Absorption detection using optical waveguide cavities

Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurem...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of chemistry Vol. 88; no. 5; pp. 401 - 410
Main Authors Loock, Hans-Peter, Barnes, Jack A, Gagliardi, Gianluca, Li, Runkai, Oleschuk, Richard D, Wächter, Helen
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.05.2010
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively.
AbstractList Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively.
Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively. Key words: cavity ring-down spectroscopy, microresonator, microsphere, fiber loop. La spectroscopie a cavite ring-down est une meethode spectroscopique qui utilise une cavite optique de haute qualite pour amplifier la perte optique due a l'absorption de lumiere par l'echantillon. Durant cette presentation, nous mettons en evidence deux applications de la spectroscopie a cavite; ring-down avec deeplacement de phase qui convient aux mesures d'absorption en phase condenseee et fait usage de caviteesa guide d'onde. Dans la premiere application, une boucle de fibre est utiliseie comme cavite optique et l'eechantillon est introduit dans un intervalle de la boucle pour permettre des mesures d'absorption sur des nanolitres de solution au niveau micromolaire. Une seconde application est basee sur des microspheres de silice comme caviteesa haute finesse. Des informations sur l'index de refraction et l'absorption d'un film mince d'ethylene diamine sur la surface d'un micro-resonateur sont obtenues simultaneement par des mesures de deplacement de longueur d'onde du spectre modal de la cavite et de changement de temps de decroissance optique, respectivement. Mots-cles: spectroscopie a cavite; ring-down, micro-resonateur, microsphere, boucle de fibre.
Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a sample. In this presentation we highlight two applications of phase-shift cavity ring-down spectroscopy that are suited for absorption measurements in the condensed phase and make use of waveguide cavities. In the first application, a fiber loop is used as an optical cavity and the sample is introduced in a gap in the loop to allow absorption measurements of nanoliters of solution at the micromolar level. A second application involves silica microspheres as high finesse cavities. Information on the refractive index and absorption of a thin film of ethylene diamine on the surface of the microresonator is obtained simultaneously by the measurements of the wavelength shift of the cavity mode spectrum and the change in optical decay time, respectively. [PUBLICATION ABSTRACT]
Abstract_FL La spectroscopie à cavité ring-down est une méthode spectroscopique qui utilise une cavité optique de haute qualité pour amplifier la perte optique due à l'absorption de lumière par l'échantillon. Durant cette présentation, nous mettons en évidence deux applications de la spectroscopie à cavité ring-down avec déplacement de phase qui convient aux mesures d'absorption en phase condensée et fait usage de cavités à guide d'onde. Dans la première application, une boucle de fibre est utilisée comme cavité optique et l'échantillon est introduit dans un intervalle de la boucle pour permettre des mesures d'absorption sur des nanolitres de solution au niveau micromolaire. Une seconde application est basée sur des microsphères de silice comme cavités à haute finesse. Des informations sur l'index de réfraction et l'absorption d'un film mince d'éthylène diamine sur la surface d'un micro-résonateur sont obtenues simultanément par des mesures de déplacement de longueur d'onde du spectre modal de la cavité et de changement de temps de décroissance optique, respectivement.
Audience Academic
Author Oleschuk, Richard D
Gagliardi, Gianluca
Wächter, Helen
Loock, Hans-Peter
Li, Runkai
Barnes, Jack A
Author_xml – sequence: 1
  givenname: Hans-Peter
  surname: Loock
  fullname: Loock, Hans-Peter
  email: hploock@chem.queensu.ca
  organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
– sequence: 2
  givenname: Jack A
  surname: Barnes
  fullname: Barnes, Jack A
  organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
– sequence: 3
  givenname: Gianluca
  surname: Gagliardi
  fullname: Gagliardi, Gianluca
  organization: Consiglio Nazionale Delle Ricerche-Istituto Nazionale Di Ottica (INO), Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
– sequence: 4
  givenname: Runkai
  surname: Li
  fullname: Li, Runkai
  organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
– sequence: 5
  givenname: Richard D
  surname: Oleschuk
  fullname: Oleschuk, Richard D
  organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
– sequence: 6
  givenname: Helen
  surname: Wächter
  fullname: Wächter, Helen
  organization: Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
BookMark eNqV0l1LHDEUBuAgK7ir0r-wKLRUmPUkmWRmLhepHyAWqu1tiJmTMbI7M5vMbOu_b3RE3LJelFwkOTx5D4QzIaO6qZGQTxRmlPLi9BeFBEDukDFNc0g4K-iIjAEgT1JI2R6ZhPAYrxkwMSZifh8a33auqacldmheTn1wdTVtYtnoxfS3XmPVuxKnRq9d5zAckF2rFwEPX_d98vP8293ZZXL9_eLqbH6dGCFol1BOObAULRhdcqZTKcDkBkSa8gIptUJYUWTaFtZAliJKqXNuoZQ5N_ae831yNOS2vln1GDr12PS-ji0Vo7nMKEgR0fGAKr1A5WrbdF6bpQtGzRmTXLKMQ1TJFlVhjV4v4g9aF8sb_miLN61bqfdotgXFVeLSma2pXzceRNPhn67SfQjq6vbHf9ibTftlsMY3IXi0qvVuqf2ToqCex0LFsVBxLKL8PMjaG48BtTcPb3g9INWWNsKTj-G_qX8Bx9zAkA
CODEN CJCHAG
CitedBy_id crossref_primary_10_1103_PhysRevA_87_053843
crossref_primary_10_1364_OE_21_016370
crossref_primary_10_1007_s00216_015_8913_x
crossref_primary_10_1364_OL_38_001951
Cites_doi 10.1364/OL.28.000272
10.1364/AO.43.006458
10.1364/AO.42.005413
10.1364/JOSAB.20.001937
10.1103/PhysRevLett.83.3093
10.1364/OL.29.000352
10.1364/OE.16.013158
10.1364/OE.15.006768
10.1038/nature01371
10.1063/1.1139895
10.1364/OL.30.000510
10.1109/JSTQE.2005.862952
10.1016/j.cplett.2003.11.043
10.3390/s91007595
10.1021/ac011103i
10.1016/j.optcom.2006.03.028
10.1039/b702920a
10.1063/1.2099529
10.1021/ac060571v
10.1039/b806129g
10.1364/OL.34.001774
10.1021/ac0491253
10.1364/AO.19.000144
10.1146/annurev-anchem-060908-155301
10.1021/ac00285a041
10.1364/OL.27.001878
10.1366/000370206778062101
10.1366/000370203321666614
10.1016/j.aca.2005.11.022
10.1109/JSTQE.2005.862943
10.1364/OL.31.001896
10.1063/1.1614877
10.1038/nmeth.1221
10.1021/es051537l
10.1021/ac0340152
10.1364/JOSAB.17.001051
10.1039/b408909j
10.1021/ac901696q
10.1021/ac048444r
10.1039/b504628a
10.1364/OE.15.012959
10.1063/1.1482797
10.1002/andp.18601860602
10.1016/S0006-3495(84)84043-6
10.1021/ac048428u
10.1088/0957-0233/17/7/012
10.1063/1.1527893
10.1016/j.trac.2006.05.003
10.1117/12.427962
10.1126/science.1145002
10.1063/1.1819520
10.1364/OE.15.017443
10.1364/JOSA.50.001035
10.1117/12.629756
10.1016/j.chroma.2007.03.028
10.1021/ac060289o
10.1364/AO.41.003567
10.1007/s00340-007-2635-5
10.1007/s00340-009-3429-8
10.1016/0009-2614(96)01048-2
ContentType Journal Article
Copyright COPYRIGHT 2010 NRC Research Press
Copyright National Research Council of Canada May 2010
Copyright_xml – notice: COPYRIGHT 2010 NRC Research Press
– notice: Copyright National Research Council of Canada May 2010
DBID AAYXX
CITATION
ISN
ISR
DOI 10.1139/V10-006
DatabaseName CrossRef
Gale In Context: Canada
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1480-3291
EndPage 410
ExternalDocumentID 2016774741
A226362730
10_1139_V10_006
v10-006
Genre Feature
GeographicLocations Canada
Italy
GeographicLocations_xml – name: Canada
– name: Italy
GroupedDBID 02
0R
1AW
29B
3V.
4.4
4P2
53G
5GY
5RP
88I
8AF
8AO
8FE
8FG
8FH
8FQ
8G5
9M8
AAIKC
ABDBF
ABDEX
ABEFU
ABFLS
ABJCF
ABPPZ
ABPTK
ABUWG
ACDCL
ACGFS
ACGOD
ACIWK
ACNCT
ADACO
ADKZR
AENEX
AETEA
AFFNX
AFKRA
AFMIJ
AGCDD
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCR
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
COF
CS3
D0S
D1I
D8U
DWQXO
DZ
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EJD
EMK
EPL
EST
ESX
F20
F5P
G8K
GNUQQ
GUQSH
HCIFZ
HH5
HZ
H~9
I-F
IAO
ICQ
IEA
IGS
IOF
ISE
ISN
ISR
ITC
KB.
L7B
LK5
M2O
M2P
M2Q
M3C
M3G
M7R
MBDVC
MV1
MVM
MYA
NMEPN
NRXXU
NYCZX
O9-
OHM
OHT
OK1
OVD
P2P
PADUT
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
QF4
QM9
QN7
QO4
QRP
R.V
RIG
RNS
RRCRK
RRP
S10
SJN
TAE
TN5
TUS
TWZ
U5U
UHB
VOH
WH7
X
XFK
XHC
XJT
ZCG
ZE2
ZKB
ZY4
-DZ
-~X
00T
0R~
6J9
6P2
6TJ
AAMNW
AAYOK
AAYXX
ABJNI
ABTAH
ACGFO
AEGXH
AIAGR
CCPQU
CITATION
DATHI
HZ~
IPNFZ
ML-
ONR
PV9
RZL
TEORI
XOL
~02
ID FETCH-LOGICAL-c551t-1313024ef0cad32a4650c8c054439e11f55f597af9fc074ee66a83f0d683cfb33
ISSN 0008-4042
IngestDate Thu Oct 10 20:57:48 EDT 2024
Thu Feb 22 23:50:30 EST 2024
Fri Feb 02 05:09:03 EST 2024
Tue Dec 12 21:20:08 EST 2023
Fri Feb 02 04:29:08 EST 2024
Thu Aug 01 20:24:58 EDT 2024
Thu Aug 01 20:29:39 EDT 2024
Thu Sep 26 18:44:35 EDT 2024
Thu May 23 14:20:24 EDT 2019
Wed Nov 11 00:32:54 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c551t-1313024ef0cad32a4650c8c054439e11f55f597af9fc074ee66a83f0d683cfb33
OpenAccessLink https://cdnsciencepub.com/doi/pdf/10.1139/V10-006
PQID 218671065
PQPubID 47615
PageCount 10
ParticipantIDs gale_incontextgauss_ISN_A226362730
crossref_primary_10_1139_V10_006
proquest_journals_218671065
gale_infotracmisc_A226362730
gale_incontextgauss_ISR_A226362730
gale_infotraccpiq_226362730
gale_infotracgeneralonefile_A226362730
gale_infotracacademiconefile_A226362730
nrcresearch_primary_10_1139_V10_006
PublicationCentury 2000
PublicationDate 20100500
2010-05-00
20100501
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 5
  year: 2010
  text: 20100500
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationTitle Canadian journal of chemistry
PublicationTitleAlternate Revue canadienne de chimie
PublicationYear 2010
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References rg39/ref39
rg21/ref21
rg57/ref57
rg46/ref46
rg32/ref32
rg35/ref35
rg53/ref53
rg24/ref24
rg61/ref61
rg18/ref18
rg10/ref10
rg4/ref4
rg50/ref50
rg64/ref64
rg13/ref13
rg29/ref29
rg31/ref31
rg15/ref15
rg42/ref42
rg56/ref56
rg26/ref26
rg63/ref63
rg8/ref8
rg2/ref2
rg5/ref5
rg45/ref45
rg37/ref37
rg20/ref20
rg34/ref34
rg1/ref1
rg48/ref48
rg23/ref23
rg41/ref41
rg59/ref59
rg19/ref19
rg12/ref12
rg52/ref52
rg16/ref16
rg55/ref55
rg33/ref33
rg27/ref27
rg38/ref38
rg30/ref30
rg44/ref44
rg58/ref58
rg7/ref7
rg22/ref22
rg49/ref49
rg47/ref47
rg9/ref9
rg51/ref51
rg6/ref6
rg11/ref11
rg3/ref3
rg36/ref36
rg62/ref62
rg17/ref17
rg25/ref25
rg43/ref43
rg14/ref14
rg28/ref28
rg54/ref54
rg40/ref40
References_xml – ident: rg43/ref43
  doi: 10.1364/OL.28.000272
– ident: rg63/ref63
  doi: 10.1364/AO.43.006458
– ident: rg17/ref17
  doi: 10.1364/AO.42.005413
– ident: rg46/ref46
  doi: 10.1364/JOSAB.20.001937
– ident: rg56/ref56
  doi: 10.1103/PhysRevLett.83.3093
– ident: rg64/ref64
  doi: 10.1364/OL.29.000352
– ident: rg57/ref57
  doi: 10.1364/OE.16.013158
– ident: rg41/ref41
  doi: 10.1364/OE.15.006768
– ident: rg55/ref55
  doi: 10.1038/nature01371
– ident: rg3/ref3
  doi: 10.1063/1.1139895
– ident: rg45/ref45
  doi: 10.1364/OL.30.000510
– ident: rg40/ref40
  doi: 10.1109/JSTQE.2005.862952
– ident: rg23/ref23
  doi: 10.1016/j.cplett.2003.11.043
– ident: rg26/ref26
  doi: 10.3390/s91007595
– ident: rg7/ref7
  doi: 10.1021/ac011103i
– ident: rg38/ref38
  doi: 10.1016/j.optcom.2006.03.028
– ident: rg44/ref44
  doi: 10.1039/b702920a
– ident: rg50/ref50
  doi: 10.1063/1.2099529
– ident: rg11/ref11
  doi: 10.1021/ac060571v
– ident: rg61/ref61
  doi: 10.1039/b806129g
– ident: rg25/ref25
  doi: 10.1364/OL.34.001774
– ident: rg32/ref32
  doi: 10.1021/ac0491253
– ident: rg29/ref29
  doi: 10.1364/AO.19.000144
– ident: rg12/ref12
  doi: 10.1146/annurev-anchem-060908-155301
– ident: rg27/ref27
  doi: 10.1021/ac00285a041
– ident: rg19/ref19
  doi: 10.1364/OL.27.001878
– ident: rg14/ref14
  doi: 10.1366/000370206778062101
– ident: rg10/ref10
  doi: 10.1366/000370203321666614
– ident: rg15/ref15
  doi: 10.1016/j.aca.2005.11.022
– ident: rg39/ref39
  doi: 10.1109/JSTQE.2005.862943
– ident: rg51/ref51
  doi: 10.1364/OL.31.001896
– ident: rg22/ref22
  doi: 10.1063/1.1614877
– ident: rg54/ref54
  doi: 10.1038/nmeth.1221
– ident: rg59/ref59
  doi: 10.1021/es051537l
– ident: rg9/ref9
  doi: 10.1021/ac0340152
– ident: rg58/ref58
  doi: 10.1364/JOSAB.17.001051
– ident: rg4/ref4
  doi: 10.1039/b408909j
– ident: rg36/ref36
  doi: 10.1021/ac901696q
– ident: rg8/ref8
  doi: 10.1021/ac048444r
– ident: rg5/ref5
  doi: 10.1039/b504628a
– ident: rg48/ref48
  doi: 10.1364/OE.15.012959
– ident: rg47/ref47
  doi: 10.1063/1.1482797
– ident: rg1/ref1
  doi: 10.1002/andp.18601860602
– ident: rg28/ref28
  doi: 10.1016/S0006-3495(84)84043-6
– ident: rg6/ref6
– ident: rg16/ref16
  doi: 10.1021/ac048428u
– ident: rg62/ref62
  doi: 10.1088/0957-0233/17/7/012
– ident: rg21/ref21
  doi: 10.1063/1.1527893
– ident: rg53/ref53
  doi: 10.1364/OE.16.013158
– ident: rg33/ref33
  doi: 10.1016/j.trac.2006.05.003
– ident: rg49/ref49
  doi: 10.1117/12.427962
– ident: rg37/ref37
– ident: rg52/ref52
  doi: 10.1126/science.1145002
– ident: rg24/ref24
  doi: 10.1063/1.1819520
– ident: rg42/ref42
  doi: 10.1364/OE.15.017443
– ident: rg2/ref2
  doi: 10.1364/JOSA.50.001035
– ident: rg34/ref34
  doi: 10.1117/12.629756
– ident: rg13/ref13
  doi: 10.1016/j.chroma.2007.03.028
– ident: rg35/ref35
  doi: 10.1021/ac060289o
– ident: rg18/ref18
  doi: 10.1364/AO.41.003567
– ident: rg20/ref20
  doi: 10.1007/s00340-007-2635-5
– ident: rg30/ref30
  doi: 10.1007/s00340-009-3429-8
– ident: rg31/ref31
  doi: 10.1016/0009-2614(96)01048-2
SSID ssj0007025
Score 1.9695157
Snippet Cavity ring-down spectroscopy is a spectroscopic method that uses a high quality optical cavity to amplify the optical loss due to the light absorption by a...
SourceID proquest
gale
crossref
nrcresearch
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 401
SubjectTerms Absorption
Absorption of light
boucle de fibre
cavity ring-down spectroscopy
Ethylene
fiber loop
Measurement
micro-résonateur
microresonator
microsphere
microsphère
Optics
Silica
Sorption
spectroscopie à cavité ring-down
Spectroscopy
Spectrum analysis
Thin films
Waveguides
Title Absorption detection using optical waveguide cavities
URI http://www.nrcresearchpress.com/doi/abs/10.1139/V10-006
https://www.proquest.com/docview/218671065
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbQcgAOK55iH0AELBxQSpo4jnMsFaggsYdlF3GzHMcuFSgpaVIkfg2_hV_G-JE02e2KxyWK7InjeCYzY3vmM0JPszCVAcmpzljmPlaK-1xm2A8TkY15KHGe6Wzk98dkdobffYp7G-0mu6TORuLH1ryS_-EqlAFfdZbsP3C2axQK4B74C1fgMFz_iseTbFVW5p8_moZHkyCXtbRHfzdmCaBc2pXq73wt580i1zFeawOh2vdJO4CCHoqEaM-B6wJ2Sqc4Z2Db_EFU7yteObx_nbD_YjLqYnr4_OtCS6BZfIc36BPWugZN6UlTfOGL_tKD3TV3Sw-tOqUwAbXwWCNpNSimoNhDewRXq2Ip7YlS3NOX2DVnTS-2Ea4XtXqkQVE_6g4EW3Czz9mzLsrQzG-ilMGDzMCyXw1BGxGjvTdzpCQI7TEX7ltsZrV-8KV748BlcYb7RlEJB8f0-YIZN77J6U206yYV3sRKyC10RRa30bVpy8M7iGwk5dfPTko8IyWekxKvkxKvlZK76OzN69PpzHcnZvgCPN_aH0d6HxpLFQieRyHH4H8LKgINcpjK8VjFsYIZJFepEuA7SkkIp5EKckIjobIouod2irKQ95EXkzxNlBRhrpcQBAZHknKaZCQhMbg98R7y2kFhSwuMws4N-B56rAeLaZiRQscxzXmzWrG3H47ZBLx-cJ3AvFxKdDIgeu6IVFlXXHCXOwJd1fBlA8qDAaVYLr6xXu2zQe3cQrtva-ZwQAjsEoPqJz3-X_79j7ZRrW0tW-YKettKDnP_-IqFBnMSpgb7fx7iA3R982Meop26auQD8JLr7KGR8t_aebqH
link.rule.ids 315,783,787,27936,27937
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absorption%C2%A0detection+using+optical+waveguide+cavities&rft.jtitle=Canadian+journal+of+chemistry&rft.au=Loock%2C+Hans-Peter&rft.au=Barnes%2C+Jack+A.&rft.au=Gagliardi%2C+Gianluca&rft.au=Li%2C+Runkai&rft.date=2010-05-01&rft.issn=0008-4042&rft.eissn=1480-3291&rft.volume=88&rft.issue=5&rft.spage=401&rft.epage=410&rft_id=info:doi/10.1139%2FV10-006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_V10_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4042&client=summon