Prebiotic inulin ameliorates SARS-CoV-2 infection in hamsters by modulating the gut microbiome

Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality ne...

Full description

Saved in:
Bibliographic Details
Published inNPJ science of food Vol. 8; no. 1; pp. 18 - 9
Main Authors Song, Isaiah, Yang, Jiayue, Saito, Misa, Hartanto, Tenagy, Nakayama, Yasunori, Ichinohe, Takeshi, Fukuda, Shinji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2396-8370
2396-8370
DOI10.1038/s41538-024-00248-z

Cover

Loading…
Abstract Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.
AbstractList Abstract Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.
Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.
Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.
ArticleNumber 18
Author Saito, Misa
Fukuda, Shinji
Yang, Jiayue
Hartanto, Tenagy
Ichinohe, Takeshi
Song, Isaiah
Nakayama, Yasunori
Author_xml – sequence: 1
  givenname: Isaiah
  orcidid: 0000-0001-5428-4959
  surname: Song
  fullname: Song, Isaiah
  organization: Institute for Advanced Biosciences, Keio University
– sequence: 2
  givenname: Jiayue
  orcidid: 0000-0001-9715-3211
  surname: Yang
  fullname: Yang, Jiayue
  organization: Institute for Advanced Biosciences, Keio University
– sequence: 3
  givenname: Misa
  surname: Saito
  fullname: Saito, Misa
  organization: Metagen, Inc
– sequence: 4
  givenname: Tenagy
  surname: Hartanto
  fullname: Hartanto, Tenagy
  organization: Metagen, Inc
– sequence: 5
  givenname: Yasunori
  surname: Nakayama
  fullname: Nakayama, Yasunori
  organization: Biolier Business Department, Teijin Limited
– sequence: 6
  givenname: Takeshi
  surname: Ichinohe
  fullname: Ichinohe, Takeshi
  organization: Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo
– sequence: 7
  givenname: Shinji
  orcidid: 0000-0001-5161-9880
  surname: Fukuda
  fullname: Fukuda, Shinji
  email: sfukuda@sfc.keio.ac.jp
  organization: Institute for Advanced Biosciences, Keio University, Metagen, Inc., Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Transborder Medical Research Center, University of Tsukuba, Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38485724$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2KqsCUF-iiitQNm7T-jZ0lGkFBQmoFtMtajnM9eJTE1HYW8PT1EGgrFmzsK_s7x773HKK9KUyA0AeCPxPM1JfEiWCqxpTXuCyqfniDDihrm1oxiff-q_fRUUpbXCjCscDyHdpniishKT9Av75H6HzI3lZ-mgc_VWaEwYdoMqTq-uTqul6HnzUttw5s9mEqVXVrxpQhpqq7r8bQz4PJftpU-RaqzZyr0dsYiusI79FbZ4YER0_7Cv04O71Zn9eX375erE8uaysEyTVnnQPgVrakaUxPmGBSCRBApMSmk7jlDceul7Zz0jRtS4XEuOGu9MGM4myFLhbfPpitvot-NPFeB-P140GIG21iaXIADYZZZ7iTTXkRHDPUUQuKd1QSKoQrXseL110Mv2dIWY8-WRgGM0GYk6atULSVojy9Qp9eoNswx6l0uqOaVvGG4kJ9fKLmboT-7_eeUyiAWoAytpQiOG19Nrth52j8oAnWu8z1krkucevHzPVDkdIX0mf3V0VsEaUCTxuI_779iuoPQPe9Nw
CitedBy_id crossref_primary_10_1038_s41538_024_00349_9
Cites_doi 10.1016/j.yjmcc.2020.10.014
10.1194/jlr.R036012
10.1038/s41580-021-00418-x
10.1016/0016-5085(95)90192-2
10.1017/S0029665114001463
10.1136/gutjnl-2021-325353
10.1080/10408398.2018.1542587
10.1128/mBio.00889-14
10.1038/nature08530
10.1038/ismej.2014.14
10.3390/nu7115440
10.3389/fcimb.2020.596166
10.1007/s11154-019-09513-z
10.1038/sj.ejcn.1602636
10.3389/fimmu.2021.652470
10.1016/j.tifs.2021.12.033
10.1016/j.metabol.2018.06.009
10.3390/nu12103200
10.1002/ijc.30643
10.1038/s41575-019-0173-3
10.1038/nature12347
10.1136/gutjnl-2020-323020
10.1001/jama.2019.20153
10.1038/s41577-020-0331-4
10.1038/s41467-022-28310-y
10.1038/s41467-023-39569-0
10.1128/JVI.00127-20
10.1080/00365521.2022.2114812
10.3389/fimmu.2019.00277
10.1038/nature12726
10.1016/j.mrrev.2009.04.001
10.3748/wjg.v13.i29.3985
10.1186/s12985-022-01814-1
10.1038/s41579-021-00573-0
10.1016/j.glohj.2020.11.002
10.1053/j.gastro.2011.07.046
10.1080/19490976.2019.1709387
10.3390/molecules27113401
10.1111/imm.12930
10.1159/000324126
10.1016/j.immuni.2018.04.022
10.1038/s41586-022-05380-y
10.1073/pnas.2009799117
10.1038/nature16504
10.1111/1541-4337.12119
10.1093/cid/ciaa644
10.1080/19490976.2015.1127483
10.1038/s41586-022-05594-0
10.1017/S0954422410000247
10.1186/s13054-020-03400-9
10.3390/nu9121348
10.1016/j.bbrc.2022.02.033
10.1056/NEJMoa2116846
10.1093/jn/nxy011
10.1016/j.cocis.2021.101479
10.1053/j.gastro.2020.05.048
10.1038/d41586-020-03626-1
10.1038/s41591-020-01202-8
10.1038/s41579-020-0433-9
10.1038/s41586-020-2047-9
10.1038/sj.ejcn.1600841
10.1136/gut.2010.212159
10.1007/s00394-020-02282-5
10.1002/path.1570
10.1016/j.jlr.2023.100392
10.1128/mSystems.00185-19
10.1016/j.cell.2014.03.011
10.1017/S0007114508019880
10.1128/mBio.02566-18
10.1111/j.1365-2036.2011.04633.x
10.1128/AEM.69.4.1920-1927.2003
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.1038/s41538-024-00248-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Agricultural Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Diet & Clinical Nutrition
EISSN 2396-8370
EndPage 9
ExternalDocumentID oai_doaj_org_article_ea3cfa4f76ee4ef3a2f2ce84b271255f
38485724
10_1038_s41538_024_00248_z
Genre Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP23gm1010009; JP223fa627001
  funderid: https://doi.org/10.13039/100009619
– fundername: Teijin Limited
– fundername: Food Science Institute Foundation
– fundername: MEXT | JST | Exploratory Research for Advanced Technology (ERATO)
  grantid: JPMJER1902
  funderid: https://doi.org/10.13039/501100009024
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 22H03541
  funderid: https://doi.org/10.13039/501100001691
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP23gm1010009
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP223fa627001
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 22H03541
– fundername: MEXT | JST | Exploratory Research for Advanced Technology (ERATO)
  grantid: JPMJER1902
GroupedDBID 0R~
7X2
AAHBH
AAJSJ
AASML
ACGFS
ADBBV
ADMLS
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BCNDV
BENPR
BHPHI
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
HYE
M0K
M~E
NAO
NO~
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PUEGO
RNT
RPM
SNYQT
AAYXX
CITATION
AJTQC
NPM
3V.
8FE
8FH
8FK
AARCD
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c551t-43bfee4c79166ad1353785e5e1770ab7094640fd7cbf7a6992570064f8483a843
IEDL.DBID DOA
ISSN 2396-8370
IngestDate Wed Aug 27 01:28:48 EDT 2025
Fri Jul 11 11:07:54 EDT 2025
Wed Aug 13 08:38:38 EDT 2025
Thu Apr 03 07:05:15 EDT 2025
Tue Jul 01 01:30:51 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Sun Aug 31 08:58:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c551t-43bfee4c79166ad1353785e5e1770ab7094640fd7cbf7a6992570064f8483a843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5161-9880
0000-0001-9715-3211
0000-0001-5428-4959
OpenAccessLink https://doaj.org/article/ea3cfa4f76ee4ef3a2f2ce84b271255f
PMID 38485724
PQID 2956984620
PQPubID 4669712
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_ea3cfa4f76ee4ef3a2f2ce84b271255f
proquest_miscellaneous_2958297548
proquest_journals_2956984620
pubmed_primary_38485724
crossref_citationtrail_10_1038_s41538_024_00248_z
crossref_primary_10_1038_s41538_024_00248_z
springer_journals_10_1038_s41538_024_00248_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-14
PublicationDateYYYYMMDD 2024-03-14
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ science of food
PublicationTitleAbbrev npj Sci Food
PublicationTitleAlternate NPJ Sci Food
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References HarveyWTSARS-CoV-2 variants, spike mutations and immune escapeNat. Rev. Microbiol.2021194094241:CAS:528:DC%2BB3MXht1WqtbrP34075212816783410.1038/s41579-021-00573-0
MaslowskiKMRegulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43Nature2009461128212862009Natur.461.1282M1:CAS:528:DC%2BD1MXhtlOjt7vI19865172325673410.1038/nature08530
ChanJF-WSimulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibilityClin. Infect. Dis.202071242824462020weir.book.....C1:CAS:528:DC%2BB3cXisFamurzP3221562210.1093/cid/ciaa644
ShulpekovaYThe role of bile acids in the human body and in the development of diseasesMolecules20222734011:CAS:528:DC%2BB38XhsFaqt7%2FK35684337918238810.3390/molecules27113401
Ramirez-FariasCEffect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitziiBr. J. Nutr.20081015415501859058610.1017/S0007114508019880
GuilloteauPFrom the gut to the peripheral tissues: the multiple effects of butyrateNutr. Res Rev.2010233663841:CAS:528:DC%2BC3cXhsV2gu7vM2093716710.1017/S0954422410000247
KolidaSMeyerDGibsonGRA double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humansEur. J. Clin. Nutr.200761118911951:CAS:528:DC%2BD2sXhtFWht7vL1726841010.1038/sj.ejcn.1602636
ArpaiaNMetabolites produced by commensal bacteria promote peripheral regulatory T-cell generationNature20135044514552013Natur.504..451A1:CAS:528:DC%2BC3sXhvFOmtrrJ24226773386988410.1038/nature12726
ScharlauDMechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibreMutat. Res./Rev. Mutat. Res.200968239531:CAS:528:DC%2BD1MXhtVenu7vL10.1016/j.mrrev.2009.04.001
den BestenGThe role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolismJ. Lipid Res.2013542325234010.1194/jlr.R036012
van der BeekCMThe prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese menMetabolism20188725352995387610.1016/j.metabol.2018.06.009
GutiérrezNGarridoDSpecies deletions from microbiome consortia reveal key metabolic interactions between gut microbesmSystems20194e001851931311843663562210.1128/mSystems.00185-19
van PaassenJCorticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomesCrit. Care20202433317589773517710.1186/s13054-020-03400-9
LiYGut commensal derived-valeric acid protects against radiation injuriesGut Microbes20201178980631931652752438910.1080/19490976.2019.1709387
YeohYKGut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19Gut2021706981:CAS:528:DC%2BB3MXhtFegtLjK3343157810.1136/gutjnl-2020-323020
BrighentiFCasiraghiMCCanziEFerrariAEffect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteersEur. J. Clin. Nutr.1999537267331:CAS:528:DyaK1MXmsVOnsbg%3D1050977010.1038/sj.ejcn.1600841
SimonMVeitMOsterriederKGradzielskiMSurfactants – Compounds for inactivation of SARS-CoV-2 and other enveloped virusesCurr. Opin. Colloid Interface Sci.2021551014791:CAS:528:DC%2BB3MXhsVOltLvP34149296819622710.1016/j.cocis.2021.101479
BaxterNTDynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibersmBio201910e02566181:CAS:528:DC%2BC1MXht12htL7I30696735635599010.1128/mBio.02566-18
SonnenburgEDDiet-induced extinctions in the gut microbiota compound over generationsNature20165292122152016Natur.529..212S1:CAS:528:DC%2BC28Xns1KgtA%3D%3D26762459485091810.1038/nature16504
WangRInulin activates FXR-FGF15 signaling and further increases bile acids excretion in non-alcoholic fatty liver disease miceBiochem Biophys. Res Commun.20226001561621:CAS:528:DC%2BB38XlsVGnurk%3D3524051010.1016/j.bbrc.2022.02.033
ArifuzzamanMInulin fibre promotes microbiota-derived bile acids and type 2 inflammationNature20226115785842022Natur.611..578A1:CAS:528:DC%2BB38Xisl2lsrnK363237781057698510.1038/s41586-022-05380-y
Centers for Disease Control and Prevention. Rates of COVID-19 Cases and Deaths by Vaccination Status. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker.
COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health.
MerinoJDiet quality and risk and severity of COVID-19: a prospective cohort studyGut20217020961:CAS:528:DC%2BB3MXis1GisrvO3448930610.1136/gutjnl-2021-325353
ReichardtNPhylogenetic distribution of three pathways for propionate production within the human gut microbiotaISME J.20148132313351:CAS:528:DC%2BC2cXosVyqt74%3D24553467403023810.1038/ismej.2014.14
GueimondeMQualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel diseaseWorld J. Gastroenterol.200713398517663515417117310.3748/wjg.v13.i29.3985
ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165952020PNAS..11716587I1:CAS:528:DC%2BB3cXhsFahtrvI32571934736825510.1073/pnas.2009799117
ZuoTAlterations in gut microbiota of patients with COVID-19 during time of hospitalizationGastroenterology2020159944955.e81:CAS:528:DC%2BB3cXhvVKns73J3244256210.1053/j.gastro.2020.05.048
HammingITissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesisJ. Pathol.20042036316371:CAS:528:DC%2BD2cXlsVWktbY%3D15141377716772010.1002/path.1570
BoetsEQuantification of in vivo colonic short chain fatty acid production from inulinNutrients20157891689291:CAS:528:DC%2BC2sXivVeisg%3D%3D26516911466356810.3390/nu7115440
CaoHSecondary bile acid-induced dysbiosis promotes intestinal carcinogenesisInt J. Cancer2017140254525561:CAS:528:DC%2BC2sXjsVyksbo%3D2818752610.1002/ijc.30643
PaulyMJInulin supplementation disturbs hepatic cholesterol and bile acid metabolism independent from housing temperatureNutrients20201232001:CAS:528:DC%2BB3cXitlyrtLfJ33092056758913710.3390/nu12103200
den HartighLJObese mice losing weight due to trans-10,cis-12 conjugated linoleic acid supplementation or food restriction harbor distinct gut microbiotaJ. Nutr.201814856257210.1093/jn/nxy011
YoshimotoSObesity-induced gut microbial metabolite promotes liver cancer through senescence secretomeNature2013499971012013Natur.499...97Y1:CAS:528:DC%2BC3sXhtVWgurvK2380376010.1038/nature12347
GadaletaRMFarnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel diseaseGut2011604631:CAS:528:DC%2BC3MXltVKgur8%3D2124226110.1136/gut.2010.212159
SmithPMThe microbial metabolites, short-chain fatty acids, regulate colonic T cell homeostasisScience (1979)20133415695731:CAS:528:DC%2BC3sXhtFyjsr3P
Geneva: World Health Organization. WHO COVID-19 Dashboard. Geneva: World Health Organization. (2023). WHO COVID-19 Dashboard. https://Covid19.Who.Int/.
SandersJMMonogueMLJodlowskiTZCutrellJBPharmacologic treatments for coronavirus disease 2019 (COVID-19): a reviewJAMA2020323182418361:CAS:528:DC%2BB3cXps1Srur0%3D32282022
JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x
SandersMEMerensteinDJReidGGibsonGRRastallRAProbiotics and prebiotics in intestinal health and disease: from biology to the clinicNat. Rev. Gastroenterol. Hepatol.2019166056163129696910.1038/s41575-019-0173-3
TrompetteADietary fiber confers protection against Flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolismImmunity2018489921005.e81:CAS:528:DC%2BC1cXpsFygsb8%3D2976818010.1016/j.immuni.2018.04.022
McNabneySHenaganTShort chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistanceNutrients20179134829231905574879810.3390/nu9121348
VitalMHoweACTiedjeJMRevealing the bacterial butyrate synthesis pathways by analyzing (Meta)genomic datamBio20145e0088924757212399451210.1128/mBio.00889-14
GuglielmettiSMoraDGschwenderMPoppKRandomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life – a double-blind, placebo-controlled studyAliment Pharm. Ther.201133112311321:STN:280:DC%2BC3MvjtlSqtw%3D%3D10.1111/j.1365-2036.2011.04633.x
GaryMThe impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccinesmBio202213e0297921
WangJDCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarctionJ. Mol. Cell Cardiol.20211513141:CAS:528:DC%2BB3cXisVahur3N3313014910.1016/j.yjmcc.2020.10.014
BallPThe lightning-fast quest for COVID vaccines — and what it means for other diseasesNature202158916182021Natur.589...16B1:CAS:528:DC%2BB3cXis1yhu7vP3334001810.1038/d41586-020-03626-1
CabralLGut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharidesNat. Commun.2022132022NatCo..13..629C1:CAS:528:DC%2BB38XislGrtb0%3D35110564881077610.1038/s41467-022-28310-y
SchaafsmaGSlavinJLSignificance of inulin fructans in the human dietCompr. Rev. Food Sci. Food Saf.20151437471:CAS:528:DC%2BC2cXitVOhsL%2FL3340181010.1111/1541-4337.12119
RidlonJMDanielSLGaskinsHRThe Hylemon-Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiologyJ. Lipid Res2023641003921:CAS:528:DC%2BB3sXhsFCrtrjF372112501038294810.1016/j.jlr.2023.100392
HopkinsMJMacfarlaneGTNondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitroAppl. Environ. Microbiol.200369192019272003ApEnM..69.1920H1:CAS:528:DC%2BD3sXivFKrurk%3D1267666515480610.1128/AEM.69.4.1920-1927.2003
TanLYKomarasamyTVR
E Birkeland (248_CR30) 2020; 59
G den Besten (248_CR36) 2013; 54
WT Harvey (248_CR5) 2021; 19
JM Sanders (248_CR13) 2020; 323
S Montazersaheb (248_CR12) 2022; 19
Y Fan (248_CR20) 2021; 19
SE McGarr (248_CR74) 2005; 39
S Guglielmetti (248_CR32) 2011; 33
MJ Hopkins (248_CR25) 2003; 69
RM Gadaleta (248_CR47) 2011; 60
N Reichardt (248_CR67) 2014; 8
T Zuo (248_CR22) 2020; 159
R Wang (248_CR46) 2022; 600
JM Ridlon (248_CR49) 2016; 7
ME Sanders (248_CR18) 2019; 16
P Brodin (248_CR8) 2021; 27
Y Belkaid (248_CR16) 2014; 157
M Gary (248_CR6) 2022; 13
ED Sonnenburg (248_CR17) 2016; 529
C Ramirez-Farias (248_CR28) 2008; 101
Y Shulpekova (248_CR75) 2022; 27
I Hamming (248_CR53) 2004; 203
M Merad (248_CR9) 2020; 20
M Arifuzzaman (248_CR44) 2022; 611
S Fernández-Veledo (248_CR64) 2019; 20
S Yoshimoto (248_CR73) 2013; 499
P Guilloteau (248_CR58) 2010; 23
F Brighenti (248_CR29) 1999; 53
T Brevini (248_CR51) 2023; 615
H Cao (248_CR72) 2017; 140
A Harper (248_CR21) 2021; 10
KBMS Islam (248_CR71) 2011; 141
M Simon (248_CR77) 2021; 55
M Gueimonde (248_CR33) 2007; 13
L Cabral (248_CR65) 2022; 13
M Vital (248_CR60) 2014; 5
HJ Flint (248_CR68) 2015; 74
J van Paassen (248_CR11) 2020; 24
KM Maslowski (248_CR38) 2009; 461
M Nagai (248_CR52) 2023; 14
YK Yeoh (248_CR23) 2021; 70
X Fu (248_CR59) 2019; 59
D Xavier-Santos (248_CR24) 2022; 120
D Scharlau (248_CR31) 2009; 682
LY Tan (248_CR7) 2021; 44
S Kolida (248_CR27) 2007; 61
N Gutiérrez (248_CR69) 2019; 4
J Merino (248_CR15) 2021; 70
RA Quinn (248_CR19) 2020; 579
PM Smith (248_CR39) 2013; 341
CB Jackson (248_CR54) 2022; 23
MJ Pauly (248_CR45) 2020; 12
GR Gibson (248_CR26) 1995; 108
E Boets (248_CR42) 2015; 7
P Ball (248_CR2) 2021; 589
KW Lange (248_CR14) 2020; 4
S Hashimoto (248_CR78) 2023; 58
J Wang (248_CR50) 2021; 151
NT Baxter (248_CR61) 2019; 10
G Schaafsma (248_CR34) 2015; 14
CM van der Beek (248_CR41) 2018; 87
D Parada Venegas (248_CR62) 2019; 10
N Reusch (248_CR76) 2021; 12
248_CR4
A Trompette (248_CR43) 2018; 48
Y Wan (248_CR55) 2020; 94
Y Li (248_CR63) 2020; 11
248_CR1
LJ den Hartigh (248_CR66) 2018; 148
248_CR3
CH Kim (248_CR40) 2018; 154
N Arpaia (248_CR37) 2013; 504
JM Ridlon (248_CR70) 2023; 64
TWH Pols (248_CR48) 2011; 29
RL Gottlieb (248_CR10) 2021; 386
JF-W Chan (248_CR57) 2020; 71
S McNabney (248_CR35) 2017; 9
M Imai (248_CR56) 2020; 117
References_xml – reference: TrompetteADietary fiber confers protection against Flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolismImmunity2018489921005.e81:CAS:528:DC%2BC1cXpsFygsb8%3D2976818010.1016/j.immuni.2018.04.022
– reference: ScharlauDMechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibreMutat. Res./Rev. Mutat. Res.200968239531:CAS:528:DC%2BD1MXhtVenu7vL10.1016/j.mrrev.2009.04.001
– reference: BaxterNTDynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibersmBio201910e02566181:CAS:528:DC%2BC1MXht12htL7I30696735635599010.1128/mBio.02566-18
– reference: Centers for Disease Control and Prevention. Rates of COVID-19 Cases and Deaths by Vaccination Status. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker.
– reference: LiYGut commensal derived-valeric acid protects against radiation injuriesGut Microbes20201178980631931652752438910.1080/19490976.2019.1709387
– reference: SandersMEMerensteinDJReidGGibsonGRRastallRAProbiotics and prebiotics in intestinal health and disease: from biology to the clinicNat. Rev. Gastroenterol. Hepatol.2019166056163129696910.1038/s41575-019-0173-3
– reference: GueimondeMQualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel diseaseWorld J. Gastroenterol.200713398517663515417117310.3748/wjg.v13.i29.3985
– reference: YoshimotoSObesity-induced gut microbial metabolite promotes liver cancer through senescence secretomeNature2013499971012013Natur.499...97Y1:CAS:528:DC%2BC3sXhtVWgurvK2380376010.1038/nature12347
– reference: BallPThe lightning-fast quest for COVID vaccines — and what it means for other diseasesNature202158916182021Natur.589...16B1:CAS:528:DC%2BB3cXis1yhu7vP3334001810.1038/d41586-020-03626-1
– reference: LangeKWNakamuraYLifestyle factors in the prevention of COVID-19Glob. Health J.2020414615233520339783403110.1016/j.glohj.2020.11.002
– reference: Geneva: World Health Organization. WHO COVID-19 Dashboard. Geneva: World Health Organization. (2023). WHO COVID-19 Dashboard. https://Covid19.Who.Int/.
– reference: GuilloteauPFrom the gut to the peripheral tissues: the multiple effects of butyrateNutr. Res Rev.2010233663841:CAS:528:DC%2BC3cXhsV2gu7vM2093716710.1017/S0954422410000247
– reference: SonnenburgEDDiet-induced extinctions in the gut microbiota compound over generationsNature20165292122152016Natur.529..212S1:CAS:528:DC%2BC28Xns1KgtA%3D%3D26762459485091810.1038/nature16504
– reference: HarveyWTSARS-CoV-2 variants, spike mutations and immune escapeNat. Rev. Microbiol.2021194094241:CAS:528:DC%2BB3MXht1WqtbrP34075212816783410.1038/s41579-021-00573-0
– reference: McNabneySHenaganTShort chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistanceNutrients20179134829231905574879810.3390/nu9121348
– reference: Fernández-VeledoSVendrellJGut microbiota-derived succinate: friend or foe in human metabolic diseases?Rev. Endocr. Metab. Disord.20192043944731654259693878810.1007/s11154-019-09513-z
– reference: CaoHSecondary bile acid-induced dysbiosis promotes intestinal carcinogenesisInt J. Cancer2017140254525561:CAS:528:DC%2BC2sXjsVyksbo%3D2818752610.1002/ijc.30643
– reference: HashimotoSChanges in intestinal bacteria and imbalances of metabolites induced in the intestines of pancreatic ductal adenocarcinoma patients in a Japanese population: a preliminary resultScand. J. Gastroenterol.2023581931981:CAS:528:DC%2BB38XisVOqtLjI3603624310.1080/00365521.2022.2114812
– reference: RidlonJMHarrisSCBhowmikSKangDJHylemonPBConsequences of bile salt biotransformations by intestinal bacteriaGut Microbes2016722391:CAS:528:DC%2BC28XksVSqsbk%3D26939849485645410.1080/19490976.2015.1127483
– reference: Parada VenegasDShort chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseasesFront Immunol.20191027730915065642126810.3389/fimmu.2019.00277
– reference: NagaiMHigh body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infectionNat. Commun.2023142023NatCo..14.3863N1:CAS:528:DC%2BB3sXhtlKqt73P373914271031369210.1038/s41467-023-39569-0
– reference: PaulyMJInulin supplementation disturbs hepatic cholesterol and bile acid metabolism independent from housing temperatureNutrients20201232001:CAS:528:DC%2BB3cXitlyrtLfJ33092056758913710.3390/nu12103200
– reference: Ramirez-FariasCEffect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitziiBr. J. Nutr.20081015415501859058610.1017/S0007114508019880
– reference: SmithPMThe microbial metabolites, short-chain fatty acids, regulate colonic T cell homeostasisScience (1979)20133415695731:CAS:528:DC%2BC3sXhtFyjsr3P
– reference: den HartighLJObese mice losing weight due to trans-10,cis-12 conjugated linoleic acid supplementation or food restriction harbor distinct gut microbiotaJ. Nutr.201814856257210.1093/jn/nxy011
– reference: VitalMHoweACTiedjeJMRevealing the bacterial butyrate synthesis pathways by analyzing (Meta)genomic datamBio20145e0088924757212399451210.1128/mBio.00889-14
– reference: ShulpekovaYThe role of bile acids in the human body and in the development of diseasesMolecules20222734011:CAS:528:DC%2BB38XhsFaqt7%2FK35684337918238810.3390/molecules27113401
– reference: ArpaiaNMetabolites produced by commensal bacteria promote peripheral regulatory T-cell generationNature20135044514552013Natur.504..451A1:CAS:528:DC%2BC3sXhvFOmtrrJ24226773386988410.1038/nature12726
– reference: MontazersahebSCOVID-19 infection: an overview on cytokine storm and related interventionsVirol. J.202219921:CAS:528:DC%2BB38XhsVWgtbnI35619180913414410.1186/s12985-022-01814-1
– reference: BreviniTFXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2Nature20236151341422023Natur.615..134B1:CAS:528:DC%2BB3sXisVKhtrY%3D3647030410.1038/s41586-022-05594-0
– reference: ZuoTAlterations in gut microbiota of patients with COVID-19 during time of hospitalizationGastroenterology2020159944955.e81:CAS:528:DC%2BB3cXhvVKns73J3244256210.1053/j.gastro.2020.05.048
– reference: MeradMMartinJCPathological inflammation in patients with COVID-19: a key role for monocytes and macrophagesNat. Rev. Immunol.2020203553621:CAS:528:DC%2BB3cXoslOqt7s%3D32376901720139510.1038/s41577-020-0331-4
– reference: SandersJMMonogueMLJodlowskiTZCutrellJBPharmacologic treatments for coronavirus disease 2019 (COVID-19): a reviewJAMA2020323182418361:CAS:528:DC%2BB3cXps1Srur0%3D32282022
– reference: ChanJF-WSimulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibilityClin. Infect. Dis.202071242824462020weir.book.....C1:CAS:528:DC%2BB3cXisFamurzP3221562210.1093/cid/ciaa644
– reference: PolsTWHNoriegaLGNomuraMAuwerxJSchoonjansKThe bile acid membrane receptor TGR5: a valuable metabolic targetDigestive Dis.201129374410.1159/000324126
– reference: CabralLGut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharidesNat. Commun.2022132022NatCo..13..629C1:CAS:528:DC%2BB38XislGrtb0%3D35110564881077610.1038/s41467-022-28310-y
– reference: van der BeekCMThe prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese menMetabolism20188725352995387610.1016/j.metabol.2018.06.009
– reference: GottliebRLEarly remdesivir to prevent progression to severe Covid-19 in outpatientsN. Engl. J. Med.20213863053153493714510.1056/NEJMoa2116846
– reference: ReichardtNPhylogenetic distribution of three pathways for propionate production within the human gut microbiotaISME J.20148132313351:CAS:528:DC%2BC2cXosVyqt74%3D24553467403023810.1038/ismej.2014.14
– reference: BirkelandEPrebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trialEur. J. Nutr.202059332533381:CAS:528:DC%2BB3cXhtVShtbnP32440730750109710.1007/s00394-020-02282-5
– reference: BoetsEQuantification of in vivo colonic short chain fatty acid production from inulinNutrients20157891689291:CAS:528:DC%2BC2sXivVeisg%3D%3D26516911466356810.3390/nu7115440
– reference: GibsonGRBeattyERWangXCummingsJHSelective stimulation of bifidobacteria in the human colon by oligofructose and inulinGastroenterology19951089759821:CAS:528:DyaK2MXlt1emt7g%3D769861310.1016/0016-5085(95)90192-2
– reference: FlintHJDuncanSHScottKPLouisPLinks between diet, gut microbiota composition and gut metabolismProc. Nutr. Soc.20157413221:CAS:528:DC%2BC2MXhsVCnu74%3D2526855210.1017/S0029665114001463
– reference: McGarrSERidlonJMHylemonPBDiet, anaerobic bacterial metabolism, and colon cancer: a review of the literatureJ. Clin. Gastroenterol.2005399810915681903
– reference: FuXLiuZZhuCMouHKongQNondigestible carbohydrates, butyrate, and butyrate-producing bacteriaCrit. Rev. Food Sci. Nutr.201959S130S1521:CAS:528:DC%2BC1cXisFykt7nI3058055610.1080/10408398.2018.1542587
– reference: MaslowskiKMRegulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43Nature2009461128212862009Natur.461.1282M1:CAS:528:DC%2BD1MXhtlOjt7vI19865172325673410.1038/nature08530
– reference: JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x
– reference: HammingITissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesisJ. Pathol.20042036316371:CAS:528:DC%2BD2cXlsVWktbY%3D15141377716772010.1002/path.1570
– reference: van PaassenJCorticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomesCrit. Care20202433317589773517710.1186/s13054-020-03400-9
– reference: WangRInulin activates FXR-FGF15 signaling and further increases bile acids excretion in non-alcoholic fatty liver disease miceBiochem Biophys. Res Commun.20226001561621:CAS:528:DC%2BB38XlsVGnurk%3D3524051010.1016/j.bbrc.2022.02.033
– reference: BrighentiFCasiraghiMCCanziEFerrariAEffect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteersEur. J. Clin. Nutr.1999537267331:CAS:528:DyaK1MXmsVOnsbg%3D1050977010.1038/sj.ejcn.1600841
– reference: SimonMVeitMOsterriederKGradzielskiMSurfactants – Compounds for inactivation of SARS-CoV-2 and other enveloped virusesCurr. Opin. Colloid Interface Sci.2021551014791:CAS:528:DC%2BB3MXhsVOltLvP34149296819622710.1016/j.cocis.2021.101479
– reference: ReuschNNeutrophils in COVID-19Front Immunol.2021126524701:CAS:528:DC%2BB3MXpvVyhsrw%3D33841435802707710.3389/fimmu.2021.652470
– reference: TanLYKomarasamyTVRmt BalasubramaniamVHyperinflammatory immune response and COVID-19: a double edged swordFront Immunol.202144187196
– reference: KimCHImmune regulation by microbiome metabolitesImmunology20181542202291:CAS:528:DC%2BC1cXns1Wns70%3D29569377598022510.1111/imm.12930
– reference: WangJDCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarctionJ. Mol. Cell Cardiol.20211513141:CAS:528:DC%2BB3cXisVahur3N3313014910.1016/j.yjmcc.2020.10.014
– reference: KolidaSMeyerDGibsonGRA double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humansEur. J. Clin. Nutr.200761118911951:CAS:528:DC%2BD2sXhtFWht7vL1726841010.1038/sj.ejcn.1602636
– reference: ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165952020PNAS..11716587I1:CAS:528:DC%2BB3cXhsFahtrvI32571934736825510.1073/pnas.2009799117
– reference: GutiérrezNGarridoDSpecies deletions from microbiome consortia reveal key metabolic interactions between gut microbesmSystems20194e001851931311843663562210.1128/mSystems.00185-19
– reference: den BestenGThe role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolismJ. Lipid Res.2013542325234010.1194/jlr.R036012
– reference: BelkaidYHandTWRole of the microbiota in immunity and inflammationCell20141571211411:CAS:528:DC%2BC2cXmtVCqsL8%3D24679531405676510.1016/j.cell.2014.03.011
– reference: WanYShangJGrahamRBaricRSLiFReceptor recognition by the novel coronavirus from Wuhan: ananalysis based on decade-long structural studies of SARS CoronavirusJ. Virol.202094e001272031996437708189510.1128/JVI.00127-20
– reference: ArifuzzamanMInulin fibre promotes microbiota-derived bile acids and type 2 inflammationNature20226115785842022Natur.611..578A1:CAS:528:DC%2BB38Xisl2lsrnK363237781057698510.1038/s41586-022-05380-y
– reference: GuglielmettiSMoraDGschwenderMPoppKRandomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life – a double-blind, placebo-controlled studyAliment Pharm. Ther.201133112311321:STN:280:DC%2BC3MvjtlSqtw%3D%3D10.1111/j.1365-2036.2011.04633.x
– reference: COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health.
– reference: IslamKBMSBile acid is a host factor that regulates the composition of the cecal microbiota in ratsGastroenterology2011141177317811:CAS:528:DC%2BC3MXhtlOksb3F2183904010.1053/j.gastro.2011.07.046
– reference: SchaafsmaGSlavinJLSignificance of inulin fructans in the human dietCompr. Rev. Food Sci. Food Saf.20151437471:CAS:528:DC%2BC2cXitVOhsL%2FL3340181010.1111/1541-4337.12119
– reference: RidlonJMDanielSLGaskinsHRThe Hylemon-Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiologyJ. Lipid Res2023641003921:CAS:528:DC%2BB3sXhsFCrtrjF372112501038294810.1016/j.jlr.2023.100392
– reference: HopkinsMJMacfarlaneGTNondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitroAppl. Environ. Microbiol.200369192019272003ApEnM..69.1920H1:CAS:528:DC%2BD3sXivFKrurk%3D1267666515480610.1128/AEM.69.4.1920-1927.2003
– reference: GadaletaRMFarnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel diseaseGut2011604631:CAS:528:DC%2BC3MXltVKgur8%3D2124226110.1136/gut.2010.212159
– reference: BrodinPImmune determinants of COVID-19 disease presentation and severityNat. Med.20212728331:CAS:528:DC%2BB3MXht1OktLw%3D3344201610.1038/s41591-020-01202-8
– reference: HarperAViral infections, the microbiome, and probioticsFront Cell Infect. Microbiol.20211059616633643929790752210.3389/fcimb.2020.596166
– reference: GaryMThe impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccinesmBio202213e0297921
– reference: FanYPedersenOGut microbiota in human metabolic health and diseaseNat. Rev. Microbiol.20211955711:CAS:528:DC%2BB3cXhslGhsbrJ3288794610.1038/s41579-020-0433-9
– reference: YeohYKGut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19Gut2021706981:CAS:528:DC%2BB3MXhtFegtLjK3343157810.1136/gutjnl-2020-323020
– reference: MerinoJDiet quality and risk and severity of COVID-19: a prospective cohort studyGut20217020961:CAS:528:DC%2BB3MXis1GisrvO3448930610.1136/gutjnl-2021-325353
– reference: QuinnRAGlobal chemical effects of the microbiome include new bile-acid conjugationsNature20205791231292020Natur.579..123Q1:CAS:528:DC%2BB3cXjvFynsro%3D32103176725266810.1038/s41586-020-2047-9
– reference: Xavier-SantosDEvidences and perspectives of the use of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention and treatment of COVID-19: a bibliometric analysis and systematic reviewTrends Food Sci. Technol.20221201741921:CAS:528:DC%2BB38XmsFKjug%3D%3D35002079872030110.1016/j.tifs.2021.12.033
– volume: 151
  start-page: 3
  year: 2021
  ident: 248_CR50
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2020.10.014
– volume: 54
  start-page: 2325
  year: 2013
  ident: 248_CR36
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R036012
– volume: 23
  start-page: 3
  year: 2022
  ident: 248_CR54
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00418-x
– volume: 108
  start-page: 975
  year: 1995
  ident: 248_CR26
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(95)90192-2
– volume: 74
  start-page: 13
  year: 2015
  ident: 248_CR68
  publication-title: Proc. Nutr. Soc.
  doi: 10.1017/S0029665114001463
– volume: 70
  start-page: 2096
  year: 2021
  ident: 248_CR15
  publication-title: Gut
  doi: 10.1136/gutjnl-2021-325353
– volume: 59
  start-page: S130
  year: 2019
  ident: 248_CR59
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2018.1542587
– ident: 248_CR4
– volume: 5
  start-page: e00889
  year: 2014
  ident: 248_CR60
  publication-title: mBio
  doi: 10.1128/mBio.00889-14
– volume: 461
  start-page: 1282
  year: 2009
  ident: 248_CR38
  publication-title: Nature
  doi: 10.1038/nature08530
– volume: 8
  start-page: 1323
  year: 2014
  ident: 248_CR67
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.14
– volume: 7
  start-page: 8916
  year: 2015
  ident: 248_CR42
  publication-title: Nutrients
  doi: 10.3390/nu7115440
– volume: 10
  start-page: 596166
  year: 2021
  ident: 248_CR21
  publication-title: Front Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2020.596166
– volume: 20
  start-page: 439
  year: 2019
  ident: 248_CR64
  publication-title: Rev. Endocr. Metab. Disord.
  doi: 10.1007/s11154-019-09513-z
– volume: 44
  start-page: 187
  year: 2021
  ident: 248_CR7
  publication-title: Front Immunol.
– volume: 61
  start-page: 1189
  year: 2007
  ident: 248_CR27
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/sj.ejcn.1602636
– volume: 12
  start-page: 652470
  year: 2021
  ident: 248_CR76
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2021.652470
– volume: 120
  start-page: 174
  year: 2022
  ident: 248_CR24
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2021.12.033
– volume: 87
  start-page: 25
  year: 2018
  ident: 248_CR41
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2018.06.009
– volume: 12
  start-page: 3200
  year: 2020
  ident: 248_CR45
  publication-title: Nutrients
  doi: 10.3390/nu12103200
– volume: 140
  start-page: 2545
  year: 2017
  ident: 248_CR72
  publication-title: Int J. Cancer
  doi: 10.1002/ijc.30643
– volume: 16
  start-page: 605
  year: 2019
  ident: 248_CR18
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0173-3
– volume: 499
  start-page: 97
  year: 2013
  ident: 248_CR73
  publication-title: Nature
  doi: 10.1038/nature12347
– volume: 70
  start-page: 698
  year: 2021
  ident: 248_CR23
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-323020
– volume: 39
  start-page: 98
  year: 2005
  ident: 248_CR74
  publication-title: J. Clin. Gastroenterol.
– volume: 323
  start-page: 1824
  year: 2020
  ident: 248_CR13
  publication-title: JAMA
  doi: 10.1001/jama.2019.20153
– volume: 20
  start-page: 355
  year: 2020
  ident: 248_CR9
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0331-4
– volume: 13
  year: 2022
  ident: 248_CR65
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28310-y
– volume: 14
  year: 2023
  ident: 248_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39569-0
– volume: 94
  start-page: e00127
  year: 2020
  ident: 248_CR55
  publication-title: J. Virol.
  doi: 10.1128/JVI.00127-20
– volume: 58
  start-page: 193
  year: 2023
  ident: 248_CR78
  publication-title: Scand. J. Gastroenterol.
  doi: 10.1080/00365521.2022.2114812
– volume: 10
  start-page: 277
  year: 2019
  ident: 248_CR62
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2019.00277
– ident: 248_CR3
– volume: 504
  start-page: 451
  year: 2013
  ident: 248_CR37
  publication-title: Nature
  doi: 10.1038/nature12726
– volume: 341
  start-page: 569
  year: 2013
  ident: 248_CR39
  publication-title: Science (1979)
– volume: 682
  start-page: 39
  year: 2009
  ident: 248_CR31
  publication-title: Mutat. Res./Rev. Mutat. Res.
  doi: 10.1016/j.mrrev.2009.04.001
– volume: 13
  start-page: 3985
  year: 2007
  ident: 248_CR33
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v13.i29.3985
– volume: 19
  start-page: 92
  year: 2022
  ident: 248_CR12
  publication-title: Virol. J.
  doi: 10.1186/s12985-022-01814-1
– volume: 19
  start-page: 409
  year: 2021
  ident: 248_CR5
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-021-00573-0
– volume: 4
  start-page: 146
  year: 2020
  ident: 248_CR14
  publication-title: Glob. Health J.
  doi: 10.1016/j.glohj.2020.11.002
– volume: 141
  start-page: 1773
  year: 2011
  ident: 248_CR71
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.07.046
– volume: 11
  start-page: 789
  year: 2020
  ident: 248_CR63
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2019.1709387
– volume: 27
  start-page: 3401
  year: 2022
  ident: 248_CR75
  publication-title: Molecules
  doi: 10.3390/molecules27113401
– volume: 154
  start-page: 220
  year: 2018
  ident: 248_CR40
  publication-title: Immunology
  doi: 10.1111/imm.12930
– volume: 29
  start-page: 37
  year: 2011
  ident: 248_CR48
  publication-title: Digestive Dis.
  doi: 10.1159/000324126
– volume: 48
  start-page: 992
  year: 2018
  ident: 248_CR43
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.022
– volume: 611
  start-page: 578
  year: 2022
  ident: 248_CR44
  publication-title: Nature
  doi: 10.1038/s41586-022-05380-y
– volume: 117
  start-page: 16587
  year: 2020
  ident: 248_CR56
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2009799117
– volume: 529
  start-page: 212
  year: 2016
  ident: 248_CR17
  publication-title: Nature
  doi: 10.1038/nature16504
– volume: 14
  start-page: 37
  year: 2015
  ident: 248_CR34
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12119
– volume: 71
  start-page: 2428
  year: 2020
  ident: 248_CR57
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa644
– volume: 7
  start-page: 22
  year: 2016
  ident: 248_CR49
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2015.1127483
– volume: 615
  start-page: 134
  year: 2023
  ident: 248_CR51
  publication-title: Nature
  doi: 10.1038/s41586-022-05594-0
– volume: 23
  start-page: 366
  year: 2010
  ident: 248_CR58
  publication-title: Nutr. Res Rev.
  doi: 10.1017/S0954422410000247
– volume: 24
  year: 2020
  ident: 248_CR11
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-03400-9
– volume: 9
  start-page: 1348
  year: 2017
  ident: 248_CR35
  publication-title: Nutrients
  doi: 10.3390/nu9121348
– volume: 600
  start-page: 156
  year: 2022
  ident: 248_CR46
  publication-title: Biochem Biophys. Res Commun.
  doi: 10.1016/j.bbrc.2022.02.033
– volume: 386
  start-page: 305
  year: 2021
  ident: 248_CR10
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2116846
– volume: 148
  start-page: 562
  year: 2018
  ident: 248_CR66
  publication-title: J. Nutr.
  doi: 10.1093/jn/nxy011
– volume: 55
  start-page: 101479
  year: 2021
  ident: 248_CR77
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2021.101479
– volume: 159
  start-page: 944
  year: 2020
  ident: 248_CR22
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.05.048
– volume: 589
  start-page: 16
  year: 2021
  ident: 248_CR2
  publication-title: Nature
  doi: 10.1038/d41586-020-03626-1
– volume: 27
  start-page: 28
  year: 2021
  ident: 248_CR8
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01202-8
– volume: 19
  start-page: 55
  year: 2021
  ident: 248_CR20
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0433-9
– volume: 579
  start-page: 123
  year: 2020
  ident: 248_CR19
  publication-title: Nature
  doi: 10.1038/s41586-020-2047-9
– volume: 53
  start-page: 726
  year: 1999
  ident: 248_CR29
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/sj.ejcn.1600841
– volume: 60
  start-page: 463
  year: 2011
  ident: 248_CR47
  publication-title: Gut
  doi: 10.1136/gut.2010.212159
– volume: 59
  start-page: 3325
  year: 2020
  ident: 248_CR30
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-020-02282-5
– volume: 13
  start-page: e02979
  year: 2022
  ident: 248_CR6
  publication-title: mBio
– volume: 203
  start-page: 631
  year: 2004
  ident: 248_CR53
  publication-title: J. Pathol.
  doi: 10.1002/path.1570
– volume: 64
  start-page: 100392
  year: 2023
  ident: 248_CR70
  publication-title: J. Lipid Res
  doi: 10.1016/j.jlr.2023.100392
– volume: 4
  start-page: e00185
  year: 2019
  ident: 248_CR69
  publication-title: mSystems
  doi: 10.1128/mSystems.00185-19
– ident: 248_CR1
– volume: 157
  start-page: 121
  year: 2014
  ident: 248_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.011
– volume: 101
  start-page: 541
  year: 2008
  ident: 248_CR28
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114508019880
– volume: 10
  start-page: e02566
  year: 2019
  ident: 248_CR61
  publication-title: mBio
  doi: 10.1128/mBio.02566-18
– volume: 33
  start-page: 1123
  year: 2011
  ident: 248_CR32
  publication-title: Aliment Pharm. Ther.
  doi: 10.1111/j.1365-2036.2011.04633.x
– volume: 69
  start-page: 1920
  year: 2003
  ident: 248_CR25
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.4.1920-1927.2003
SSID ssj0002140507
Score 2.2711046
Snippet Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited...
Abstract Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms 631/326/2565/2134
631/326/2565/2142
692/4020/2741/2135
692/700/2814
Antiviral agents
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Community structure
COVID-19
Food Microbiology
Food Science
Hamsters
Immunomodulation
Immunomodulators
Intestinal microflora
Inulin
Microbiomes
Morbidity
Nutrition
Prebiotics
Severe acute respiratory syndrome coronavirus 2
Survival
Vaccination
Viral diseases
Weight loss
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvXBBfBNakJEQF7Ca2E7snFBbWlVIrKqWop6IbMdeVtokZTd7aH89Y8dJhYDeomQSxZ4Z-43HfoPQO5fbOjOZJWAuhnAtGVGZLEgmNGepNRAV-UDx66w4ueBfLvPLuOC2jtsqxzExDNR1Z_wa-R4FIF_CZEnTT1e_iK8a5bOrsYTGfbQNQ7AEC98-OJqdnk2rLBTiB0A88bRMyuTemgcfh6mJBD4vcvPHjBSI-_-FNv_KlIYJ6PgRehiRI94fVP0Y3bPtE5R8Xtgev8eR3nOJZyO7_lP043Rl9aIDcbxo_YZzrBq79EfyAV7i8_2zc3LYfScUjxuyWrjCP1XjuRPWWF_jpqtDda92jgEn4vmmx81iYG5q7DN0cXz07fCExHIKxAAs6gln2lnLjQBEWKjaF7wQMre5zYRIlRYQ6BU8dbUw2glVlKUvcAeIxUkumZKcPUdbbdfalwjTMk2VolprKbjKValKYWtqUqGMBkCVoGzs0spErnFf8mJZhZw3k9Wghgo0UAU1VDcJ-jC9czUwbdwpfeA1NUl6luxwo1vNq-h0lVXMOMWdKKDd1jFFHTVWck0F4LrcJWh31HMVXXdd3Rpagt5Oj8HpfCZFtbbbBJlwJJnLBL0Y7GP6EwbdlQvKE_RxNJjbj_-_Qa_u_pcd9IAGm2Uk47toq19t7GuAQ71-E23-N2-TBmM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoALgvIKFGQkxAUsEtuJnWMJVBUSFaIU9YRle51lpU2CdrMH-usZOw-EKEjcomQc2Z5x_E088w3A8zr3i8xlnqK5OCqs4tRkqqCZtIKn3qFXFBzFD6fFybl4f5Ff7AGbcmFi0H6ktIyf6Sk67PVWxKWJOwqNNFz08hpcD9TtIYyvKqr5vwpDjwExzpgfk3J1RdPf9qBI1X8VvvzjbDRuOce34daIFcnR0Ls7sOfbA7hRTSXaDiB5u_I9eUFGcs81OZ249e_C148bb1cdNiWrNoSbE9P4dUjIR3BJzo4-ndGq-0IZmcKxWrwi30wTmBO2xP4gTbeItb3aJUGUSJa7njSrgbep8ffg_Pjd5-qEjsUUqENQ1FPBbe29cBLxYGEWodyFVLnPfSZlaqxEN68Qab2QztbSFGUZytshXqmVUNwowe_Dftu1_iEQVqapMcxaiwowuSlNKf2CuVQaZxFOJZBN06vdyDQeCl6sdTzx5koPKtGoDR1Voi8TeDm3-T7wbPxT-k3Q2iwZOLLjjW6z1KPNaG-4q42oZYHj9jU3rGbOK2GZRFSX1wkcTjrX48Ldaob-YomYjKUJPJsfo1rDOYppfbeLMjEhWagEHgy2MveE43TlkokEXk3G8-vlfx_Qo_8Tfww3WbRnTjNxCPv9ZuefIDjq7dO4Gn4CtDwHCQ
  priority: 102
  providerName: Springer Nature
Title Prebiotic inulin ameliorates SARS-CoV-2 infection in hamsters by modulating the gut microbiome
URI https://link.springer.com/article/10.1038/s41538-024-00248-z
https://www.ncbi.nlm.nih.gov/pubmed/38485724
https://www.proquest.com/docview/2956984620
https://www.proquest.com/docview/2958297548
https://doaj.org/article/ea3cfa4f76ee4ef3a2f2ce84b271255f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLgg3gTKykiIC1gkthM7x-3SqlqJVdWlqCcs27HblTYJ6mYP9NczdpKliNeFU6LEiex5ZL6J7W8Qeu1zV2U2cwTMxRJuJCM6kwXJhOEsdRayopAoflwUx2d8fp6f3yj1FdaE9fTAveDCX17rNfeicI47zzT11DrJDRUQm3Mfvr4Q824kU-EbTCFvAKQz7JJJmXy_4dG3ISSRyONFrn-KRJGw_3co85cZ0hh4ju6jewNixNO-pw_QLdc8RMmHlevwGzzQeq7xYmTVf4S-nFw5s2qhOV41YaE51rVbh634ACvxcnq6JLP2M6F4XIjVwBm-1HXgTNhg8w3XbRWrejUXGPAhvth2uF71jE21e4zOjg4_zY7JUEaBWIBDHeHMeJCdFYAEC12FQhdC5i53mRCpNgISvIKnvhLWeKGLsgyF7QCpeMkl05KzJ2ivaRv3DGFapqnW1BgjBde5LnUpXEVtKrQ1AKQSlI0iVXbgGA-lLtYqznUzqXo1KNCAimpQ1wl6u3vma8-w8dfWB0FTu5aBHTteAJtRg82of9lMgvZHPavBZTeKQqZYAhqjaYJe7W6Ds4UZFN24dhvbxK3IXCboaW8fu54wEFcuKE_Qu9Fgfrz8zwN6_j8G9ALdpdGyGcn4PtrrrrbuJYClzkzQnel0vpzD8eBwcXI6QbdnxWwSveU7ii8TCg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXxJtAASMBF7Ca2E7sHBDqUy1tV1UfqCeM7TjLSrtJ2YdQ-6P4jYydZCsE9NZblEws2zP2fOPHNwi9KVNXJDZxBMzFEm4kIzqRGUmE4Sx2FqIiHyge9LOdU_75LD1bQr-6uzD-WGU3J4aJuqitXyNfpQDkc3CWNP50_oP4rFF-d7VLodGYxZ67-Akh2_Tj7ibo9y2l21snGzukzSpALKCDGeHMlM5xKwAYZbrweR-ETF3qEiFibQTEOxmPy0JYUwqd5bnP8waOu5RcMi05g3JvoWXOACr00PL6Vv_waLGqQyFeAYTV3s6JmVyd8jCngCskgT-MXP7hAUOigH-h2792ZoPD276H7rZIFa81pnUfLbnqAYo2h26G3-GWTnSE-x2b_0P09XDizLAGcTys_AF3rMdu5CkAAM7i47WjY7JRfyEUdwfAKnjC3_XYczVMsbnA47oI2cSqAQZcigfzGR4PG6aosXuETm-kox-jXlVX7inCNI9jrakxRgquU53rXLiC2lhoawDARSjpulTZltvcp9gYqbDHzqRq1KBAAyqoQV1G6P3in_OG2eNa6XWvqYWkZ-UOL-rJQLWDXDnNbKl5KTJotyuZpiW1TnJDBeDItIzQSqdn1U4VU3Vl2BF6vfgMg9zv3OjK1fMgE65AcxmhJ419LGrCoLtSQXmEPnQGc1X4_xv07Pq6vEK3d04O9tX-bn_vObpDg_0ykvAV1JtN5u4FQLGZednaP0bfbnrI_QZGJ0FY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkaAXBOUVKGAkxAUMie3EzrGkrMprVVGKeqplO_Z2pd2k2seB_nrGTrIIUZC4Rck4sj3j-Jt45huEXvjc1ZnNHAFzsYQbyYjOZEEyYThLnQWvKDiKX8bF4Qn_eJqfbqFiyIWJQfuR0jJ-pofosLdLHpcm7Cgk0nCRyzcXtb-GrgPeToNlV0W1-bdCwWsAnNPnyKRMXtH8t30o0vVfhTH_OB-N287oNrrV40W83_XwDtpyzS66WQ1l2nZRcjB1K_wS9wSfMzwe-PXvorOjhTPTFpriaRNCzrGeu1lIygeAiY_3vx6Tqv1OKB5Cshq4wud6HtgTltj8wPO2jvW9mgkGpIgn6xWeTzvuprm7h05G779Vh6QvqEAsAKMV4cx457gVgAkLXYeSF0LmLneZEKk2Aly9gqe-FtZ4oYuyDCXuALN4ySXTkrP7aLtpG_cQYVqmqdbUGCMF17kudSlcTW0qtDUAqRKUDdOrbM82HopezFQ89WZSdSpRoA0VVaIuE_Rq0-ai49r4p_S7oLWNZODJjjfaxUT1dqOcZtZr7kUB43aeaeqpdZIbKgDZ5T5Be4POVb94l4qCz1gCLqNpgp5vHoNaw1mKbly7jjIxKZnLBD3obGXTEwbTlQvKE_R6MJ5fL__7gB79n_gzdOPoYKQ-fxh_eox2aDRtRjK-h7ZXi7V7AlhpZZ7GhfETBzYLAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prebiotic+inulin+ameliorates+SARS-CoV-2+infection+in+hamsters+by+modulating+the+gut+microbiome&rft.jtitle=NPJ+science+of+food&rft.au=Isaiah+Song&rft.au=Jiayue+Yang&rft.au=Misa+Saito&rft.au=Tenagy+Hartanto&rft.date=2024-03-14&rft.pub=Nature+Portfolio&rft.eissn=2396-8370&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41538-024-00248-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ea3cfa4f76ee4ef3a2f2ce84b271255f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8370&client=summon