Does individual variation in metabolic phenotype predict fish behaviour and performance?
There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best‐studied examples. After accounting for variation due to other factors, there can typically be a two to three‐fold variation...
Saved in:
Published in | Journal of fish biology Vol. 88; no. 1; pp. 298 - 321 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best‐studied examples. After accounting for variation due to other factors, there can typically be a two to three‐fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk‐taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context‐dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS. |
---|---|
AbstractList | There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS. There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best‐studied examples. After accounting for variation due to other factors, there can typically be a two to three‐fold variation among individual fishes for both standard and maximum metabolic rate ( SMR and MMR ). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR , MMR and aerobic scope ( AS ), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk‐taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS . Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context‐dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR , MMR and AS . There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS. |
Author | Killen, S. S. Metcalfe, N. B. Van Leeuwen, T. E. |
AuthorAffiliation | 2 Scottish Centre for Ecology and the Natural Environment (SCENE) University of Glasgow, Rowardennan Loch Lomond Glasgow G63 0AW U.K 1 Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building University of Glasgow Glasgow G12 8QQ U.K |
AuthorAffiliation_xml | – name: 1 Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building University of Glasgow Glasgow G12 8QQ U.K – name: 2 Scottish Centre for Ecology and the Natural Environment (SCENE) University of Glasgow, Rowardennan Loch Lomond Glasgow G63 0AW U.K |
Author_xml | – sequence: 1 givenname: N. B. surname: Metcalfe fullname: Metcalfe, N. B. email: neil.metcalfe@glasgow.ac.uk organization: Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K – sequence: 2 givenname: T. E. surname: Van Leeuwen fullname: Van Leeuwen, T. E. organization: Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K – sequence: 3 givenname: S. S. surname: Killen fullname: Killen, S. S. organization: Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26577442$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFvFCEYxYmpsdvqwX_AkHjRw7QwwMxwsdG1rW0aTYym3gjDfOOyzsAIM6v735futhttolxI4Pce3-MdoD3nHSD0nJIjmtbxsq2PaF5I-QjNKJEiqwou99CMkDzPEpDvo4MYl4QQySR7gvbzQpQl5_kMfXvvIWLrGruyzaQ7vNLB6tF6lw5xD6OufWcNHhbg_LgeAA8BGmtG3Nq4wDUs9Mr6KWDtGjxAaH3otTNw8hQ9bnUX4dndfoi-np1-mX_Irj6dX8zfXmVGCCozqGgNlampkFI2FRRcUF1r3VAmW1mRQvLSUFobxnXJSMrSMiYaCm1dkIoTdojebH2Hqe6hMeDGoDs1BNvrsFZeW_X3jbML9d2vFJfy9s-Swas7g-B_ThBH1dtooOu0Az9FRcv0kORE8IS-fIAuU3SX4iVKFKWo2IZ68edEu1HuPz0Br7eACT7GAO0OoUTdFqpSoWpTaGKPH7DGjpt-Uhjb_U_xy3aw_re1ujx7d6_ItgobR_i9U-jwQxUlK4W6_niuCBdk_rm8VozdAGvwwKw |
CitedBy_id | crossref_primary_10_1242_jeb_243160 crossref_primary_10_1093_cz_zoaa013 crossref_primary_10_1016_j_cbpa_2019_01_012 crossref_primary_10_1016_j_aquaculture_2018_05_039 crossref_primary_10_1242_jeb_198143 crossref_primary_10_1093_conphys_cow007 crossref_primary_10_1016_j_aqrep_2021_100645 crossref_primary_10_1111_faf_12770 crossref_primary_10_1111_oik_04204 crossref_primary_10_1093_conphys_coab045 crossref_primary_10_1111_1365_2664_13875 crossref_primary_10_1016_j_fishres_2023_106637 crossref_primary_10_1016_j_aquatox_2018_08_011 crossref_primary_10_1016_j_aquatox_2017_06_001 crossref_primary_10_1038_s41598_018_23352_z crossref_primary_10_3389_fphys_2021_754719 crossref_primary_10_3390_d10020035 crossref_primary_10_1139_cjfas_2015_0429 crossref_primary_10_1086_718211 crossref_primary_10_3389_fimmu_2021_794593 crossref_primary_10_1016_j_scitotenv_2020_141458 crossref_primary_10_1093_icb_icac136 crossref_primary_10_1111_jfb_12845 crossref_primary_10_3354_meps13340 crossref_primary_10_3390_d15030322 crossref_primary_10_1093_conphys_coab054 crossref_primary_10_1111_fwb_14259 crossref_primary_10_1016_j_aquaculture_2019_04_069 crossref_primary_10_1093_conphys_coac023 crossref_primary_10_1242_jeb_246439 crossref_primary_10_1016_j_jtherbio_2025_104071 crossref_primary_10_1139_cjfas_2024_0141 crossref_primary_10_1007_s10750_025_05794_5 crossref_primary_10_1016_j_aquaculture_2022_737972 crossref_primary_10_1002_ece3_7806 crossref_primary_10_1111_1365_2656_12555 crossref_primary_10_1111_jfb_15900 crossref_primary_10_1016_j_jtherbio_2024_103941 crossref_primary_10_1093_conphys_coaa096 crossref_primary_10_1093_conphys_cow033 crossref_primary_10_1111_jfb_12873 crossref_primary_10_1007_s10811_016_0917_1 crossref_primary_10_1139_cjz_2023_0043 crossref_primary_10_1007_s00442_018_4302_4 crossref_primary_10_1093_conphys_coad008 crossref_primary_10_1242_jeb_242522 crossref_primary_10_1163_1568539X_00003405 crossref_primary_10_1111_ele_12894 crossref_primary_10_1242_jeb_144972 crossref_primary_10_1007_s10682_020_10059_9 crossref_primary_10_1186_s12983_022_00450_3 crossref_primary_10_3390_fishes8020113 crossref_primary_10_3389_fevo_2022_897314 crossref_primary_10_1016_j_cbpa_2024_111708 crossref_primary_10_1111_jfb_15692 crossref_primary_10_1111_ele_13187 crossref_primary_10_1007_s11160_019_09553_3 crossref_primary_10_1093_icb_icab068 crossref_primary_10_1111_1365_2656_13535 crossref_primary_10_1086_708673 crossref_primary_10_1093_icesjms_fsz167 crossref_primary_10_1016_j_fishres_2025_107299 crossref_primary_10_1002_ece3_5080 crossref_primary_10_1111_jeb_13418 crossref_primary_10_1002_ece3_9686 crossref_primary_10_1111_eth_13552 crossref_primary_10_1111_jfb_13065 crossref_primary_10_1016_j_cbpa_2017_09_002 crossref_primary_10_3354_meps13318 crossref_primary_10_1007_s00227_019_3614_1 crossref_primary_10_1016_j_jtherbio_2018_02_002 crossref_primary_10_3389_fphys_2018_00653 crossref_primary_10_1007_s10750_022_04902_z crossref_primary_10_1016_j_applanim_2018_01_006 crossref_primary_10_1111_faf_12696 crossref_primary_10_1098_rstb_2016_0233 crossref_primary_10_1016_j_cbpa_2021_111077 crossref_primary_10_1016_j_anbehav_2020_11_012 crossref_primary_10_1016_j_marpolbul_2020_111251 crossref_primary_10_3354_esr00774 crossref_primary_10_1111_brv_12892 crossref_primary_10_1163_1568539X_00003375 crossref_primary_10_3390_biology10050416 crossref_primary_10_1111_jeb_13592 crossref_primary_10_3389_fphys_2019_01166 crossref_primary_10_1016_j_cbpc_2019_108562 crossref_primary_10_7717_peerj_9356 crossref_primary_10_1016_j_aquatox_2019_02_015 crossref_primary_10_1086_704010 crossref_primary_10_1139_cjz_2017_0363 crossref_primary_10_1111_jfb_14700 crossref_primary_10_1016_j_mce_2024_112333 crossref_primary_10_3389_frish_2024_1276161 crossref_primary_10_1007_s10750_022_04961_2 crossref_primary_10_1016_j_jtherbio_2024_103951 crossref_primary_10_1080_00028487_2016_1221856 crossref_primary_10_1111_jfb_15916 crossref_primary_10_1111_1365_2435_12772 crossref_primary_10_1038_s41598_020_76966_7 crossref_primary_10_1111_1365_2435_13065 crossref_primary_10_1098_rspb_2018_0884 crossref_primary_10_1093_icb_icx083 crossref_primary_10_1002_ece3_7964 crossref_primary_10_1007_s00227_017_3252_4 crossref_primary_10_1111_1365_2656_12632 crossref_primary_10_1093_beheco_arx080 crossref_primary_10_1139_cjfas_2018_0399 crossref_primary_10_1111_jfb_12796 crossref_primary_10_1139_cjfas_2021_0046 crossref_primary_10_1098_rstb_2018_0180 crossref_primary_10_1242_jeb_209437 crossref_primary_10_1016_j_cbd_2021_100799 crossref_primary_10_1111_oik_10817 crossref_primary_10_1016_j_cbpa_2021_111098 crossref_primary_10_1093_conphys_coab028 crossref_primary_10_1111_eva_12597 crossref_primary_10_1242_jeb_146712 crossref_primary_10_1016_j_anbehav_2022_09_012 crossref_primary_10_1098_rspb_2021_1509 crossref_primary_10_1111_jfb_14287 crossref_primary_10_1016_j_chemosphere_2019_124731 crossref_primary_10_1086_722478 crossref_primary_10_1111_jfb_13195 crossref_primary_10_1007_s00442_017_3992_3 crossref_primary_10_1002_ece3_4107 crossref_primary_10_1111_1365_2656_12524 crossref_primary_10_1016_j_scitotenv_2019_134039 crossref_primary_10_1098_rsbl_2024_0181 crossref_primary_10_1038_s41598_018_33047_0 crossref_primary_10_1186_s40462_024_00453_1 crossref_primary_10_1016_j_scitotenv_2021_150208 crossref_primary_10_1007_s10695_022_01123_y crossref_primary_10_1371_journal_pone_0268914 crossref_primary_10_1111_are_15138 crossref_primary_10_1111_jzo_12534 crossref_primary_10_1038_s41598_018_36747_9 crossref_primary_10_1111_gcb_15578 crossref_primary_10_1139_cjfas_2019_0186 crossref_primary_10_1016_j_cbpa_2022_111318 crossref_primary_10_1002_ece3_9129 crossref_primary_10_1093_conphys_coz003 crossref_primary_10_1186_s40317_019_0176_4 crossref_primary_10_1016_j_cbpc_2019_06_002 crossref_primary_10_3390_ani14213049 crossref_primary_10_1111_jfb_14519 crossref_primary_10_1007_s00360_022_01467_0 crossref_primary_10_3389_fevo_2021_623718 crossref_primary_10_1016_j_tree_2019_11_001 crossref_primary_10_3390_fishes5030025 crossref_primary_10_1038_s42003_022_03055_y crossref_primary_10_1016_j_aquaculture_2021_736415 crossref_primary_10_1016_j_aquaculture_2021_737505 crossref_primary_10_1111_jzo_12642 crossref_primary_10_1093_iob_obab032 crossref_primary_10_1111_jfb_13530 crossref_primary_10_3758_s13420_017_0296_8 crossref_primary_10_1038_s41598_020_62304_4 crossref_primary_10_1242_jeb_246717 crossref_primary_10_1111_2041_210X_12993 crossref_primary_10_1093_conphys_coae047 crossref_primary_10_1186_s40462_023_00419_9 crossref_primary_10_1086_692250 crossref_primary_10_1093_conphys_coaa126 crossref_primary_10_1371_journal_pone_0305909 crossref_primary_10_1007_s11160_018_9516_3 crossref_primary_10_1093_jcbiol_ruae074 crossref_primary_10_1016_j_anbehav_2016_09_006 crossref_primary_10_1016_j_cbpc_2019_03_003 crossref_primary_10_17221_58_2023_SWR crossref_primary_10_1098_rspb_2021_2500 crossref_primary_10_1111_jzo_13049 crossref_primary_10_1016_j_ecolmodel_2016_12_018 crossref_primary_10_1016_j_scitotenv_2021_146825 crossref_primary_10_1007_s00027_024_01052_3 crossref_primary_10_1002_iroh_201902014 crossref_primary_10_1002_aqc_3689 crossref_primary_10_1111_jfb_14653 crossref_primary_10_1002_tafs_10179 crossref_primary_10_1016_j_jglr_2025_102509 crossref_primary_10_1098_rstb_2022_0481 crossref_primary_10_1111_apha_13406 crossref_primary_10_1098_rsos_181859 crossref_primary_10_1098_rstb_2022_0483 crossref_primary_10_1242_jeb_244662 crossref_primary_10_1098_rstb_2022_0488 crossref_primary_10_1111_1365_2435_12862 crossref_primary_10_1111_jfb_15293 crossref_primary_10_1007_s00227_024_04510_6 crossref_primary_10_1016_j_ecss_2024_108849 crossref_primary_10_1186_s12862_021_01904_8 crossref_primary_10_1007_s00265_019_2795_4 crossref_primary_10_1007_s10641_019_00933_z crossref_primary_10_1111_gcb_15106 crossref_primary_10_1002_ece3_10470 crossref_primary_10_1016_j_envpol_2024_123358 crossref_primary_10_1111_anu_12799 crossref_primary_10_1016_j_cbpa_2017_07_005 crossref_primary_10_1016_j_ecolmodel_2021_109655 crossref_primary_10_1242_jeb_217125 crossref_primary_10_3389_fevo_2023_1161105 crossref_primary_10_1371_journal_pone_0228976 crossref_primary_10_1002_ece3_9280 crossref_primary_10_1021_acs_estlett_5c00042 crossref_primary_10_1007_s10530_018_1842_9 crossref_primary_10_1242_jeb_245400 crossref_primary_10_1111_brv_12753 crossref_primary_10_1007_s00360_021_01358_w crossref_primary_10_1371_journal_pone_0213061 crossref_primary_10_1038_s41598_020_76780_1 crossref_primary_10_1093_conphys_cow046 crossref_primary_10_1002_naaq_10245 crossref_primary_10_1071_MF18317 crossref_primary_10_1111_jfb_13100 crossref_primary_10_1016_j_aquaculture_2021_737153 crossref_primary_10_1016_j_aquatox_2019_105221 crossref_primary_10_1002_ecy_3488 crossref_primary_10_1016_j_aquaculture_2022_739175 crossref_primary_10_1111_jfb_12933 crossref_primary_10_1111_jfb_14313 crossref_primary_10_1002_ece3_4716 crossref_primary_10_1111_jai_14115 crossref_primary_10_1111_1365_2656_12935 crossref_primary_10_1086_693376 crossref_primary_10_1093_conphys_coad026 crossref_primary_10_1242_jeb_242145 crossref_primary_10_1242_jeb_243477 crossref_primary_10_1002_ece3_7672 crossref_primary_10_1111_brv_12491 crossref_primary_10_1098_rspb_2017_1279 crossref_primary_10_1089_zeb_2017_1442 crossref_primary_10_1002_ece3_8408 crossref_primary_10_1186_s42523_022_00203_x crossref_primary_10_1016_j_cbpa_2016_04_022 crossref_primary_10_3389_fphys_2022_859556 crossref_primary_10_1242_jeb_223453 crossref_primary_10_1093_beheco_arx129 crossref_primary_10_1111_brv_13111 crossref_primary_10_1016_j_physbeh_2023_114403 crossref_primary_10_1002_ece3_3644 crossref_primary_10_1007_s11160_022_09701_2 crossref_primary_10_1016_j_jembe_2025_152087 crossref_primary_10_1016_j_aquaculture_2022_738184 crossref_primary_10_1111_jfb_12834 crossref_primary_10_1139_cjfas_2018_0311 crossref_primary_10_1242_bio_025452 crossref_primary_10_1093_conphys_coae013 crossref_primary_10_1111_oik_07378 crossref_primary_10_1086_696877 crossref_primary_10_1016_j_anbehav_2023_10_008 crossref_primary_10_1098_rsbl_2019_0825 crossref_primary_10_1007_s11160_017_9505_y crossref_primary_10_1016_j_anbehav_2020_03_009 crossref_primary_10_1093_icb_icae085 crossref_primary_10_1016_j_cbpa_2017_12_011 crossref_primary_10_1111_mec_15244 crossref_primary_10_1002_etc_4019 crossref_primary_10_1007_s11692_019_09473_x crossref_primary_10_1139_cjfas_2020_0125 crossref_primary_10_1002_eco_2566 crossref_primary_10_1080_03949370_2024_2343473 crossref_primary_10_1093_conphys_coy023 crossref_primary_10_3390_biology11050694 crossref_primary_10_1093_conphys_coad058 crossref_primary_10_1002_nafm_10852 crossref_primary_10_1086_697963 |
Cites_doi | 10.1139/f01-050 10.1111/jfb.12836 10.1007/s00442-004-1562-y 10.1111/j.1095-8649.2000.tb00788.x 10.1111/j.1365-2435.2011.01897.x 10.1038/hdy.2013.35 10.1163/156853900502466 10.1242/jeb.032136 10.1016/S1546-5098(08)60146-6 10.1111/j.1365-2656.2011.01844.x 10.1139/cjfas-2013-0366 10.1126/science.1135471 10.1111/j.1095-8649.2008.02142.x 10.1111/j.1095-8649.2001.tb00167.x 10.1111/jfb.12845 10.1111/j.1095-8649.2000.tb00774.x 10.1080/10236244.2011.622090 10.1186/2050-3385-1-5 10.1111/j.1365-2400.2012.00865.x 10.1111/j.1365-2435.2011.01894.x 10.1111/jfb.12824 10.1111/jfb.12125 10.1111/j.1365-2656.2007.01237.x 10.1007/s00360-008-0283-7 10.1016/j.physbeh.2006.05.043 10.1111/1365-2656.12244 10.1098/rspb.2012.2441 10.1038/417166a 10.1139/cjfas-2012-0327 10.1111/j.1095-8649.2010.02582.x 10.1126/science.258.5086.1348 10.1111/j.1461-0248.2009.01415.x 10.1242/jeb.084251 10.2307/3546652 10.1016/j.applanim.2010.12.007 10.1023/A:1007855100185 10.1242/jeb.200.17.2337 10.1098/rsbl.2015.0793 10.1111/j.1558-5646.2011.01498.x 10.1111/j.1365-2656.2011.01924.x 10.1016/j.cbpa.2010.05.017 10.1111/j.1461-0248.2008.01258.x 10.1111/1365-2656.12384 10.1111/1365-2656.12182 10.1038/oby.2007.550 10.1086/649561 10.1098/rspb.2011.1006 10.1139/f00-211 10.1111/j.1469-185X.2009.00095.x 10.1111/1365-2435.12503 10.1139/f91-247 10.1016/j.physbeh.2011.02.025 10.1111/j.1095-8649.1998.tb00799.x 10.1111/j.1365-2427.2007.01799.x 10.1098/rspb.2011.1778 10.1111/1365-2435.12396 10.1111/j.1095-8649.1998.tb00601.x 10.1146/annurev.ecolsys.32.081501.114048 10.1006/anbe.1995.0056 10.1093/beheco/ars161 10.1111/j.1365-2435.2011.01870.x 10.1242/jeb.01492 10.1007/BF00002554 10.1098/rspb.1998.0586 10.1242/jeb.033746 10.1098/rstb.2007.2103 10.1111/1365-2435.12527 10.1111/j.1365-2656.2012.01969.x 10.1016/j.yhbeh.2010.05.010 10.1577/1548-8659(1964)93[103:IOSOSA]2.0.CO;2 10.1126/science.1199158 10.1242/jeb.079756 10.1093/beheco/arp059 10.1111/j.0022-1112.2005.00723.x 10.1093/beheco/8.4.414 10.1086/381471 10.1098/rspb.2009.0980 10.1111/j.1365-2656.2011.01841.x 10.1016/j.jembe.2010.10.019 10.1111/jfb.12804 10.1086/673526 10.1111/1365-2435.12296 10.1007/s10682-012-9590-2 10.1093/czoolo/56.6.741 10.1016/0300-9629(87)90075-2 10.1111/j.1365-2435.2007.01291.x 10.1007/s00360-009-0385-x 10.1073/pnas.1212536109 10.1111/j.1095-8649.2002.tb01733.x 10.1016/j.aquaculture.2012.01.020 10.1242/jeb.076562 10.1371/journal.pone.0072815 10.1126/science.1163156 10.1139/F10-120 10.1111/j.0021-8790.2004.00871.x 10.1046/j.0269-8463.2001.00603.x 10.1046/j.1365-2435.2002.00618.x 10.1016/j.tree.2013.05.005 10.1111/j.1365-2435.2006.01166.x 10.1007/s00360-005-0057-4 10.1111/j.1365-294X.2011.05436.x 10.1126/science.1061967 10.1086/284943 10.1111/jfb.12013 10.1111/j.1365-2435.2005.01033.x 10.1098/rsbl.2004.0206 10.1007/s00442-009-1415-9 10.1098/rspb.2009.0080 10.1016/S1532-0456(01)00268-X 10.1007/s003600050162 10.1242/jeb.203.2.347 10.1006/anbe.1997.0668 10.1007/s00360-014-0802-7 10.1016/j.cbpa.2012.07.002 10.1016/j.cbpa.2010.02.014 10.1111/j.1365-2435.2011.01920.x 10.1002/jez.1728 10.1007/s00360-012-0688-1 10.1016/j.cbpa.2013.01.027 10.1242/jeb.030874 10.1242/jeb.02780 10.1139/f04-223 10.1073/pnas.0708159105 10.1111/jfb.12796 10.1242/jeb.054205 10.1016/j.tree.2010.08.003 10.2307/1940797 10.1016/j.cub.2010.10.050 10.1146/annurev.ecolsys.32.081501.114006 10.1086/665982 10.1007/s00360-012-0698-z |
ContentType | Journal Article |
Copyright | 2015 The Authors. published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. 2015 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. Journal of Fish Biology © 2016 The Fisheries Society of the British Isles |
Copyright_xml | – notice: 2015 The Authors. published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. – notice: 2015 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. – notice: Journal of Fish Biology © 2016 The Fisheries Society of the British Isles |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7TN 8FD C1K F1W FR3 H95 L.G P64 RC3 7X8 5PM |
DOI | 10.1111/jfb.12699 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Oceanic Abstracts Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
DocumentTitleAlternate | effects of variation in metabolic rate |
EISSN | 1095-8649 |
EndPage | 321 |
ExternalDocumentID | PMC4991269 3921549161 26577442 10_1111_jfb_12699 JFB12699 ark_67375_WNG_0450CR7W_3 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review Commentary Editorial |
GrantInformation_xml | – fundername: NERC Advanced Fellowship funderid: NE/J019100/1 – fundername: ERC funderid: 322784 – fundername: EU Interreg IVA Programme – fundername: NSERC – fundername: ERC grantid: 322784 – fundername: NERC Advanced Fellowship grantid: NE/J019100/1 |
GroupedDBID | --- --K -~X .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 29K 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAJYS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BGJEQ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LG5 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NQ- O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPZ RX1 SAMSI SUPJJ TN5 TWZ UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XOL XPP YK3 YQT ZCG ZMT ZY4 ZZTAW ~02 ~IA ~WT 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7SN 7TN 8FD C1K F1W FR3 H95 L.G P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5519-e81be8cb15999d8e6451abaad139f9806947c11bc34a730112f335d1efb608403 |
IEDL.DBID | DR2 |
ISSN | 0022-1112 1095-8649 |
IngestDate | Thu Aug 21 14:07:56 EDT 2025 Fri Jul 11 03:12:18 EDT 2025 Sun Jul 13 05:20:27 EDT 2025 Mon Jul 21 06:03:39 EDT 2025 Tue Jul 01 01:50:45 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Wed Jan 22 16:20:18 EST 2025 Wed Oct 30 09:48:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | specific dynamic action growth metabolism dominance fitness aerobic scope |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2015 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5519-e81be8cb15999d8e6451abaad139f9806947c11bc34a730112f335d1efb608403 |
Notes | NSERC ark:/67375/WNG-0450CR7W-3 EU Interreg IVA Programme istex:2CFDFA6DC00AE79418AA87B0A118F05CD624F36B NERC Advanced Fellowship - No. NE/J019100/1 ERC - No. 322784 ArticleID:JFB12699 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Editorial-2 ObjectType-Commentary-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.12699 |
PMID | 26577442 |
PQID | 1756758354 |
PQPubID | 1086393 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4991269 proquest_miscellaneous_1760894054 proquest_journals_1756758354 pubmed_primary_26577442 crossref_primary_10_1111_jfb_12699 crossref_citationtrail_10_1111_jfb_12699 wiley_primary_10_1111_jfb_12699_JFB12699 istex_primary_ark_67375_WNG_0450CR7W_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Journal of fish biology |
PublicationTitleAlternate | J Fish Biol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Millidine, K. J., Armstrong, J. D. & Metcalfe, N. B. (2006). Presence of shelter reduces maintenance metabolism of juvenile salmon. Functional Ecology 20, 839-845. Nespolo, R. F. & Franco, M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal of Experimental Biology 210, 2000-2005. Cutts, C. J., Adams, C. E. & Campbell, A. (2001). Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 58, 961-968. Irschick, D. J., Meyers, J. J., Husak, J. F. & Le Galliard, J. F. (2008). How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evolutionary Ecology Research 10, 177-196. McGhee, K. E., Pintor, L. M. & Bell, A. M. (2013). Reciprocal behavioral plasticity and behavioral types during predator-prey interactions. American Naturalist 182, 704-717. Domenici, P., Lefrancois, C. & Shingles, A. (2007). Hypoxia and the antipredator behaviours of fishes. Philosophical Transactions of the Royal Society B 362, 2105-2121. Sloat, M. R. & Reeves, G. H. (2014). Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Canadian Journal of Fisheries and Aquatic Sciences 71, 491-501. Finstad, A. G., Einum, S., Forseth, T. & Ugedal, O. (2007b). Shelter availability affects behaviour, size-dependent and mean growth of juvenile Atlantic salmon. Freshwater Biology 52, 1710-1718. Killen, S. S. (2014). Growth trajectory influences temperature preference in fish through an effect on metabolic rate. Journal of Animal Ecology 83, 1513-1522. doi: 10.1111/1365-2656.12244 Killen, S. S., Brown, J. A. & Gamperl, A. K. (2007). The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging. Journal of Animal Ecology 76, 814-825. Lahti, K., Huuskonen, H., Laurila, A. & Piironen, J. (2002). Metabolic rate and aggressiveness between brown trout populations. Functional Ecology 16, 167-174. Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. (2011b). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B 278, 3465-3473. McKenzie, D. J., Höglund, E., Dupont-Prinet, A., Larsen, B. K., Skov, P. V., Pedersen, P. B. & Jokumsen, A. (2012). Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout. Aquaculture 338, 216-222. Álvarez, D. & Nicieza, A. G. (2005). Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild? Canadian Journal of Fisheries and Aquatic Sciences 62, 643-649. Killen, S. S., Marras, S., Steffensen, J. F. & McKenzie, D. J. (2012a). Aerobic capacity influences the spatial position of individuals within fish schools. Proceedings of the Royal Society B 279, 357-364. Kitano, J., Lema, S. C., Luckenbach, J. A., Mori, S., Kawagishi, Y., Kusakabe, M., Swanson, P. & Peichel, C. L. (2010). Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation. Current Biology 20, 2124-2130. Dijkstra, P. D., Seehausen, O. & Metcalfe, N. B. (2013). Metabolic differentiation in an incipient species pair of cichlid fish. Journal of Fish Biology 82, 1975-1989. Gebczynski, A. K. & Konarzewski, M. (2009). Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy. Journal of Experimental Biology 212, 2872-2878. Gomes, F. R., Chaui-Berlinck, J. G., Bicudo, J. E. P. W. & Navas, C. A. (2004). Intraspecific relationships between resting and activity metabolism in anuran amphibians: influence of ecology and behavior. Physiological and Biochemical Zoology 77, 197-208. Voutilainen, A., Seppänen, E. & Huuskonen, H. (2011). A methodological approach to measuring the oxygen consumption profile of six freshwater fish species: implications for determination of the standard metabolic rate. Marine and Freshwater Behaviour and Physiology 44, 239-250. Brönmark, C. & Miner, J. G. (1992). Predator-induced phenotypical change in body morphology in crucian carp. Science 258, 1348-1350. Grantner, A. & Taborsky, M. (1998). The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). Journal of Comparative Physiology B 168, 427-433. Reidy, S. P., Kerr, S. R. & Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. Journal of Experimental Biology 203, 347-357. Kegler, P., Kunzmann, A., Brohl, S. & Herbert, N. A. (2013). No evidence of shelter providing a metabolic advantage to the false clown anemonefish Amphiprion ocellaris. Journal of Fish Biology 82, 708-713. Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (1998). Aggression and growth depression in juvenile salmon - the consequences of variation in metabolic rate. Journal of Fish Biology 52, 1026-1037. Régnier, T., Bolliet, V., Gaudin, P. & Labonne, J. (2012). Female effects on offspring energetic status and consequences on early development in yolk feeding brown trout (Salmo trutta). Journal of Experimental Zoology A 317A, 347-358. Johnston, S. L., Souter, D. M., Tolkamp, B. J., Gordon, I. J., Illius, A. W., Kyriazakis, I. & Speakman, J. R. (2007). Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high-fat diets. Obesity 15, 600-606. Krause, J., Loader, S. P., McDermott, J. & Ruxton, G. D. (1998). Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proceedings of the Royal Society B 265, 2373-2379. Irschick, D. J. & Garland, T. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics 32, 367−396. Huntingford, F. A., Andrew, G., Mackenzie, S., Morera, D., Coyle, S. M., Pilarczyk, M. & Kadri, S. (2010). Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. Journal of Fish Biology 76, 1576-1591. Steyermark, A. C., Miamen, A. G., Feghahati, H. S. & Lewno, A. W. (2005). Physiological and morphological correlates of among-individual variation in standard metabolic rate in the leopard frog Rana pipiens. Journal of Experimental Biology 208, 1201-1208. Régnier, T., Bolliet, V., Labonne, J. & Gaudin, P. (2010). Assessing maternal effects on metabolic rate dynamics along early development in brown trout (Salmo trutta): an individual-based approach. Journal of Comparative Physiology B 180, 25-31. Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (2002). Juvenile Atlantic salmon (Salmo salar) with relatively high standard metabolic rates have small metabolic scopes. Functional Ecology 16, 73-78. Pörtner, H. O. & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95-97. Fischer, P. (2000). An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Canadian Journal of Fisheries and Aquatic Sciences 57, 2336-2344. Rossignol, O., Dodson, J. J., Marquilly, C. & Guderley, H. (2010). Do local adaptation and the reproductive tactic of Atlantic salmon (Salmo salar L.) affect offspring metabolic capacities? Physiological and Biochemical Zoology 83, 424-434. Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J. & Metcalfe, N. B. (2015a). The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Functional Ecology 29, 479-486. Biro, P. A. & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology and Evolution 25, 653-659. Finstad, A. G., Forseth, T., Ugedal, O. & Naesje, T. F. (2007a). Metabolic rate, behaviour and winter performance in juvenile Atlantic salmon. Functional Ecology 21, 905-912. Pörtner, H. O. & Farrell, A. P. (2008). Ecology: physiology and climate change. Science 322, 690-692. O'Connor, K. I., Taylor, A. C. & Metcalfe, N. B. (2000). The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. Journal of Fish Biology 57, 41-51. Fu, S. J., Xie, X. J. & Cao, Z. D. (2005). Effect of fasting on resting metabolic rate and postprandial metabolic response in Silurus meridionalis. Journal of Fish Biology 67, 279-285. Farwell, M. & McLaughlin, R. L. (2009). Alternative foraging tactics and risk taking in brook charr (Salvelinus fontinalis). Behavioral Ecology 20, 913-921. Rosenfeld, J. S., Van Leeuwen, T. E., Richards, J. G. & Allen, D. (2015). Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life history adaptation in salmonids. Journal of Animal Ecology 84, 4-20. doi: 10.1111/1365-2656.12182 Clark, T. D., Sandblom, E. & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology 216, 2771-2782. Hillman, S. S., Hancock, T. V. & Hedrick, M. S. (2013). A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. Journal of Comparative Physiology B 183, 167-179. Cooke, S. J., Midwood, J. D., Thiem, J. D., Klimley, P., Lucas, M. C., Thorstad, E. B., Eiler, J., Holbrook, C. & Ebner, B. C. (2013). Tracking animals in freshwater with electronic tags: past, present and future. Animal Biotelemetry 1, 5. McKechnie, A. E. & Swanson, D. L. (2010). Sources and significance of variation in basal, summit and maximal metabolic rates in birds. Current Zoology 56, 741-758. Sloman, K. A. (2010). Exposure of ova to cortisol pre-fertilisation affects subsequent behavi 2002; 16 2015a; 29 2013; 1 2010; 13 2016b 2016a 2000; 137 2005; 62 2006; 176 2013; 70 2008; 105 1971 2014; 28 2007; 76 2013; 8 2010; 180 2005; 67 1997; 8 2012a; 279 2009; 12 2010; 20 2006; 20 2010; 25 2001; 130 2015; 84 2015; 83 2007; 210 2013; 111 2001; 59 1998; 168 2001; 58 2012; 21 2007b; 52 2011; 80 2004; 140 1989; 133 2009; 212 2009; 179 2012b; 26 2002; 417 2011; 130 2009b; 74 2015b; 84 2013; 183 1992; 33 2013; 182 2007; 15 2012; 109 2005; 19 2007; 315 1995; 49 2002; 61 2010; 213 2004; 271 1997; 200 1992; 258 2013; 216 2013; 82 1998; 265 1964; 93 2001; 32 2010; 56 2012; 163 2013; 28 2010; 58 2013; 27 2013; 24 2011b; 278 2007a; 21 2013; 20 2009; 276 1999; 86 2013; 165 2013; 280 2011; 396 2010; 67 2004; 77 1987; 88 2004; 73 2001; 293 1991; 48 2000; 203 2000; 57 2010; 156 2010; 157 1993; 74 2009; 161 2011; 25 1998; 52 2012; 66 2011a; 25 2012; 338 1998; 55 2015c; 11 2011; 214 2010; 76 2012; 81 1997; 61 2009; 20 2000; 23 2007; 362 2008; 10 2009a; 14 2008; 322 2014; 83 2011; 332 2010; 85 2010; 83 2011; 103 2006; 89 2012; 317A 2005; 208 2011; 44 2016 2015 2014; 184 2013 2014; 71 2012; 85 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 e_1_2_6_113_1 Irschick D. J. (e_1_2_6_53_1) 2008; 10 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 Cutts C. J. (e_1_2_6_26_1) 2001; 58 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_111_1 e_1_2_6_134_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 Walker J. A. (e_1_2_6_130_1) 1997; 61 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 Seppänen E. (e_1_2_6_117_1) 2009; 14 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: Domenici, P., Lefrancois, C. & Shingles, A. (2007). Hypoxia and the antipredator behaviours of fishes. Philosophical Transactions of the Royal Society B 362, 2105-2121. – reference: Cooke, S. J., Midwood, J. D., Thiem, J. D., Klimley, P., Lucas, M. C., Thorstad, E. B., Eiler, J., Holbrook, C. & Ebner, B. C. (2013). Tracking animals in freshwater with electronic tags: past, present and future. Animal Biotelemetry 1, 5. – reference: Hillman, S. S., Hancock, T. V. & Hedrick, M. S. (2013). A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. Journal of Comparative Physiology B 183, 167-179. – reference: McLaughlin, R. L. (1989). Search modes of birds and lizards - evidence for alternative movement patterns. American Naturalist 133, 654-670. – reference: Gebczynski, A. K. & Konarzewski, M. (2009). Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy. Journal of Experimental Biology 212, 2872-2878. – reference: O'Connor, K. I., Taylor, A. C. & Metcalfe, N. B. (2000). The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. Journal of Fish Biology 57, 41-51. – reference: Kegler, P., Kunzmann, A., Brohl, S. & Herbert, N. A. (2013). No evidence of shelter providing a metabolic advantage to the false clown anemonefish Amphiprion ocellaris. Journal of Fish Biology 82, 708-713. – reference: Grantner, A. & Taborsky, M. (1998). The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). Journal of Comparative Physiology B 168, 427-433. – reference: Lahti, K., Huuskonen, H., Laurila, A. & Piironen, J. (2002). Metabolic rate and aggressiveness between brown trout populations. Functional Ecology 16, 167-174. – reference: Pakkasmaa, S., Penttinen, O. P. & Piironen, J. (2006). Metabolic rate of Arctic charr eggs depends on their parentage. Journal of Comparative Physiology B 176, 387-391. – reference: Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J. & Metcalfe, N. B. (2015a). The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Functional Ecology 29, 479-486. – reference: Biro, P. A. & Post, J. R. (2008). Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proceedings of the National Academy of Sciences of the United States of America 105, 2919-2922. – reference: Kitano, J., Lema, S. C., Luckenbach, J. A., Mori, S., Kawagishi, Y., Kusakabe, M., Swanson, P. & Peichel, C. L. (2010). Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation. Current Biology 20, 2124-2130. – reference: Sutter, D. A. H., Suski, C. D., Philipp, D. P., Klefoth, T., Wahl, D. H., Kersten, P., Cooke, S. J. & Arlinghaus, R. (2012). Recreational fishing selectively captures individuals with the highest fitness potential. Proceedings of the National Academy of Sciences of the United States of America 109, 20960-20965. – reference: Voutilainen, A., Seppänen, E. & Huuskonen, H. (2011). A methodological approach to measuring the oxygen consumption profile of six freshwater fish species: implications for determination of the standard metabolic rate. Marine and Freshwater Behaviour and Physiology 44, 239-250. – reference: Reid, D., Armstrong, J. D. & Metcalfe, N. B. (2011). Estimated standard metabolic rate interacts with territory quality and density to determine growth rates of juvenile Atlantic salmon. Functional Ecology 25, 1360-1367. – reference: Reid, D., Armstrong, J. D. & Metcalfe, N. B. (2012). The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent. Journal of Animal Ecology 81, 868-875. – reference: Seppänen, E., Piironen, J. & Huuskonen, H. (2009a). Standard metabolic rate, growth rate and smolting of the juveniles in three Atlantic salmon stocks. Boreal Environment Research 14, 369-381. – reference: Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (1999). Competitive asymmetries in territorial juvenile Atlantic salmon, Salmo salar. Oikos 86, 479-486. – reference: Glazier, D. S. (2010). A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews 85, 111-138. – reference: Johnston, S. L., Souter, D. M., Tolkamp, B. J., Gordon, I. J., Illius, A. W., Kyriazakis, I. & Speakman, J. R. (2007). Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high-fat diets. Obesity 15, 600-606. – reference: Croft, D. P., Krause, J. & James, R. (2004). Social networks in the guppy (Poecilia reticulata). Proceedings of the Royal Society B 271, S516-S519. – reference: Burton, T., Hoogenboom, M. O., Armstrong, J. D., Groothuis, T. G. G. & Metcalfe, N. B. (2011a). Egg hormones in a highly fecund vertebrate: do they influence social structure in competitive conditions? Functional Ecology 25, 1379-1388. – reference: Brönmark, C. & Miner, J. G. (1992). Predator-induced phenotypical change in body morphology in crucian carp. Science 258, 1348-1350. – reference: Killen, S. S., Mitchell, M. D., Rummer, J. L., Chivers, D. P., Ferrari, M. C. O., Meekan, M. G. & McCormick, M. I. (2014). Aerobic scope predicts dominance during early life in a tropical damselfish. Functional Ecology 28, 1367-1376. doi: 10.1111/1365-2435.12296 – reference: Klefoth, T., Pieterek, T. & Arlinghaus, R. (2013). Impacts of domestication on angling vulnerability of common carp, Cyprinus carpio: the role of learning, foraging behaviour and food preferences. Fisheries Management and Ecology 20, 174-186. – reference: Yamamoto, T., Ueda, H. & Higashi, S. (1998). Correlation among dominance status, metabolic rate and otolith size in masu salmon. Journal of Fish Biology 52, 281-290. – reference: Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. (2011b). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B 278, 3465-3473. – reference: Killen, S. S., Marras, S. & McKenzie, D. J. (2011). Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. Journal of Animal Ecology 80, 1024-1033. – reference: Irschick, D. J., Meyers, J. J., Husak, J. F. & Le Galliard, J. F. (2008). How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evolutionary Ecology Research 10, 177-196. – reference: Krause, J., Loader, S. P., McDermott, J. & Ruxton, G. D. (1998). Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proceedings of the Royal Society B 265, 2373-2379. – reference: Clark, T. D., Sandblom, E. & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology 216, 2771-2782. – reference: Murchie, K. J., Cooke, S. J., Danylchuk, A. J. & Suski, C. D. (2011). Estimates of field activity and metabolic rates of bonefish (Albula vulpes) in coastal marine habitats using acoustic tri-axial accelerometer transmitters and intermittent-flow respirometry. Journal of Experimental Marine Biology and Ecology 396, 147-155. – reference: Peres-Neto, P. R. & Magnan, P. (2004). The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species. Oecologia (Berlin) 140, 36-45. – reference: Régnier, T., Bolliet, V., Labonne, J. & Gaudin, P. (2010). Assessing maternal effects on metabolic rate dynamics along early development in brown trout (Salmo trutta): an individual-based approach. Journal of Comparative Physiology B 180, 25-31. – reference: Huntingford, F. A., Andrew, G., Mackenzie, S., Morera, D., Coyle, S. M., Pilarczyk, M. & Kadri, S. (2010). Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. Journal of Fish Biology 76, 1576-1591. – reference: Sloman, K. A. (2010). Exposure of ova to cortisol pre-fertilisation affects subsequent behaviour and physiology of brown trout. Hormones and Behavior 58, 433-439. – reference: Pörtner, H. O. & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95-97. – reference: Walker, J. A. (1997). Ecological morphology of lacustrine threespine stickleback, Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biological Journal of the Linnean Society 61, 3-50. – reference: Fischer, P. (2000). An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Canadian Journal of Fisheries and Aquatic Sciences 57, 2336-2344. – reference: Zera, A. J. & Harshman, L. G. (2001). The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32, 95-126. – reference: Boeuf, G. & Payan, P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology C 130, 411-423. – reference: McKenzie, D. J., Höglund, E., Dupont-Prinet, A., Larsen, B. K., Skov, P. V., Pedersen, P. B. & Jokumsen, A. (2012). Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout. Aquaculture 338, 216-222. – reference: Seppänen, E., Piironen, J. & Huuskonen, H. (2010). Consistency of standard metabolic rate in relation to life history strategy of juvenile Atlantic salmon Salmo salar. Comparative Biochemistry and Physiology A 156, 278-284. – reference: Martins, C. I. M., Castanheira, M. F., Engrola, S., Costas, B. & Conceicao, L. E. C. (2011). Individual differences in metabolism predict coping styles in fish. Applied Animal Behaviour Science 130, 135-143. – reference: Walker, J. A., Ghalambor, C. K., Griset, O. L., Mckenney, D. & Reznick, D. N. (2005). Do faster starts increase the probability of evading predators? Functional Ecology 19, 808-815. – reference: Norin, T. & Malte, H. (2011). Repeatability of standard metabolic rate, active metabolic rate and aerobic scope in young brown trout during a period of moderate food availability. Journal of Experimental Biology 214, 1668-1675. – reference: Finstad, A. G., Forseth, T., Faenstad, T. F. & Ugedal, O. (2004). The importance of ice cover for energy turnover in juvenile Atlantic salmon. Journal of Animal Ecology 73, 959-966. – reference: Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (1998). Aggression and growth depression in juvenile salmon - the consequences of variation in metabolic rate. Journal of Fish Biology 52, 1026-1037. – reference: Ros, A. F. H., Becker, K. & Oliveira, R. F. (2006). Aggressive behaviour and energy metabolism in a cichlid fish, Oreochromis mossambicus. Physiology and Behavior 89, 164-170. – reference: Hoogenboom, M. O., Metcalfe, N. B., Groothuis, T. G. G., de Vries, B. & Costantini, D. (2012). Relationship between oxidative stress and circulating testosterone and cortisol in pre-spawning female brown trout. Comparative Biochemistry and Physiology A 163, 379-387. – reference: Boldsen, M. M., Norin, T. & Malte, H. (2013). Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). Comparative Biochemistry and Physiology A 165, 22-29. – reference: Wieser, W., Krumschnabel, G. & Ojwang-Okwor, J. P. (1992). The energetics of starvation and growth after refeeding in juveniles of three cyprinid species. Environmental Biology of Fishes 33, 63-71. – reference: Petersen, L. H. & Gamperl, A. K. (2010). Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua). Journal of Experimental Biology 213, 808-819. – reference: Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. (2011). Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams. Journal of Animal Ecology 80, 1012-1023. – reference: White, C. R., Schimpf, N. G. & Cassey, P. (2013). The repeatability of metabolic rate declines with time. Journal of Experimental Biology 216, 1763-1765. – reference: McCarthy, I. D. (2000). Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. Journal of Fish Biology 57, 224-238. – reference: Killen, S. S., Atkinson, D. & Glazier, D. S. (2010). The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecology Letters 13, 184-193. – reference: Gomes, F. R., Chaui-Berlinck, J. G., Bicudo, J. E. P. W. & Navas, C. A. (2004). Intraspecific relationships between resting and activity metabolism in anuran amphibians: influence of ecology and behavior. Physiological and Biochemical Zoology 77, 197-208. – reference: Zub, K., Piertney, S., Szafranska, P. A. & Konarzewski, M. (2012). Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel Mustela nivalis. Molecular Ecology 21, 1283-1293. – reference: Finstad, A. G., Einum, S., Forseth, T. & Ugedal, O. (2007b). Shelter availability affects behaviour, size-dependent and mean growth of juvenile Atlantic salmon. Freshwater Biology 52, 1710-1718. – reference: Sloat, M. R. & Reeves, G. H. (2014). Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Canadian Journal of Fisheries and Aquatic Sciences 71, 491-501. – reference: Millidine, K. J., Armstrong, J. D. & Metcalfe, N. B. (2006). Presence of shelter reduces maintenance metabolism of juvenile salmon. Functional Ecology 20, 839-845. – reference: Wone, B., Sears, M. W., Labocha, M. K., Donovan, E. R. & Hayes, J. P. (2009). Genetic variances and covariances of aerobic metabolic rates in laboratory mice. Proceedings of the Royal Society B 276, 3695-3704. – reference: Secor, S. M. (2009). Specific dynamic action: a review of the postprandial metabolic response. Journal of Comparative Physiology B 179, 1-56. – reference: Reidy, S. P., Kerr, S. R. & Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. Journal of Experimental Biology 203, 347-357. – reference: Álvarez, D. & Nicieza, A. G. (2005). Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild? Canadian Journal of Fisheries and Aquatic Sciences 62, 643-649. – reference: Norin, T. & Malte, H. (2012). Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout. Physiological and Biochemical Zoology 85, 645-656. – reference: McKechnie, A. E. & Swanson, D. L. (2010). Sources and significance of variation in basal, summit and maximal metabolic rates in birds. Current Zoology 56, 741-758. – reference: Rosenfeld, J. S., Van Leeuwen, T. E., Richards, J. G. & Allen, D. (2015). Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life history adaptation in salmonids. Journal of Animal Ecology 84, 4-20. doi: 10.1111/1365-2656.12182 – reference: Konarzewski, M. & Ksiazek, A. (2013). Determinants of intra-specific variation in basal metabolic rate. Journal of Comparative Physiology B 183, 27-41. – reference: Du Preez, H. H. (1987). Laboratory studies on the oxygen consumption of the marine teleost, Lichia amia (Linnaeus, 1758). Comparative Biochemistry and Physiology A 88, 523-532. – reference: Fu, S. J., Xie, X. J. & Cao, Z. D. (2005). Effect of fasting on resting metabolic rate and postprandial metabolic response in Silurus meridionalis. Journal of Fish Biology 67, 279-285. – reference: Killen, S. S. (2014). Growth trajectory influences temperature preference in fish through an effect on metabolic rate. Journal of Animal Ecology 83, 1513-1522. doi: 10.1111/1365-2656.12244 – reference: Millidine, K. J., Armstrong, J. D. & Metcalfe, N. B. (2009). Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster. Proceedings of the Royal Society B 276, 2103-2108. – reference: Régnier, T., Bolliet, V., Gaudin, P. & Labonne, J. (2012). Female effects on offspring energetic status and consequences on early development in yolk feeding brown trout (Salmo trutta). Journal of Experimental Zoology A 317A, 347-358. – reference: Zhang, Y. R., Huang, Q. D., Liu, S. T., He, D. C., Wei, G. & Luo, Y. P. (2014). Intraspecific mass scaling of metabolic rates in grass carp (Ctenopharyngodon idellus). Journal of Comparative Physiology B 184, 347-354. – reference: Kobler, A., Klefoth, T., Mehner, T. & Arlinghaus, R. (2009). Coexistence of behavioural types in an aquatic top predator: a response to resource limitation? Oecologia 161, 837-847. – reference: Auer, S. K., Salin, K., Anderson, G. J., Rudolf, A. M. & Metcalfe, N. B. (2015b). Greater flexibility in metabolic rate confers a growth advantage under changing food availability. Journal of Animal Ecology 84, 1405-1411. – reference: Steyermark, A. C., Miamen, A. G., Feghahati, H. S. & Lewno, A. W. (2005). Physiological and morphological correlates of among-individual variation in standard metabolic rate in the leopard frog Rana pipiens. Journal of Experimental Biology 208, 1201-1208. – reference: Dalziel, A. C., Vines, T. H. & Schulte, P. M. (2012). Reductions in prolonged swimming capacity following freshwater colonization in multiple threespine stickleback populations. Evolution 66, 1226-1239. – reference: Boratynski, Z., Koskela, E., Mappes, T. & Schroderus, E. (2013). Quantitative genetics and fitness effects of basal metabolism. Evolutionary Ecology 27, 301-314. – reference: McGhee, K. E., Pintor, L. M. & Bell, A. M. (2013). Reciprocal behavioral plasticity and behavioral types during predator-prey interactions. American Naturalist 182, 704-717. – reference: Maciak, S., Janko, K., Kotusz, J., Choleva, L., Boron, A., Juchno, D., Kujawa, R., Kozlowski, J. & Konarzewski, M. (2011). Standard Metabolic Rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Functional Ecology 25, 1072-1078. – reference: Killen, S. S., Marras, S., Steffensen, J. F. & McKenzie, D. J. (2012a). Aerobic capacity influences the spatial position of individuals within fish schools. Proceedings of the Royal Society B 279, 357-364. – reference: Dijkstra, P. D., Seehausen, O. & Metcalfe, N. B. (2013). Metabolic differentiation in an incipient species pair of cichlid fish. Journal of Fish Biology 82, 1975-1989. – reference: Irschick, D. J. & Garland, T. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics 32, 367−396. – reference: Schluter, D. (1993). Adaptive radiation in sticklebacks - size, shape, and habitat use efficiency. Ecology 74, 699-709. – reference: Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (2002). Juvenile Atlantic salmon (Salmo salar) with relatively high standard metabolic rates have small metabolic scopes. Functional Ecology 16, 73-78. – reference: Biro, P. A. & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology and Evolution 25, 653-659. – reference: Darveau, C.-A., Suarez, R. K., Andrews, R. D. & Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417, 166-170. – reference: Eliason, E. J., Clark, T. D., Hague, M. J., Hanson, L. M., Gallagher, Z. S., Jeffries, K. M., Gale, M. K., Patterson, D. A., Hinch, S. G. & Farrell, A. P. (2011). Differences in thermal tolerance among sockeye salmon populations. Science 332, 109-112. – reference: Marras, S., Claireaux, G., McKenzie, D. J. & Nelson, J. A. (2010). Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax. Journal of Experimental Biology 213, 26-32. – reference: Mathot, K. J., Martin, K., Kempenaers, B. & Forstmeier, W. (2013). Basal metabolic rate can evolve independently of morphological and behavioural traits. Heredity 111, 175-181. – reference: Alsop, D. H. & Wood, C. M. (1997). The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology 200, 2337-2346. – reference: Fausch, K. D., Nakano, S. & Kitano, S. (1997). Experimentally induced foraging mode shift by sympatric charrs in a Japanese mountain stream. Behavioral Ecology 8, 414-420. – reference: Maciak, S. & Konarzewski, M. (2010). Repeatability of standard metabolic rate (SMR) in a small fish, the spined loach (Cobitis taenia). Comparative Biochemistry and Physiology A 157, 136-141. – reference: Metcalfe, N. B., Taylor, A. C. & Thorpe, J. E. (1995). Metabolic rate, social status and life-history strategies in Atlantic salmon. Animal Behaviour 49, 431-436. – reference: Killen, S. S., Marras, S., Metcalfe, N. B., McKenzie, D. J. & Domenici, P. (2013). Environmental stressors alter relationships between physiology and behaviour. Trends in Ecology and Evolution 28, 651-658. – reference: Cutts, C. J., Adams, C. E. & Campbell, A. (2001). Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 58, 961-968. – reference: Dupont-Prinet, A., Vagner, M., Chabot, D. & Audet, C. (2013). Impact of hypoxia on the metabolism of Greenland halibut (Reinhardtius hippoglossoides). Canadian Journal of Fisheries and Aquatic Sciences 70, 461-469. – reference: Farwell, M. & McLaughlin, R. L. (2009). Alternative foraging tactics and risk taking in brook charr (Salvelinus fontinalis). Behavioral Ecology 20, 913-921. – reference: Beamish, F. W. H. (1964). Influence of starvation on standard and routine oxygen consumption. Transactions of the American Fisheries Society 93, 103-107. – reference: Seppänen, E., Tiira, K., Huuskonen, H. & Piironen, J. (2009b). Metabolic rate, growth and aggressiveness in three Atlantic salmon Salmo salar populations. Journal of Fish Biology 74, 562-575. – reference: McCarthy, I. D. (2001). Competitive ability is related to metabolic asymmetry in juvenile rainbow trout. Journal of Fish Biology 59, 1002-1014. – reference: Monaghan, P., Metcalfe, N. B. & Torres, R. (2009). Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters 12, 75-92. – reference: Sloman, K. A. & Armstrong, J. D. (2002). Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? Journal of Fish Biology 61, 1-23. – reference: Krause, J., Cheng, D. J. S., Kirkman, E. & Ruxton, G. D. (2000). Species-specific patterns of refuge use in fish: the role of metabolic expenditure and body length. Behaviour 137, 1113-1127. – reference: Rossignol, O., Dodson, J. J., Marquilly, C. & Guderley, H. (2010). Do local adaptation and the reproductive tactic of Atlantic salmon (Salmo salar L.) affect offspring metabolic capacities? Physiological and Biochemical Zoology 83, 424-434. – reference: Robertsen, G., Armstrong, J. D., Nislow, K. H., Herfindal, I., McKelvey, S. & Einum, S. (2015). Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon. Journal of Animal Ecology 83, 791-799. – reference: Seebacher, F., Ward, A. J. W. & Wilson, R. S. (2013). Increased aggression during pregnancy comes at a higher metabolic cost. Journal of Experimental Biology 216, 771-776. – reference: Finstad, A. G., Forseth, T., Ugedal, O. & Naesje, T. F. (2007a). Metabolic rate, behaviour and winter performance in juvenile Atlantic salmon. Functional Ecology 21, 905-912. – reference: Hoogenboom, M. O., Armstrong, J. D., Groothuis, T. G. G. & Metcalfe, N. B. (2013). The growth benefits of aggressive behavior vary with individual metabolism and resource predictability. Behavioral Ecology 24, 253-261. – reference: Morgan, J. D. & Iwama, G. K. (1991). Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 48, 2083-2094. – reference: Burton, T., Hoogenboom, M. O., Beevers, N. D., Armstrong, J. D. & Metcalfe, N. B. (2013). Within-clutch differences in the phenotypes of juvenile fish depend on their location within the egg mass and maternal dominance rank. Proceedings of the Royal Society B 280, 20122441. – reference: Neat, F. C., Taylor, A. C. & Huntingford, F. A. (1998). Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism. Animal Behaviour 55, 875-882. – reference: Killen, S. S., Marras, S., Ryan, M. R., Domenici, P. & McKenzie, D. J. (2012b). A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. Functional Ecology 26, 134-143. – reference: Killen, S. S., Brown, J. A. & Gamperl, A. K. (2007). The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging. Journal of Animal Ecology 76, 814-825. – reference: Vaz-Serrano, J., Ruiz-Gomez, M. L., Gjøen, H. M., Skov, P. V., Huntingford, F. A., Øverli, Ø. & Höglund, E. (2011). Consistent boldness behaviour in early emerging fry of domesticated Atlantic salmon (Salmo salar): decoupling of behavioural and physiological traits of the proactive stress coping style. Physiology and Behavior 103, 359-364. – reference: Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248-2251. – reference: Marras, S., Killen, S. S., Domenici, P., Claireaux, G. & McKenzie, D. J. (2013). Relationships among traits of aerobic and anaerobic swimming performance in individual European sea bass Dicentrarchus labrax. PLoS One 8, e72815. – reference: Pörtner, H. O. & Farrell, A. P. (2008). Ecology: physiology and climate change. Science 322, 690-692. – reference: Nespolo, R. F. & Franco, M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal of Experimental Biology 210, 2000-2005. – reference: Redpath, T. D., Cooke, S. J., Suski, C. D., Arlinghaus, R., Couture, P., Wahl, D. H. & Philipp, D. P. (2010). The metabolic and biochemical basis of vulnerability to recreational angling after three generations of angling-induced selection in a teleost fish. Canadian Journal of Fisheries and Aquatic Sciences 67, 1983-1992. – reference: Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. (2012). Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Oncorhynchus kisutch). Journal of Animal Ecology 81, 395-402. – reference: Sloman, K. A., Motherwell, G., O'Connor, K. I. & Taylor, A. C. (2000). The effect of social stress on the Standard Metabolic Rate (SMR) of brown trout, Salmo trutta. Fish Physiology and Biochemistry 23, 49-53. – volume: 208 start-page: 1201 year: 2005 end-page: 1208 article-title: Physiological and morphological correlates of among‐individual variation in standard metabolic rate in the leopard frog publication-title: Journal of Experimental Biology – volume: 80 start-page: 1012 year: 2011 end-page: 1023 article-title: Adaptive trade‐offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams publication-title: Journal of Animal Ecology – volume: 317A start-page: 347 year: 2012 end-page: 358 article-title: Female effects on offspring energetic status and consequences on early development in yolk feeding brown trout ( ) publication-title: Journal of Experimental Zoology A – volume: 83 start-page: 1513 year: 2014 end-page: 1522 article-title: Growth trajectory influences temperature preference in fish through an effect on metabolic rate publication-title: Journal of Animal Ecology – volume: 200 start-page: 2337 year: 1997 end-page: 2346 article-title: The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout ( ) publication-title: Journal of Experimental Biology – volume: 74 start-page: 562 year: 2009b end-page: 575 article-title: Metabolic rate, growth and aggressiveness in three Atlantic salmon populations publication-title: Journal of Fish Biology – volume: 21 start-page: 905 year: 2007a end-page: 912 article-title: Metabolic rate, behaviour and winter performance in juvenile Atlantic salmon publication-title: Functional Ecology – volume: 165 start-page: 22 year: 2013 end-page: 29 article-title: Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel ( ) publication-title: Comparative Biochemistry and Physiology A – volume: 213 start-page: 808 year: 2010 end-page: 819 article-title: Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod ( ) publication-title: Journal of Experimental Biology – volume: 20 start-page: 174 year: 2013 end-page: 186 article-title: Impacts of domestication on angling vulnerability of common carp, : the role of learning, foraging behaviour and food preferences publication-title: Fisheries Management and Ecology – volume: 210 start-page: 2000 year: 2007 end-page: 2005 article-title: Whole‐animal metabolic rate is a repeatable trait: a meta‐analysis publication-title: Journal of Experimental Biology – volume: 16 start-page: 73 year: 2002 end-page: 78 article-title: Juvenile Atlantic salmon ( ) with relatively high standard metabolic rates have small metabolic scopes publication-title: Functional Ecology – volume: 83 start-page: 791 year: 2015 end-page: 799 article-title: Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon publication-title: Journal of Animal Ecology – volume: 130 start-page: 411 year: 2001 end-page: 423 article-title: How should salinity influence fish growth? publication-title: Comparative Biochemistry and Physiology C – volume: 332 start-page: 109 year: 2011 end-page: 112 article-title: Differences in thermal tolerance among sockeye salmon populations publication-title: Science – volume: 183 start-page: 167 year: 2013 end-page: 179 article-title: A comparative meta‐analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange publication-title: Journal of Comparative Physiology B – year: 2016a – volume: 28 start-page: 1367 year: 2014 end-page: 1376 article-title: Aerobic scope predicts dominance during early life in a tropical damselfish publication-title: Functional Ecology – volume: 258 start-page: 1348 year: 1992 end-page: 1350 article-title: Predator‐induced phenotypical change in body morphology in crucian carp publication-title: Science – volume: 76 start-page: 814 year: 2007 end-page: 825 article-title: The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging publication-title: Journal of Animal Ecology – volume: 11 start-page: 20150793 year: 2015c – volume: 57 start-page: 2336 year: 2000 end-page: 2344 article-title: An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 276 start-page: 2103 year: 2009 end-page: 2108 article-title: Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster publication-title: Proceedings of the Royal Society B – volume: 74 start-page: 699 year: 1993 end-page: 709 article-title: Adaptive radiation in sticklebacks – size, shape, and habitat use efficiency publication-title: Ecology – volume: 176 start-page: 387 year: 2006 end-page: 391 article-title: Metabolic rate of Arctic charr eggs depends on their parentage publication-title: Journal of Comparative Physiology B – volume: 140 start-page: 36 year: 2004 end-page: 45 article-title: The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species publication-title: Oecologia (Berlin) – volume: 81 start-page: 395 year: 2012 end-page: 402 article-title: Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon ( ) publication-title: Journal of Animal Ecology – volume: 80 start-page: 1024 year: 2011 end-page: 1033 article-title: Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk‐taking in individual juvenile European sea bass publication-title: Journal of Animal Ecology – volume: 161 start-page: 837 year: 2009 end-page: 847 article-title: Coexistence of behavioural types in an aquatic top predator: a response to resource limitation? publication-title: Oecologia – volume: 71 start-page: 491 year: 2014 end-page: 501 article-title: Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout ( ) life histories publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 57 start-page: 224 year: 2000 end-page: 238 article-title: Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation publication-title: Journal of Fish Biology – volume: 57 start-page: 41 year: 2000 end-page: 51 article-title: The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon publication-title: Journal of Fish Biology – volume: 27 start-page: 301 year: 2013 end-page: 314 article-title: Quantitative genetics and fitness effects of basal metabolism publication-title: Evolutionary Ecology – volume: 88 start-page: 523 year: 1987 end-page: 532 article-title: Laboratory studies on the oxygen consumption of the marine teleost, (Linnaeus, 1758) publication-title: Comparative Biochemistry and Physiology A – volume: 322 start-page: 690 year: 2008 end-page: 692 article-title: Ecology: physiology and climate change publication-title: Science – volume: 77 start-page: 197 year: 2004 end-page: 208 article-title: Intraspecific relationships between resting and activity metabolism in anuran amphibians: influence of ecology and behavior publication-title: Physiological and Biochemical Zoology – volume: 180 start-page: 25 year: 2010 end-page: 31 article-title: Assessing maternal effects on metabolic rate dynamics along early development in brown trout ( ): an individual‐based approach publication-title: Journal of Comparative Physiology B – volume: 73 start-page: 959 year: 2004 end-page: 966 article-title: The importance of ice cover for energy turnover in juvenile Atlantic salmon publication-title: Journal of Animal Ecology – volume: 25 start-page: 1379 year: 2011a end-page: 1388 article-title: Egg hormones in a highly fecund vertebrate: do they influence social structure in competitive conditions? publication-title: Functional Ecology – volume: 1 start-page: 5 year: 2013 article-title: Tracking animals in freshwater with electronic tags: past, present and future publication-title: Animal Biotelemetry – volume: 93 start-page: 103 year: 1964 end-page: 107 article-title: Influence of starvation on standard and routine oxygen consumption publication-title: Transactions of the American Fisheries Society – volume: 32 start-page: 367 year: 2001 end-page: 396 article-title: Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system publication-title: Annual Review of Ecology and Systematics – volume: 280 start-page: 20122441 year: 2013 article-title: Within‐clutch differences in the phenotypes of juvenile fish depend on their location within the egg mass and maternal dominance rank publication-title: Proceedings of the Royal Society B – volume: 20 start-page: 839 year: 2006 end-page: 845 article-title: Presence of shelter reduces maintenance metabolism of juvenile salmon publication-title: Functional Ecology – volume: 338 start-page: 216 year: 2012 end-page: 222 article-title: Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout publication-title: Aquaculture – year: 2016 – volume: 48 start-page: 2083 year: 1991 end-page: 2094 article-title: Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout ( ) and fall Chinook salmon ( ) publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 85 start-page: 645 year: 2012 end-page: 656 article-title: Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout publication-title: Physiological and Biochemical Zoology – volume: 111 start-page: 175 year: 2013 end-page: 181 article-title: Basal metabolic rate can evolve independently of morphological and behavioural traits publication-title: Heredity – volume: 216 start-page: 2771 year: 2013 end-page: 2782 article-title: Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations publication-title: Journal of Experimental Biology – volume: 86 start-page: 479 year: 1999 end-page: 486 article-title: Competitive asymmetries in territorial juvenile Atlantic salmon, publication-title: Oikos – volume: 279 start-page: 357 year: 2012a end-page: 364 article-title: Aerobic capacity influences the spatial position of individuals within fish schools publication-title: Proceedings of the Royal Society B – volume: 157 start-page: 136 year: 2010 end-page: 141 article-title: Repeatability of standard metabolic rate (SMR) in a small fish, the spined loach ( ) publication-title: Comparative Biochemistry and Physiology A – volume: 278 start-page: 3465 year: 2011b end-page: 3473 article-title: What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? publication-title: Proceedings of the Royal Society B – volume: 130 start-page: 135 year: 2011 end-page: 143 article-title: Individual differences in metabolism predict coping styles in fish publication-title: Applied Animal Behaviour Science – volume: 25 start-page: 1360 year: 2011 end-page: 1367 article-title: Estimated standard metabolic rate interacts with territory quality and density to determine growth rates of juvenile Atlantic salmon publication-title: Functional Ecology – volume: 137 start-page: 1113 year: 2000 end-page: 1127 article-title: Species‐specific patterns of refuge use in fish: the role of metabolic expenditure and body length publication-title: Behaviour – volume: 25 start-page: 653 year: 2010 end-page: 659 article-title: Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? publication-title: Trends in Ecology and Evolution – start-page: 1 year: 1971 end-page: 98 – volume: 8 start-page: e72815 year: 2013 article-title: Relationships among traits of aerobic and anaerobic swimming performance in individual European sea bass publication-title: PLoS One – volume: 179 start-page: 1 year: 2009 end-page: 56 article-title: Specific dynamic action: a review of the postprandial metabolic response publication-title: Journal of Comparative Physiology B – volume: 58 start-page: 961 year: 2001 end-page: 968 article-title: Stability of physiological and behavioural determinants of performance in Arctic char ( ) publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 26 start-page: 134 year: 2012b end-page: 143 article-title: A relationship between metabolic rate and risk‐taking behaviour is revealed during hypoxia in juvenile European sea bass publication-title: Functional Ecology – volume: 362 start-page: 2105 year: 2007 end-page: 2121 article-title: Hypoxia and the antipredator behaviours of fishes publication-title: Philosophical Transactions of the Royal Society B – volume: 59 start-page: 1002 year: 2001 end-page: 1014 article-title: Competitive ability is related to metabolic asymmetry in juvenile rainbow trout publication-title: Journal of Fish Biology – volume: 52 start-page: 1026 year: 1998 end-page: 1037 article-title: Aggression and growth depression in juvenile salmon – the consequences of variation in metabolic rate publication-title: Journal of Fish Biology – year: 2013 – volume: 213 start-page: 26 year: 2010 end-page: 32 article-title: Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, publication-title: Journal of Experimental Biology – year: 2016b – volume: 61 start-page: 1 year: 2002 end-page: 23 article-title: Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? publication-title: Journal of Fish Biology – volume: 14 start-page: 369 year: 2009a end-page: 381 article-title: Standard metabolic rate, growth rate and smolting of the juveniles in three Atlantic salmon stocks publication-title: Boreal Environment Research – volume: 55 start-page: 875 year: 1998 end-page: 882 article-title: Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism publication-title: Animal Behaviour – volume: 203 start-page: 347 year: 2000 end-page: 357 article-title: Aerobic and anaerobic swimming performance of individual Atlantic cod publication-title: Journal of Experimental Biology – volume: 417 start-page: 166 year: 2002 end-page: 170 article-title: Allometric cascade as a unifying principle of body mass effects on metabolism publication-title: Nature – volume: 25 start-page: 1072 year: 2011 end-page: 1078 article-title: Standard Metabolic Rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the hybrid complex publication-title: Functional Ecology – volume: 214 start-page: 1668 year: 2011 end-page: 1675 article-title: Repeatability of standard metabolic rate, active metabolic rate and aerobic scope in young brown trout during a period of moderate food availability publication-title: Journal of Experimental Biology – volume: 52 start-page: 1710 year: 2007b end-page: 1718 article-title: Shelter availability affects behaviour, size‐dependent and mean growth of juvenile Atlantic salmon publication-title: Freshwater Biology – volume: 10 start-page: 177 year: 2008 end-page: 196 article-title: How does selection operate on whole‐organism functional performance capacities? A review and synthesis publication-title: Evolutionary Ecology Research – volume: 271 start-page: S516 year: 2004 end-page: S519 article-title: Social networks in the guppy ( ) publication-title: Proceedings of the Royal Society B – volume: 12 start-page: 75 year: 2009 end-page: 92 article-title: Oxidative stress as a mediator of life history trade‐offs: mechanisms, measurements and interpretation publication-title: Ecology Letters – volume: 133 start-page: 654 year: 1989 end-page: 670 article-title: Search modes of birds and lizards – evidence for alternative movement patterns publication-title: American Naturalist – volume: 109 start-page: 20960 year: 2012 end-page: 20965 article-title: Recreational fishing selectively captures individuals with the highest fitness potential publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 163 start-page: 379 year: 2012 end-page: 387 article-title: Relationship between oxidative stress and circulating testosterone and cortisol in pre‐spawning female brown trout publication-title: Comparative Biochemistry and Physiology A – volume: 67 start-page: 1983 year: 2010 end-page: 1992 article-title: The metabolic and biochemical basis of vulnerability to recreational angling after three generations of angling‐induced selection in a teleost fish publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 84 start-page: 1405 year: 2015b end-page: 1411 article-title: Greater flexibility in metabolic rate confers a growth advantage under changing food availability publication-title: Journal of Animal Ecology – volume: 315 start-page: 95 year: 2007 end-page: 97 article-title: Climate change affects marine fishes through the oxygen limitation of thermal tolerance publication-title: Science – volume: 156 start-page: 278 year: 2010 end-page: 284 article-title: Consistency of standard metabolic rate in relation to life history strategy of juvenile Atlantic salmon publication-title: Comparative Biochemistry and Physiology A – volume: 21 start-page: 1283 year: 2012 end-page: 1293 article-title: Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel publication-title: Molecular Ecology – volume: 184 start-page: 347 year: 2014 end-page: 354 article-title: Intraspecific mass scaling of metabolic rates in grass carp ( ) publication-title: Journal of Comparative Physiology B – volume: 20 start-page: 913 year: 2009 end-page: 921 article-title: Alternative foraging tactics and risk taking in brook charr ( ) publication-title: Behavioral Ecology – volume: 81 start-page: 868 year: 2012 end-page: 875 article-title: The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent publication-title: Journal of Animal Ecology – year: 2015 – volume: 29 start-page: 479 year: 2015a end-page: 486 article-title: The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability publication-title: Functional Ecology – volume: 182 start-page: 704 year: 2013 end-page: 717 article-title: Reciprocal behavioral plasticity and behavioral types during predator–prey interactions publication-title: American Naturalist – volume: 33 start-page: 63 year: 1992 end-page: 71 article-title: The energetics of starvation and growth after refeeding in juveniles of three cyprinid species publication-title: Environmental Biology of Fishes – volume: 216 start-page: 1763 year: 2013 end-page: 1765 article-title: The repeatability of metabolic rate declines with time publication-title: Journal of Experimental Biology – volume: 168 start-page: 427 year: 1998 end-page: 433 article-title: The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish (Pisces: Cichlidae) publication-title: Journal of Comparative Physiology B – volume: 15 start-page: 600 year: 2007 end-page: 606 article-title: Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high‐fat diets publication-title: Obesity – volume: 105 start-page: 2919 year: 2008 end-page: 2922 article-title: Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 82 start-page: 1975 year: 2013 end-page: 1989 article-title: Metabolic differentiation in an incipient species pair of cichlid fish publication-title: Journal of Fish Biology – volume: 67 start-page: 279 year: 2005 end-page: 285 article-title: Effect of fasting on resting metabolic rate and postprandial metabolic response in publication-title: Journal of Fish Biology – volume: 8 start-page: 414 year: 1997 end-page: 420 article-title: Experimentally induced foraging mode shift by sympatric charrs in a Japanese mountain stream publication-title: Behavioral Ecology – volume: 16 start-page: 167 year: 2002 end-page: 174 article-title: Metabolic rate and aggressiveness between brown trout populations publication-title: Functional Ecology – volume: 89 start-page: 164 year: 2006 end-page: 170 article-title: Aggressive behaviour and energy metabolism in a cichlid fish, publication-title: Physiology and Behavior – volume: 23 start-page: 49 year: 2000 end-page: 53 article-title: The effect of social stress on the Standard Metabolic Rate (SMR) of brown trout, publication-title: Fish Physiology and Biochemistry – volume: 13 start-page: 184 year: 2010 end-page: 193 article-title: The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature publication-title: Ecology Letters – volume: 19 start-page: 808 year: 2005 end-page: 815 article-title: Do faster starts increase the probability of evading predators? publication-title: Functional Ecology – volume: 396 start-page: 147 year: 2011 end-page: 155 article-title: Estimates of field activity and metabolic rates of bonefish ( ) in coastal marine habitats using acoustic tri‐axial accelerometer transmitters and intermittent‐flow respirometry publication-title: Journal of Experimental Marine Biology and Ecology – volume: 62 start-page: 643 year: 2005 end-page: 649 article-title: Is metabolic rate a reliable predictor of growth and survival of brown trout ( ) in the wild? publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 70 start-page: 461 year: 2013 end-page: 469 article-title: Impact of hypoxia on the metabolism of Greenland halibut ( ) publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 56 start-page: 741 year: 2010 end-page: 758 article-title: Sources and significance of variation in basal, summit and maximal metabolic rates in birds publication-title: Current Zoology – volume: 276 start-page: 3695 year: 2009 end-page: 3704 article-title: Genetic variances and covariances of aerobic metabolic rates in laboratory mice publication-title: Proceedings of the Royal Society B – volume: 44 start-page: 239 year: 2011 end-page: 250 article-title: A methodological approach to measuring the oxygen consumption profile of six freshwater fish species: implications for determination of the standard metabolic rate publication-title: Marine and Freshwater Behaviour and Physiology – volume: 212 start-page: 2872 year: 2009 end-page: 2878 article-title: Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy publication-title: Journal of Experimental Biology – volume: 183 start-page: 27 year: 2013 end-page: 41 article-title: Determinants of intra‐specific variation in basal metabolic rate publication-title: Journal of Comparative Physiology B – volume: 216 start-page: 771 year: 2013 end-page: 776 article-title: Increased aggression during pregnancy comes at a higher metabolic cost publication-title: Journal of Experimental Biology – volume: 28 start-page: 651 year: 2013 end-page: 658 article-title: Environmental stressors alter relationships between physiology and behaviour publication-title: Trends in Ecology and Evolution – volume: 58 start-page: 433 year: 2010 end-page: 439 article-title: Exposure of ova to cortisol pre‐fertilisation affects subsequent behaviour and physiology of brown trout publication-title: Hormones and Behavior – volume: 49 start-page: 431 year: 1995 end-page: 436 article-title: Metabolic rate, social status and life‐history strategies in Atlantic salmon publication-title: Animal Behaviour – volume: 83 start-page: 424 year: 2010 end-page: 434 article-title: Do local adaptation and the reproductive tactic of Atlantic salmon ( L.) affect offspring metabolic capacities? publication-title: Physiological and Biochemical Zoology – volume: 265 start-page: 2373 year: 1998 end-page: 2379 article-title: Refuge use by fish as a function of body length‐related metabolic expenditure and predation risks publication-title: Proceedings of the Royal Society B – volume: 20 start-page: 2124 year: 2010 end-page: 2130 article-title: Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation publication-title: Current Biology – volume: 32 start-page: 95 year: 2001 end-page: 126 article-title: The physiology of life history trade‐offs in animals publication-title: Annual Review of Ecology and Systematics – volume: 82 start-page: 708 year: 2013 end-page: 713 article-title: No evidence of shelter providing a metabolic advantage to the false clown anemonefish publication-title: Journal of Fish Biology – volume: 293 start-page: 2248 year: 2001 end-page: 2251 article-title: Effects of size and temperature on metabolic rate publication-title: Science – volume: 76 start-page: 1576 year: 2010 end-page: 1591 article-title: Coping strategies in a strongly schooling fish, the common carp publication-title: Journal of Fish Biology – volume: 61 start-page: 3 year: 1997 end-page: 50 article-title: Ecological morphology of lacustrine threespine stickleback, L. (Gasterosteidae) body shape publication-title: Biological Journal of the Linnean Society – volume: 85 start-page: 111 year: 2010 end-page: 138 article-title: A unifying explanation for diverse metabolic scaling in animals and plants publication-title: Biological Reviews – volume: 84 start-page: 4 year: 2015 end-page: 20 article-title: Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life history adaptation in salmonids publication-title: Journal of Animal Ecology – volume: 66 start-page: 1226 year: 2012 end-page: 1239 article-title: Reductions in prolonged swimming capacity following freshwater colonization in multiple threespine stickleback populations publication-title: Evolution – volume: 52 start-page: 281 year: 1998 end-page: 290 article-title: Correlation among dominance status, metabolic rate and otolith size in masu salmon publication-title: Journal of Fish Biology – volume: 103 start-page: 359 year: 2011 end-page: 364 article-title: Consistent boldness behaviour in early emerging fry of domesticated Atlantic salmon ( ): decoupling of behavioural and physiological traits of the proactive stress coping style publication-title: Physiology and Behavior – volume: 24 start-page: 253 year: 2013 end-page: 261 article-title: The growth benefits of aggressive behavior vary with individual metabolism and resource predictability publication-title: Behavioral Ecology – volume: 58 start-page: 961 year: 2001 ident: e_1_2_6_26_1 article-title: Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus) publication-title: Canadian Journal of Fisheries and Aquatic Sciences doi: 10.1139/f01-050 – ident: e_1_2_6_19_1 doi: 10.1111/jfb.12836 – ident: e_1_2_6_100_1 doi: 10.1007/s00442-004-1562-y – ident: e_1_2_6_78_1 doi: 10.1111/j.1095-8649.2000.tb00788.x – ident: e_1_2_6_14_1 doi: 10.1111/j.1365-2435.2011.01897.x – ident: e_1_2_6_77_1 doi: 10.1038/hdy.2013.35 – ident: e_1_2_6_70_1 doi: 10.1163/156853900502466 – ident: e_1_2_6_74_1 doi: 10.1242/jeb.032136 – ident: e_1_2_6_41_1 doi: 10.1016/S1546-5098(08)60146-6 – ident: e_1_2_6_59_1 doi: 10.1111/j.1365-2656.2011.01844.x – ident: e_1_2_6_120_1 doi: 10.1139/cjfas-2013-0366 – ident: e_1_2_6_103_1 doi: 10.1126/science.1135471 – ident: e_1_2_6_118_1 doi: 10.1111/j.1095-8649.2008.02142.x – ident: e_1_2_6_79_1 doi: 10.1111/j.1095-8649.2001.tb00167.x – ident: e_1_2_6_18_1 doi: 10.1111/jfb.12845 – ident: e_1_2_6_98_1 doi: 10.1111/j.1095-8649.2000.tb00774.x – ident: e_1_2_6_129_1 doi: 10.1080/10236244.2011.622090 – ident: e_1_2_6_22_1 doi: 10.1186/2050-3385-1-5 – ident: e_1_2_6_66_1 doi: 10.1111/j.1365-2400.2012.00865.x – ident: e_1_2_6_107_1 doi: 10.1111/j.1365-2435.2011.01894.x – ident: e_1_2_6_92_1 doi: 10.1111/jfb.12824 – ident: e_1_2_6_30_1 doi: 10.1111/jfb.12125 – ident: e_1_2_6_57_1 doi: 10.1111/j.1365-2656.2007.01237.x – ident: e_1_2_6_115_1 doi: 10.1007/s00360-008-0283-7 – ident: e_1_2_6_111_1 doi: 10.1016/j.physbeh.2006.05.043 – ident: e_1_2_6_56_1 doi: 10.1111/1365-2656.12244 – ident: e_1_2_6_16_1 doi: 10.1098/rspb.2012.2441 – ident: e_1_2_6_29_1 doi: 10.1038/417166a – ident: e_1_2_6_33_1 doi: 10.1139/cjfas-2012-0327 – ident: e_1_2_6_51_1 doi: 10.1111/j.1095-8649.2010.02582.x – ident: e_1_2_6_13_1 doi: 10.1126/science.258.5086.1348 – ident: e_1_2_6_58_1 doi: 10.1111/j.1461-0248.2009.01415.x – ident: e_1_2_6_21_1 doi: 10.1242/jeb.084251 – ident: e_1_2_6_25_1 doi: 10.2307/3546652 – ident: e_1_2_6_76_1 doi: 10.1016/j.applanim.2010.12.007 – ident: e_1_2_6_123_1 doi: 10.1023/A:1007855100185 – ident: e_1_2_6_2_1 doi: 10.1242/jeb.200.17.2337 – ident: e_1_2_6_6_1 doi: 10.1098/rsbl.2015.0793 – ident: e_1_2_6_28_1 doi: 10.1111/j.1558-5646.2011.01498.x – ident: e_1_2_6_127_1 doi: 10.1111/j.1365-2656.2011.01924.x – ident: e_1_2_6_72_1 doi: 10.1016/j.cbpa.2010.05.017 – ident: e_1_2_6_88_1 doi: 10.1111/j.1461-0248.2008.01258.x – ident: e_1_2_6_5_1 doi: 10.1111/1365-2656.12384 – ident: e_1_2_6_17_1 – ident: e_1_2_6_110_1 doi: 10.1111/1365-2656.12182 – ident: e_1_2_6_54_1 doi: 10.1038/oby.2007.550 – ident: e_1_2_6_113_1 doi: 10.1086/649561 – ident: e_1_2_6_60_1 doi: 10.1098/rspb.2011.1006 – ident: e_1_2_6_40_1 doi: 10.1139/f00-211 – ident: e_1_2_6_45_1 doi: 10.1111/j.1469-185X.2009.00095.x – ident: e_1_2_6_96_1 doi: 10.1111/1365-2435.12503 – ident: e_1_2_6_89_1 doi: 10.1139/f91-247 – ident: e_1_2_6_128_1 doi: 10.1016/j.physbeh.2011.02.025 – ident: e_1_2_6_135_1 doi: 10.1111/j.1095-8649.1998.tb00799.x – ident: e_1_2_6_39_1 doi: 10.1111/j.1365-2427.2007.01799.x – ident: e_1_2_6_15_1 doi: 10.1098/rspb.2011.1778 – ident: e_1_2_6_4_1 doi: 10.1111/1365-2435.12396 – ident: e_1_2_6_24_1 doi: 10.1111/j.1095-8649.1998.tb00601.x – ident: e_1_2_6_52_1 doi: 10.1146/annurev.ecolsys.32.081501.114048 – ident: e_1_2_6_84_1 doi: 10.1006/anbe.1995.0056 – ident: e_1_2_6_50_1 doi: 10.1093/beheco/ars161 – ident: e_1_2_6_73_1 doi: 10.1111/j.1365-2435.2011.01870.x – ident: e_1_2_6_124_1 doi: 10.1242/jeb.01492 – ident: e_1_2_6_133_1 doi: 10.1007/BF00002554 – ident: e_1_2_6_69_1 doi: 10.1098/rspb.1998.0586 – ident: e_1_2_6_101_1 doi: 10.1242/jeb.033746 – ident: e_1_2_6_31_1 doi: 10.1098/rstb.2007.2103 – ident: e_1_2_6_64_1 doi: 10.1111/1365-2435.12527 – ident: e_1_2_6_108_1 doi: 10.1111/j.1365-2656.2012.01969.x – ident: e_1_2_6_121_1 doi: 10.1016/j.yhbeh.2010.05.010 – ident: e_1_2_6_7_1 doi: 10.1577/1548-8659(1964)93[103:IOSOSA]2.0.CO;2 – ident: e_1_2_6_34_1 doi: 10.1126/science.1199158 – volume: 61 start-page: 3 year: 1997 ident: e_1_2_6_130_1 article-title: Ecological morphology of lacustrine threespine stickleback, Gasterosteus aculeatus L. (Gasterosteidae) body shape publication-title: Biological Journal of the Linnean Society – ident: e_1_2_6_112_1 doi: 10.1111/1365-2656.12182 – ident: e_1_2_6_116_1 doi: 10.1242/jeb.079756 – ident: e_1_2_6_35_1 doi: 10.1093/beheco/arp059 – ident: e_1_2_6_42_1 doi: 10.1111/j.0022-1112.2005.00723.x – ident: e_1_2_6_36_1 doi: 10.1093/beheco/8.4.414 – ident: e_1_2_6_46_1 doi: 10.1086/381471 – ident: e_1_2_6_134_1 doi: 10.1098/rspb.2009.0980 – ident: e_1_2_6_126_1 doi: 10.1111/j.1365-2656.2011.01841.x – ident: e_1_2_6_90_1 doi: 10.1016/j.jembe.2010.10.019 – ident: e_1_2_6_85_1 doi: 10.1111/jfb.12804 – ident: e_1_2_6_80_1 doi: 10.1086/673526 – ident: e_1_2_6_63_1 doi: 10.1111/1365-2435.12296 – ident: e_1_2_6_12_1 doi: 10.1007/s10682-012-9590-2 – ident: e_1_2_6_81_1 doi: 10.1093/czoolo/56.6.741 – ident: e_1_2_6_32_1 doi: 10.1016/0300-9629(87)90075-2 – volume: 14 start-page: 369 year: 2009 ident: e_1_2_6_117_1 article-title: Standard metabolic rate, growth rate and smolting of the juveniles in three Atlantic salmon stocks publication-title: Boreal Environment Research – ident: e_1_2_6_38_1 doi: 10.1111/j.1365-2435.2007.01291.x – ident: e_1_2_6_105_1 doi: 10.1007/s00360-009-0385-x – ident: e_1_2_6_125_1 doi: 10.1073/pnas.1212536109 – ident: e_1_2_6_122_1 doi: 10.1111/j.1095-8649.2002.tb01733.x – ident: e_1_2_6_82_1 doi: 10.1016/j.aquaculture.2012.01.020 – ident: e_1_2_6_132_1 doi: 10.1242/jeb.076562 – ident: e_1_2_6_75_1 doi: 10.1371/journal.pone.0072815 – ident: e_1_2_6_102_1 doi: 10.1126/science.1163156 – ident: e_1_2_6_104_1 doi: 10.1139/F10-120 – ident: e_1_2_6_37_1 doi: 10.1111/j.0021-8790.2004.00871.x – ident: e_1_2_6_20_1 – ident: e_1_2_6_27_1 doi: 10.1046/j.0269-8463.2001.00603.x – ident: e_1_2_6_71_1 doi: 10.1046/j.1365-2435.2002.00618.x – ident: e_1_2_6_62_1 doi: 10.1016/j.tree.2013.05.005 – ident: e_1_2_6_86_1 doi: 10.1111/j.1365-2435.2006.01166.x – ident: e_1_2_6_99_1 doi: 10.1007/s00360-005-0057-4 – ident: e_1_2_6_138_1 doi: 10.1111/j.1365-294X.2011.05436.x – ident: e_1_2_6_44_1 doi: 10.1126/science.1061967 – ident: e_1_2_6_83_1 doi: 10.1086/284943 – ident: e_1_2_6_55_1 doi: 10.1111/jfb.12013 – ident: e_1_2_6_131_1 doi: 10.1111/j.1365-2435.2005.01033.x – ident: e_1_2_6_23_1 doi: 10.1098/rsbl.2004.0206 – ident: e_1_2_6_67_1 doi: 10.1007/s00442-009-1415-9 – ident: e_1_2_6_87_1 doi: 10.1098/rspb.2009.0080 – ident: e_1_2_6_10_1 doi: 10.1016/S1532-0456(01)00268-X – ident: e_1_2_6_47_1 doi: 10.1007/s003600050162 – ident: e_1_2_6_109_1 doi: 10.1242/jeb.203.2.347 – ident: e_1_2_6_91_1 doi: 10.1006/anbe.1997.0668 – ident: e_1_2_6_137_1 doi: 10.1007/s00360-014-0802-7 – ident: e_1_2_6_49_1 doi: 10.1016/j.cbpa.2012.07.002 – ident: e_1_2_6_119_1 doi: 10.1016/j.cbpa.2010.02.014 – ident: e_1_2_6_61_1 doi: 10.1111/j.1365-2435.2011.01920.x – ident: e_1_2_6_106_1 doi: 10.1002/jez.1728 – ident: e_1_2_6_48_1 doi: 10.1007/s00360-012-0688-1 – ident: e_1_2_6_11_1 doi: 10.1016/j.cbpa.2013.01.027 – ident: e_1_2_6_43_1 doi: 10.1242/jeb.030874 – volume: 10 start-page: 177 year: 2008 ident: e_1_2_6_53_1 article-title: How does selection operate on whole‐organism functional performance capacities? A review and synthesis publication-title: Evolutionary Ecology Research – ident: e_1_2_6_93_1 doi: 10.1242/jeb.02780 – ident: e_1_2_6_3_1 doi: 10.1139/f04-223 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.0708159105 – ident: e_1_2_6_97_1 doi: 10.1111/jfb.12796 – ident: e_1_2_6_94_1 doi: 10.1242/jeb.054205 – ident: e_1_2_6_9_1 doi: 10.1016/j.tree.2010.08.003 – ident: e_1_2_6_114_1 doi: 10.2307/1940797 – ident: e_1_2_6_65_1 doi: 10.1016/j.cub.2010.10.050 – ident: e_1_2_6_136_1 doi: 10.1146/annurev.ecolsys.32.081501.114006 – ident: e_1_2_6_95_1 doi: 10.1086/665982 – ident: e_1_2_6_68_1 doi: 10.1007/s00360-012-0698-z |
SSID | ssj0009393 |
Score | 2.5817044 |
SecondaryResourceType | review_article |
Snippet | There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 298 |
SubjectTerms | aerobic scope Aggression Animals Appetitive Behavior Basal Metabolism Behavior Behavior, Animal dominance Ecological effects Energy Metabolism Environment Environmental changes Fish behavior Fishes - metabolism fitness Food availability Genotype & phenotype growth Hypoxia Metabolism Phenotype Reproduction Risk taking Special Issue Paper specific dynamic action Swimming Temperature |
Title | Does individual variation in metabolic phenotype predict fish behaviour and performance? |
URI | https://api.istex.fr/ark:/67375/WNG-0450CR7W-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.12699 https://www.ncbi.nlm.nih.gov/pubmed/26577442 https://www.proquest.com/docview/1756758354 https://www.proquest.com/docview/1760894054 https://pubmed.ncbi.nlm.nih.gov/PMC4991269 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qRfDF-u3WWqKI-LLH7Sb7EXwQrZ6lYJFi6SFCSLJZerTuHnd7Iv71zmQ_2tMK4tuyO2GZZCb5TTLzC8DzvMiszMw4jHRcYoCSizDXqQuLWFpn0sJyfxnMx8N0_1gcTJPpBrzqa2Fafohhw408w8_X5ODaLC87eWlGUZxKKt6jXC0CREcX1FGSd4S7GGxhg7hjFfJZPH3LtbXoOnXrj6uA5p_5kpdxrF-IJlvwtVehzT85G60aM7I_f2N3_E8db8OtDqCyN61F3YENV92FG19qv_1-D6bvardks6GMi33HYNuPLr5k31yDRnU-s4xSx2ra32XzBZ0FNaycLU9ZxwqwWjBdFWx-UbXw-j4cT95_3tsPu9sZQosoS4YOAa_LrUE8JGWRu1QkkTZaF4gpS5lTQW1mo8hYLrSfRuKS86SIXGlSNIkxfwCbVV25R8ASI_LEOZ1pzTGAEpKudbcIpXLrxLgoAnjZj5OyHXU53aBxroYQpjTKd1QAzwbRecvXcZXQCz_Yg4RenFGCW5aok8MPClHueO8oO1E8gJ3eGlTn20uFgIuiLJ6IAJ4On9Er6ahFV65ekQzqKBEMo8zD1niGn8VpgphbxAFka2Y1CBDj9_qXanbqmb8xPCUFsD-81fxdQ3Uweesftv9d9DHcRDTY7S_twGazWLkniLgaswvXYvFp1zvYL9XdKAI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVoheeENTChgEqJesNu_4gBB0WbavPVStuuJibMdRVy3JKpttC7-Jv8J_Yuw82oUicemBW5SMkow9Y39jj78BeBUnkaSR6NoOd1MMUGLfjnmo7MSlUokwkZ4pBrM7DAcH_tYoGC3Aj-YsTMUP0S64ac8w47V2cL0gfdnLU9Fx3JDSOqVyW307w4Bt-nazh7372nX7H_c3BnZdU8CWiA2orRCmqVgKnMUpTWIV-oHDBecJIqGUxvoYaCQdR0jP58b43dTzgsRRqQhRka6H770BS7qCuGbq7-1dkFVRr6b4xfAO_9CteYxM3lDzq3Oz35LuyPOroO2fGZqXkbOZ-vp34GfTaFXGy3FnVoqO_P4bn-T_0qp34XaNwcn7ymnuwYLK7sPNz7nZYXgAo16upmTcnlQjp7yoDBhvkq-qRL85GUuis-NyvYRNJoXe7ipJOp4ekZr4YFYQniVkcnEw491DOLgWtR7BYpZnagVIIPw4UIpHnHsYI_pUV66XiBZjqfxukliw3hgGkzU7uy4ScsLaKC0VzHSMBS9b0UlFSXKV0BtjXa0EL451Dl8UsMPhJ4ZAvruxFx0yz4K1xvxYPXxNGWJKHUh6gW_Bi_YxDjx6N4lnKp9pGdSRIt5HmceVtbYfc8MAwwrftSCas-NWQJOazz_JxkeG3BwjcK0Atocx079ryLb6H8zF6r-LPodbg_3dHbazOdx-AssIfuvltDVYLIuZeooAsxTPjF8T-HLdJv8Lw9eDRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiGcJLWAQIC5BG9t5-IAQdFn6gFWFqLri4voVdUVJVvso8Jv4k4y92bQrisSltygeJbFnJv7GnvkM8KywuRG57sSJoiUGKAWPC5W52FJhnM6sYeEwmE_9bPuA7w7SwQr8XtTCzPkh2gU37xnhf-0dfGTL805e6lcJzYRoMir33K8fGK9NXu90UbnPKe29_7K1HTdHCsQGoYGIHaI0VxiNk7gQtnAZTxOllbIIhEpR-CrQ3CSJNoyrYPu0ZCy1iSt1hv3oMHzuFVjzm4s-f4zy_TOGX9Yw_GJ0h19IGxqjkDa0-NSlyW_N6_HnRcj27wTN88A5zHy9m3Cjgazk7dzGbsGKq27D1a91WJC_A4Nu7SZk2BZ2kVMMv4O-8Sb57qZoZidDQ3wyWe1XfMlo7HeHpqQcTo5JwxMwGxNVWTI6q2N4cxcOLmVw78FqVVfuPpBU8yJ1TuVKMQypuPAHvRsEV4VxvGNtBC8XAylNQ2buz9Q4kW1QU2oZxjyCp63oaM7gcZHQi6CNVkKNv_mUtzyVh_0PEnFvZ-tzfihZBJsLdcnG2ycSIZiPu1jKI3jSNqOf-s0XVbl65mWwjwLhMcqsz7XbvoxmKaJwTiPIl_TeCngO8OWWangcuMAxYPUdwPEIFvLvHsrd3rtw8eD_RR_Dtf1uT37c6e9twHWEis3i0yasTscz9xDh2FQ_Cm5A4Oiy_e4PDFpCXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+individual+variation+in+metabolic+phenotype+predict+fish+behaviour+and+performance%3F&rft.jtitle=Journal+of+fish+biology&rft.au=Metcalfe%2C+N.+B.&rft.au=Van+Leeuwen%2C+T.+E.&rft.au=Killen%2C+S.+S.&rft.date=2016-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-1112&rft.eissn=1095-8649&rft.volume=88&rft.issue=1&rft.spage=298&rft.epage=321&rft_id=info:doi/10.1111%2Fjfb.12699&rft.externalDBID=10.1111%252Fjfb.12699&rft.externalDocID=JFB12699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1112&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1112&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1112&client=summon |