10.1038/nrm2143
10.1038/s41422-019-0145-8
10.1186/s13059-015-0721-2
10.1016/j.tibs.2023.06.001
10.1371/journal.pgen.1003239
10.1038/nature13722
10.1002/bies.201600095
10.1111/jipb.12654
10.1007/s11427-023-2361-1
10.1105/tpc.112.103119
10.1104/pp.125.2.935
10.1093/plphys/kiac095
10.1016/j.indcrop.2024.118718
10.1007/978-981-13-1244-1_12
10.1038/nrg3901
10.1105/tpc.010362
10.1105/tpc.113.113886
10.1073/pnas.0903144106
ContentType Journal Article
Copyright 2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12870-025-06832-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1471-2229
EndPage 14
ExternalDocumentID oai_doaj_org_article_38ccc0c37ced4157a223b0c3a59a6622
PMC12220489
A846449009
40604414
10_1186_s12870_025_06832_z
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Distinguished Young Scholars of Fujian Agriculture and Forestry University
  grantid: grant No. xjq202102
– fundername: Natural Science Foundation of Fujian Province, China
  grantid: grant No. 2022J01582
– fundername: National Natural Science Foundation of China
  grantid: grant No. 32472070
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M48
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c551t-4e3d3b691592b4df9d174a03cbbd59da9fd9b2b6d5bb1e16acabf716a55935283
IEDL.DBID DOA
ISSN 1471-2229
IngestDate Wed Aug 27 01:25:31 EDT 2025
Thu Aug 21 18:33:32 EDT 2025
Fri Jul 11 16:53:31 EDT 2025
Fri Jul 25 08:57:22 EDT 2025
Thu Jul 10 08:24:47 EDT 2025
Tue Jul 15 03:52:01 EDT 2025
Thu Jul 10 06:39:07 EDT 2025
Mon Jul 21 06:00:02 EDT 2025
Thu Jul 10 07:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Drought stress
Histone demethylase
JmjC protein
H3K4me3
Saccharum spontaneum
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c551t-4e3d3b691592b4df9d174a03cbbd59da9fd9b2b6d5bb1e16acabf716a55935283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/38ccc0c37ced4157a223b0c3a59a6622
PMID 40604414
PQID 3227643697
PQPubID 44650
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_38ccc0c37ced4157a223b0c3a59a6622
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12220489
proquest_miscellaneous_3226716383
proquest_journals_3227643697
gale_infotracmisc_A846449009
gale_infotracacademiconefile_A846449009
gale_incontextgauss_ISR_A846449009
pubmed_primary_40604414
crossref_primary_10_1186_s12870_025_06832_z
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC plant biology
PublicationTitleAlternate BMC Plant Biol
PublicationYear 2025
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References P Liu (6832_CR23) 2019; 31
Q Wang (6832_CR26) 2021; 232
S Iwase (6832_CR16) 2007; 128
DQ Chen (6832_CR29) 2024; 216
G Yu (6832_CR28) 2024; 75
C Liu (6832_CR14) 2010; 61
JZ Liu (6832_CR57) 2019; 29
Y Xue (6832_CR7) 2025
Q Wang (6832_CR30) 2021; 9
TJ Wang (6832_CR45) 2021; 230
M Wang (6832_CR56) 2025; 11
ZL Tian (6832_CR54) 2024; 338
H Hu (6832_CR11) 2022; 67
F Huang (6832_CR13) 2023; 381
P Crevill (6832_CR53) 2014; 515
T Taji (6832_CR42) 2002; 29
DM Emms (6832_CR32) 2015; 16
H Fujii (6832_CR35) 2009; 106
Z Shi (6832_CR44) 2023; 66
RJ Klose (6832_CR17) 2007; 8
Q Chen (6832_CR22) 2013; 9
J Zhang (6832_CR3) 2018; 50
QN Yong (6832_CR50) 2015; 43
N Yamaguchi (6832_CR6) 2021; 12
S Huang (6832_CR25) 2019; 223
S Agurla (6832_CR33) 2018; 1081
MV Mickelbart (6832_CR5) 2015; 16
I Le Masson (6832_CR20) 2012; 24
PJ Franks (6832_CR31) 2001; 125
Y Aubert (6832_CR43) 2010; 51
F Lu (6832_CR12) 2008; 50
J Qi (6832_CR34) 2018; 60
JM Kim (6832_CR10) 2012; 53
JY Kang (6832_CR38) 2002; 14
DR McCarty (6832_CR39) 1991; 66
XT Zhang (6832_CR1) 2025; S1674–2052
N Lee (6832_CR18) 2007; 14
B Noh (6832_CR52) 2004; 16
Y Sakuma (6832_CR48) 2006; 18
FS Howe (6832_CR9) 2017; 39
X Cui (6832_CR24) 2021; 185
T Soderman (6832_CR41) 1994; 35
YL Fu (6832_CR51) 2013; 25
FL Lu (6832_CR19) 2010; 20
WJ Zhao (6832_CR46) 2022; 189
H Yang (6832_CR21) 2012; 8
H Choi (6832_CR36) 2000; 275
J Zhu (6832_CR58) 2023; 48
C Lesk (6832_CR2) 2016; 529
Y Uno (6832_CR37) 2000; 97
T Zhao (6832_CR27) 2018; 132
AK Mall (6832_CR4) 2024
T Kiyosue (6832_CR40) 1994; 6
QH Di (6832_CR55) 2025; 197
J Xiao (6832_CR15) 2016; 34
Y Sakuma (6832_CR49) 2006; 103
W Wei (6832_CR47) 2023; 65
DK Van (6832_CR8) 2010; 10
References_xml – volume: 14
  start-page: 341
  year: 2007
  ident: 6832_CR18
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1216
– volume: 18
  start-page: 1292
  issue: 5
  year: 2006
  ident: 6832_CR48
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035881
– volume: 338
  start-page: 111920
  year: 2024
  ident: 6832_CR54
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2023.111920
– volume: 529
  start-page: 84
  year: 2016
  ident: 6832_CR2
  publication-title: Nature
  doi: 10.1038/nature16467
– volume: 230
  start-page: 567
  year: 2021
  ident: 6832_CR45
  publication-title: New Phytol
  doi: 10.1111/nph.17177
– volume: 65
  start-page: 1636
  year: 2023
  ident: 6832_CR47
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.13474
– year: 2024
  ident: 6832_CR4
  publication-title: Sugar Tech
  doi: 10.1007/s12355-023-01352-2
– volume: 132
  start-page: 183
  year: 2018
  ident: 6832_CR27
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2018.09.007
– volume: 185
  start-page: 1813
  year: 2021
  ident: 6832_CR24
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiab020
– volume: 50
  start-page: 886
  year: 2008
  ident: 6832_CR12
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2008.00692.x
– volume: 128
  start-page: 1077
  year: 2007
  ident: 6832_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.017
– volume: 97
  start-page: 11632
  year: 2000
  ident: 6832_CR37
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.190309197
– volume: 8
  start-page: e1002664
  year: 2012
  ident: 6832_CR21
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002664
– volume: 66
  start-page: 895
  year: 1991
  ident: 6832_CR39
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90436-3
– volume: 75
  start-page: 3040
  year: 2024
  ident: 6832_CR28
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erae037
– volume: 20
  start-page: 387
  year: 2010
  ident: 6832_CR19
  publication-title: Cell Res
  doi: 10.1038/cr.2010.27
– volume: 381
  start-page: eadf8822
  year: 2023
  ident: 6832_CR13
  publication-title: Science
  doi: 10.1126/science.adf8822
– volume: 197
  start-page: kiae461
  issue: 2
  year: 2025
  ident: 6832_CR55
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiae461
– volume: 11
  start-page: 206
  issue: 2
  year: 2025
  ident: 6832_CR56
  publication-title: Nat Plants
  doi: 10.1038/s41477-025-01924-y
– volume: 53
  start-page: 847
  year: 2012
  ident: 6832_CR10
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcs053
– volume: 10
  start-page: 238
  year: 2010
  ident: 6832_CR8
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-238
– volume: 43
  start-page: 1469
  issue: 3
  year: 2015
  ident: 6832_CR50
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1382
– volume: 67
  start-page: 102211
  year: 2022
  ident: 6832_CR11
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2022.102211
– volume: 9
  start-page: 133
  year: 2021
  ident: 6832_CR30
  publication-title: Crop J
  doi: 10.1016/j.cj.2020.05.006
– volume: 29
  start-page: 417
  year: 2002
  ident: 6832_CR42
  publication-title: Plant J
  doi: 10.1046/j.0960-7412.2001.01227.x
– volume: 61
  start-page: 395
  year: 2010
  ident: 6832_CR14
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.043008.091939
– volume: 275
  start-page: 1723
  year: 2000
  ident: 6832_CR36
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.3.1723
– volume: 16
  start-page: 2601
  year: 2004
  ident: 6832_CR52
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.025353
– volume: 50
  start-page: 1565
  year: 2018
  ident: 6832_CR3
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0237-2
– volume: 34
  start-page: 41
  year: 2016
  ident: 6832_CR15
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2016.08.002
– volume: 223
  start-page: 1372
  year: 2019
  ident: 6832_CR25
  publication-title: New Phytol
  doi: 10.1111/nph.15874
– volume: 6
  start-page: 259
  year: 1994
  ident: 6832_CR40
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1994.6020259.x
– volume: 51
  start-page: 1975
  year: 2010
  ident: 6832_CR43
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcq155
– volume: S1674–2052
  start-page: 3
  issue: 25
  year: 2025
  ident: 6832_CR1
  publication-title: Mol Plant
– volume: 103
  start-page: 18822
  issue: 49
  year: 2006
  ident: 6832_CR49
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0605639103
– volume: 232
  start-page: 221
  year: 2021
  ident: 6832_CR26
  publication-title: New Phytol
  doi: 10.1111/nph.17593
– year: 2025
  ident: 6832_CR7
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-024-2784-3
– volume: 31
  start-page: 430
  year: 2019
  ident: 6832_CR23
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00693
– volume: 12
  start-page: 3480
  year: 2021
  ident: 6832_CR6
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23766-w
– volume: 35
  start-page: 225
  year: 1994
  ident: 6832_CR41
  publication-title: Plant Cell Physiol
– volume: 8
  start-page: 307
  year: 2007
  ident: 6832_CR17
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2143
– volume: 29
  start-page: 379
  issue: 5
  year: 2019
  ident: 6832_CR57
  publication-title: Cell Res
  doi: 10.1038/s41422-019-0145-8
– volume: 16
  start-page: 157
  year: 2015
  ident: 6832_CR32
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0721-2
– volume: 48
  start-page: 788
  issue: 9
  year: 2023
  ident: 6832_CR58
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2023.06.001
– volume: 9
  start-page: e1003239
  year: 2013
  ident: 6832_CR22
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003239
– volume: 515
  start-page: 587
  year: 2014
  ident: 6832_CR53
  publication-title: Nature
  doi: 10.1038/nature13722
– volume: 39
  start-page: 1
  year: 2017
  ident: 6832_CR9
  publication-title: BioEssays
  doi: 10.1002/bies.201600095
– volume: 60
  start-page: 805
  year: 2018
  ident: 6832_CR34
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12654
– volume: 66
  start-page: 1903
  year: 2023
  ident: 6832_CR44
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-023-2361-1
– volume: 24
  start-page: 3603
  year: 2012
  ident: 6832_CR20
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.103119
– volume: 125
  start-page: 935
  year: 2001
  ident: 6832_CR31
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.2.935
– volume: 189
  start-page: 1050
  year: 2022
  ident: 6832_CR46
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiac095
– volume: 216
  start-page: 118718
  year: 2024
  ident: 6832_CR29
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2024.118718
– volume: 1081
  start-page: 215
  year: 2018
  ident: 6832_CR33
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-981-13-1244-1_12
– volume: 16
  start-page: 237
  year: 2015
  ident: 6832_CR5
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3901
– volume: 14
  start-page: 343
  year: 2002
  ident: 6832_CR38
  publication-title: Plant Cell
  doi: 10.1105/tpc.010362
– volume: 25
  start-page: 2878
  year: 2013
  ident: 6832_CR51
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.113886
– volume: 106
  start-page: 8380
  year: 2009
  ident: 6832_CR35
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0903144106
SSID ssj0017849
Score 2.4350984
Snippet Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the coordinated...
Background Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the...
BackgroundDrought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on the...
Abstract Background Drought-induced gene alteration is usually associated with changes of histone H3K4me3 in plants. Histone methylation homeostasis relies on...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 814
SubjectTerms Abscisic acid
Abscisic Acid - metabolism
Adaptation
Arabidopsis - genetics
Botanical research
China
Dehydration
Drought
Drought resistance
Drought stress
Droughts
Environmental aspects
Flowering
Gene Expression Regulation, Plant
Gene loci
Genetic aspects
Genomes
Genomics
H3K4me3
Hardiness
Histone demethylase
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histones
Histones - metabolism
Homeostasis
Hypersensitivity
JmjC protein
Leaves
Mannitol
Methylation
Methyltransferases
Physiological aspects
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants, Genetically Modified
Plasmids
Proteins
Protoplasts
Saccharum - enzymology
Saccharum - genetics
Saccharum - physiology
Saccharum spontaneum
Soil stresses
Stress, Physiological
Sugarcane
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgcOCC-CZtQQEhcUBW49hx4hNqEdWyqBwoRXuz_JWlUpWUTfaw_fXMONmlERLXzES7Gb-xn-PJG0LeqSqHFKsyKoTyVCgeqJFWUF8VBUroc1vjie7ZNzm7EPNFsRhfuHVjWeV2TowTtW8dviM_AuCVsHpKVX68_k2xaxSero4tNO6SeyhdhqguF7sNFysrobYfylTyqGN4qkexgWsmAcn0ZrIYRc3-f2fmW0vTtGzy1jp0-og8HAlkejyM-GNyJzRPyP2TFkje5in5OeNfReoDNobeADEO6Xk3P5szljZhGTW-rzbpaug_H7rUxyY9Pe3bq4AdNgLYYs0s2C6btFsvIQ9ME56Ri9PPPz7N6Ng6gTqgQD0VgXtupQKyklvha-Vh52Ey7qz1hfJG1V7Z3EpfWMsCk8YZW8PWycAGI-q9PCd7TduElyR1gTNXK1HXholQcps5ATRNwHXhOVcJ-bCNob4eFDJ03FlUUg8R1xBxHSOubxJygmHeeaK6dbzQrpZ6TBbNK-dc5njpggeCURrgMPCz3BTKSJnnCXmLg6RRv6LBApmlWXed_nL-XR8DnwLYAXNMyPvRqW5huJwZvzeAp0LJq4nn4cQTEsxNzVss6DHBO_0Xjgl5szPjnVi01oR2HX1kiXyXJ-TFAJ3dcwsULRJMJKSagGoSmKmlufwV5b8ZUDqYd9X-___XAXmQR6iXgPhDstev1uEVEKjevo5Z8gc_nBlC
  priority: 102
  providerName: ProQuest
Title H3K4 demethylase SsJMJ11 negatively regulates drought-tolerance responses in sugarcane
URI https://www.ncbi.nlm.nih.gov/pubmed/40604414
https://www.proquest.com/docview/3227643697
https://www.proquest.com/docview/3226716383
https://pubmed.ncbi.nlm.nih.gov/PMC12220489
https://doaj.org/article/38ccc0c37ced4157a223b0c3a59a6622
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4cAF8a6hRAYhcUCrxt71rvfYoFYhqBVKKYq4rPblUKmyUZ0c0l_P7NqJYnHgwsVSPBPJnsfON9r1NwAfZJljipVjwph0hEnqieaGEVcWRaDQp6YKO7rnF3x6xWaLYrE36iucCevogTvDHdPSWju2VFjvsNgIjfXM4G9dSM15HldfrHnbZqrfPxAlk9tPZEp-3GZhP4-E0a1jjjFM7gZlKLL1_70m7xWl4YHJvQp09gQe99AxPeke-Snc8_UzeDhpEN5tnsOPKf3KUufDSOgNQmKfXraz81mWpbVfRnbvm016202e923q4nieFVk1Nz7M1vAoi6dlUXZdp-16iRmga_8Crs5Ov3-ekn5oArEIflaEeeqo4RJhSm6Yq6TDnkOPqTXGFdJpWTlpcsNdYUzmM66tNhU2TRpbi8j08hIO6qb2h5BaTzNbSVZVOmNeBLMzBGgM7zNHqUzg09aG6nfHjaFiT1Fy1VlcocVVtLi6S2ASzLzTDLzW8QZ6W_XeVv_ydgLvg5NUYK6ow9GYpV63rfpyOVcniKQw4BAzJvCxV6oadJfV_ZcG-FaB7GqgeTTQxNSyQ_E2FlSf2q3CFVAgjONSJPBuJw7_DMfVat-sow4XAenSBF51obN7bxboiljGEigHQTUwzFBSX_-KxN8ZgjlcceXr_2HKN_AojwkhMC-O4GB1u_ZvEWCtzAjui4UYwYPJ6cW3-ShmFl7nk59_ADh-JTA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKQYJLxZuUAgGBOCCrSew48QGhFqj20e2Btmhvrl9ZKlVJ2ewKbX8Uv5GxkyyNkLj1mvFukvE3nm_i8QxCb3megInlEaaUG0w5sVgyRbHJ09SV0CeqcDu6kyM2OKWjaTrdQL-7szAurbJbE_1CbSrtvpHvAvAy8J6MZ58uf2LXNcrtrnYtNBpYjO3qF4Rs9cfhF5jfd0ly8PXk8wC3XQWwBnawwNQSQxTj4McTRU3BDZByGRGtlEm5kbwwXCWKmVSp2MZMaqkKiCokcG9fCgX-9xa6DY43csFeNl0HeHGWU94dzMnZbh27XUTsGsZGDCwHX_Wcn-8R8K8nuOYK-2ma1_zewX201RLWcK9B2AO0YcuH6M5-BaRy9Qh9H5AxDY11jahXQMRteFyPJqM4Dks78zXFL1bhvOl3b-vQ-KZAC7yoLqzr6GFB5nN0QXZehvVyBgqWpX2MTm9EqU_QZlmV9hkKtSWxLjgtChlTmxEVaQq0kMJ1agjhAfrQ6VBcNhU5hI9kciYajQvQuPAaF1cB2ndqXo901bT9hWo-E61xCpJrrSNNMm0NEJpMAmeC2xKZcslYkgTojZsk4epllC4hZyaXdS2Gx9_EHvA3gDkw1QC9bwcVFUyXlu35BngrV2KrN3KnNxIMWvfFHRZEu6DU4i_8A_R6LXa_dElypa2WfgzLHL8mAXraQGf93tQVSaIxDVDeA1VPMX1Jef7DlxuPgULCOs-3__9cr9DdwcnkUBwOj8bP0b3Ewz4D9O-gzcV8aV8AeVuol95iQnR20yb6B-OlV1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H3K4+demethylase+SsJMJ11+negatively+regulates+drought-tolerance+responses+in+sugarcane&rft.jtitle=BMC+plant+biology&rft.au=Yu%2C+Guangrun&rft.au=Wu%2C+Xiaoge&rft.au=Ye%2C+Meiling&rft.au=Fang%2C+Yuan&rft.date=2025-07-02&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12870-025-06832-z&rft.externalDBID=ISR&rft.externalDocID=A846449009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon