Absorption detection using optical waveguide cavities
Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurem...
Saved in:
Published in | Canadian journal of chemistry Vol. 88; no. 5; pp. 401 - 410 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
NRC Research Press
01.05.2010
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively. |
---|---|
AbstractList | Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively. Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively. Key words: cavity ring-down spectroscopy, microresonator, microsphere, fiber loop. La spectroscopie a cavite ring-down est une meethode spectroscopique qui utilise une cavite optique de haute qualite pour amplifier la perte optique due a l'absorption de lumiere par l'echantillon. Durant cette presentation, nous mettons en evidence deux applications de la spectroscopie a cavite; ring-down avec deeplacement de phase qui convient aux mesures d'absorption en phase condenseee et fait usage de caviteesa guide d'onde. Dans la premiere application, une boucle de fibre est utiliseie comme cavite optique et l'eechantillon est introduit dans un intervalle de la boucle pour permettre des mesures d'absorption sur des nanolitres de solution au niveau micromolaire. Une seconde application est basee sur des microspheres de silice comme caviteesa haute finesse. Des informations sur l'index de refraction et l'absorption d'un film mince d'ethylene diamine sur la surface d'un micro-resonateur sont obtenues simultaneement par des mesures de deplacement de longueur d'onde du spectre modal de la cavite et de changement de temps de decroissance optique, respectivement. Mots-cles: spectroscopie a cavite; ring-down, micro-resonateur, microsphere, boucle de fibre. Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively. [PUBLICATION ABSTRACT] |
Abstract_FL | La spectroscopie à cavité ring-down est une méthode spectroscopique qui utilise une cavité optique de haute qualité pour amplifier la perte optique due à l'absorption de lumière par l'échantillon. Durant cette présentation, nous mettons en évidence deux applications de la spectroscopie à cavité ring-down avec déplacement de phase qui convient aux mesures d'absorption en phase condensée et fait usage de cavités à guide d'onde. Dans la première application, une boucle de fibre est utilisée comme cavité optique et l'échantillon est introduit dans un intervalle de la boucle pour permettre des mesures d'absorption sur des nanolitres de solution au niveau micromolaire. Une seconde application est basée sur des microsphères de silice comme cavités à haute finesse. Des informations sur l'index de réfraction et l'absorption d'un film mince d'éthylène diamine sur la surface d'un micro-résonateur sont obtenues simultanément par des mesures de déplacement de longueur d'onde du spectre modal de la cavité et de changement de temps de décroissance optique, respectivement. |
Audience | Academic |
Author | Oleschuk, Richard D Gagliardi, Gianluca Wächter, Helen Loock, Hans-Peter Li, Runkai Barnes, Jack A |
Author_xml | – sequence: 1 givenname: Hans-Peter surname: Loock fullname: Loock, Hans-Peter email: hploock@chem.queensu.ca organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada – sequence: 2 givenname: Jack A surname: Barnes fullname: Barnes, Jack A organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada – sequence: 3 givenname: Gianluca surname: Gagliardi fullname: Gagliardi, Gianluca organization: Consiglio Nazionale Delle Ricerche-Istituto Nazionale Di Ottica (INO), Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy – sequence: 4 givenname: Runkai surname: Li fullname: Li, Runkai organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada – sequence: 5 givenname: Richard D surname: Oleschuk fullname: Oleschuk, Richard D organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada – sequence: 6 givenname: Helen surname: Wächter fullname: Wächter, Helen organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada |
BookMark | eNqV0l1LHDEUBuAgK7ir0r-wKLRUmPUkmWRmLhepHyAWqu1tiJmTMbI7M5vMbOu_b3RE3LJelFwkOTx5D4QzIaO6qZGQTxRmlPLi9BeFBEDukDFNc0g4K-iIjAEgT1JI2R6ZhPAYrxkwMSZifh8a33auqacldmheTn1wdTVtYtnoxfS3XmPVuxKnRq9d5zAckF2rFwEPX_d98vP8293ZZXL9_eLqbH6dGCFol1BOObAULRhdcqZTKcDkBkSa8gIptUJYUWTaFtZAliJKqXNuoZQ5N_ae831yNOS2vln1GDr12PS-ji0Vo7nMKEgR0fGAKr1A5WrbdF6bpQtGzRmTXLKMQ1TJFlVhjV4v4g9aF8sb_miLN61bqfdotgXFVeLSma2pXzceRNPhn67SfQjq6vbHf9ibTftlsMY3IXi0qvVuqf2ToqCex0LFsVBxLKL8PMjaG48BtTcPb3g9INWWNsKTj-G_qX8Bx9zAkA |
CODEN | CJCHAG |
CitedBy_id | crossref_primary_10_1103_PhysRevA_87_053843 crossref_primary_10_1364_OE_21_016370 crossref_primary_10_1007_s00216_015_8913_x crossref_primary_10_1364_OL_38_001951 |
Cites_doi | 10.1364/OL.28.000272 10.1364/AO.43.006458 10.1364/AO.42.005413 10.1364/JOSAB.20.001937 10.1103/PhysRevLett.83.3093 10.1364/OL.29.000352 10.1364/OE.16.013158 10.1364/OE.15.006768 10.1038/nature01371 10.1063/1.1139895 10.1364/OL.30.000510 10.1109/JSTQE.2005.862952 10.1016/j.cplett.2003.11.043 10.3390/s91007595 10.1021/ac011103i 10.1016/j.optcom.2006.03.028 10.1039/b702920a 10.1063/1.2099529 10.1021/ac060571v 10.1039/b806129g 10.1364/OL.34.001774 10.1021/ac0491253 10.1364/AO.19.000144 10.1146/annurev-anchem-060908-155301 10.1021/ac00285a041 10.1364/OL.27.001878 10.1366/000370206778062101 10.1366/000370203321666614 10.1016/j.aca.2005.11.022 10.1109/JSTQE.2005.862943 10.1364/OL.31.001896 10.1063/1.1614877 10.1038/nmeth.1221 10.1021/es051537l 10.1021/ac0340152 10.1364/JOSAB.17.001051 10.1039/b408909j 10.1021/ac901696q 10.1021/ac048444r 10.1039/b504628a 10.1364/OE.15.012959 10.1063/1.1482797 10.1002/andp.18601860602 10.1016/S0006-3495(84)84043-6 10.1021/ac048428u 10.1088/0957-0233/17/7/012 10.1063/1.1527893 10.1016/j.trac.2006.05.003 10.1117/12.427962 10.1126/science.1145002 10.1063/1.1819520 10.1364/OE.15.017443 10.1364/JOSA.50.001035 10.1117/12.629756 10.1016/j.chroma.2007.03.028 10.1021/ac060289o 10.1364/AO.41.003567 10.1007/s00340-007-2635-5 10.1007/s00340-009-3429-8 10.1016/0009-2614(96)01048-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 NRC Research Press Copyright National Research Council of Canada May 2010 |
Copyright_xml | – notice: COPYRIGHT 2010 NRC Research Press – notice: Copyright National Research Council of Canada May 2010 |
DBID | AAYXX CITATION ISN ISR |
DOI | 10.1139/V10-006 |
DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1480-3291 |
EndPage | 410 |
ExternalDocumentID | 2016774741 A226362730 10_1139_V10_006 v10-006 |
Genre | Feature |
GeographicLocations | Canada Italy |
GeographicLocations_xml | – name: Canada – name: Italy |
GroupedDBID | 02 0R 1AW 29B 3V. 4.4 4P2 53G 5GY 5RP 88I 8AF 8AO 8FE 8FG 8FH 8FQ 8G5 9M8 AAIKC ABDBF ABDEX ABEFU ABFLS ABJCF ABPPZ ABPTK ABUWG ACDCL ACGFS ACGOD ACIWK ACNCT ADACO ADKZR AENEX AETEA AFFNX AFKRA AFMIJ AGCDD ALMA_UNASSIGNED_HOLDINGS AZQEC BCR BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CAG COF CS3 D0S D1I D8U DWQXO DZ EAD EAP EAS EBC EBD EBS ECC EDH EJD EMK EPL EST ESX F20 F5P G8K GNUQQ GUQSH HCIFZ HH5 HZ H~9 I-F IAO ICQ IEA IGS IOF ISE ISN ISR ITC KB. L7B LK5 M2O M2P M2Q M3C M3G M7R MBDVC MV1 MVM MYA NMEPN NRXXU NYCZX O9- OHM OHT OK1 OVD P2P PADUT PCBAR PDBOC PQEST PQQKQ PQUKI PRG PRINS PROAC QF4 QM9 QN7 QO4 QRP R.V RIG RNS RRCRK RRP S10 SJN TAE TN5 TUS TWZ U5U UHB VOH WH7 X XFK XHC XJT ZCG ZE2 ZKB ZY4 -DZ -~X 00T 0R~ 6J9 6P2 6TJ AAMNW AAYOK AAYXX ABJNI ABTAH ACGFO AEGXH AIAGR CCPQU CITATION DATHI HZ~ IPNFZ ML- ONR PV9 RZL TEORI XOL ~02 |
ID | FETCH-LOGICAL-c551t-1313024ef0cad32a4650c8c054439e11f55f597af9fc074ee66a83f0d683cfb33 |
ISSN | 0008-4042 |
IngestDate | Thu Oct 10 20:57:48 EDT 2024 Thu Feb 22 23:50:30 EST 2024 Fri Feb 02 05:09:03 EST 2024 Tue Dec 12 21:20:08 EST 2023 Fri Feb 02 04:29:08 EST 2024 Thu Aug 01 20:24:58 EDT 2024 Thu Aug 01 20:29:39 EDT 2024 Thu Sep 26 18:44:35 EDT 2024 Thu May 23 14:20:24 EDT 2019 Wed Nov 11 00:32:54 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c551t-1313024ef0cad32a4650c8c054439e11f55f597af9fc074ee66a83f0d683cfb33 |
OpenAccessLink | https://cdnsciencepub.com/doi/pdf/10.1139/V10-006 |
PQID | 218671065 |
PQPubID | 47615 |
PageCount | 10 |
ParticipantIDs | gale_incontextgauss_ISN_A226362730 crossref_primary_10_1139_V10_006 proquest_journals_218671065 gale_infotracmisc_A226362730 gale_incontextgauss_ISR_A226362730 gale_infotraccpiq_226362730 gale_infotracgeneralonefile_A226362730 gale_infotracacademiconefile_A226362730 nrcresearch_primary_10_1139_V10_006 |
PublicationCentury | 2000 |
PublicationDate | 20100500 2010-05-00 20100501 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 5 year: 2010 text: 20100500 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationTitle | Canadian journal of chemistry |
PublicationTitleAlternate | Revue canadienne de chimie |
PublicationYear | 2010 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | rg39/ref39 rg21/ref21 rg57/ref57 rg46/ref46 rg32/ref32 rg35/ref35 rg53/ref53 rg24/ref24 rg61/ref61 rg18/ref18 rg10/ref10 rg4/ref4 rg50/ref50 rg64/ref64 rg13/ref13 rg29/ref29 rg31/ref31 rg15/ref15 rg42/ref42 rg56/ref56 rg26/ref26 rg63/ref63 rg8/ref8 rg2/ref2 rg5/ref5 rg45/ref45 rg37/ref37 rg20/ref20 rg34/ref34 rg1/ref1 rg48/ref48 rg23/ref23 rg41/ref41 rg59/ref59 rg19/ref19 rg12/ref12 rg52/ref52 rg16/ref16 rg55/ref55 rg33/ref33 rg27/ref27 rg38/ref38 rg30/ref30 rg44/ref44 rg58/ref58 rg7/ref7 rg22/ref22 rg49/ref49 rg47/ref47 rg9/ref9 rg51/ref51 rg6/ref6 rg11/ref11 rg3/ref3 rg36/ref36 rg62/ref62 rg17/ref17 rg25/ref25 rg43/ref43 rg14/ref14 rg28/ref28 rg54/ref54 rg40/ref40 |
References_xml | – ident: rg43/ref43 doi: 10.1364/OL.28.000272 – ident: rg63/ref63 doi: 10.1364/AO.43.006458 – ident: rg17/ref17 doi: 10.1364/AO.42.005413 – ident: rg46/ref46 doi: 10.1364/JOSAB.20.001937 – ident: rg56/ref56 doi: 10.1103/PhysRevLett.83.3093 – ident: rg64/ref64 doi: 10.1364/OL.29.000352 – ident: rg57/ref57 doi: 10.1364/OE.16.013158 – ident: rg41/ref41 doi: 10.1364/OE.15.006768 – ident: rg55/ref55 doi: 10.1038/nature01371 – ident: rg3/ref3 doi: 10.1063/1.1139895 – ident: rg45/ref45 doi: 10.1364/OL.30.000510 – ident: rg40/ref40 doi: 10.1109/JSTQE.2005.862952 – ident: rg23/ref23 doi: 10.1016/j.cplett.2003.11.043 – ident: rg26/ref26 doi: 10.3390/s91007595 – ident: rg7/ref7 doi: 10.1021/ac011103i – ident: rg38/ref38 doi: 10.1016/j.optcom.2006.03.028 – ident: rg44/ref44 doi: 10.1039/b702920a – ident: rg50/ref50 doi: 10.1063/1.2099529 – ident: rg11/ref11 doi: 10.1021/ac060571v – ident: rg61/ref61 doi: 10.1039/b806129g – ident: rg25/ref25 doi: 10.1364/OL.34.001774 – ident: rg32/ref32 doi: 10.1021/ac0491253 – ident: rg29/ref29 doi: 10.1364/AO.19.000144 – ident: rg12/ref12 doi: 10.1146/annurev-anchem-060908-155301 – ident: rg27/ref27 doi: 10.1021/ac00285a041 – ident: rg19/ref19 doi: 10.1364/OL.27.001878 – ident: rg14/ref14 doi: 10.1366/000370206778062101 – ident: rg10/ref10 doi: 10.1366/000370203321666614 – ident: rg15/ref15 doi: 10.1016/j.aca.2005.11.022 – ident: rg39/ref39 doi: 10.1109/JSTQE.2005.862943 – ident: rg51/ref51 doi: 10.1364/OL.31.001896 – ident: rg22/ref22 doi: 10.1063/1.1614877 – ident: rg54/ref54 doi: 10.1038/nmeth.1221 – ident: rg59/ref59 doi: 10.1021/es051537l – ident: rg9/ref9 doi: 10.1021/ac0340152 – ident: rg58/ref58 doi: 10.1364/JOSAB.17.001051 – ident: rg4/ref4 doi: 10.1039/b408909j – ident: rg36/ref36 doi: 10.1021/ac901696q – ident: rg8/ref8 doi: 10.1021/ac048444r – ident: rg5/ref5 doi: 10.1039/b504628a – ident: rg48/ref48 doi: 10.1364/OE.15.012959 – ident: rg47/ref47 doi: 10.1063/1.1482797 – ident: rg1/ref1 doi: 10.1002/andp.18601860602 – ident: rg28/ref28 doi: 10.1016/S0006-3495(84)84043-6 – ident: rg6/ref6 – ident: rg16/ref16 doi: 10.1021/ac048428u – ident: rg62/ref62 doi: 10.1088/0957-0233/17/7/012 – ident: rg21/ref21 doi: 10.1063/1.1527893 – ident: rg53/ref53 doi: 10.1364/OE.16.013158 – ident: rg33/ref33 doi: 10.1016/j.trac.2006.05.003 – ident: rg49/ref49 doi: 10.1117/12.427962 – ident: rg37/ref37 – ident: rg52/ref52 doi: 10.1126/science.1145002 – ident: rg24/ref24 doi: 10.1063/1.1819520 – ident: rg42/ref42 doi: 10.1364/OE.15.017443 – ident: rg2/ref2 doi: 10.1364/JOSA.50.001035 – ident: rg34/ref34 doi: 10.1117/12.629756 – ident: rg13/ref13 doi: 10.1016/j.chroma.2007.03.028 – ident: rg35/ref35 doi: 10.1021/ac060289o – ident: rg18/ref18 doi: 10.1364/AO.41.003567 – ident: rg20/ref20 doi: 10.1007/s00340-007-2635-5 – ident: rg30/ref30 doi: 10.1007/s00340-009-3429-8 – ident: rg31/ref31 doi: 10.1016/0009-2614(96)01048-2 |
SSID | ssj0007025 |
Score | 1.9695157 |
Snippet | Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 401 |
SubjectTerms | Absorption Absorption of light boucle de fibre cavity ring-down spectroscopy Ethylene fiber loop Measurement micro-résonateur microresonator microsphere microsphère Optics Silica Sorption spectroscopie à cavité ring-down Spectroscopy Spectrum analysis Thin films Waveguides |
Title | Absorption detection using optical waveguide cavities |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/V10-006 https://www.proquest.com/docview/218671065 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQcgAOK55iH0AELBxQSpo4jnMsFaggsYdlF3GzHMcuFSgpaVIkfg2_hV_G-JE02e2KxyWK7InjeCYzY3vmM0JPszCVAcmpzljmPlaK-1xm2A8TkY15KHGe6Wzk98dkdobffYp7G-0mu6TORuLH1ryS_-EqlAFfdZbsP3C2axQK4B74C1fgMFz_iseTbFVW5p8_moZHkyCXtbRHfzdmCaBc2pXq73wt580i1zFeawOh2vdJO4CCHoqEaM-B6wJ2Sqc4Z2Db_EFU7yteObx_nbD_YjLqYnr4_OtCS6BZfIc36BPWugZN6UlTfOGL_tKD3TV3Sw-tOqUwAbXwWCNpNSimoNhDewRXq2Ip7YlS3NOX2DVnTS-2Ea4XtXqkQVE_6g4EW3Czz9mzLsrQzG-ilMGDzMCyXw1BGxGjvTdzpCQI7TEX7ltsZrV-8KV748BlcYb7RlEJB8f0-YIZN77J6U206yYV3sRKyC10RRa30bVpy8M7iGwk5dfPTko8IyWekxKvkxKvlZK76OzN69PpzHcnZvgCPN_aH0d6HxpLFQieRyHH4H8LKgINcpjK8VjFsYIZJFepEuA7SkkIp5EKckIjobIouod2irKQ95EXkzxNlBRhrpcQBAZHknKaZCQhMbg98R7y2kFhSwuMws4N-B56rAeLaZiRQscxzXmzWrG3H47ZBLx-cJ3AvFxKdDIgeu6IVFlXXHCXOwJd1fBlA8qDAaVYLr6xXu2zQe3cQrtva-ZwQAjsEoPqJz3-X_79j7ZRrW0tW-YKettKDnP_-IqFBnMSpgb7fx7iA3R982Meop26auQD8JLr7KGR8t_aebqH |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absorption%C2%A0detection+using+optical+waveguide+cavities&rft.jtitle=Canadian+journal+of+chemistry&rft.au=Loock%2C+Hans-Peter&rft.au=Barnes%2C+Jack+A.&rft.au=Gagliardi%2C+Gianluca&rft.au=Li%2C+Runkai&rft.date=2010-05-01&rft.issn=0008-4042&rft.eissn=1480-3291&rft.volume=88&rft.issue=5&rft.spage=401&rft.epage=410&rft_id=info:doi/10.1139%2FV10-006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_V10_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4042&client=summon |