Prebiotic inulin ameliorates SARS-CoV-2 infection in hamsters by modulating the gut microbiome
Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality ne...
Saved in:
Published in | NPJ science of food Vol. 8; no. 1; pp. 18 - 9 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2396-8370 2396-8370 |
DOI | 10.1038/s41538-024-00248-z |
Cover
Loading…
Abstract | Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19. |
---|---|
AbstractList | Abstract Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19. Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19. Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19. |
ArticleNumber | 18 |
Author | Saito, Misa Fukuda, Shinji Yang, Jiayue Hartanto, Tenagy Ichinohe, Takeshi Song, Isaiah Nakayama, Yasunori |
Author_xml | – sequence: 1 givenname: Isaiah orcidid: 0000-0001-5428-4959 surname: Song fullname: Song, Isaiah organization: Institute for Advanced Biosciences, Keio University – sequence: 2 givenname: Jiayue orcidid: 0000-0001-9715-3211 surname: Yang fullname: Yang, Jiayue organization: Institute for Advanced Biosciences, Keio University – sequence: 3 givenname: Misa surname: Saito fullname: Saito, Misa organization: Metagen, Inc – sequence: 4 givenname: Tenagy surname: Hartanto fullname: Hartanto, Tenagy organization: Metagen, Inc – sequence: 5 givenname: Yasunori surname: Nakayama fullname: Nakayama, Yasunori organization: Biolier Business Department, Teijin Limited – sequence: 6 givenname: Takeshi surname: Ichinohe fullname: Ichinohe, Takeshi organization: Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo – sequence: 7 givenname: Shinji orcidid: 0000-0001-5161-9880 surname: Fukuda fullname: Fukuda, Shinji email: sfukuda@sfc.keio.ac.jp organization: Institute for Advanced Biosciences, Keio University, Metagen, Inc., Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Transborder Medical Research Center, University of Tsukuba, Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38485724$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3DAUha2KqsCUF-iiitQNm7T-jZ0lGkFBQmoFtMtajnM9eJTE1HYW8PT1EGgrFmzsK_s7x773HKK9KUyA0AeCPxPM1JfEiWCqxpTXuCyqfniDDihrm1oxiff-q_fRUUpbXCjCscDyHdpniishKT9Av75H6HzI3lZ-mgc_VWaEwYdoMqTq-uTqul6HnzUttw5s9mEqVXVrxpQhpqq7r8bQz4PJftpU-RaqzZyr0dsYiusI79FbZ4YER0_7Cv04O71Zn9eX375erE8uaysEyTVnnQPgVrakaUxPmGBSCRBApMSmk7jlDceul7Zz0jRtS4XEuOGu9MGM4myFLhbfPpitvot-NPFeB-P140GIG21iaXIADYZZZ7iTTXkRHDPUUQuKd1QSKoQrXseL110Mv2dIWY8-WRgGM0GYk6atULSVojy9Qp9eoNswx6l0uqOaVvGG4kJ9fKLmboT-7_eeUyiAWoAytpQiOG19Nrth52j8oAnWu8z1krkucevHzPVDkdIX0mf3V0VsEaUCTxuI_779iuoPQPe9Nw |
CitedBy_id | crossref_primary_10_1038_s41538_024_00349_9 |
Cites_doi | 10.1016/j.yjmcc.2020.10.014 10.1194/jlr.R036012 10.1038/s41580-021-00418-x 10.1016/0016-5085(95)90192-2 10.1017/S0029665114001463 10.1136/gutjnl-2021-325353 10.1080/10408398.2018.1542587 10.1128/mBio.00889-14 10.1038/nature08530 10.1038/ismej.2014.14 10.3390/nu7115440 10.3389/fcimb.2020.596166 10.1007/s11154-019-09513-z 10.1038/sj.ejcn.1602636 10.3389/fimmu.2021.652470 10.1016/j.tifs.2021.12.033 10.1016/j.metabol.2018.06.009 10.3390/nu12103200 10.1002/ijc.30643 10.1038/s41575-019-0173-3 10.1038/nature12347 10.1136/gutjnl-2020-323020 10.1001/jama.2019.20153 10.1038/s41577-020-0331-4 10.1038/s41467-022-28310-y 10.1038/s41467-023-39569-0 10.1128/JVI.00127-20 10.1080/00365521.2022.2114812 10.3389/fimmu.2019.00277 10.1038/nature12726 10.1016/j.mrrev.2009.04.001 10.3748/wjg.v13.i29.3985 10.1186/s12985-022-01814-1 10.1038/s41579-021-00573-0 10.1016/j.glohj.2020.11.002 10.1053/j.gastro.2011.07.046 10.1080/19490976.2019.1709387 10.3390/molecules27113401 10.1111/imm.12930 10.1159/000324126 10.1016/j.immuni.2018.04.022 10.1038/s41586-022-05380-y 10.1073/pnas.2009799117 10.1038/nature16504 10.1111/1541-4337.12119 10.1093/cid/ciaa644 10.1080/19490976.2015.1127483 10.1038/s41586-022-05594-0 10.1017/S0954422410000247 10.1186/s13054-020-03400-9 10.3390/nu9121348 10.1016/j.bbrc.2022.02.033 10.1056/NEJMoa2116846 10.1093/jn/nxy011 10.1016/j.cocis.2021.101479 10.1053/j.gastro.2020.05.048 10.1038/d41586-020-03626-1 10.1038/s41591-020-01202-8 10.1038/s41579-020-0433-9 10.1038/s41586-020-2047-9 10.1038/sj.ejcn.1600841 10.1136/gut.2010.212159 10.1007/s00394-020-02282-5 10.1002/path.1570 10.1016/j.jlr.2023.100392 10.1128/mSystems.00185-19 10.1016/j.cell.2014.03.011 10.1017/S0007114508019880 10.1128/mBio.02566-18 10.1111/j.1365-2036.2011.04633.x 10.1128/AEM.69.4.1920-1927.2003 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI 7X8 DOA |
DOI | 10.1038/s41538-024-00248-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Agricultural Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Diet & Clinical Nutrition |
EISSN | 2396-8370 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_ea3cfa4f76ee4ef3a2f2ce84b271255f 38485724 10_1038_s41538_024_00248_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP23gm1010009; JP223fa627001 funderid: https://doi.org/10.13039/100009619 – fundername: Teijin Limited – fundername: Food Science Institute Foundation – fundername: MEXT | JST | Exploratory Research for Advanced Technology (ERATO) grantid: JPMJER1902 funderid: https://doi.org/10.13039/501100009024 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 22H03541 funderid: https://doi.org/10.13039/501100001691 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP23gm1010009 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP223fa627001 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 22H03541 – fundername: MEXT | JST | Exploratory Research for Advanced Technology (ERATO) grantid: JPMJER1902 |
GroupedDBID | 0R~ 7X2 AAHBH AAJSJ AASML ACGFS ADBBV ADMLS AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BCNDV BENPR BHPHI C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ HYE M0K M~E NAO NO~ OK1 PGMZT PHGZM PHGZT PIMPY PUEGO RNT RPM SNYQT AAYXX CITATION AJTQC NPM 3V. 8FE 8FH 8FK AARCD ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 |
ID | FETCH-LOGICAL-c551t-43bfee4c79166ad1353785e5e1770ab7094640fd7cbf7a6992570064f8483a843 |
IEDL.DBID | DOA |
ISSN | 2396-8370 |
IngestDate | Wed Aug 27 01:28:48 EDT 2025 Fri Jul 11 11:07:54 EDT 2025 Wed Aug 13 08:38:38 EDT 2025 Thu Apr 03 07:05:15 EDT 2025 Tue Jul 01 01:30:51 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Sun Aug 31 08:58:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c551t-43bfee4c79166ad1353785e5e1770ab7094640fd7cbf7a6992570064f8483a843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5161-9880 0000-0001-9715-3211 0000-0001-5428-4959 |
OpenAccessLink | https://doaj.org/article/ea3cfa4f76ee4ef3a2f2ce84b271255f |
PMID | 38485724 |
PQID | 2956984620 |
PQPubID | 4669712 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ea3cfa4f76ee4ef3a2f2ce84b271255f proquest_miscellaneous_2958297548 proquest_journals_2956984620 pubmed_primary_38485724 crossref_citationtrail_10_1038_s41538_024_00248_z crossref_primary_10_1038_s41538_024_00248_z springer_journals_10_1038_s41538_024_00248_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-14 |
PublicationDateYYYYMMDD | 2024-03-14 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ science of food |
PublicationTitleAbbrev | npj Sci Food |
PublicationTitleAlternate | NPJ Sci Food |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | HarveyWTSARS-CoV-2 variants, spike mutations and immune escapeNat. Rev. Microbiol.2021194094241:CAS:528:DC%2BB3MXht1WqtbrP34075212816783410.1038/s41579-021-00573-0 MaslowskiKMRegulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43Nature2009461128212862009Natur.461.1282M1:CAS:528:DC%2BD1MXhtlOjt7vI19865172325673410.1038/nature08530 ChanJF-WSimulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibilityClin. Infect. Dis.202071242824462020weir.book.....C1:CAS:528:DC%2BB3cXisFamurzP3221562210.1093/cid/ciaa644 ShulpekovaYThe role of bile acids in the human body and in the development of diseasesMolecules20222734011:CAS:528:DC%2BB38XhsFaqt7%2FK35684337918238810.3390/molecules27113401 Ramirez-FariasCEffect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitziiBr. J. Nutr.20081015415501859058610.1017/S0007114508019880 GuilloteauPFrom the gut to the peripheral tissues: the multiple effects of butyrateNutr. Res Rev.2010233663841:CAS:528:DC%2BC3cXhsV2gu7vM2093716710.1017/S0954422410000247 KolidaSMeyerDGibsonGRA double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humansEur. J. Clin. Nutr.200761118911951:CAS:528:DC%2BD2sXhtFWht7vL1726841010.1038/sj.ejcn.1602636 ArpaiaNMetabolites produced by commensal bacteria promote peripheral regulatory T-cell generationNature20135044514552013Natur.504..451A1:CAS:528:DC%2BC3sXhvFOmtrrJ24226773386988410.1038/nature12726 ScharlauDMechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibreMutat. Res./Rev. Mutat. Res.200968239531:CAS:528:DC%2BD1MXhtVenu7vL10.1016/j.mrrev.2009.04.001 den BestenGThe role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolismJ. Lipid Res.2013542325234010.1194/jlr.R036012 van der BeekCMThe prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese menMetabolism20188725352995387610.1016/j.metabol.2018.06.009 GutiérrezNGarridoDSpecies deletions from microbiome consortia reveal key metabolic interactions between gut microbesmSystems20194e001851931311843663562210.1128/mSystems.00185-19 van PaassenJCorticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomesCrit. Care20202433317589773517710.1186/s13054-020-03400-9 LiYGut commensal derived-valeric acid protects against radiation injuriesGut Microbes20201178980631931652752438910.1080/19490976.2019.1709387 YeohYKGut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19Gut2021706981:CAS:528:DC%2BB3MXhtFegtLjK3343157810.1136/gutjnl-2020-323020 BrighentiFCasiraghiMCCanziEFerrariAEffect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteersEur. J. Clin. Nutr.1999537267331:CAS:528:DyaK1MXmsVOnsbg%3D1050977010.1038/sj.ejcn.1600841 SimonMVeitMOsterriederKGradzielskiMSurfactants – Compounds for inactivation of SARS-CoV-2 and other enveloped virusesCurr. Opin. Colloid Interface Sci.2021551014791:CAS:528:DC%2BB3MXhsVOltLvP34149296819622710.1016/j.cocis.2021.101479 BaxterNTDynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibersmBio201910e02566181:CAS:528:DC%2BC1MXht12htL7I30696735635599010.1128/mBio.02566-18 SonnenburgEDDiet-induced extinctions in the gut microbiota compound over generationsNature20165292122152016Natur.529..212S1:CAS:528:DC%2BC28Xns1KgtA%3D%3D26762459485091810.1038/nature16504 WangRInulin activates FXR-FGF15 signaling and further increases bile acids excretion in non-alcoholic fatty liver disease miceBiochem Biophys. Res Commun.20226001561621:CAS:528:DC%2BB38XlsVGnurk%3D3524051010.1016/j.bbrc.2022.02.033 ArifuzzamanMInulin fibre promotes microbiota-derived bile acids and type 2 inflammationNature20226115785842022Natur.611..578A1:CAS:528:DC%2BB38Xisl2lsrnK363237781057698510.1038/s41586-022-05380-y Centers for Disease Control and Prevention. Rates of COVID-19 Cases and Deaths by Vaccination Status. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. MerinoJDiet quality and risk and severity of COVID-19: a prospective cohort studyGut20217020961:CAS:528:DC%2BB3MXis1GisrvO3448930610.1136/gutjnl-2021-325353 ReichardtNPhylogenetic distribution of three pathways for propionate production within the human gut microbiotaISME J.20148132313351:CAS:528:DC%2BC2cXosVyqt74%3D24553467403023810.1038/ismej.2014.14 GueimondeMQualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel diseaseWorld J. Gastroenterol.200713398517663515417117310.3748/wjg.v13.i29.3985 ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165952020PNAS..11716587I1:CAS:528:DC%2BB3cXhsFahtrvI32571934736825510.1073/pnas.2009799117 ZuoTAlterations in gut microbiota of patients with COVID-19 during time of hospitalizationGastroenterology2020159944955.e81:CAS:528:DC%2BB3cXhvVKns73J3244256210.1053/j.gastro.2020.05.048 HammingITissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesisJ. Pathol.20042036316371:CAS:528:DC%2BD2cXlsVWktbY%3D15141377716772010.1002/path.1570 BoetsEQuantification of in vivo colonic short chain fatty acid production from inulinNutrients20157891689291:CAS:528:DC%2BC2sXivVeisg%3D%3D26516911466356810.3390/nu7115440 CaoHSecondary bile acid-induced dysbiosis promotes intestinal carcinogenesisInt J. Cancer2017140254525561:CAS:528:DC%2BC2sXjsVyksbo%3D2818752610.1002/ijc.30643 PaulyMJInulin supplementation disturbs hepatic cholesterol and bile acid metabolism independent from housing temperatureNutrients20201232001:CAS:528:DC%2BB3cXitlyrtLfJ33092056758913710.3390/nu12103200 den HartighLJObese mice losing weight due to trans-10,cis-12 conjugated linoleic acid supplementation or food restriction harbor distinct gut microbiotaJ. Nutr.201814856257210.1093/jn/nxy011 YoshimotoSObesity-induced gut microbial metabolite promotes liver cancer through senescence secretomeNature2013499971012013Natur.499...97Y1:CAS:528:DC%2BC3sXhtVWgurvK2380376010.1038/nature12347 GadaletaRMFarnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel diseaseGut2011604631:CAS:528:DC%2BC3MXltVKgur8%3D2124226110.1136/gut.2010.212159 SmithPMThe microbial metabolites, short-chain fatty acids, regulate colonic T cell homeostasisScience (1979)20133415695731:CAS:528:DC%2BC3sXhtFyjsr3P Geneva: World Health Organization. WHO COVID-19 Dashboard. Geneva: World Health Organization. (2023). WHO COVID-19 Dashboard. https://Covid19.Who.Int/. SandersJMMonogueMLJodlowskiTZCutrellJBPharmacologic treatments for coronavirus disease 2019 (COVID-19): a reviewJAMA2020323182418361:CAS:528:DC%2BB3cXps1Srur0%3D32282022 JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x SandersMEMerensteinDJReidGGibsonGRRastallRAProbiotics and prebiotics in intestinal health and disease: from biology to the clinicNat. Rev. Gastroenterol. Hepatol.2019166056163129696910.1038/s41575-019-0173-3 TrompetteADietary fiber confers protection against Flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolismImmunity2018489921005.e81:CAS:528:DC%2BC1cXpsFygsb8%3D2976818010.1016/j.immuni.2018.04.022 McNabneySHenaganTShort chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistanceNutrients20179134829231905574879810.3390/nu9121348 VitalMHoweACTiedjeJMRevealing the bacterial butyrate synthesis pathways by analyzing (Meta)genomic datamBio20145e0088924757212399451210.1128/mBio.00889-14 GuglielmettiSMoraDGschwenderMPoppKRandomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life – a double-blind, placebo-controlled studyAliment Pharm. Ther.201133112311321:STN:280:DC%2BC3MvjtlSqtw%3D%3D10.1111/j.1365-2036.2011.04633.x GaryMThe impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccinesmBio202213e0297921 WangJDCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarctionJ. Mol. Cell Cardiol.20211513141:CAS:528:DC%2BB3cXisVahur3N3313014910.1016/j.yjmcc.2020.10.014 BallPThe lightning-fast quest for COVID vaccines — and what it means for other diseasesNature202158916182021Natur.589...16B1:CAS:528:DC%2BB3cXis1yhu7vP3334001810.1038/d41586-020-03626-1 CabralLGut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharidesNat. Commun.2022132022NatCo..13..629C1:CAS:528:DC%2BB38XislGrtb0%3D35110564881077610.1038/s41467-022-28310-y SchaafsmaGSlavinJLSignificance of inulin fructans in the human dietCompr. Rev. Food Sci. Food Saf.20151437471:CAS:528:DC%2BC2cXitVOhsL%2FL3340181010.1111/1541-4337.12119 RidlonJMDanielSLGaskinsHRThe Hylemon-Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiologyJ. Lipid Res2023641003921:CAS:528:DC%2BB3sXhsFCrtrjF372112501038294810.1016/j.jlr.2023.100392 HopkinsMJMacfarlaneGTNondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitroAppl. Environ. Microbiol.200369192019272003ApEnM..69.1920H1:CAS:528:DC%2BD3sXivFKrurk%3D1267666515480610.1128/AEM.69.4.1920-1927.2003 TanLYKomarasamyTVR E Birkeland (248_CR30) 2020; 59 G den Besten (248_CR36) 2013; 54 WT Harvey (248_CR5) 2021; 19 JM Sanders (248_CR13) 2020; 323 S Montazersaheb (248_CR12) 2022; 19 Y Fan (248_CR20) 2021; 19 SE McGarr (248_CR74) 2005; 39 S Guglielmetti (248_CR32) 2011; 33 MJ Hopkins (248_CR25) 2003; 69 RM Gadaleta (248_CR47) 2011; 60 N Reichardt (248_CR67) 2014; 8 T Zuo (248_CR22) 2020; 159 R Wang (248_CR46) 2022; 600 JM Ridlon (248_CR49) 2016; 7 ME Sanders (248_CR18) 2019; 16 P Brodin (248_CR8) 2021; 27 Y Belkaid (248_CR16) 2014; 157 M Gary (248_CR6) 2022; 13 ED Sonnenburg (248_CR17) 2016; 529 C Ramirez-Farias (248_CR28) 2008; 101 Y Shulpekova (248_CR75) 2022; 27 I Hamming (248_CR53) 2004; 203 M Merad (248_CR9) 2020; 20 M Arifuzzaman (248_CR44) 2022; 611 S Fernández-Veledo (248_CR64) 2019; 20 S Yoshimoto (248_CR73) 2013; 499 P Guilloteau (248_CR58) 2010; 23 F Brighenti (248_CR29) 1999; 53 T Brevini (248_CR51) 2023; 615 H Cao (248_CR72) 2017; 140 A Harper (248_CR21) 2021; 10 KBMS Islam (248_CR71) 2011; 141 M Simon (248_CR77) 2021; 55 M Gueimonde (248_CR33) 2007; 13 L Cabral (248_CR65) 2022; 13 M Vital (248_CR60) 2014; 5 HJ Flint (248_CR68) 2015; 74 J van Paassen (248_CR11) 2020; 24 KM Maslowski (248_CR38) 2009; 461 M Nagai (248_CR52) 2023; 14 YK Yeoh (248_CR23) 2021; 70 X Fu (248_CR59) 2019; 59 D Xavier-Santos (248_CR24) 2022; 120 D Scharlau (248_CR31) 2009; 682 LY Tan (248_CR7) 2021; 44 S Kolida (248_CR27) 2007; 61 N Gutiérrez (248_CR69) 2019; 4 J Merino (248_CR15) 2021; 70 RA Quinn (248_CR19) 2020; 579 PM Smith (248_CR39) 2013; 341 CB Jackson (248_CR54) 2022; 23 MJ Pauly (248_CR45) 2020; 12 GR Gibson (248_CR26) 1995; 108 E Boets (248_CR42) 2015; 7 P Ball (248_CR2) 2021; 589 KW Lange (248_CR14) 2020; 4 S Hashimoto (248_CR78) 2023; 58 J Wang (248_CR50) 2021; 151 NT Baxter (248_CR61) 2019; 10 G Schaafsma (248_CR34) 2015; 14 CM van der Beek (248_CR41) 2018; 87 D Parada Venegas (248_CR62) 2019; 10 N Reusch (248_CR76) 2021; 12 248_CR4 A Trompette (248_CR43) 2018; 48 Y Wan (248_CR55) 2020; 94 Y Li (248_CR63) 2020; 11 248_CR1 LJ den Hartigh (248_CR66) 2018; 148 248_CR3 CH Kim (248_CR40) 2018; 154 N Arpaia (248_CR37) 2013; 504 JM Ridlon (248_CR70) 2023; 64 TWH Pols (248_CR48) 2011; 29 RL Gottlieb (248_CR10) 2021; 386 JF-W Chan (248_CR57) 2020; 71 S McNabney (248_CR35) 2017; 9 M Imai (248_CR56) 2020; 117 |
References_xml | – reference: TrompetteADietary fiber confers protection against Flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolismImmunity2018489921005.e81:CAS:528:DC%2BC1cXpsFygsb8%3D2976818010.1016/j.immuni.2018.04.022 – reference: ScharlauDMechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibreMutat. Res./Rev. Mutat. Res.200968239531:CAS:528:DC%2BD1MXhtVenu7vL10.1016/j.mrrev.2009.04.001 – reference: BaxterNTDynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibersmBio201910e02566181:CAS:528:DC%2BC1MXht12htL7I30696735635599010.1128/mBio.02566-18 – reference: Centers for Disease Control and Prevention. Rates of COVID-19 Cases and Deaths by Vaccination Status. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker. – reference: LiYGut commensal derived-valeric acid protects against radiation injuriesGut Microbes20201178980631931652752438910.1080/19490976.2019.1709387 – reference: SandersMEMerensteinDJReidGGibsonGRRastallRAProbiotics and prebiotics in intestinal health and disease: from biology to the clinicNat. Rev. Gastroenterol. Hepatol.2019166056163129696910.1038/s41575-019-0173-3 – reference: GueimondeMQualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel diseaseWorld J. Gastroenterol.200713398517663515417117310.3748/wjg.v13.i29.3985 – reference: YoshimotoSObesity-induced gut microbial metabolite promotes liver cancer through senescence secretomeNature2013499971012013Natur.499...97Y1:CAS:528:DC%2BC3sXhtVWgurvK2380376010.1038/nature12347 – reference: BallPThe lightning-fast quest for COVID vaccines — and what it means for other diseasesNature202158916182021Natur.589...16B1:CAS:528:DC%2BB3cXis1yhu7vP3334001810.1038/d41586-020-03626-1 – reference: LangeKWNakamuraYLifestyle factors in the prevention of COVID-19Glob. Health J.2020414615233520339783403110.1016/j.glohj.2020.11.002 – reference: Geneva: World Health Organization. WHO COVID-19 Dashboard. Geneva: World Health Organization. (2023). WHO COVID-19 Dashboard. https://Covid19.Who.Int/. – reference: GuilloteauPFrom the gut to the peripheral tissues: the multiple effects of butyrateNutr. Res Rev.2010233663841:CAS:528:DC%2BC3cXhsV2gu7vM2093716710.1017/S0954422410000247 – reference: SonnenburgEDDiet-induced extinctions in the gut microbiota compound over generationsNature20165292122152016Natur.529..212S1:CAS:528:DC%2BC28Xns1KgtA%3D%3D26762459485091810.1038/nature16504 – reference: HarveyWTSARS-CoV-2 variants, spike mutations and immune escapeNat. Rev. Microbiol.2021194094241:CAS:528:DC%2BB3MXht1WqtbrP34075212816783410.1038/s41579-021-00573-0 – reference: McNabneySHenaganTShort chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistanceNutrients20179134829231905574879810.3390/nu9121348 – reference: Fernández-VeledoSVendrellJGut microbiota-derived succinate: friend or foe in human metabolic diseases?Rev. Endocr. Metab. Disord.20192043944731654259693878810.1007/s11154-019-09513-z – reference: CaoHSecondary bile acid-induced dysbiosis promotes intestinal carcinogenesisInt J. Cancer2017140254525561:CAS:528:DC%2BC2sXjsVyksbo%3D2818752610.1002/ijc.30643 – reference: HashimotoSChanges in intestinal bacteria and imbalances of metabolites induced in the intestines of pancreatic ductal adenocarcinoma patients in a Japanese population: a preliminary resultScand. J. Gastroenterol.2023581931981:CAS:528:DC%2BB38XisVOqtLjI3603624310.1080/00365521.2022.2114812 – reference: RidlonJMHarrisSCBhowmikSKangDJHylemonPBConsequences of bile salt biotransformations by intestinal bacteriaGut Microbes2016722391:CAS:528:DC%2BC28XksVSqsbk%3D26939849485645410.1080/19490976.2015.1127483 – reference: Parada VenegasDShort chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseasesFront Immunol.20191027730915065642126810.3389/fimmu.2019.00277 – reference: NagaiMHigh body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infectionNat. Commun.2023142023NatCo..14.3863N1:CAS:528:DC%2BB3sXhtlKqt73P373914271031369210.1038/s41467-023-39569-0 – reference: PaulyMJInulin supplementation disturbs hepatic cholesterol and bile acid metabolism independent from housing temperatureNutrients20201232001:CAS:528:DC%2BB3cXitlyrtLfJ33092056758913710.3390/nu12103200 – reference: Ramirez-FariasCEffect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitziiBr. J. Nutr.20081015415501859058610.1017/S0007114508019880 – reference: SmithPMThe microbial metabolites, short-chain fatty acids, regulate colonic T cell homeostasisScience (1979)20133415695731:CAS:528:DC%2BC3sXhtFyjsr3P – reference: den HartighLJObese mice losing weight due to trans-10,cis-12 conjugated linoleic acid supplementation or food restriction harbor distinct gut microbiotaJ. Nutr.201814856257210.1093/jn/nxy011 – reference: VitalMHoweACTiedjeJMRevealing the bacterial butyrate synthesis pathways by analyzing (Meta)genomic datamBio20145e0088924757212399451210.1128/mBio.00889-14 – reference: ShulpekovaYThe role of bile acids in the human body and in the development of diseasesMolecules20222734011:CAS:528:DC%2BB38XhsFaqt7%2FK35684337918238810.3390/molecules27113401 – reference: ArpaiaNMetabolites produced by commensal bacteria promote peripheral regulatory T-cell generationNature20135044514552013Natur.504..451A1:CAS:528:DC%2BC3sXhvFOmtrrJ24226773386988410.1038/nature12726 – reference: MontazersahebSCOVID-19 infection: an overview on cytokine storm and related interventionsVirol. J.202219921:CAS:528:DC%2BB38XhsVWgtbnI35619180913414410.1186/s12985-022-01814-1 – reference: BreviniTFXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2Nature20236151341422023Natur.615..134B1:CAS:528:DC%2BB3sXisVKhtrY%3D3647030410.1038/s41586-022-05594-0 – reference: ZuoTAlterations in gut microbiota of patients with COVID-19 during time of hospitalizationGastroenterology2020159944955.e81:CAS:528:DC%2BB3cXhvVKns73J3244256210.1053/j.gastro.2020.05.048 – reference: MeradMMartinJCPathological inflammation in patients with COVID-19: a key role for monocytes and macrophagesNat. Rev. Immunol.2020203553621:CAS:528:DC%2BB3cXoslOqt7s%3D32376901720139510.1038/s41577-020-0331-4 – reference: SandersJMMonogueMLJodlowskiTZCutrellJBPharmacologic treatments for coronavirus disease 2019 (COVID-19): a reviewJAMA2020323182418361:CAS:528:DC%2BB3cXps1Srur0%3D32282022 – reference: ChanJF-WSimulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibilityClin. Infect. Dis.202071242824462020weir.book.....C1:CAS:528:DC%2BB3cXisFamurzP3221562210.1093/cid/ciaa644 – reference: PolsTWHNoriegaLGNomuraMAuwerxJSchoonjansKThe bile acid membrane receptor TGR5: a valuable metabolic targetDigestive Dis.201129374410.1159/000324126 – reference: CabralLGut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharidesNat. Commun.2022132022NatCo..13..629C1:CAS:528:DC%2BB38XislGrtb0%3D35110564881077610.1038/s41467-022-28310-y – reference: van der BeekCMThe prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese menMetabolism20188725352995387610.1016/j.metabol.2018.06.009 – reference: GottliebRLEarly remdesivir to prevent progression to severe Covid-19 in outpatientsN. Engl. J. Med.20213863053153493714510.1056/NEJMoa2116846 – reference: ReichardtNPhylogenetic distribution of three pathways for propionate production within the human gut microbiotaISME J.20148132313351:CAS:528:DC%2BC2cXosVyqt74%3D24553467403023810.1038/ismej.2014.14 – reference: BirkelandEPrebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trialEur. J. Nutr.202059332533381:CAS:528:DC%2BB3cXhtVShtbnP32440730750109710.1007/s00394-020-02282-5 – reference: BoetsEQuantification of in vivo colonic short chain fatty acid production from inulinNutrients20157891689291:CAS:528:DC%2BC2sXivVeisg%3D%3D26516911466356810.3390/nu7115440 – reference: GibsonGRBeattyERWangXCummingsJHSelective stimulation of bifidobacteria in the human colon by oligofructose and inulinGastroenterology19951089759821:CAS:528:DyaK2MXlt1emt7g%3D769861310.1016/0016-5085(95)90192-2 – reference: FlintHJDuncanSHScottKPLouisPLinks between diet, gut microbiota composition and gut metabolismProc. Nutr. Soc.20157413221:CAS:528:DC%2BC2MXhsVCnu74%3D2526855210.1017/S0029665114001463 – reference: McGarrSERidlonJMHylemonPBDiet, anaerobic bacterial metabolism, and colon cancer: a review of the literatureJ. Clin. Gastroenterol.2005399810915681903 – reference: FuXLiuZZhuCMouHKongQNondigestible carbohydrates, butyrate, and butyrate-producing bacteriaCrit. Rev. Food Sci. Nutr.201959S130S1521:CAS:528:DC%2BC1cXisFykt7nI3058055610.1080/10408398.2018.1542587 – reference: MaslowskiKMRegulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43Nature2009461128212862009Natur.461.1282M1:CAS:528:DC%2BD1MXhtlOjt7vI19865172325673410.1038/nature08530 – reference: JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x – reference: HammingITissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesisJ. Pathol.20042036316371:CAS:528:DC%2BD2cXlsVWktbY%3D15141377716772010.1002/path.1570 – reference: van PaassenJCorticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomesCrit. Care20202433317589773517710.1186/s13054-020-03400-9 – reference: WangRInulin activates FXR-FGF15 signaling and further increases bile acids excretion in non-alcoholic fatty liver disease miceBiochem Biophys. Res Commun.20226001561621:CAS:528:DC%2BB38XlsVGnurk%3D3524051010.1016/j.bbrc.2022.02.033 – reference: BrighentiFCasiraghiMCCanziEFerrariAEffect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteersEur. J. Clin. Nutr.1999537267331:CAS:528:DyaK1MXmsVOnsbg%3D1050977010.1038/sj.ejcn.1600841 – reference: SimonMVeitMOsterriederKGradzielskiMSurfactants – Compounds for inactivation of SARS-CoV-2 and other enveloped virusesCurr. Opin. Colloid Interface Sci.2021551014791:CAS:528:DC%2BB3MXhsVOltLvP34149296819622710.1016/j.cocis.2021.101479 – reference: ReuschNNeutrophils in COVID-19Front Immunol.2021126524701:CAS:528:DC%2BB3MXpvVyhsrw%3D33841435802707710.3389/fimmu.2021.652470 – reference: TanLYKomarasamyTVRmt BalasubramaniamVHyperinflammatory immune response and COVID-19: a double edged swordFront Immunol.202144187196 – reference: KimCHImmune regulation by microbiome metabolitesImmunology20181542202291:CAS:528:DC%2BC1cXns1Wns70%3D29569377598022510.1111/imm.12930 – reference: WangJDCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarctionJ. Mol. Cell Cardiol.20211513141:CAS:528:DC%2BB3cXisVahur3N3313014910.1016/j.yjmcc.2020.10.014 – reference: KolidaSMeyerDGibsonGRA double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humansEur. J. Clin. Nutr.200761118911951:CAS:528:DC%2BD2sXhtFWht7vL1726841010.1038/sj.ejcn.1602636 – reference: ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165952020PNAS..11716587I1:CAS:528:DC%2BB3cXhsFahtrvI32571934736825510.1073/pnas.2009799117 – reference: GutiérrezNGarridoDSpecies deletions from microbiome consortia reveal key metabolic interactions between gut microbesmSystems20194e001851931311843663562210.1128/mSystems.00185-19 – reference: den BestenGThe role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolismJ. Lipid Res.2013542325234010.1194/jlr.R036012 – reference: BelkaidYHandTWRole of the microbiota in immunity and inflammationCell20141571211411:CAS:528:DC%2BC2cXmtVCqsL8%3D24679531405676510.1016/j.cell.2014.03.011 – reference: WanYShangJGrahamRBaricRSLiFReceptor recognition by the novel coronavirus from Wuhan: ananalysis based on decade-long structural studies of SARS CoronavirusJ. Virol.202094e001272031996437708189510.1128/JVI.00127-20 – reference: ArifuzzamanMInulin fibre promotes microbiota-derived bile acids and type 2 inflammationNature20226115785842022Natur.611..578A1:CAS:528:DC%2BB38Xisl2lsrnK363237781057698510.1038/s41586-022-05380-y – reference: GuglielmettiSMoraDGschwenderMPoppKRandomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life – a double-blind, placebo-controlled studyAliment Pharm. Ther.201133112311321:STN:280:DC%2BC3MvjtlSqtw%3D%3D10.1111/j.1365-2036.2011.04633.x – reference: COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. – reference: IslamKBMSBile acid is a host factor that regulates the composition of the cecal microbiota in ratsGastroenterology2011141177317811:CAS:528:DC%2BC3MXhtlOksb3F2183904010.1053/j.gastro.2011.07.046 – reference: SchaafsmaGSlavinJLSignificance of inulin fructans in the human dietCompr. Rev. Food Sci. Food Saf.20151437471:CAS:528:DC%2BC2cXitVOhsL%2FL3340181010.1111/1541-4337.12119 – reference: RidlonJMDanielSLGaskinsHRThe Hylemon-Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiologyJ. Lipid Res2023641003921:CAS:528:DC%2BB3sXhsFCrtrjF372112501038294810.1016/j.jlr.2023.100392 – reference: HopkinsMJMacfarlaneGTNondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitroAppl. Environ. Microbiol.200369192019272003ApEnM..69.1920H1:CAS:528:DC%2BD3sXivFKrurk%3D1267666515480610.1128/AEM.69.4.1920-1927.2003 – reference: GadaletaRMFarnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel diseaseGut2011604631:CAS:528:DC%2BC3MXltVKgur8%3D2124226110.1136/gut.2010.212159 – reference: BrodinPImmune determinants of COVID-19 disease presentation and severityNat. Med.20212728331:CAS:528:DC%2BB3MXht1OktLw%3D3344201610.1038/s41591-020-01202-8 – reference: HarperAViral infections, the microbiome, and probioticsFront Cell Infect. Microbiol.20211059616633643929790752210.3389/fcimb.2020.596166 – reference: GaryMThe impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccinesmBio202213e0297921 – reference: FanYPedersenOGut microbiota in human metabolic health and diseaseNat. Rev. Microbiol.20211955711:CAS:528:DC%2BB3cXhslGhsbrJ3288794610.1038/s41579-020-0433-9 – reference: YeohYKGut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19Gut2021706981:CAS:528:DC%2BB3MXhtFegtLjK3343157810.1136/gutjnl-2020-323020 – reference: MerinoJDiet quality and risk and severity of COVID-19: a prospective cohort studyGut20217020961:CAS:528:DC%2BB3MXis1GisrvO3448930610.1136/gutjnl-2021-325353 – reference: QuinnRAGlobal chemical effects of the microbiome include new bile-acid conjugationsNature20205791231292020Natur.579..123Q1:CAS:528:DC%2BB3cXjvFynsro%3D32103176725266810.1038/s41586-020-2047-9 – reference: Xavier-SantosDEvidences and perspectives of the use of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention and treatment of COVID-19: a bibliometric analysis and systematic reviewTrends Food Sci. Technol.20221201741921:CAS:528:DC%2BB38XmsFKjug%3D%3D35002079872030110.1016/j.tifs.2021.12.033 – volume: 151 start-page: 3 year: 2021 ident: 248_CR50 publication-title: J. Mol. Cell Cardiol. doi: 10.1016/j.yjmcc.2020.10.014 – volume: 54 start-page: 2325 year: 2013 ident: 248_CR36 publication-title: J. Lipid Res. doi: 10.1194/jlr.R036012 – volume: 23 start-page: 3 year: 2022 ident: 248_CR54 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00418-x – volume: 108 start-page: 975 year: 1995 ident: 248_CR26 publication-title: Gastroenterology doi: 10.1016/0016-5085(95)90192-2 – volume: 74 start-page: 13 year: 2015 ident: 248_CR68 publication-title: Proc. Nutr. Soc. doi: 10.1017/S0029665114001463 – volume: 70 start-page: 2096 year: 2021 ident: 248_CR15 publication-title: Gut doi: 10.1136/gutjnl-2021-325353 – volume: 59 start-page: S130 year: 2019 ident: 248_CR59 publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2018.1542587 – ident: 248_CR4 – volume: 5 start-page: e00889 year: 2014 ident: 248_CR60 publication-title: mBio doi: 10.1128/mBio.00889-14 – volume: 461 start-page: 1282 year: 2009 ident: 248_CR38 publication-title: Nature doi: 10.1038/nature08530 – volume: 8 start-page: 1323 year: 2014 ident: 248_CR67 publication-title: ISME J. doi: 10.1038/ismej.2014.14 – volume: 7 start-page: 8916 year: 2015 ident: 248_CR42 publication-title: Nutrients doi: 10.3390/nu7115440 – volume: 10 start-page: 596166 year: 2021 ident: 248_CR21 publication-title: Front Cell Infect. Microbiol. doi: 10.3389/fcimb.2020.596166 – volume: 20 start-page: 439 year: 2019 ident: 248_CR64 publication-title: Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-019-09513-z – volume: 44 start-page: 187 year: 2021 ident: 248_CR7 publication-title: Front Immunol. – volume: 61 start-page: 1189 year: 2007 ident: 248_CR27 publication-title: Eur. J. Clin. Nutr. doi: 10.1038/sj.ejcn.1602636 – volume: 12 start-page: 652470 year: 2021 ident: 248_CR76 publication-title: Front Immunol. doi: 10.3389/fimmu.2021.652470 – volume: 120 start-page: 174 year: 2022 ident: 248_CR24 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.12.033 – volume: 87 start-page: 25 year: 2018 ident: 248_CR41 publication-title: Metabolism doi: 10.1016/j.metabol.2018.06.009 – volume: 12 start-page: 3200 year: 2020 ident: 248_CR45 publication-title: Nutrients doi: 10.3390/nu12103200 – volume: 140 start-page: 2545 year: 2017 ident: 248_CR72 publication-title: Int J. Cancer doi: 10.1002/ijc.30643 – volume: 16 start-page: 605 year: 2019 ident: 248_CR18 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0173-3 – volume: 499 start-page: 97 year: 2013 ident: 248_CR73 publication-title: Nature doi: 10.1038/nature12347 – volume: 70 start-page: 698 year: 2021 ident: 248_CR23 publication-title: Gut doi: 10.1136/gutjnl-2020-323020 – volume: 39 start-page: 98 year: 2005 ident: 248_CR74 publication-title: J. Clin. Gastroenterol. – volume: 323 start-page: 1824 year: 2020 ident: 248_CR13 publication-title: JAMA doi: 10.1001/jama.2019.20153 – volume: 20 start-page: 355 year: 2020 ident: 248_CR9 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0331-4 – volume: 13 year: 2022 ident: 248_CR65 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28310-y – volume: 14 year: 2023 ident: 248_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39569-0 – volume: 94 start-page: e00127 year: 2020 ident: 248_CR55 publication-title: J. Virol. doi: 10.1128/JVI.00127-20 – volume: 58 start-page: 193 year: 2023 ident: 248_CR78 publication-title: Scand. J. Gastroenterol. doi: 10.1080/00365521.2022.2114812 – volume: 10 start-page: 277 year: 2019 ident: 248_CR62 publication-title: Front Immunol. doi: 10.3389/fimmu.2019.00277 – ident: 248_CR3 – volume: 504 start-page: 451 year: 2013 ident: 248_CR37 publication-title: Nature doi: 10.1038/nature12726 – volume: 341 start-page: 569 year: 2013 ident: 248_CR39 publication-title: Science (1979) – volume: 682 start-page: 39 year: 2009 ident: 248_CR31 publication-title: Mutat. Res./Rev. Mutat. Res. doi: 10.1016/j.mrrev.2009.04.001 – volume: 13 start-page: 3985 year: 2007 ident: 248_CR33 publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v13.i29.3985 – volume: 19 start-page: 92 year: 2022 ident: 248_CR12 publication-title: Virol. J. doi: 10.1186/s12985-022-01814-1 – volume: 19 start-page: 409 year: 2021 ident: 248_CR5 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-021-00573-0 – volume: 4 start-page: 146 year: 2020 ident: 248_CR14 publication-title: Glob. Health J. doi: 10.1016/j.glohj.2020.11.002 – volume: 141 start-page: 1773 year: 2011 ident: 248_CR71 publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.07.046 – volume: 11 start-page: 789 year: 2020 ident: 248_CR63 publication-title: Gut Microbes doi: 10.1080/19490976.2019.1709387 – volume: 27 start-page: 3401 year: 2022 ident: 248_CR75 publication-title: Molecules doi: 10.3390/molecules27113401 – volume: 154 start-page: 220 year: 2018 ident: 248_CR40 publication-title: Immunology doi: 10.1111/imm.12930 – volume: 29 start-page: 37 year: 2011 ident: 248_CR48 publication-title: Digestive Dis. doi: 10.1159/000324126 – volume: 48 start-page: 992 year: 2018 ident: 248_CR43 publication-title: Immunity doi: 10.1016/j.immuni.2018.04.022 – volume: 611 start-page: 578 year: 2022 ident: 248_CR44 publication-title: Nature doi: 10.1038/s41586-022-05380-y – volume: 117 start-page: 16587 year: 2020 ident: 248_CR56 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2009799117 – volume: 529 start-page: 212 year: 2016 ident: 248_CR17 publication-title: Nature doi: 10.1038/nature16504 – volume: 14 start-page: 37 year: 2015 ident: 248_CR34 publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12119 – volume: 71 start-page: 2428 year: 2020 ident: 248_CR57 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa644 – volume: 7 start-page: 22 year: 2016 ident: 248_CR49 publication-title: Gut Microbes doi: 10.1080/19490976.2015.1127483 – volume: 615 start-page: 134 year: 2023 ident: 248_CR51 publication-title: Nature doi: 10.1038/s41586-022-05594-0 – volume: 23 start-page: 366 year: 2010 ident: 248_CR58 publication-title: Nutr. Res Rev. doi: 10.1017/S0954422410000247 – volume: 24 year: 2020 ident: 248_CR11 publication-title: Crit. Care doi: 10.1186/s13054-020-03400-9 – volume: 9 start-page: 1348 year: 2017 ident: 248_CR35 publication-title: Nutrients doi: 10.3390/nu9121348 – volume: 600 start-page: 156 year: 2022 ident: 248_CR46 publication-title: Biochem Biophys. Res Commun. doi: 10.1016/j.bbrc.2022.02.033 – volume: 386 start-page: 305 year: 2021 ident: 248_CR10 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2116846 – volume: 148 start-page: 562 year: 2018 ident: 248_CR66 publication-title: J. Nutr. doi: 10.1093/jn/nxy011 – volume: 55 start-page: 101479 year: 2021 ident: 248_CR77 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2021.101479 – volume: 159 start-page: 944 year: 2020 ident: 248_CR22 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.05.048 – volume: 589 start-page: 16 year: 2021 ident: 248_CR2 publication-title: Nature doi: 10.1038/d41586-020-03626-1 – volume: 27 start-page: 28 year: 2021 ident: 248_CR8 publication-title: Nat. Med. doi: 10.1038/s41591-020-01202-8 – volume: 19 start-page: 55 year: 2021 ident: 248_CR20 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0433-9 – volume: 579 start-page: 123 year: 2020 ident: 248_CR19 publication-title: Nature doi: 10.1038/s41586-020-2047-9 – volume: 53 start-page: 726 year: 1999 ident: 248_CR29 publication-title: Eur. J. Clin. Nutr. doi: 10.1038/sj.ejcn.1600841 – volume: 60 start-page: 463 year: 2011 ident: 248_CR47 publication-title: Gut doi: 10.1136/gut.2010.212159 – volume: 59 start-page: 3325 year: 2020 ident: 248_CR30 publication-title: Eur. J. Nutr. doi: 10.1007/s00394-020-02282-5 – volume: 13 start-page: e02979 year: 2022 ident: 248_CR6 publication-title: mBio – volume: 203 start-page: 631 year: 2004 ident: 248_CR53 publication-title: J. Pathol. doi: 10.1002/path.1570 – volume: 64 start-page: 100392 year: 2023 ident: 248_CR70 publication-title: J. Lipid Res doi: 10.1016/j.jlr.2023.100392 – volume: 4 start-page: e00185 year: 2019 ident: 248_CR69 publication-title: mSystems doi: 10.1128/mSystems.00185-19 – ident: 248_CR1 – volume: 157 start-page: 121 year: 2014 ident: 248_CR16 publication-title: Cell doi: 10.1016/j.cell.2014.03.011 – volume: 101 start-page: 541 year: 2008 ident: 248_CR28 publication-title: Br. J. Nutr. doi: 10.1017/S0007114508019880 – volume: 10 start-page: e02566 year: 2019 ident: 248_CR61 publication-title: mBio doi: 10.1128/mBio.02566-18 – volume: 33 start-page: 1123 year: 2011 ident: 248_CR32 publication-title: Aliment Pharm. Ther. doi: 10.1111/j.1365-2036.2011.04633.x – volume: 69 start-page: 1920 year: 2003 ident: 248_CR25 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.4.1920-1927.2003 |
SSID | ssj0002140507 |
Score | 2.2711046 |
Snippet | Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited... Abstract Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18 |
SubjectTerms | 631/326/2565/2134 631/326/2565/2142 692/4020/2741/2135 692/700/2814 Antiviral agents Chemistry Chemistry and Materials Science Chemistry/Food Science Community structure COVID-19 Food Microbiology Food Science Hamsters Immunomodulation Immunomodulators Intestinal microflora Inulin Microbiomes Morbidity Nutrition Prebiotics Severe acute respiratory syndrome coronavirus 2 Survival Vaccination Viral diseases Weight loss |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvXBBfBNakJEQF7Ca2E7snFBbWlVIrKqWop6IbMdeVtokZTd7aH89Y8dJhYDeomQSxZ4Z-43HfoPQO5fbOjOZJWAuhnAtGVGZLEgmNGepNRAV-UDx66w4ueBfLvPLuOC2jtsqxzExDNR1Z_wa-R4FIF_CZEnTT1e_iK8a5bOrsYTGfbQNQ7AEC98-OJqdnk2rLBTiB0A88bRMyuTemgcfh6mJBD4vcvPHjBSI-_-FNv_KlIYJ6PgRehiRI94fVP0Y3bPtE5R8Xtgev8eR3nOJZyO7_lP043Rl9aIDcbxo_YZzrBq79EfyAV7i8_2zc3LYfScUjxuyWrjCP1XjuRPWWF_jpqtDda92jgEn4vmmx81iYG5q7DN0cXz07fCExHIKxAAs6gln2lnLjQBEWKjaF7wQMre5zYRIlRYQ6BU8dbUw2glVlKUvcAeIxUkumZKcPUdbbdfalwjTMk2VolprKbjKValKYWtqUqGMBkCVoGzs0spErnFf8mJZhZw3k9Wghgo0UAU1VDcJ-jC9czUwbdwpfeA1NUl6luxwo1vNq-h0lVXMOMWdKKDd1jFFHTVWck0F4LrcJWh31HMVXXdd3Rpagt5Oj8HpfCZFtbbbBJlwJJnLBL0Y7GP6EwbdlQvKE_RxNJjbj_-_Qa_u_pcd9IAGm2Uk47toq19t7GuAQ71-E23-N2-TBmM priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoALgvIKFGQkxAUsEtuJnWMJVBUSFaIU9YRle51lpU2CdrMH-usZOw-EKEjcomQc2Z5x_E088w3A8zr3i8xlnqK5OCqs4tRkqqCZtIKn3qFXFBzFD6fFybl4f5Ff7AGbcmFi0H6ktIyf6Sk67PVWxKWJOwqNNFz08hpcD9TtIYyvKqr5vwpDjwExzpgfk3J1RdPf9qBI1X8VvvzjbDRuOce34daIFcnR0Ls7sOfbA7hRTSXaDiB5u_I9eUFGcs81OZ249e_C148bb1cdNiWrNoSbE9P4dUjIR3BJzo4-ndGq-0IZmcKxWrwi30wTmBO2xP4gTbeItb3aJUGUSJa7njSrgbep8ffg_Pjd5-qEjsUUqENQ1FPBbe29cBLxYGEWodyFVLnPfSZlaqxEN68Qab2QztbSFGUZytshXqmVUNwowe_Dftu1_iEQVqapMcxaiwowuSlNKf2CuVQaZxFOJZBN06vdyDQeCl6sdTzx5koPKtGoDR1Voi8TeDm3-T7wbPxT-k3Q2iwZOLLjjW6z1KPNaG-4q42oZYHj9jU3rGbOK2GZRFSX1wkcTjrX48Ldaob-YomYjKUJPJsfo1rDOYppfbeLMjEhWagEHgy2MveE43TlkokEXk3G8-vlfx_Qo_8Tfww3WbRnTjNxCPv9ZuefIDjq7dO4Gn4CtDwHCQ priority: 102 providerName: Springer Nature |
Title | Prebiotic inulin ameliorates SARS-CoV-2 infection in hamsters by modulating the gut microbiome |
URI | https://link.springer.com/article/10.1038/s41538-024-00248-z https://www.ncbi.nlm.nih.gov/pubmed/38485724 https://www.proquest.com/docview/2956984620 https://www.proquest.com/docview/2958297548 https://doaj.org/article/ea3cfa4f76ee4ef3a2f2ce84b271255f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLgg3gTKykiIC1gkthM7x-3SqlqJVdWlqCcs27HblTYJ6mYP9NczdpKliNeFU6LEiex5ZL6J7W8Qeu1zV2U2cwTMxRJuJCM6kwXJhOEsdRayopAoflwUx2d8fp6f3yj1FdaE9fTAveDCX17rNfeicI47zzT11DrJDRUQm3Mfvr4Q824kU-EbTCFvAKQz7JJJmXy_4dG3ISSRyONFrn-KRJGw_3co85cZ0hh4ju6jewNixNO-pw_QLdc8RMmHlevwGzzQeq7xYmTVf4S-nFw5s2qhOV41YaE51rVbh634ACvxcnq6JLP2M6F4XIjVwBm-1HXgTNhg8w3XbRWrejUXGPAhvth2uF71jE21e4zOjg4_zY7JUEaBWIBDHeHMeJCdFYAEC12FQhdC5i53mRCpNgISvIKnvhLWeKGLsgyF7QCpeMkl05KzJ2ivaRv3DGFapqnW1BgjBde5LnUpXEVtKrQ1AKQSlI0iVXbgGA-lLtYqznUzqXo1KNCAimpQ1wl6u3vma8-w8dfWB0FTu5aBHTteAJtRg82of9lMgvZHPavBZTeKQqZYAhqjaYJe7W6Ds4UZFN24dhvbxK3IXCboaW8fu54wEFcuKE_Qu9Fgfrz8zwN6_j8G9ALdpdGyGcn4PtrrrrbuJYClzkzQnel0vpzD8eBwcXI6QbdnxWwSveU7ii8TCg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXxJtAASMBF7Ca2E7sHBDqUy1tV1UfqCeM7TjLSrtJ2YdQ-6P4jYydZCsE9NZblEws2zP2fOPHNwi9KVNXJDZxBMzFEm4kIzqRGUmE4Sx2FqIiHyge9LOdU_75LD1bQr-6uzD-WGU3J4aJuqitXyNfpQDkc3CWNP50_oP4rFF-d7VLodGYxZ67-Akh2_Tj7ibo9y2l21snGzukzSpALKCDGeHMlM5xKwAYZbrweR-ETF3qEiFibQTEOxmPy0JYUwqd5bnP8waOu5RcMi05g3JvoWXOACr00PL6Vv_waLGqQyFeAYTV3s6JmVyd8jCngCskgT-MXP7hAUOigH-h2792ZoPD276H7rZIFa81pnUfLbnqAYo2h26G3-GWTnSE-x2b_0P09XDizLAGcTys_AF3rMdu5CkAAM7i47WjY7JRfyEUdwfAKnjC3_XYczVMsbnA47oI2cSqAQZcigfzGR4PG6aosXuETm-kox-jXlVX7inCNI9jrakxRgquU53rXLiC2lhoawDARSjpulTZltvcp9gYqbDHzqRq1KBAAyqoQV1G6P3in_OG2eNa6XWvqYWkZ-UOL-rJQLWDXDnNbKl5KTJotyuZpiW1TnJDBeDItIzQSqdn1U4VU3Vl2BF6vfgMg9zv3OjK1fMgE65AcxmhJ419LGrCoLtSQXmEPnQGc1X4_xv07Pq6vEK3d04O9tX-bn_vObpDg_0ykvAV1JtN5u4FQLGZednaP0bfbnrI_QZGJ0FY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkaAXBOUVKGAkxAUMie3EzrGkrMprVVGKeqplO_Z2pd2k2seB_nrGTrIIUZC4Rck4sj3j-Jt45huEXvjc1ZnNHAFzsYQbyYjOZEEyYThLnQWvKDiKX8bF4Qn_eJqfbqFiyIWJQfuR0jJ-pofosLdLHpcm7Cgk0nCRyzcXtb-GrgPeToNlV0W1-bdCwWsAnNPnyKRMXtH8t30o0vVfhTH_OB-N287oNrrV40W83_XwDtpyzS66WQ1l2nZRcjB1K_wS9wSfMzwe-PXvorOjhTPTFpriaRNCzrGeu1lIygeAiY_3vx6Tqv1OKB5Cshq4wud6HtgTltj8wPO2jvW9mgkGpIgn6xWeTzvuprm7h05G779Vh6QvqEAsAKMV4cx457gVgAkLXYeSF0LmLneZEKk2Aly9gqe-FtZ4oYuyDCXuALN4ySXTkrP7aLtpG_cQYVqmqdbUGCMF17kudSlcTW0qtDUAqRKUDdOrbM82HopezFQ89WZSdSpRoA0VVaIuE_Rq0-ai49r4p_S7oLWNZODJjjfaxUT1dqOcZtZr7kUB43aeaeqpdZIbKgDZ5T5Be4POVb94l4qCz1gCLqNpgp5vHoNaw1mKbly7jjIxKZnLBD3obGXTEwbTlQvKE_R6MJ5fL__7gB79n_gzdOPoYKQ-fxh_eox2aDRtRjK-h7ZXi7V7AlhpZZ7GhfETBzYLAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prebiotic+inulin+ameliorates+SARS-CoV-2+infection+in+hamsters+by+modulating+the+gut+microbiome&rft.jtitle=NPJ+science+of+food&rft.au=Isaiah+Song&rft.au=Jiayue+Yang&rft.au=Misa+Saito&rft.au=Tenagy+Hartanto&rft.date=2024-03-14&rft.pub=Nature+Portfolio&rft.eissn=2396-8370&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41538-024-00248-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ea3cfa4f76ee4ef3a2f2ce84b271255f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8370&client=summon |