Does individual variation in metabolic phenotype predict fish behaviour and performance?

There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best‐studied examples. After accounting for variation due to other factors, there can typically be a two to three‐fold variation...

Full description

Saved in:
Bibliographic Details
Published inJournal of fish biology Vol. 88; no. 1; pp. 298 - 321
Main Authors Metcalfe, N. B., Van Leeuwen, T. E., Killen, S. S.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best‐studied examples. After accounting for variation due to other factors, there can typically be a two to three‐fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk‐taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context‐dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.
AbstractList There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.
There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best‐studied examples. After accounting for variation due to other factors, there can typically be a two to three‐fold variation among individual fishes for both standard and maximum metabolic rate ( SMR and MMR ). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR , MMR and aerobic scope ( AS ), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk‐taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS . Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context‐dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR , MMR and AS .
There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.
Author Killen, S. S.
Metcalfe, N. B.
Van Leeuwen, T. E.
AuthorAffiliation 2 Scottish Centre for Ecology and the Natural Environment (SCENE) University of Glasgow, Rowardennan Loch Lomond Glasgow G63 0AW U.K
1 Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building University of Glasgow Glasgow G12 8QQ U.K
AuthorAffiliation_xml – name: 1 Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building University of Glasgow Glasgow G12 8QQ U.K
– name: 2 Scottish Centre for Ecology and the Natural Environment (SCENE) University of Glasgow, Rowardennan Loch Lomond Glasgow G63 0AW U.K
Author_xml – sequence: 1
  givenname: N. B.
  surname: Metcalfe
  fullname: Metcalfe, N. B.
  email: neil.metcalfe@glasgow.ac.uk
  organization: Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K
– sequence: 2
  givenname: T. E.
  surname: Van Leeuwen
  fullname: Van Leeuwen, T. E.
  organization: Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K
– sequence: 3
  givenname: S. S.
  surname: Killen
  fullname: Killen, S. S.
  organization: Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26577442$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFvFCEYxYmpsdvqwX_AkHjRw7QwwMxwsdG1rW0aTYym3gjDfOOyzsAIM6v735futhttolxI4Pce3-MdoD3nHSD0nJIjmtbxsq2PaF5I-QjNKJEiqwou99CMkDzPEpDvo4MYl4QQySR7gvbzQpQl5_kMfXvvIWLrGruyzaQ7vNLB6tF6lw5xD6OufWcNHhbg_LgeAA8BGmtG3Nq4wDUs9Mr6KWDtGjxAaH3otTNw8hQ9bnUX4dndfoi-np1-mX_Irj6dX8zfXmVGCCozqGgNlampkFI2FRRcUF1r3VAmW1mRQvLSUFobxnXJSMrSMiYaCm1dkIoTdojebH2Hqe6hMeDGoDs1BNvrsFZeW_X3jbML9d2vFJfy9s-Swas7g-B_ThBH1dtooOu0Az9FRcv0kORE8IS-fIAuU3SX4iVKFKWo2IZ68edEu1HuPz0Br7eACT7GAO0OoUTdFqpSoWpTaGKPH7DGjpt-Uhjb_U_xy3aw_re1ujx7d6_ItgobR_i9U-jwQxUlK4W6_niuCBdk_rm8VozdAGvwwKw
CitedBy_id crossref_primary_10_1242_jeb_243160
crossref_primary_10_1093_cz_zoaa013
crossref_primary_10_1016_j_cbpa_2019_01_012
crossref_primary_10_1016_j_aquaculture_2018_05_039
crossref_primary_10_1242_jeb_198143
crossref_primary_10_1093_conphys_cow007
crossref_primary_10_1016_j_aqrep_2021_100645
crossref_primary_10_1111_faf_12770
crossref_primary_10_1111_oik_04204
crossref_primary_10_1093_conphys_coab045
crossref_primary_10_1111_1365_2664_13875
crossref_primary_10_1016_j_fishres_2023_106637
crossref_primary_10_1016_j_aquatox_2018_08_011
crossref_primary_10_1016_j_aquatox_2017_06_001
crossref_primary_10_1038_s41598_018_23352_z
crossref_primary_10_3389_fphys_2021_754719
crossref_primary_10_3390_d10020035
crossref_primary_10_1139_cjfas_2015_0429
crossref_primary_10_1086_718211
crossref_primary_10_3389_fimmu_2021_794593
crossref_primary_10_1016_j_scitotenv_2020_141458
crossref_primary_10_1093_icb_icac136
crossref_primary_10_1111_jfb_12845
crossref_primary_10_3354_meps13340
crossref_primary_10_3390_d15030322
crossref_primary_10_1093_conphys_coab054
crossref_primary_10_1111_fwb_14259
crossref_primary_10_1016_j_aquaculture_2019_04_069
crossref_primary_10_1093_conphys_coac023
crossref_primary_10_1242_jeb_246439
crossref_primary_10_1016_j_jtherbio_2025_104071
crossref_primary_10_1139_cjfas_2024_0141
crossref_primary_10_1007_s10750_025_05794_5
crossref_primary_10_1016_j_aquaculture_2022_737972
crossref_primary_10_1002_ece3_7806
crossref_primary_10_1111_1365_2656_12555
crossref_primary_10_1111_jfb_15900
crossref_primary_10_1016_j_jtherbio_2024_103941
crossref_primary_10_1093_conphys_coaa096
crossref_primary_10_1093_conphys_cow033
crossref_primary_10_1111_jfb_12873
crossref_primary_10_1007_s10811_016_0917_1
crossref_primary_10_1139_cjz_2023_0043
crossref_primary_10_1007_s00442_018_4302_4
crossref_primary_10_1093_conphys_coad008
crossref_primary_10_1242_jeb_242522
crossref_primary_10_1163_1568539X_00003405
crossref_primary_10_1111_ele_12894
crossref_primary_10_1242_jeb_144972
crossref_primary_10_1007_s10682_020_10059_9
crossref_primary_10_1186_s12983_022_00450_3
crossref_primary_10_3390_fishes8020113
crossref_primary_10_3389_fevo_2022_897314
crossref_primary_10_1016_j_cbpa_2024_111708
crossref_primary_10_1111_jfb_15692
crossref_primary_10_1111_ele_13187
crossref_primary_10_1007_s11160_019_09553_3
crossref_primary_10_1093_icb_icab068
crossref_primary_10_1111_1365_2656_13535
crossref_primary_10_1086_708673
crossref_primary_10_1093_icesjms_fsz167
crossref_primary_10_1016_j_fishres_2025_107299
crossref_primary_10_1002_ece3_5080
crossref_primary_10_1111_jeb_13418
crossref_primary_10_1002_ece3_9686
crossref_primary_10_1111_eth_13552
crossref_primary_10_1111_jfb_13065
crossref_primary_10_1016_j_cbpa_2017_09_002
crossref_primary_10_3354_meps13318
crossref_primary_10_1007_s00227_019_3614_1
crossref_primary_10_1016_j_jtherbio_2018_02_002
crossref_primary_10_3389_fphys_2018_00653
crossref_primary_10_1007_s10750_022_04902_z
crossref_primary_10_1016_j_applanim_2018_01_006
crossref_primary_10_1111_faf_12696
crossref_primary_10_1098_rstb_2016_0233
crossref_primary_10_1016_j_cbpa_2021_111077
crossref_primary_10_1016_j_anbehav_2020_11_012
crossref_primary_10_1016_j_marpolbul_2020_111251
crossref_primary_10_3354_esr00774
crossref_primary_10_1111_brv_12892
crossref_primary_10_1163_1568539X_00003375
crossref_primary_10_3390_biology10050416
crossref_primary_10_1111_jeb_13592
crossref_primary_10_3389_fphys_2019_01166
crossref_primary_10_1016_j_cbpc_2019_108562
crossref_primary_10_7717_peerj_9356
crossref_primary_10_1016_j_aquatox_2019_02_015
crossref_primary_10_1086_704010
crossref_primary_10_1139_cjz_2017_0363
crossref_primary_10_1111_jfb_14700
crossref_primary_10_1016_j_mce_2024_112333
crossref_primary_10_3389_frish_2024_1276161
crossref_primary_10_1007_s10750_022_04961_2
crossref_primary_10_1016_j_jtherbio_2024_103951
crossref_primary_10_1080_00028487_2016_1221856
crossref_primary_10_1111_jfb_15916
crossref_primary_10_1111_1365_2435_12772
crossref_primary_10_1038_s41598_020_76966_7
crossref_primary_10_1111_1365_2435_13065
crossref_primary_10_1098_rspb_2018_0884
crossref_primary_10_1093_icb_icx083
crossref_primary_10_1002_ece3_7964
crossref_primary_10_1007_s00227_017_3252_4
crossref_primary_10_1111_1365_2656_12632
crossref_primary_10_1093_beheco_arx080
crossref_primary_10_1139_cjfas_2018_0399
crossref_primary_10_1111_jfb_12796
crossref_primary_10_1139_cjfas_2021_0046
crossref_primary_10_1098_rstb_2018_0180
crossref_primary_10_1242_jeb_209437
crossref_primary_10_1016_j_cbd_2021_100799
crossref_primary_10_1111_oik_10817
crossref_primary_10_1016_j_cbpa_2021_111098
crossref_primary_10_1093_conphys_coab028
crossref_primary_10_1111_eva_12597
crossref_primary_10_1242_jeb_146712
crossref_primary_10_1016_j_anbehav_2022_09_012
crossref_primary_10_1098_rspb_2021_1509
crossref_primary_10_1111_jfb_14287
crossref_primary_10_1016_j_chemosphere_2019_124731
crossref_primary_10_1086_722478
crossref_primary_10_1111_jfb_13195
crossref_primary_10_1007_s00442_017_3992_3
crossref_primary_10_1002_ece3_4107
crossref_primary_10_1111_1365_2656_12524
crossref_primary_10_1016_j_scitotenv_2019_134039
crossref_primary_10_1098_rsbl_2024_0181
crossref_primary_10_1038_s41598_018_33047_0
crossref_primary_10_1186_s40462_024_00453_1
crossref_primary_10_1016_j_scitotenv_2021_150208
crossref_primary_10_1007_s10695_022_01123_y
crossref_primary_10_1371_journal_pone_0268914
crossref_primary_10_1111_are_15138
crossref_primary_10_1111_jzo_12534
crossref_primary_10_1038_s41598_018_36747_9
crossref_primary_10_1111_gcb_15578
crossref_primary_10_1139_cjfas_2019_0186
crossref_primary_10_1016_j_cbpa_2022_111318
crossref_primary_10_1002_ece3_9129
crossref_primary_10_1093_conphys_coz003
crossref_primary_10_1186_s40317_019_0176_4
crossref_primary_10_1016_j_cbpc_2019_06_002
crossref_primary_10_3390_ani14213049
crossref_primary_10_1111_jfb_14519
crossref_primary_10_1007_s00360_022_01467_0
crossref_primary_10_3389_fevo_2021_623718
crossref_primary_10_1016_j_tree_2019_11_001
crossref_primary_10_3390_fishes5030025
crossref_primary_10_1038_s42003_022_03055_y
crossref_primary_10_1016_j_aquaculture_2021_736415
crossref_primary_10_1016_j_aquaculture_2021_737505
crossref_primary_10_1111_jzo_12642
crossref_primary_10_1093_iob_obab032
crossref_primary_10_1111_jfb_13530
crossref_primary_10_3758_s13420_017_0296_8
crossref_primary_10_1038_s41598_020_62304_4
crossref_primary_10_1242_jeb_246717
crossref_primary_10_1111_2041_210X_12993
crossref_primary_10_1093_conphys_coae047
crossref_primary_10_1186_s40462_023_00419_9
crossref_primary_10_1086_692250
crossref_primary_10_1093_conphys_coaa126
crossref_primary_10_1371_journal_pone_0305909
crossref_primary_10_1007_s11160_018_9516_3
crossref_primary_10_1093_jcbiol_ruae074
crossref_primary_10_1016_j_anbehav_2016_09_006
crossref_primary_10_1016_j_cbpc_2019_03_003
crossref_primary_10_17221_58_2023_SWR
crossref_primary_10_1098_rspb_2021_2500
crossref_primary_10_1111_jzo_13049
crossref_primary_10_1016_j_ecolmodel_2016_12_018
crossref_primary_10_1016_j_scitotenv_2021_146825
crossref_primary_10_1007_s00027_024_01052_3
crossref_primary_10_1002_iroh_201902014
crossref_primary_10_1002_aqc_3689
crossref_primary_10_1111_jfb_14653
crossref_primary_10_1002_tafs_10179
crossref_primary_10_1016_j_jglr_2025_102509
crossref_primary_10_1098_rstb_2022_0481
crossref_primary_10_1111_apha_13406
crossref_primary_10_1098_rsos_181859
crossref_primary_10_1098_rstb_2022_0483
crossref_primary_10_1242_jeb_244662
crossref_primary_10_1098_rstb_2022_0488
crossref_primary_10_1111_1365_2435_12862
crossref_primary_10_1111_jfb_15293
crossref_primary_10_1007_s00227_024_04510_6
crossref_primary_10_1016_j_ecss_2024_108849
crossref_primary_10_1186_s12862_021_01904_8
crossref_primary_10_1007_s00265_019_2795_4
crossref_primary_10_1007_s10641_019_00933_z
crossref_primary_10_1111_gcb_15106
crossref_primary_10_1002_ece3_10470
crossref_primary_10_1016_j_envpol_2024_123358
crossref_primary_10_1111_anu_12799
crossref_primary_10_1016_j_cbpa_2017_07_005
crossref_primary_10_1016_j_ecolmodel_2021_109655
crossref_primary_10_1242_jeb_217125
crossref_primary_10_3389_fevo_2023_1161105
crossref_primary_10_1371_journal_pone_0228976
crossref_primary_10_1002_ece3_9280
crossref_primary_10_1021_acs_estlett_5c00042
crossref_primary_10_1007_s10530_018_1842_9
crossref_primary_10_1242_jeb_245400
crossref_primary_10_1111_brv_12753
crossref_primary_10_1007_s00360_021_01358_w
crossref_primary_10_1371_journal_pone_0213061
crossref_primary_10_1038_s41598_020_76780_1
crossref_primary_10_1093_conphys_cow046
crossref_primary_10_1002_naaq_10245
crossref_primary_10_1071_MF18317
crossref_primary_10_1111_jfb_13100
crossref_primary_10_1016_j_aquaculture_2021_737153
crossref_primary_10_1016_j_aquatox_2019_105221
crossref_primary_10_1002_ecy_3488
crossref_primary_10_1016_j_aquaculture_2022_739175
crossref_primary_10_1111_jfb_12933
crossref_primary_10_1111_jfb_14313
crossref_primary_10_1002_ece3_4716
crossref_primary_10_1111_jai_14115
crossref_primary_10_1111_1365_2656_12935
crossref_primary_10_1086_693376
crossref_primary_10_1093_conphys_coad026
crossref_primary_10_1242_jeb_242145
crossref_primary_10_1242_jeb_243477
crossref_primary_10_1002_ece3_7672
crossref_primary_10_1111_brv_12491
crossref_primary_10_1098_rspb_2017_1279
crossref_primary_10_1089_zeb_2017_1442
crossref_primary_10_1002_ece3_8408
crossref_primary_10_1186_s42523_022_00203_x
crossref_primary_10_1016_j_cbpa_2016_04_022
crossref_primary_10_3389_fphys_2022_859556
crossref_primary_10_1242_jeb_223453
crossref_primary_10_1093_beheco_arx129
crossref_primary_10_1111_brv_13111
crossref_primary_10_1016_j_physbeh_2023_114403
crossref_primary_10_1002_ece3_3644
crossref_primary_10_1007_s11160_022_09701_2
crossref_primary_10_1016_j_jembe_2025_152087
crossref_primary_10_1016_j_aquaculture_2022_738184
crossref_primary_10_1111_jfb_12834
crossref_primary_10_1139_cjfas_2018_0311
crossref_primary_10_1242_bio_025452
crossref_primary_10_1093_conphys_coae013
crossref_primary_10_1111_oik_07378
crossref_primary_10_1086_696877
crossref_primary_10_1016_j_anbehav_2023_10_008
crossref_primary_10_1098_rsbl_2019_0825
crossref_primary_10_1007_s11160_017_9505_y
crossref_primary_10_1016_j_anbehav_2020_03_009
crossref_primary_10_1093_icb_icae085
crossref_primary_10_1016_j_cbpa_2017_12_011
crossref_primary_10_1111_mec_15244
crossref_primary_10_1002_etc_4019
crossref_primary_10_1007_s11692_019_09473_x
crossref_primary_10_1139_cjfas_2020_0125
crossref_primary_10_1002_eco_2566
crossref_primary_10_1080_03949370_2024_2343473
crossref_primary_10_1093_conphys_coy023
crossref_primary_10_3390_biology11050694
crossref_primary_10_1093_conphys_coad058
crossref_primary_10_1002_nafm_10852
crossref_primary_10_1086_697963
Cites_doi 10.1139/f01-050
10.1111/jfb.12836
10.1007/s00442-004-1562-y
10.1111/j.1095-8649.2000.tb00788.x
10.1111/j.1365-2435.2011.01897.x
10.1038/hdy.2013.35
10.1163/156853900502466
10.1242/jeb.032136
10.1016/S1546-5098(08)60146-6
10.1111/j.1365-2656.2011.01844.x
10.1139/cjfas-2013-0366
10.1126/science.1135471
10.1111/j.1095-8649.2008.02142.x
10.1111/j.1095-8649.2001.tb00167.x
10.1111/jfb.12845
10.1111/j.1095-8649.2000.tb00774.x
10.1080/10236244.2011.622090
10.1186/2050-3385-1-5
10.1111/j.1365-2400.2012.00865.x
10.1111/j.1365-2435.2011.01894.x
10.1111/jfb.12824
10.1111/jfb.12125
10.1111/j.1365-2656.2007.01237.x
10.1007/s00360-008-0283-7
10.1016/j.physbeh.2006.05.043
10.1111/1365-2656.12244
10.1098/rspb.2012.2441
10.1038/417166a
10.1139/cjfas-2012-0327
10.1111/j.1095-8649.2010.02582.x
10.1126/science.258.5086.1348
10.1111/j.1461-0248.2009.01415.x
10.1242/jeb.084251
10.2307/3546652
10.1016/j.applanim.2010.12.007
10.1023/A:1007855100185
10.1242/jeb.200.17.2337
10.1098/rsbl.2015.0793
10.1111/j.1558-5646.2011.01498.x
10.1111/j.1365-2656.2011.01924.x
10.1016/j.cbpa.2010.05.017
10.1111/j.1461-0248.2008.01258.x
10.1111/1365-2656.12384
10.1111/1365-2656.12182
10.1038/oby.2007.550
10.1086/649561
10.1098/rspb.2011.1006
10.1139/f00-211
10.1111/j.1469-185X.2009.00095.x
10.1111/1365-2435.12503
10.1139/f91-247
10.1016/j.physbeh.2011.02.025
10.1111/j.1095-8649.1998.tb00799.x
10.1111/j.1365-2427.2007.01799.x
10.1098/rspb.2011.1778
10.1111/1365-2435.12396
10.1111/j.1095-8649.1998.tb00601.x
10.1146/annurev.ecolsys.32.081501.114048
10.1006/anbe.1995.0056
10.1093/beheco/ars161
10.1111/j.1365-2435.2011.01870.x
10.1242/jeb.01492
10.1007/BF00002554
10.1098/rspb.1998.0586
10.1242/jeb.033746
10.1098/rstb.2007.2103
10.1111/1365-2435.12527
10.1111/j.1365-2656.2012.01969.x
10.1016/j.yhbeh.2010.05.010
10.1577/1548-8659(1964)93[103:IOSOSA]2.0.CO;2
10.1126/science.1199158
10.1242/jeb.079756
10.1093/beheco/arp059
10.1111/j.0022-1112.2005.00723.x
10.1093/beheco/8.4.414
10.1086/381471
10.1098/rspb.2009.0980
10.1111/j.1365-2656.2011.01841.x
10.1016/j.jembe.2010.10.019
10.1111/jfb.12804
10.1086/673526
10.1111/1365-2435.12296
10.1007/s10682-012-9590-2
10.1093/czoolo/56.6.741
10.1016/0300-9629(87)90075-2
10.1111/j.1365-2435.2007.01291.x
10.1007/s00360-009-0385-x
10.1073/pnas.1212536109
10.1111/j.1095-8649.2002.tb01733.x
10.1016/j.aquaculture.2012.01.020
10.1242/jeb.076562
10.1371/journal.pone.0072815
10.1126/science.1163156
10.1139/F10-120
10.1111/j.0021-8790.2004.00871.x
10.1046/j.0269-8463.2001.00603.x
10.1046/j.1365-2435.2002.00618.x
10.1016/j.tree.2013.05.005
10.1111/j.1365-2435.2006.01166.x
10.1007/s00360-005-0057-4
10.1111/j.1365-294X.2011.05436.x
10.1126/science.1061967
10.1086/284943
10.1111/jfb.12013
10.1111/j.1365-2435.2005.01033.x
10.1098/rsbl.2004.0206
10.1007/s00442-009-1415-9
10.1098/rspb.2009.0080
10.1016/S1532-0456(01)00268-X
10.1007/s003600050162
10.1242/jeb.203.2.347
10.1006/anbe.1997.0668
10.1007/s00360-014-0802-7
10.1016/j.cbpa.2012.07.002
10.1016/j.cbpa.2010.02.014
10.1111/j.1365-2435.2011.01920.x
10.1002/jez.1728
10.1007/s00360-012-0688-1
10.1016/j.cbpa.2013.01.027
10.1242/jeb.030874
10.1242/jeb.02780
10.1139/f04-223
10.1073/pnas.0708159105
10.1111/jfb.12796
10.1242/jeb.054205
10.1016/j.tree.2010.08.003
10.2307/1940797
10.1016/j.cub.2010.10.050
10.1146/annurev.ecolsys.32.081501.114006
10.1086/665982
10.1007/s00360-012-0698-z
ContentType Journal Article
Copyright 2015 The Authors. published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
2015 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
Journal of Fish Biology © 2016 The Fisheries Society of the British Isles
Copyright_xml – notice: 2015 The Authors. published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
– notice: 2015 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
– notice: Journal of Fish Biology © 2016 The Fisheries Society of the British Isles
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7TN
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
7X8
5PM
DOI 10.1111/jfb.12699
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Oceanic Abstracts
Technology Research Database
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
DocumentTitleAlternate effects of variation in metabolic rate
EISSN 1095-8649
EndPage 321
ExternalDocumentID PMC4991269
3921549161
26577442
10_1111_jfb_12699
JFB12699
ark_67375_WNG_0450CR7W_3
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
Commentary
Editorial
GrantInformation_xml – fundername: NERC Advanced Fellowship
  funderid: NE/J019100/1
– fundername: ERC
  funderid: 322784
– fundername: EU Interreg IVA Programme
– fundername: NSERC
– fundername: ERC
  grantid: 322784
– fundername: NERC Advanced Fellowship
  grantid: NE/J019100/1
GroupedDBID ---
--K
-~X
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OB
1OC
29K
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAJYS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGJEQ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LG5
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XOL
XPP
YK3
YQT
ZCG
ZMT
ZY4
ZZTAW
~02
~IA
~WT
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7TN
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5519-e81be8cb15999d8e6451abaad139f9806947c11bc34a730112f335d1efb608403
IEDL.DBID DR2
ISSN 0022-1112
1095-8649
IngestDate Thu Aug 21 14:07:56 EDT 2025
Fri Jul 11 03:12:18 EDT 2025
Sun Jul 13 05:20:27 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Tue Jul 01 01:50:45 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Wed Jan 22 16:20:18 EST 2025
Wed Oct 30 09:48:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords specific dynamic action
growth
metabolism
dominance
fitness
aerobic scope
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2015 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5519-e81be8cb15999d8e6451abaad139f9806947c11bc34a730112f335d1efb608403
Notes NSERC
ark:/67375/WNG-0450CR7W-3
EU Interreg IVA Programme
istex:2CFDFA6DC00AE79418AA87B0A118F05CD624F36B
NERC Advanced Fellowship - No. NE/J019100/1
ERC - No. 322784
ArticleID:JFB12699
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.12699
PMID 26577442
PQID 1756758354
PQPubID 1086393
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4991269
proquest_miscellaneous_1760894054
proquest_journals_1756758354
pubmed_primary_26577442
crossref_primary_10_1111_jfb_12699
crossref_citationtrail_10_1111_jfb_12699
wiley_primary_10_1111_jfb_12699_JFB12699
istex_primary_ark_67375_WNG_0450CR7W_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Journal of fish biology
PublicationTitleAlternate J Fish Biol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Millidine, K. J., Armstrong, J. D. & Metcalfe, N. B. (2006). Presence of shelter reduces maintenance metabolism of juvenile salmon. Functional Ecology 20, 839-845.
Nespolo, R. F. & Franco, M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal of Experimental Biology 210, 2000-2005.
Cutts, C. J., Adams, C. E. & Campbell, A. (2001). Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 58, 961-968.
Irschick, D. J., Meyers, J. J., Husak, J. F. & Le Galliard, J. F. (2008). How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evolutionary Ecology Research 10, 177-196.
McGhee, K. E., Pintor, L. M. & Bell, A. M. (2013). Reciprocal behavioral plasticity and behavioral types during predator-prey interactions. American Naturalist 182, 704-717.
Domenici, P., Lefrancois, C. & Shingles, A. (2007). Hypoxia and the antipredator behaviours of fishes. Philosophical Transactions of the Royal Society B 362, 2105-2121.
Sloat, M. R. & Reeves, G. H. (2014). Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Canadian Journal of Fisheries and Aquatic Sciences 71, 491-501.
Finstad, A. G., Einum, S., Forseth, T. & Ugedal, O. (2007b). Shelter availability affects behaviour, size-dependent and mean growth of juvenile Atlantic salmon. Freshwater Biology 52, 1710-1718.
Killen, S. S. (2014). Growth trajectory influences temperature preference in fish through an effect on metabolic rate. Journal of Animal Ecology 83, 1513-1522. doi: 10.1111/1365-2656.12244
Killen, S. S., Brown, J. A. & Gamperl, A. K. (2007). The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging. Journal of Animal Ecology 76, 814-825.
Lahti, K., Huuskonen, H., Laurila, A. & Piironen, J. (2002). Metabolic rate and aggressiveness between brown trout populations. Functional Ecology 16, 167-174.
Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. (2011b). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B 278, 3465-3473.
McKenzie, D. J., Höglund, E., Dupont-Prinet, A., Larsen, B. K., Skov, P. V., Pedersen, P. B. & Jokumsen, A. (2012). Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout. Aquaculture 338, 216-222.
Álvarez, D. & Nicieza, A. G. (2005). Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild? Canadian Journal of Fisheries and Aquatic Sciences 62, 643-649.
Killen, S. S., Marras, S., Steffensen, J. F. & McKenzie, D. J. (2012a). Aerobic capacity influences the spatial position of individuals within fish schools. Proceedings of the Royal Society B 279, 357-364.
Kitano, J., Lema, S. C., Luckenbach, J. A., Mori, S., Kawagishi, Y., Kusakabe, M., Swanson, P. & Peichel, C. L. (2010). Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation. Current Biology 20, 2124-2130.
Dijkstra, P. D., Seehausen, O. & Metcalfe, N. B. (2013). Metabolic differentiation in an incipient species pair of cichlid fish. Journal of Fish Biology 82, 1975-1989.
Gebczynski, A. K. & Konarzewski, M. (2009). Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy. Journal of Experimental Biology 212, 2872-2878.
Gomes, F. R., Chaui-Berlinck, J. G., Bicudo, J. E. P. W. & Navas, C. A. (2004). Intraspecific relationships between resting and activity metabolism in anuran amphibians: influence of ecology and behavior. Physiological and Biochemical Zoology 77, 197-208.
Voutilainen, A., Seppänen, E. & Huuskonen, H. (2011). A methodological approach to measuring the oxygen consumption profile of six freshwater fish species: implications for determination of the standard metabolic rate. Marine and Freshwater Behaviour and Physiology 44, 239-250.
Brönmark, C. & Miner, J. G. (1992). Predator-induced phenotypical change in body morphology in crucian carp. Science 258, 1348-1350.
Grantner, A. & Taborsky, M. (1998). The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). Journal of Comparative Physiology B 168, 427-433.
Reidy, S. P., Kerr, S. R. & Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. Journal of Experimental Biology 203, 347-357.
Kegler, P., Kunzmann, A., Brohl, S. & Herbert, N. A. (2013). No evidence of shelter providing a metabolic advantage to the false clown anemonefish Amphiprion ocellaris. Journal of Fish Biology 82, 708-713.
Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (1998). Aggression and growth depression in juvenile salmon - the consequences of variation in metabolic rate. Journal of Fish Biology 52, 1026-1037.
Régnier, T., Bolliet, V., Gaudin, P. & Labonne, J. (2012). Female effects on offspring energetic status and consequences on early development in yolk feeding brown trout (Salmo trutta). Journal of Experimental Zoology A 317A, 347-358.
Johnston, S. L., Souter, D. M., Tolkamp, B. J., Gordon, I. J., Illius, A. W., Kyriazakis, I. & Speakman, J. R. (2007). Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high-fat diets. Obesity 15, 600-606.
Krause, J., Loader, S. P., McDermott, J. & Ruxton, G. D. (1998). Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proceedings of the Royal Society B 265, 2373-2379.
Irschick, D. J. & Garland, T. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics 32, 367−396.
Huntingford, F. A., Andrew, G., Mackenzie, S., Morera, D., Coyle, S. M., Pilarczyk, M. & Kadri, S. (2010). Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. Journal of Fish Biology 76, 1576-1591.
Steyermark, A. C., Miamen, A. G., Feghahati, H. S. & Lewno, A. W. (2005). Physiological and morphological correlates of among-individual variation in standard metabolic rate in the leopard frog Rana pipiens. Journal of Experimental Biology 208, 1201-1208.
Régnier, T., Bolliet, V., Labonne, J. & Gaudin, P. (2010). Assessing maternal effects on metabolic rate dynamics along early development in brown trout (Salmo trutta): an individual-based approach. Journal of Comparative Physiology B 180, 25-31.
Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (2002). Juvenile Atlantic salmon (Salmo salar) with relatively high standard metabolic rates have small metabolic scopes. Functional Ecology 16, 73-78.
Pörtner, H. O. & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95-97.
Fischer, P. (2000). An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Canadian Journal of Fisheries and Aquatic Sciences 57, 2336-2344.
Rossignol, O., Dodson, J. J., Marquilly, C. & Guderley, H. (2010). Do local adaptation and the reproductive tactic of Atlantic salmon (Salmo salar L.) affect offspring metabolic capacities? Physiological and Biochemical Zoology 83, 424-434.
Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J. & Metcalfe, N. B. (2015a). The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Functional Ecology 29, 479-486.
Biro, P. A. & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology and Evolution 25, 653-659.
Finstad, A. G., Forseth, T., Ugedal, O. & Naesje, T. F. (2007a). Metabolic rate, behaviour and winter performance in juvenile Atlantic salmon. Functional Ecology 21, 905-912.
Pörtner, H. O. & Farrell, A. P. (2008). Ecology: physiology and climate change. Science 322, 690-692.
O'Connor, K. I., Taylor, A. C. & Metcalfe, N. B. (2000). The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. Journal of Fish Biology 57, 41-51.
Fu, S. J., Xie, X. J. & Cao, Z. D. (2005). Effect of fasting on resting metabolic rate and postprandial metabolic response in Silurus meridionalis. Journal of Fish Biology 67, 279-285.
Farwell, M. & McLaughlin, R. L. (2009). Alternative foraging tactics and risk taking in brook charr (Salvelinus fontinalis). Behavioral Ecology 20, 913-921.
Rosenfeld, J. S., Van Leeuwen, T. E., Richards, J. G. & Allen, D. (2015). Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life history adaptation in salmonids. Journal of Animal Ecology 84, 4-20. doi: 10.1111/1365-2656.12182
Clark, T. D., Sandblom, E. & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology 216, 2771-2782.
Hillman, S. S., Hancock, T. V. & Hedrick, M. S. (2013). A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. Journal of Comparative Physiology B 183, 167-179.
Cooke, S. J., Midwood, J. D., Thiem, J. D., Klimley, P., Lucas, M. C., Thorstad, E. B., Eiler, J., Holbrook, C. & Ebner, B. C. (2013). Tracking animals in freshwater with electronic tags: past, present and future. Animal Biotelemetry 1, 5.
McKechnie, A. E. & Swanson, D. L. (2010). Sources and significance of variation in basal, summit and maximal metabolic rates in birds. Current Zoology 56, 741-758.
Sloman, K. A. (2010). Exposure of ova to cortisol pre-fertilisation affects subsequent behavi
2002; 16
2015a; 29
2013; 1
2010; 13
2016b
2016a
2000; 137
2005; 62
2006; 176
2013; 70
2008; 105
1971
2014; 28
2007; 76
2013; 8
2010; 180
2005; 67
1997; 8
2012a; 279
2009; 12
2010; 20
2006; 20
2010; 25
2001; 130
2015; 84
2015; 83
2007; 210
2013; 111
2001; 59
1998; 168
2001; 58
2012; 21
2007b; 52
2011; 80
2004; 140
1989; 133
2009; 212
2009; 179
2012b; 26
2002; 417
2011; 130
2009b; 74
2015b; 84
2013; 183
1992; 33
2013; 182
2007; 15
2012; 109
2005; 19
2007; 315
1995; 49
2002; 61
2010; 213
2004; 271
1997; 200
1992; 258
2013; 216
2013; 82
1998; 265
1964; 93
2001; 32
2010; 56
2012; 163
2013; 28
2010; 58
2013; 27
2013; 24
2011b; 278
2007a; 21
2013; 20
2009; 276
1999; 86
2013; 165
2013; 280
2011; 396
2010; 67
2004; 77
1987; 88
2004; 73
2001; 293
1991; 48
2000; 203
2000; 57
2010; 156
2010; 157
1993; 74
2009; 161
2011; 25
1998; 52
2012; 66
2011a; 25
2012; 338
1998; 55
2015c; 11
2011; 214
2010; 76
2012; 81
1997; 61
2009; 20
2000; 23
2007; 362
2008; 10
2009a; 14
2008; 322
2014; 83
2011; 332
2010; 85
2010; 83
2011; 103
2006; 89
2012; 317A
2005; 208
2011; 44
2016
2015
2014; 184
2013
2014; 71
2012; 85
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
e_1_2_6_113_1
Irschick D. J. (e_1_2_6_53_1) 2008; 10
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
Cutts C. J. (e_1_2_6_26_1) 2001; 58
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_111_1
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
Walker J. A. (e_1_2_6_130_1) 1997; 61
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Seppänen E. (e_1_2_6_117_1) 2009; 14
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – reference: Domenici, P., Lefrancois, C. & Shingles, A. (2007). Hypoxia and the antipredator behaviours of fishes. Philosophical Transactions of the Royal Society B 362, 2105-2121.
– reference: Cooke, S. J., Midwood, J. D., Thiem, J. D., Klimley, P., Lucas, M. C., Thorstad, E. B., Eiler, J., Holbrook, C. & Ebner, B. C. (2013). Tracking animals in freshwater with electronic tags: past, present and future. Animal Biotelemetry 1, 5.
– reference: Hillman, S. S., Hancock, T. V. & Hedrick, M. S. (2013). A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. Journal of Comparative Physiology B 183, 167-179.
– reference: McLaughlin, R. L. (1989). Search modes of birds and lizards - evidence for alternative movement patterns. American Naturalist 133, 654-670.
– reference: Gebczynski, A. K. & Konarzewski, M. (2009). Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy. Journal of Experimental Biology 212, 2872-2878.
– reference: O'Connor, K. I., Taylor, A. C. & Metcalfe, N. B. (2000). The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. Journal of Fish Biology 57, 41-51.
– reference: Kegler, P., Kunzmann, A., Brohl, S. & Herbert, N. A. (2013). No evidence of shelter providing a metabolic advantage to the false clown anemonefish Amphiprion ocellaris. Journal of Fish Biology 82, 708-713.
– reference: Grantner, A. & Taborsky, M. (1998). The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). Journal of Comparative Physiology B 168, 427-433.
– reference: Lahti, K., Huuskonen, H., Laurila, A. & Piironen, J. (2002). Metabolic rate and aggressiveness between brown trout populations. Functional Ecology 16, 167-174.
– reference: Pakkasmaa, S., Penttinen, O. P. & Piironen, J. (2006). Metabolic rate of Arctic charr eggs depends on their parentage. Journal of Comparative Physiology B 176, 387-391.
– reference: Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J. & Metcalfe, N. B. (2015a). The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Functional Ecology 29, 479-486.
– reference: Biro, P. A. & Post, J. R. (2008). Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proceedings of the National Academy of Sciences of the United States of America 105, 2919-2922.
– reference: Kitano, J., Lema, S. C., Luckenbach, J. A., Mori, S., Kawagishi, Y., Kusakabe, M., Swanson, P. & Peichel, C. L. (2010). Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation. Current Biology 20, 2124-2130.
– reference: Sutter, D. A. H., Suski, C. D., Philipp, D. P., Klefoth, T., Wahl, D. H., Kersten, P., Cooke, S. J. & Arlinghaus, R. (2012). Recreational fishing selectively captures individuals with the highest fitness potential. Proceedings of the National Academy of Sciences of the United States of America 109, 20960-20965.
– reference: Voutilainen, A., Seppänen, E. & Huuskonen, H. (2011). A methodological approach to measuring the oxygen consumption profile of six freshwater fish species: implications for determination of the standard metabolic rate. Marine and Freshwater Behaviour and Physiology 44, 239-250.
– reference: Reid, D., Armstrong, J. D. & Metcalfe, N. B. (2011). Estimated standard metabolic rate interacts with territory quality and density to determine growth rates of juvenile Atlantic salmon. Functional Ecology 25, 1360-1367.
– reference: Reid, D., Armstrong, J. D. & Metcalfe, N. B. (2012). The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent. Journal of Animal Ecology 81, 868-875.
– reference: Seppänen, E., Piironen, J. & Huuskonen, H. (2009a). Standard metabolic rate, growth rate and smolting of the juveniles in three Atlantic salmon stocks. Boreal Environment Research 14, 369-381.
– reference: Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (1999). Competitive asymmetries in territorial juvenile Atlantic salmon, Salmo salar. Oikos 86, 479-486.
– reference: Glazier, D. S. (2010). A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews 85, 111-138.
– reference: Johnston, S. L., Souter, D. M., Tolkamp, B. J., Gordon, I. J., Illius, A. W., Kyriazakis, I. & Speakman, J. R. (2007). Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high-fat diets. Obesity 15, 600-606.
– reference: Croft, D. P., Krause, J. & James, R. (2004). Social networks in the guppy (Poecilia reticulata). Proceedings of the Royal Society B 271, S516-S519.
– reference: Burton, T., Hoogenboom, M. O., Armstrong, J. D., Groothuis, T. G. G. & Metcalfe, N. B. (2011a). Egg hormones in a highly fecund vertebrate: do they influence social structure in competitive conditions? Functional Ecology 25, 1379-1388.
– reference: Brönmark, C. & Miner, J. G. (1992). Predator-induced phenotypical change in body morphology in crucian carp. Science 258, 1348-1350.
– reference: Killen, S. S., Mitchell, M. D., Rummer, J. L., Chivers, D. P., Ferrari, M. C. O., Meekan, M. G. & McCormick, M. I. (2014). Aerobic scope predicts dominance during early life in a tropical damselfish. Functional Ecology 28, 1367-1376. doi: 10.1111/1365-2435.12296
– reference: Klefoth, T., Pieterek, T. & Arlinghaus, R. (2013). Impacts of domestication on angling vulnerability of common carp, Cyprinus carpio: the role of learning, foraging behaviour and food preferences. Fisheries Management and Ecology 20, 174-186.
– reference: Yamamoto, T., Ueda, H. & Higashi, S. (1998). Correlation among dominance status, metabolic rate and otolith size in masu salmon. Journal of Fish Biology 52, 281-290.
– reference: Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. (2011b). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B 278, 3465-3473.
– reference: Killen, S. S., Marras, S. & McKenzie, D. J. (2011). Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. Journal of Animal Ecology 80, 1024-1033.
– reference: Irschick, D. J., Meyers, J. J., Husak, J. F. & Le Galliard, J. F. (2008). How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evolutionary Ecology Research 10, 177-196.
– reference: Krause, J., Loader, S. P., McDermott, J. & Ruxton, G. D. (1998). Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proceedings of the Royal Society B 265, 2373-2379.
– reference: Clark, T. D., Sandblom, E. & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology 216, 2771-2782.
– reference: Murchie, K. J., Cooke, S. J., Danylchuk, A. J. & Suski, C. D. (2011). Estimates of field activity and metabolic rates of bonefish (Albula vulpes) in coastal marine habitats using acoustic tri-axial accelerometer transmitters and intermittent-flow respirometry. Journal of Experimental Marine Biology and Ecology 396, 147-155.
– reference: Peres-Neto, P. R. & Magnan, P. (2004). The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species. Oecologia (Berlin) 140, 36-45.
– reference: Régnier, T., Bolliet, V., Labonne, J. & Gaudin, P. (2010). Assessing maternal effects on metabolic rate dynamics along early development in brown trout (Salmo trutta): an individual-based approach. Journal of Comparative Physiology B 180, 25-31.
– reference: Huntingford, F. A., Andrew, G., Mackenzie, S., Morera, D., Coyle, S. M., Pilarczyk, M. & Kadri, S. (2010). Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. Journal of Fish Biology 76, 1576-1591.
– reference: Sloman, K. A. (2010). Exposure of ova to cortisol pre-fertilisation affects subsequent behaviour and physiology of brown trout. Hormones and Behavior 58, 433-439.
– reference: Pörtner, H. O. & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95-97.
– reference: Walker, J. A. (1997). Ecological morphology of lacustrine threespine stickleback, Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biological Journal of the Linnean Society 61, 3-50.
– reference: Fischer, P. (2000). An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Canadian Journal of Fisheries and Aquatic Sciences 57, 2336-2344.
– reference: Zera, A. J. & Harshman, L. G. (2001). The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32, 95-126.
– reference: Boeuf, G. & Payan, P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology C 130, 411-423.
– reference: McKenzie, D. J., Höglund, E., Dupont-Prinet, A., Larsen, B. K., Skov, P. V., Pedersen, P. B. & Jokumsen, A. (2012). Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout. Aquaculture 338, 216-222.
– reference: Seppänen, E., Piironen, J. & Huuskonen, H. (2010). Consistency of standard metabolic rate in relation to life history strategy of juvenile Atlantic salmon Salmo salar. Comparative Biochemistry and Physiology A 156, 278-284.
– reference: Martins, C. I. M., Castanheira, M. F., Engrola, S., Costas, B. & Conceicao, L. E. C. (2011). Individual differences in metabolism predict coping styles in fish. Applied Animal Behaviour Science 130, 135-143.
– reference: Walker, J. A., Ghalambor, C. K., Griset, O. L., Mckenney, D. & Reznick, D. N. (2005). Do faster starts increase the probability of evading predators? Functional Ecology 19, 808-815.
– reference: Norin, T. & Malte, H. (2011). Repeatability of standard metabolic rate, active metabolic rate and aerobic scope in young brown trout during a period of moderate food availability. Journal of Experimental Biology 214, 1668-1675.
– reference: Finstad, A. G., Forseth, T., Faenstad, T. F. & Ugedal, O. (2004). The importance of ice cover for energy turnover in juvenile Atlantic salmon. Journal of Animal Ecology 73, 959-966.
– reference: Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (1998). Aggression and growth depression in juvenile salmon - the consequences of variation in metabolic rate. Journal of Fish Biology 52, 1026-1037.
– reference: Ros, A. F. H., Becker, K. & Oliveira, R. F. (2006). Aggressive behaviour and energy metabolism in a cichlid fish, Oreochromis mossambicus. Physiology and Behavior 89, 164-170.
– reference: Hoogenboom, M. O., Metcalfe, N. B., Groothuis, T. G. G., de Vries, B. & Costantini, D. (2012). Relationship between oxidative stress and circulating testosterone and cortisol in pre-spawning female brown trout. Comparative Biochemistry and Physiology A 163, 379-387.
– reference: Boldsen, M. M., Norin, T. & Malte, H. (2013). Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel (Anguilla anguilla). Comparative Biochemistry and Physiology A 165, 22-29.
– reference: Wieser, W., Krumschnabel, G. & Ojwang-Okwor, J. P. (1992). The energetics of starvation and growth after refeeding in juveniles of three cyprinid species. Environmental Biology of Fishes 33, 63-71.
– reference: Petersen, L. H. & Gamperl, A. K. (2010). Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua). Journal of Experimental Biology 213, 808-819.
– reference: Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. (2011). Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams. Journal of Animal Ecology 80, 1012-1023.
– reference: White, C. R., Schimpf, N. G. & Cassey, P. (2013). The repeatability of metabolic rate declines with time. Journal of Experimental Biology 216, 1763-1765.
– reference: McCarthy, I. D. (2000). Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. Journal of Fish Biology 57, 224-238.
– reference: Killen, S. S., Atkinson, D. & Glazier, D. S. (2010). The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecology Letters 13, 184-193.
– reference: Gomes, F. R., Chaui-Berlinck, J. G., Bicudo, J. E. P. W. & Navas, C. A. (2004). Intraspecific relationships between resting and activity metabolism in anuran amphibians: influence of ecology and behavior. Physiological and Biochemical Zoology 77, 197-208.
– reference: Zub, K., Piertney, S., Szafranska, P. A. & Konarzewski, M. (2012). Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel Mustela nivalis. Molecular Ecology 21, 1283-1293.
– reference: Finstad, A. G., Einum, S., Forseth, T. & Ugedal, O. (2007b). Shelter availability affects behaviour, size-dependent and mean growth of juvenile Atlantic salmon. Freshwater Biology 52, 1710-1718.
– reference: Sloat, M. R. & Reeves, G. H. (2014). Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Canadian Journal of Fisheries and Aquatic Sciences 71, 491-501.
– reference: Millidine, K. J., Armstrong, J. D. & Metcalfe, N. B. (2006). Presence of shelter reduces maintenance metabolism of juvenile salmon. Functional Ecology 20, 839-845.
– reference: Wone, B., Sears, M. W., Labocha, M. K., Donovan, E. R. & Hayes, J. P. (2009). Genetic variances and covariances of aerobic metabolic rates in laboratory mice. Proceedings of the Royal Society B 276, 3695-3704.
– reference: Secor, S. M. (2009). Specific dynamic action: a review of the postprandial metabolic response. Journal of Comparative Physiology B 179, 1-56.
– reference: Reidy, S. P., Kerr, S. R. & Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. Journal of Experimental Biology 203, 347-357.
– reference: Álvarez, D. & Nicieza, A. G. (2005). Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild? Canadian Journal of Fisheries and Aquatic Sciences 62, 643-649.
– reference: Norin, T. & Malte, H. (2012). Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout. Physiological and Biochemical Zoology 85, 645-656.
– reference: McKechnie, A. E. & Swanson, D. L. (2010). Sources and significance of variation in basal, summit and maximal metabolic rates in birds. Current Zoology 56, 741-758.
– reference: Rosenfeld, J. S., Van Leeuwen, T. E., Richards, J. G. & Allen, D. (2015). Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life history adaptation in salmonids. Journal of Animal Ecology 84, 4-20. doi: 10.1111/1365-2656.12182
– reference: Konarzewski, M. & Ksiazek, A. (2013). Determinants of intra-specific variation in basal metabolic rate. Journal of Comparative Physiology B 183, 27-41.
– reference: Du Preez, H. H. (1987). Laboratory studies on the oxygen consumption of the marine teleost, Lichia amia (Linnaeus, 1758). Comparative Biochemistry and Physiology A 88, 523-532.
– reference: Fu, S. J., Xie, X. J. & Cao, Z. D. (2005). Effect of fasting on resting metabolic rate and postprandial metabolic response in Silurus meridionalis. Journal of Fish Biology 67, 279-285.
– reference: Killen, S. S. (2014). Growth trajectory influences temperature preference in fish through an effect on metabolic rate. Journal of Animal Ecology 83, 1513-1522. doi: 10.1111/1365-2656.12244
– reference: Millidine, K. J., Armstrong, J. D. & Metcalfe, N. B. (2009). Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster. Proceedings of the Royal Society B 276, 2103-2108.
– reference: Régnier, T., Bolliet, V., Gaudin, P. & Labonne, J. (2012). Female effects on offspring energetic status and consequences on early development in yolk feeding brown trout (Salmo trutta). Journal of Experimental Zoology A 317A, 347-358.
– reference: Zhang, Y. R., Huang, Q. D., Liu, S. T., He, D. C., Wei, G. & Luo, Y. P. (2014). Intraspecific mass scaling of metabolic rates in grass carp (Ctenopharyngodon idellus). Journal of Comparative Physiology B 184, 347-354.
– reference: Kobler, A., Klefoth, T., Mehner, T. & Arlinghaus, R. (2009). Coexistence of behavioural types in an aquatic top predator: a response to resource limitation? Oecologia 161, 837-847.
– reference: Auer, S. K., Salin, K., Anderson, G. J., Rudolf, A. M. & Metcalfe, N. B. (2015b). Greater flexibility in metabolic rate confers a growth advantage under changing food availability. Journal of Animal Ecology 84, 1405-1411.
– reference: Steyermark, A. C., Miamen, A. G., Feghahati, H. S. & Lewno, A. W. (2005). Physiological and morphological correlates of among-individual variation in standard metabolic rate in the leopard frog Rana pipiens. Journal of Experimental Biology 208, 1201-1208.
– reference: Dalziel, A. C., Vines, T. H. & Schulte, P. M. (2012). Reductions in prolonged swimming capacity following freshwater colonization in multiple threespine stickleback populations. Evolution 66, 1226-1239.
– reference: Boratynski, Z., Koskela, E., Mappes, T. & Schroderus, E. (2013). Quantitative genetics and fitness effects of basal metabolism. Evolutionary Ecology 27, 301-314.
– reference: McGhee, K. E., Pintor, L. M. & Bell, A. M. (2013). Reciprocal behavioral plasticity and behavioral types during predator-prey interactions. American Naturalist 182, 704-717.
– reference: Maciak, S., Janko, K., Kotusz, J., Choleva, L., Boron, A., Juchno, D., Kujawa, R., Kozlowski, J. & Konarzewski, M. (2011). Standard Metabolic Rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Functional Ecology 25, 1072-1078.
– reference: Killen, S. S., Marras, S., Steffensen, J. F. & McKenzie, D. J. (2012a). Aerobic capacity influences the spatial position of individuals within fish schools. Proceedings of the Royal Society B 279, 357-364.
– reference: Dijkstra, P. D., Seehausen, O. & Metcalfe, N. B. (2013). Metabolic differentiation in an incipient species pair of cichlid fish. Journal of Fish Biology 82, 1975-1989.
– reference: Irschick, D. J. & Garland, T. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics 32, 367−396.
– reference: Schluter, D. (1993). Adaptive radiation in sticklebacks - size, shape, and habitat use efficiency. Ecology 74, 699-709.
– reference: Cutts, C. J., Metcalfe, N. B. & Taylor, A. C. (2002). Juvenile Atlantic salmon (Salmo salar) with relatively high standard metabolic rates have small metabolic scopes. Functional Ecology 16, 73-78.
– reference: Biro, P. A. & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology and Evolution 25, 653-659.
– reference: Darveau, C.-A., Suarez, R. K., Andrews, R. D. & Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417, 166-170.
– reference: Eliason, E. J., Clark, T. D., Hague, M. J., Hanson, L. M., Gallagher, Z. S., Jeffries, K. M., Gale, M. K., Patterson, D. A., Hinch, S. G. & Farrell, A. P. (2011). Differences in thermal tolerance among sockeye salmon populations. Science 332, 109-112.
– reference: Marras, S., Claireaux, G., McKenzie, D. J. & Nelson, J. A. (2010). Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax. Journal of Experimental Biology 213, 26-32.
– reference: Mathot, K. J., Martin, K., Kempenaers, B. & Forstmeier, W. (2013). Basal metabolic rate can evolve independently of morphological and behavioural traits. Heredity 111, 175-181.
– reference: Alsop, D. H. & Wood, C. M. (1997). The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology 200, 2337-2346.
– reference: Fausch, K. D., Nakano, S. & Kitano, S. (1997). Experimentally induced foraging mode shift by sympatric charrs in a Japanese mountain stream. Behavioral Ecology 8, 414-420.
– reference: Maciak, S. & Konarzewski, M. (2010). Repeatability of standard metabolic rate (SMR) in a small fish, the spined loach (Cobitis taenia). Comparative Biochemistry and Physiology A 157, 136-141.
– reference: Metcalfe, N. B., Taylor, A. C. & Thorpe, J. E. (1995). Metabolic rate, social status and life-history strategies in Atlantic salmon. Animal Behaviour 49, 431-436.
– reference: Killen, S. S., Marras, S., Metcalfe, N. B., McKenzie, D. J. & Domenici, P. (2013). Environmental stressors alter relationships between physiology and behaviour. Trends in Ecology and Evolution 28, 651-658.
– reference: Cutts, C. J., Adams, C. E. & Campbell, A. (2001). Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 58, 961-968.
– reference: Dupont-Prinet, A., Vagner, M., Chabot, D. & Audet, C. (2013). Impact of hypoxia on the metabolism of Greenland halibut (Reinhardtius hippoglossoides). Canadian Journal of Fisheries and Aquatic Sciences 70, 461-469.
– reference: Farwell, M. & McLaughlin, R. L. (2009). Alternative foraging tactics and risk taking in brook charr (Salvelinus fontinalis). Behavioral Ecology 20, 913-921.
– reference: Beamish, F. W. H. (1964). Influence of starvation on standard and routine oxygen consumption. Transactions of the American Fisheries Society 93, 103-107.
– reference: Seppänen, E., Tiira, K., Huuskonen, H. & Piironen, J. (2009b). Metabolic rate, growth and aggressiveness in three Atlantic salmon Salmo salar populations. Journal of Fish Biology 74, 562-575.
– reference: McCarthy, I. D. (2001). Competitive ability is related to metabolic asymmetry in juvenile rainbow trout. Journal of Fish Biology 59, 1002-1014.
– reference: Monaghan, P., Metcalfe, N. B. & Torres, R. (2009). Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters 12, 75-92.
– reference: Sloman, K. A. & Armstrong, J. D. (2002). Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? Journal of Fish Biology 61, 1-23.
– reference: Krause, J., Cheng, D. J. S., Kirkman, E. & Ruxton, G. D. (2000). Species-specific patterns of refuge use in fish: the role of metabolic expenditure and body length. Behaviour 137, 1113-1127.
– reference: Rossignol, O., Dodson, J. J., Marquilly, C. & Guderley, H. (2010). Do local adaptation and the reproductive tactic of Atlantic salmon (Salmo salar L.) affect offspring metabolic capacities? Physiological and Biochemical Zoology 83, 424-434.
– reference: Robertsen, G., Armstrong, J. D., Nislow, K. H., Herfindal, I., McKelvey, S. & Einum, S. (2015). Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon. Journal of Animal Ecology 83, 791-799.
– reference: Seebacher, F., Ward, A. J. W. & Wilson, R. S. (2013). Increased aggression during pregnancy comes at a higher metabolic cost. Journal of Experimental Biology 216, 771-776.
– reference: Finstad, A. G., Forseth, T., Ugedal, O. & Naesje, T. F. (2007a). Metabolic rate, behaviour and winter performance in juvenile Atlantic salmon. Functional Ecology 21, 905-912.
– reference: Hoogenboom, M. O., Armstrong, J. D., Groothuis, T. G. G. & Metcalfe, N. B. (2013). The growth benefits of aggressive behavior vary with individual metabolism and resource predictability. Behavioral Ecology 24, 253-261.
– reference: Morgan, J. D. & Iwama, G. K. (1991). Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 48, 2083-2094.
– reference: Burton, T., Hoogenboom, M. O., Beevers, N. D., Armstrong, J. D. & Metcalfe, N. B. (2013). Within-clutch differences in the phenotypes of juvenile fish depend on their location within the egg mass and maternal dominance rank. Proceedings of the Royal Society B 280, 20122441.
– reference: Neat, F. C., Taylor, A. C. & Huntingford, F. A. (1998). Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism. Animal Behaviour 55, 875-882.
– reference: Killen, S. S., Marras, S., Ryan, M. R., Domenici, P. & McKenzie, D. J. (2012b). A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. Functional Ecology 26, 134-143.
– reference: Killen, S. S., Brown, J. A. & Gamperl, A. K. (2007). The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging. Journal of Animal Ecology 76, 814-825.
– reference: Vaz-Serrano, J., Ruiz-Gomez, M. L., Gjøen, H. M., Skov, P. V., Huntingford, F. A., Øverli, Ø. & Höglund, E. (2011). Consistent boldness behaviour in early emerging fry of domesticated Atlantic salmon (Salmo salar): decoupling of behavioural and physiological traits of the proactive stress coping style. Physiology and Behavior 103, 359-364.
– reference: Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248-2251.
– reference: Marras, S., Killen, S. S., Domenici, P., Claireaux, G. & McKenzie, D. J. (2013). Relationships among traits of aerobic and anaerobic swimming performance in individual European sea bass Dicentrarchus labrax. PLoS One 8, e72815.
– reference: Pörtner, H. O. & Farrell, A. P. (2008). Ecology: physiology and climate change. Science 322, 690-692.
– reference: Nespolo, R. F. & Franco, M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal of Experimental Biology 210, 2000-2005.
– reference: Redpath, T. D., Cooke, S. J., Suski, C. D., Arlinghaus, R., Couture, P., Wahl, D. H. & Philipp, D. P. (2010). The metabolic and biochemical basis of vulnerability to recreational angling after three generations of angling-induced selection in a teleost fish. Canadian Journal of Fisheries and Aquatic Sciences 67, 1983-1992.
– reference: Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. (2012). Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Oncorhynchus kisutch). Journal of Animal Ecology 81, 395-402.
– reference: Sloman, K. A., Motherwell, G., O'Connor, K. I. & Taylor, A. C. (2000). The effect of social stress on the Standard Metabolic Rate (SMR) of brown trout, Salmo trutta. Fish Physiology and Biochemistry 23, 49-53.
– volume: 208
  start-page: 1201
  year: 2005
  end-page: 1208
  article-title: Physiological and morphological correlates of among‐individual variation in standard metabolic rate in the leopard frog
  publication-title: Journal of Experimental Biology
– volume: 80
  start-page: 1012
  year: 2011
  end-page: 1023
  article-title: Adaptive trade‐offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams
  publication-title: Journal of Animal Ecology
– volume: 317A
  start-page: 347
  year: 2012
  end-page: 358
  article-title: Female effects on offspring energetic status and consequences on early development in yolk feeding brown trout ( )
  publication-title: Journal of Experimental Zoology A
– volume: 83
  start-page: 1513
  year: 2014
  end-page: 1522
  article-title: Growth trajectory influences temperature preference in fish through an effect on metabolic rate
  publication-title: Journal of Animal Ecology
– volume: 200
  start-page: 2337
  year: 1997
  end-page: 2346
  article-title: The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout ( )
  publication-title: Journal of Experimental Biology
– volume: 74
  start-page: 562
  year: 2009b
  end-page: 575
  article-title: Metabolic rate, growth and aggressiveness in three Atlantic salmon populations
  publication-title: Journal of Fish Biology
– volume: 21
  start-page: 905
  year: 2007a
  end-page: 912
  article-title: Metabolic rate, behaviour and winter performance in juvenile Atlantic salmon
  publication-title: Functional Ecology
– volume: 165
  start-page: 22
  year: 2013
  end-page: 29
  article-title: Temporal repeatability of metabolic rate and the effect of organ mass and enzyme activity on metabolism in European eel ( )
  publication-title: Comparative Biochemistry and Physiology A
– volume: 213
  start-page: 808
  year: 2010
  end-page: 819
  article-title: Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod ( )
  publication-title: Journal of Experimental Biology
– volume: 20
  start-page: 174
  year: 2013
  end-page: 186
  article-title: Impacts of domestication on angling vulnerability of common carp, : the role of learning, foraging behaviour and food preferences
  publication-title: Fisheries Management and Ecology
– volume: 210
  start-page: 2000
  year: 2007
  end-page: 2005
  article-title: Whole‐animal metabolic rate is a repeatable trait: a meta‐analysis
  publication-title: Journal of Experimental Biology
– volume: 16
  start-page: 73
  year: 2002
  end-page: 78
  article-title: Juvenile Atlantic salmon ( ) with relatively high standard metabolic rates have small metabolic scopes
  publication-title: Functional Ecology
– volume: 83
  start-page: 791
  year: 2015
  end-page: 799
  article-title: Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon
  publication-title: Journal of Animal Ecology
– volume: 130
  start-page: 411
  year: 2001
  end-page: 423
  article-title: How should salinity influence fish growth?
  publication-title: Comparative Biochemistry and Physiology C
– volume: 332
  start-page: 109
  year: 2011
  end-page: 112
  article-title: Differences in thermal tolerance among sockeye salmon populations
  publication-title: Science
– volume: 183
  start-page: 167
  year: 2013
  end-page: 179
  article-title: A comparative meta‐analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange
  publication-title: Journal of Comparative Physiology B
– year: 2016a
– volume: 28
  start-page: 1367
  year: 2014
  end-page: 1376
  article-title: Aerobic scope predicts dominance during early life in a tropical damselfish
  publication-title: Functional Ecology
– volume: 258
  start-page: 1348
  year: 1992
  end-page: 1350
  article-title: Predator‐induced phenotypical change in body morphology in crucian carp
  publication-title: Science
– volume: 76
  start-page: 814
  year: 2007
  end-page: 825
  article-title: The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging
  publication-title: Journal of Animal Ecology
– volume: 11
  start-page: 20150793
  year: 2015c
– volume: 57
  start-page: 2336
  year: 2000
  end-page: 2344
  article-title: An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 276
  start-page: 2103
  year: 2009
  end-page: 2108
  article-title: Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster
  publication-title: Proceedings of the Royal Society B
– volume: 74
  start-page: 699
  year: 1993
  end-page: 709
  article-title: Adaptive radiation in sticklebacks – size, shape, and habitat use efficiency
  publication-title: Ecology
– volume: 176
  start-page: 387
  year: 2006
  end-page: 391
  article-title: Metabolic rate of Arctic charr eggs depends on their parentage
  publication-title: Journal of Comparative Physiology B
– volume: 140
  start-page: 36
  year: 2004
  end-page: 45
  article-title: The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species
  publication-title: Oecologia (Berlin)
– volume: 81
  start-page: 395
  year: 2012
  end-page: 402
  article-title: Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon ( )
  publication-title: Journal of Animal Ecology
– volume: 80
  start-page: 1024
  year: 2011
  end-page: 1033
  article-title: Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk‐taking in individual juvenile European sea bass
  publication-title: Journal of Animal Ecology
– volume: 161
  start-page: 837
  year: 2009
  end-page: 847
  article-title: Coexistence of behavioural types in an aquatic top predator: a response to resource limitation?
  publication-title: Oecologia
– volume: 71
  start-page: 491
  year: 2014
  end-page: 501
  article-title: Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout ( ) life histories
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 57
  start-page: 224
  year: 2000
  end-page: 238
  article-title: Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation
  publication-title: Journal of Fish Biology
– volume: 57
  start-page: 41
  year: 2000
  end-page: 51
  article-title: The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon
  publication-title: Journal of Fish Biology
– volume: 27
  start-page: 301
  year: 2013
  end-page: 314
  article-title: Quantitative genetics and fitness effects of basal metabolism
  publication-title: Evolutionary Ecology
– volume: 88
  start-page: 523
  year: 1987
  end-page: 532
  article-title: Laboratory studies on the oxygen consumption of the marine teleost, (Linnaeus, 1758)
  publication-title: Comparative Biochemistry and Physiology A
– volume: 322
  start-page: 690
  year: 2008
  end-page: 692
  article-title: Ecology: physiology and climate change
  publication-title: Science
– volume: 77
  start-page: 197
  year: 2004
  end-page: 208
  article-title: Intraspecific relationships between resting and activity metabolism in anuran amphibians: influence of ecology and behavior
  publication-title: Physiological and Biochemical Zoology
– volume: 180
  start-page: 25
  year: 2010
  end-page: 31
  article-title: Assessing maternal effects on metabolic rate dynamics along early development in brown trout ( ): an individual‐based approach
  publication-title: Journal of Comparative Physiology B
– volume: 73
  start-page: 959
  year: 2004
  end-page: 966
  article-title: The importance of ice cover for energy turnover in juvenile Atlantic salmon
  publication-title: Journal of Animal Ecology
– volume: 25
  start-page: 1379
  year: 2011a
  end-page: 1388
  article-title: Egg hormones in a highly fecund vertebrate: do they influence social structure in competitive conditions?
  publication-title: Functional Ecology
– volume: 1
  start-page: 5
  year: 2013
  article-title: Tracking animals in freshwater with electronic tags: past, present and future
  publication-title: Animal Biotelemetry
– volume: 93
  start-page: 103
  year: 1964
  end-page: 107
  article-title: Influence of starvation on standard and routine oxygen consumption
  publication-title: Transactions of the American Fisheries Society
– volume: 32
  start-page: 367
  year: 2001
  end-page: 396
  article-title: Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system
  publication-title: Annual Review of Ecology and Systematics
– volume: 280
  start-page: 20122441
  year: 2013
  article-title: Within‐clutch differences in the phenotypes of juvenile fish depend on their location within the egg mass and maternal dominance rank
  publication-title: Proceedings of the Royal Society B
– volume: 20
  start-page: 839
  year: 2006
  end-page: 845
  article-title: Presence of shelter reduces maintenance metabolism of juvenile salmon
  publication-title: Functional Ecology
– volume: 338
  start-page: 216
  year: 2012
  end-page: 222
  article-title: Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout
  publication-title: Aquaculture
– year: 2016
– volume: 48
  start-page: 2083
  year: 1991
  end-page: 2094
  article-title: Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout ( ) and fall Chinook salmon ( )
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 85
  start-page: 645
  year: 2012
  end-page: 656
  article-title: Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout
  publication-title: Physiological and Biochemical Zoology
– volume: 111
  start-page: 175
  year: 2013
  end-page: 181
  article-title: Basal metabolic rate can evolve independently of morphological and behavioural traits
  publication-title: Heredity
– volume: 216
  start-page: 2771
  year: 2013
  end-page: 2782
  article-title: Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations
  publication-title: Journal of Experimental Biology
– volume: 86
  start-page: 479
  year: 1999
  end-page: 486
  article-title: Competitive asymmetries in territorial juvenile Atlantic salmon,
  publication-title: Oikos
– volume: 279
  start-page: 357
  year: 2012a
  end-page: 364
  article-title: Aerobic capacity influences the spatial position of individuals within fish schools
  publication-title: Proceedings of the Royal Society B
– volume: 157
  start-page: 136
  year: 2010
  end-page: 141
  article-title: Repeatability of standard metabolic rate (SMR) in a small fish, the spined loach ( )
  publication-title: Comparative Biochemistry and Physiology A
– volume: 278
  start-page: 3465
  year: 2011b
  end-page: 3473
  article-title: What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?
  publication-title: Proceedings of the Royal Society B
– volume: 130
  start-page: 135
  year: 2011
  end-page: 143
  article-title: Individual differences in metabolism predict coping styles in fish
  publication-title: Applied Animal Behaviour Science
– volume: 25
  start-page: 1360
  year: 2011
  end-page: 1367
  article-title: Estimated standard metabolic rate interacts with territory quality and density to determine growth rates of juvenile Atlantic salmon
  publication-title: Functional Ecology
– volume: 137
  start-page: 1113
  year: 2000
  end-page: 1127
  article-title: Species‐specific patterns of refuge use in fish: the role of metabolic expenditure and body length
  publication-title: Behaviour
– volume: 25
  start-page: 653
  year: 2010
  end-page: 659
  article-title: Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?
  publication-title: Trends in Ecology and Evolution
– start-page: 1
  year: 1971
  end-page: 98
– volume: 8
  start-page: e72815
  year: 2013
  article-title: Relationships among traits of aerobic and anaerobic swimming performance in individual European sea bass
  publication-title: PLoS One
– volume: 179
  start-page: 1
  year: 2009
  end-page: 56
  article-title: Specific dynamic action: a review of the postprandial metabolic response
  publication-title: Journal of Comparative Physiology B
– volume: 58
  start-page: 961
  year: 2001
  end-page: 968
  article-title: Stability of physiological and behavioural determinants of performance in Arctic char ( )
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 26
  start-page: 134
  year: 2012b
  end-page: 143
  article-title: A relationship between metabolic rate and risk‐taking behaviour is revealed during hypoxia in juvenile European sea bass
  publication-title: Functional Ecology
– volume: 362
  start-page: 2105
  year: 2007
  end-page: 2121
  article-title: Hypoxia and the antipredator behaviours of fishes
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 59
  start-page: 1002
  year: 2001
  end-page: 1014
  article-title: Competitive ability is related to metabolic asymmetry in juvenile rainbow trout
  publication-title: Journal of Fish Biology
– volume: 52
  start-page: 1026
  year: 1998
  end-page: 1037
  article-title: Aggression and growth depression in juvenile salmon – the consequences of variation in metabolic rate
  publication-title: Journal of Fish Biology
– year: 2013
– volume: 213
  start-page: 26
  year: 2010
  end-page: 32
  article-title: Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass,
  publication-title: Journal of Experimental Biology
– year: 2016b
– volume: 61
  start-page: 1
  year: 2002
  end-page: 23
  article-title: Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena?
  publication-title: Journal of Fish Biology
– volume: 14
  start-page: 369
  year: 2009a
  end-page: 381
  article-title: Standard metabolic rate, growth rate and smolting of the juveniles in three Atlantic salmon stocks
  publication-title: Boreal Environment Research
– volume: 55
  start-page: 875
  year: 1998
  end-page: 882
  article-title: Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism
  publication-title: Animal Behaviour
– volume: 203
  start-page: 347
  year: 2000
  end-page: 357
  article-title: Aerobic and anaerobic swimming performance of individual Atlantic cod
  publication-title: Journal of Experimental Biology
– volume: 417
  start-page: 166
  year: 2002
  end-page: 170
  article-title: Allometric cascade as a unifying principle of body mass effects on metabolism
  publication-title: Nature
– volume: 25
  start-page: 1072
  year: 2011
  end-page: 1078
  article-title: Standard Metabolic Rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the hybrid complex
  publication-title: Functional Ecology
– volume: 214
  start-page: 1668
  year: 2011
  end-page: 1675
  article-title: Repeatability of standard metabolic rate, active metabolic rate and aerobic scope in young brown trout during a period of moderate food availability
  publication-title: Journal of Experimental Biology
– volume: 52
  start-page: 1710
  year: 2007b
  end-page: 1718
  article-title: Shelter availability affects behaviour, size‐dependent and mean growth of juvenile Atlantic salmon
  publication-title: Freshwater Biology
– volume: 10
  start-page: 177
  year: 2008
  end-page: 196
  article-title: How does selection operate on whole‐organism functional performance capacities? A review and synthesis
  publication-title: Evolutionary Ecology Research
– volume: 271
  start-page: S516
  year: 2004
  end-page: S519
  article-title: Social networks in the guppy ( )
  publication-title: Proceedings of the Royal Society B
– volume: 12
  start-page: 75
  year: 2009
  end-page: 92
  article-title: Oxidative stress as a mediator of life history trade‐offs: mechanisms, measurements and interpretation
  publication-title: Ecology Letters
– volume: 133
  start-page: 654
  year: 1989
  end-page: 670
  article-title: Search modes of birds and lizards – evidence for alternative movement patterns
  publication-title: American Naturalist
– volume: 109
  start-page: 20960
  year: 2012
  end-page: 20965
  article-title: Recreational fishing selectively captures individuals with the highest fitness potential
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 163
  start-page: 379
  year: 2012
  end-page: 387
  article-title: Relationship between oxidative stress and circulating testosterone and cortisol in pre‐spawning female brown trout
  publication-title: Comparative Biochemistry and Physiology A
– volume: 67
  start-page: 1983
  year: 2010
  end-page: 1992
  article-title: The metabolic and biochemical basis of vulnerability to recreational angling after three generations of angling‐induced selection in a teleost fish
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 84
  start-page: 1405
  year: 2015b
  end-page: 1411
  article-title: Greater flexibility in metabolic rate confers a growth advantage under changing food availability
  publication-title: Journal of Animal Ecology
– volume: 315
  start-page: 95
  year: 2007
  end-page: 97
  article-title: Climate change affects marine fishes through the oxygen limitation of thermal tolerance
  publication-title: Science
– volume: 156
  start-page: 278
  year: 2010
  end-page: 284
  article-title: Consistency of standard metabolic rate in relation to life history strategy of juvenile Atlantic salmon
  publication-title: Comparative Biochemistry and Physiology A
– volume: 21
  start-page: 1283
  year: 2012
  end-page: 1293
  article-title: Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel
  publication-title: Molecular Ecology
– volume: 184
  start-page: 347
  year: 2014
  end-page: 354
  article-title: Intraspecific mass scaling of metabolic rates in grass carp ( )
  publication-title: Journal of Comparative Physiology B
– volume: 20
  start-page: 913
  year: 2009
  end-page: 921
  article-title: Alternative foraging tactics and risk taking in brook charr ( )
  publication-title: Behavioral Ecology
– volume: 81
  start-page: 868
  year: 2012
  end-page: 875
  article-title: The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent
  publication-title: Journal of Animal Ecology
– year: 2015
– volume: 29
  start-page: 479
  year: 2015a
  end-page: 486
  article-title: The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability
  publication-title: Functional Ecology
– volume: 182
  start-page: 704
  year: 2013
  end-page: 717
  article-title: Reciprocal behavioral plasticity and behavioral types during predator–prey interactions
  publication-title: American Naturalist
– volume: 33
  start-page: 63
  year: 1992
  end-page: 71
  article-title: The energetics of starvation and growth after refeeding in juveniles of three cyprinid species
  publication-title: Environmental Biology of Fishes
– volume: 216
  start-page: 1763
  year: 2013
  end-page: 1765
  article-title: The repeatability of metabolic rate declines with time
  publication-title: Journal of Experimental Biology
– volume: 168
  start-page: 427
  year: 1998
  end-page: 433
  article-title: The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish (Pisces: Cichlidae)
  publication-title: Journal of Comparative Physiology B
– volume: 15
  start-page: 600
  year: 2007
  end-page: 606
  article-title: Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high‐fat diets
  publication-title: Obesity
– volume: 105
  start-page: 2919
  year: 2008
  end-page: 2922
  article-title: Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 82
  start-page: 1975
  year: 2013
  end-page: 1989
  article-title: Metabolic differentiation in an incipient species pair of cichlid fish
  publication-title: Journal of Fish Biology
– volume: 67
  start-page: 279
  year: 2005
  end-page: 285
  article-title: Effect of fasting on resting metabolic rate and postprandial metabolic response in
  publication-title: Journal of Fish Biology
– volume: 8
  start-page: 414
  year: 1997
  end-page: 420
  article-title: Experimentally induced foraging mode shift by sympatric charrs in a Japanese mountain stream
  publication-title: Behavioral Ecology
– volume: 16
  start-page: 167
  year: 2002
  end-page: 174
  article-title: Metabolic rate and aggressiveness between brown trout populations
  publication-title: Functional Ecology
– volume: 89
  start-page: 164
  year: 2006
  end-page: 170
  article-title: Aggressive behaviour and energy metabolism in a cichlid fish,
  publication-title: Physiology and Behavior
– volume: 23
  start-page: 49
  year: 2000
  end-page: 53
  article-title: The effect of social stress on the Standard Metabolic Rate (SMR) of brown trout,
  publication-title: Fish Physiology and Biochemistry
– volume: 13
  start-page: 184
  year: 2010
  end-page: 193
  article-title: The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature
  publication-title: Ecology Letters
– volume: 19
  start-page: 808
  year: 2005
  end-page: 815
  article-title: Do faster starts increase the probability of evading predators?
  publication-title: Functional Ecology
– volume: 396
  start-page: 147
  year: 2011
  end-page: 155
  article-title: Estimates of field activity and metabolic rates of bonefish ( ) in coastal marine habitats using acoustic tri‐axial accelerometer transmitters and intermittent‐flow respirometry
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 62
  start-page: 643
  year: 2005
  end-page: 649
  article-title: Is metabolic rate a reliable predictor of growth and survival of brown trout ( ) in the wild?
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 70
  start-page: 461
  year: 2013
  end-page: 469
  article-title: Impact of hypoxia on the metabolism of Greenland halibut ( )
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 56
  start-page: 741
  year: 2010
  end-page: 758
  article-title: Sources and significance of variation in basal, summit and maximal metabolic rates in birds
  publication-title: Current Zoology
– volume: 276
  start-page: 3695
  year: 2009
  end-page: 3704
  article-title: Genetic variances and covariances of aerobic metabolic rates in laboratory mice
  publication-title: Proceedings of the Royal Society B
– volume: 44
  start-page: 239
  year: 2011
  end-page: 250
  article-title: A methodological approach to measuring the oxygen consumption profile of six freshwater fish species: implications for determination of the standard metabolic rate
  publication-title: Marine and Freshwater Behaviour and Physiology
– volume: 212
  start-page: 2872
  year: 2009
  end-page: 2878
  article-title: Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy
  publication-title: Journal of Experimental Biology
– volume: 183
  start-page: 27
  year: 2013
  end-page: 41
  article-title: Determinants of intra‐specific variation in basal metabolic rate
  publication-title: Journal of Comparative Physiology B
– volume: 216
  start-page: 771
  year: 2013
  end-page: 776
  article-title: Increased aggression during pregnancy comes at a higher metabolic cost
  publication-title: Journal of Experimental Biology
– volume: 28
  start-page: 651
  year: 2013
  end-page: 658
  article-title: Environmental stressors alter relationships between physiology and behaviour
  publication-title: Trends in Ecology and Evolution
– volume: 58
  start-page: 433
  year: 2010
  end-page: 439
  article-title: Exposure of ova to cortisol pre‐fertilisation affects subsequent behaviour and physiology of brown trout
  publication-title: Hormones and Behavior
– volume: 49
  start-page: 431
  year: 1995
  end-page: 436
  article-title: Metabolic rate, social status and life‐history strategies in Atlantic salmon
  publication-title: Animal Behaviour
– volume: 83
  start-page: 424
  year: 2010
  end-page: 434
  article-title: Do local adaptation and the reproductive tactic of Atlantic salmon ( L.) affect offspring metabolic capacities?
  publication-title: Physiological and Biochemical Zoology
– volume: 265
  start-page: 2373
  year: 1998
  end-page: 2379
  article-title: Refuge use by fish as a function of body length‐related metabolic expenditure and predation risks
  publication-title: Proceedings of the Royal Society B
– volume: 20
  start-page: 2124
  year: 2010
  end-page: 2130
  article-title: Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation
  publication-title: Current Biology
– volume: 32
  start-page: 95
  year: 2001
  end-page: 126
  article-title: The physiology of life history trade‐offs in animals
  publication-title: Annual Review of Ecology and Systematics
– volume: 82
  start-page: 708
  year: 2013
  end-page: 713
  article-title: No evidence of shelter providing a metabolic advantage to the false clown anemonefish
  publication-title: Journal of Fish Biology
– volume: 293
  start-page: 2248
  year: 2001
  end-page: 2251
  article-title: Effects of size and temperature on metabolic rate
  publication-title: Science
– volume: 76
  start-page: 1576
  year: 2010
  end-page: 1591
  article-title: Coping strategies in a strongly schooling fish, the common carp
  publication-title: Journal of Fish Biology
– volume: 61
  start-page: 3
  year: 1997
  end-page: 50
  article-title: Ecological morphology of lacustrine threespine stickleback, L. (Gasterosteidae) body shape
  publication-title: Biological Journal of the Linnean Society
– volume: 85
  start-page: 111
  year: 2010
  end-page: 138
  article-title: A unifying explanation for diverse metabolic scaling in animals and plants
  publication-title: Biological Reviews
– volume: 84
  start-page: 4
  year: 2015
  end-page: 20
  article-title: Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life history adaptation in salmonids
  publication-title: Journal of Animal Ecology
– volume: 66
  start-page: 1226
  year: 2012
  end-page: 1239
  article-title: Reductions in prolonged swimming capacity following freshwater colonization in multiple threespine stickleback populations
  publication-title: Evolution
– volume: 52
  start-page: 281
  year: 1998
  end-page: 290
  article-title: Correlation among dominance status, metabolic rate and otolith size in masu salmon
  publication-title: Journal of Fish Biology
– volume: 103
  start-page: 359
  year: 2011
  end-page: 364
  article-title: Consistent boldness behaviour in early emerging fry of domesticated Atlantic salmon ( ): decoupling of behavioural and physiological traits of the proactive stress coping style
  publication-title: Physiology and Behavior
– volume: 24
  start-page: 253
  year: 2013
  end-page: 261
  article-title: The growth benefits of aggressive behavior vary with individual metabolism and resource predictability
  publication-title: Behavioral Ecology
– volume: 58
  start-page: 961
  year: 2001
  ident: e_1_2_6_26_1
  article-title: Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus)
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/f01-050
– ident: e_1_2_6_19_1
  doi: 10.1111/jfb.12836
– ident: e_1_2_6_100_1
  doi: 10.1007/s00442-004-1562-y
– ident: e_1_2_6_78_1
  doi: 10.1111/j.1095-8649.2000.tb00788.x
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1365-2435.2011.01897.x
– ident: e_1_2_6_77_1
  doi: 10.1038/hdy.2013.35
– ident: e_1_2_6_70_1
  doi: 10.1163/156853900502466
– ident: e_1_2_6_74_1
  doi: 10.1242/jeb.032136
– ident: e_1_2_6_41_1
  doi: 10.1016/S1546-5098(08)60146-6
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1365-2656.2011.01844.x
– ident: e_1_2_6_120_1
  doi: 10.1139/cjfas-2013-0366
– ident: e_1_2_6_103_1
  doi: 10.1126/science.1135471
– ident: e_1_2_6_118_1
  doi: 10.1111/j.1095-8649.2008.02142.x
– ident: e_1_2_6_79_1
  doi: 10.1111/j.1095-8649.2001.tb00167.x
– ident: e_1_2_6_18_1
  doi: 10.1111/jfb.12845
– ident: e_1_2_6_98_1
  doi: 10.1111/j.1095-8649.2000.tb00774.x
– ident: e_1_2_6_129_1
  doi: 10.1080/10236244.2011.622090
– ident: e_1_2_6_22_1
  doi: 10.1186/2050-3385-1-5
– ident: e_1_2_6_66_1
  doi: 10.1111/j.1365-2400.2012.00865.x
– ident: e_1_2_6_107_1
  doi: 10.1111/j.1365-2435.2011.01894.x
– ident: e_1_2_6_92_1
  doi: 10.1111/jfb.12824
– ident: e_1_2_6_30_1
  doi: 10.1111/jfb.12125
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-2656.2007.01237.x
– ident: e_1_2_6_115_1
  doi: 10.1007/s00360-008-0283-7
– ident: e_1_2_6_111_1
  doi: 10.1016/j.physbeh.2006.05.043
– ident: e_1_2_6_56_1
  doi: 10.1111/1365-2656.12244
– ident: e_1_2_6_16_1
  doi: 10.1098/rspb.2012.2441
– ident: e_1_2_6_29_1
  doi: 10.1038/417166a
– ident: e_1_2_6_33_1
  doi: 10.1139/cjfas-2012-0327
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1095-8649.2010.02582.x
– ident: e_1_2_6_13_1
  doi: 10.1126/science.258.5086.1348
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1461-0248.2009.01415.x
– ident: e_1_2_6_21_1
  doi: 10.1242/jeb.084251
– ident: e_1_2_6_25_1
  doi: 10.2307/3546652
– ident: e_1_2_6_76_1
  doi: 10.1016/j.applanim.2010.12.007
– ident: e_1_2_6_123_1
  doi: 10.1023/A:1007855100185
– ident: e_1_2_6_2_1
  doi: 10.1242/jeb.200.17.2337
– ident: e_1_2_6_6_1
  doi: 10.1098/rsbl.2015.0793
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1558-5646.2011.01498.x
– ident: e_1_2_6_127_1
  doi: 10.1111/j.1365-2656.2011.01924.x
– ident: e_1_2_6_72_1
  doi: 10.1016/j.cbpa.2010.05.017
– ident: e_1_2_6_88_1
  doi: 10.1111/j.1461-0248.2008.01258.x
– ident: e_1_2_6_5_1
  doi: 10.1111/1365-2656.12384
– ident: e_1_2_6_17_1
– ident: e_1_2_6_110_1
  doi: 10.1111/1365-2656.12182
– ident: e_1_2_6_54_1
  doi: 10.1038/oby.2007.550
– ident: e_1_2_6_113_1
  doi: 10.1086/649561
– ident: e_1_2_6_60_1
  doi: 10.1098/rspb.2011.1006
– ident: e_1_2_6_40_1
  doi: 10.1139/f00-211
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1469-185X.2009.00095.x
– ident: e_1_2_6_96_1
  doi: 10.1111/1365-2435.12503
– ident: e_1_2_6_89_1
  doi: 10.1139/f91-247
– ident: e_1_2_6_128_1
  doi: 10.1016/j.physbeh.2011.02.025
– ident: e_1_2_6_135_1
  doi: 10.1111/j.1095-8649.1998.tb00799.x
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1365-2427.2007.01799.x
– ident: e_1_2_6_15_1
  doi: 10.1098/rspb.2011.1778
– ident: e_1_2_6_4_1
  doi: 10.1111/1365-2435.12396
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1095-8649.1998.tb00601.x
– ident: e_1_2_6_52_1
  doi: 10.1146/annurev.ecolsys.32.081501.114048
– ident: e_1_2_6_84_1
  doi: 10.1006/anbe.1995.0056
– ident: e_1_2_6_50_1
  doi: 10.1093/beheco/ars161
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1365-2435.2011.01870.x
– ident: e_1_2_6_124_1
  doi: 10.1242/jeb.01492
– ident: e_1_2_6_133_1
  doi: 10.1007/BF00002554
– ident: e_1_2_6_69_1
  doi: 10.1098/rspb.1998.0586
– ident: e_1_2_6_101_1
  doi: 10.1242/jeb.033746
– ident: e_1_2_6_31_1
  doi: 10.1098/rstb.2007.2103
– ident: e_1_2_6_64_1
  doi: 10.1111/1365-2435.12527
– ident: e_1_2_6_108_1
  doi: 10.1111/j.1365-2656.2012.01969.x
– ident: e_1_2_6_121_1
  doi: 10.1016/j.yhbeh.2010.05.010
– ident: e_1_2_6_7_1
  doi: 10.1577/1548-8659(1964)93[103:IOSOSA]2.0.CO;2
– ident: e_1_2_6_34_1
  doi: 10.1126/science.1199158
– volume: 61
  start-page: 3
  year: 1997
  ident: e_1_2_6_130_1
  article-title: Ecological morphology of lacustrine threespine stickleback, Gasterosteus aculeatus L. (Gasterosteidae) body shape
  publication-title: Biological Journal of the Linnean Society
– ident: e_1_2_6_112_1
  doi: 10.1111/1365-2656.12182
– ident: e_1_2_6_116_1
  doi: 10.1242/jeb.079756
– ident: e_1_2_6_35_1
  doi: 10.1093/beheco/arp059
– ident: e_1_2_6_42_1
  doi: 10.1111/j.0022-1112.2005.00723.x
– ident: e_1_2_6_36_1
  doi: 10.1093/beheco/8.4.414
– ident: e_1_2_6_46_1
  doi: 10.1086/381471
– ident: e_1_2_6_134_1
  doi: 10.1098/rspb.2009.0980
– ident: e_1_2_6_126_1
  doi: 10.1111/j.1365-2656.2011.01841.x
– ident: e_1_2_6_90_1
  doi: 10.1016/j.jembe.2010.10.019
– ident: e_1_2_6_85_1
  doi: 10.1111/jfb.12804
– ident: e_1_2_6_80_1
  doi: 10.1086/673526
– ident: e_1_2_6_63_1
  doi: 10.1111/1365-2435.12296
– ident: e_1_2_6_12_1
  doi: 10.1007/s10682-012-9590-2
– ident: e_1_2_6_81_1
  doi: 10.1093/czoolo/56.6.741
– ident: e_1_2_6_32_1
  doi: 10.1016/0300-9629(87)90075-2
– volume: 14
  start-page: 369
  year: 2009
  ident: e_1_2_6_117_1
  article-title: Standard metabolic rate, growth rate and smolting of the juveniles in three Atlantic salmon stocks
  publication-title: Boreal Environment Research
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2435.2007.01291.x
– ident: e_1_2_6_105_1
  doi: 10.1007/s00360-009-0385-x
– ident: e_1_2_6_125_1
  doi: 10.1073/pnas.1212536109
– ident: e_1_2_6_122_1
  doi: 10.1111/j.1095-8649.2002.tb01733.x
– ident: e_1_2_6_82_1
  doi: 10.1016/j.aquaculture.2012.01.020
– ident: e_1_2_6_132_1
  doi: 10.1242/jeb.076562
– ident: e_1_2_6_75_1
  doi: 10.1371/journal.pone.0072815
– ident: e_1_2_6_102_1
  doi: 10.1126/science.1163156
– ident: e_1_2_6_104_1
  doi: 10.1139/F10-120
– ident: e_1_2_6_37_1
  doi: 10.1111/j.0021-8790.2004.00871.x
– ident: e_1_2_6_20_1
– ident: e_1_2_6_27_1
  doi: 10.1046/j.0269-8463.2001.00603.x
– ident: e_1_2_6_71_1
  doi: 10.1046/j.1365-2435.2002.00618.x
– ident: e_1_2_6_62_1
  doi: 10.1016/j.tree.2013.05.005
– ident: e_1_2_6_86_1
  doi: 10.1111/j.1365-2435.2006.01166.x
– ident: e_1_2_6_99_1
  doi: 10.1007/s00360-005-0057-4
– ident: e_1_2_6_138_1
  doi: 10.1111/j.1365-294X.2011.05436.x
– ident: e_1_2_6_44_1
  doi: 10.1126/science.1061967
– ident: e_1_2_6_83_1
  doi: 10.1086/284943
– ident: e_1_2_6_55_1
  doi: 10.1111/jfb.12013
– ident: e_1_2_6_131_1
  doi: 10.1111/j.1365-2435.2005.01033.x
– ident: e_1_2_6_23_1
  doi: 10.1098/rsbl.2004.0206
– ident: e_1_2_6_67_1
  doi: 10.1007/s00442-009-1415-9
– ident: e_1_2_6_87_1
  doi: 10.1098/rspb.2009.0080
– ident: e_1_2_6_10_1
  doi: 10.1016/S1532-0456(01)00268-X
– ident: e_1_2_6_47_1
  doi: 10.1007/s003600050162
– ident: e_1_2_6_109_1
  doi: 10.1242/jeb.203.2.347
– ident: e_1_2_6_91_1
  doi: 10.1006/anbe.1997.0668
– ident: e_1_2_6_137_1
  doi: 10.1007/s00360-014-0802-7
– ident: e_1_2_6_49_1
  doi: 10.1016/j.cbpa.2012.07.002
– ident: e_1_2_6_119_1
  doi: 10.1016/j.cbpa.2010.02.014
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1365-2435.2011.01920.x
– ident: e_1_2_6_106_1
  doi: 10.1002/jez.1728
– ident: e_1_2_6_48_1
  doi: 10.1007/s00360-012-0688-1
– ident: e_1_2_6_11_1
  doi: 10.1016/j.cbpa.2013.01.027
– ident: e_1_2_6_43_1
  doi: 10.1242/jeb.030874
– volume: 10
  start-page: 177
  year: 2008
  ident: e_1_2_6_53_1
  article-title: How does selection operate on whole‐organism functional performance capacities? A review and synthesis
  publication-title: Evolutionary Ecology Research
– ident: e_1_2_6_93_1
  doi: 10.1242/jeb.02780
– ident: e_1_2_6_3_1
  doi: 10.1139/f04-223
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.0708159105
– ident: e_1_2_6_97_1
  doi: 10.1111/jfb.12796
– ident: e_1_2_6_94_1
  doi: 10.1242/jeb.054205
– ident: e_1_2_6_9_1
  doi: 10.1016/j.tree.2010.08.003
– ident: e_1_2_6_114_1
  doi: 10.2307/1940797
– ident: e_1_2_6_65_1
  doi: 10.1016/j.cub.2010.10.050
– ident: e_1_2_6_136_1
  doi: 10.1146/annurev.ecolsys.32.081501.114006
– ident: e_1_2_6_95_1
  doi: 10.1086/665982
– ident: e_1_2_6_68_1
  doi: 10.1007/s00360-012-0698-z
SSID ssj0009393
Score 2.5817044
SecondaryResourceType review_article
Snippet There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 298
SubjectTerms aerobic scope
Aggression
Animals
Appetitive Behavior
Basal Metabolism
Behavior
Behavior, Animal
dominance
Ecological effects
Energy Metabolism
Environment
Environmental changes
Fish behavior
Fishes - metabolism
fitness
Food availability
Genotype & phenotype
growth
Hypoxia
Metabolism
Phenotype
Reproduction
Risk taking
Special Issue Paper
specific dynamic action
Swimming
Temperature
Title Does individual variation in metabolic phenotype predict fish behaviour and performance?
URI https://api.istex.fr/ark:/67375/WNG-0450CR7W-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.12699
https://www.ncbi.nlm.nih.gov/pubmed/26577442
https://www.proquest.com/docview/1756758354
https://www.proquest.com/docview/1760894054
https://pubmed.ncbi.nlm.nih.gov/PMC4991269
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qRfDF-u3WWqKI-LLH7Sb7EXwQrZ6lYJFi6SFCSLJZerTuHnd7Iv71zmQ_2tMK4tuyO2GZZCb5TTLzC8DzvMiszMw4jHRcYoCSizDXqQuLWFpn0sJyfxnMx8N0_1gcTJPpBrzqa2Fafohhw408w8_X5ODaLC87eWlGUZxKKt6jXC0CREcX1FGSd4S7GGxhg7hjFfJZPH3LtbXoOnXrj6uA5p_5kpdxrF-IJlvwtVehzT85G60aM7I_f2N3_E8db8OtDqCyN61F3YENV92FG19qv_1-D6bvardks6GMi33HYNuPLr5k31yDRnU-s4xSx2ra32XzBZ0FNaycLU9ZxwqwWjBdFWx-UbXw-j4cT95_3tsPu9sZQosoS4YOAa_LrUE8JGWRu1QkkTZaF4gpS5lTQW1mo8hYLrSfRuKS86SIXGlSNIkxfwCbVV25R8ASI_LEOZ1pzTGAEpKudbcIpXLrxLgoAnjZj5OyHXU53aBxroYQpjTKd1QAzwbRecvXcZXQCz_Yg4RenFGCW5aok8MPClHueO8oO1E8gJ3eGlTn20uFgIuiLJ6IAJ4On9Er6ahFV65ekQzqKBEMo8zD1niGn8VpgphbxAFka2Y1CBDj9_qXanbqmb8xPCUFsD-81fxdQ3Uweesftv9d9DHcRDTY7S_twGazWLkniLgaswvXYvFp1zvYL9XdKAI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVoheeENTChgEqJesNu_4gBB0WbavPVStuuJibMdRVy3JKpttC7-Jv8J_Yuw82oUicemBW5SMkow9Y39jj78BeBUnkaSR6NoOd1MMUGLfjnmo7MSlUokwkZ4pBrM7DAcH_tYoGC3Aj-YsTMUP0S64ac8w47V2cL0gfdnLU9Fx3JDSOqVyW307w4Bt-nazh7372nX7H_c3BnZdU8CWiA2orRCmqVgKnMUpTWIV-oHDBecJIqGUxvoYaCQdR0jP58b43dTzgsRRqQhRka6H770BS7qCuGbq7-1dkFVRr6b4xfAO_9CteYxM3lDzq3Oz35LuyPOroO2fGZqXkbOZ-vp34GfTaFXGy3FnVoqO_P4bn-T_0qp34XaNwcn7ymnuwYLK7sPNz7nZYXgAo16upmTcnlQjp7yoDBhvkq-qRL85GUuis-NyvYRNJoXe7ipJOp4ekZr4YFYQniVkcnEw491DOLgWtR7BYpZnagVIIPw4UIpHnHsYI_pUV66XiBZjqfxukliw3hgGkzU7uy4ScsLaKC0VzHSMBS9b0UlFSXKV0BtjXa0EL451Dl8UsMPhJ4ZAvruxFx0yz4K1xvxYPXxNGWJKHUh6gW_Bi_YxDjx6N4lnKp9pGdSRIt5HmceVtbYfc8MAwwrftSCas-NWQJOazz_JxkeG3BwjcK0Atocx079ryLb6H8zF6r-LPodbg_3dHbazOdx-AssIfuvltDVYLIuZeooAsxTPjF8T-HLdJv8Lw9eDRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiGcJLWAQIC5BG9t5-IAQdFn6gFWFqLri4voVdUVJVvso8Jv4k4y92bQrisSltygeJbFnJv7GnvkM8KywuRG57sSJoiUGKAWPC5W52FJhnM6sYeEwmE_9bPuA7w7SwQr8XtTCzPkh2gU37xnhf-0dfGTL805e6lcJzYRoMir33K8fGK9NXu90UbnPKe29_7K1HTdHCsQGoYGIHaI0VxiNk7gQtnAZTxOllbIIhEpR-CrQ3CSJNoyrYPu0ZCy1iSt1hv3oMHzuFVjzm4s-f4zy_TOGX9Yw_GJ0h19IGxqjkDa0-NSlyW_N6_HnRcj27wTN88A5zHy9m3Cjgazk7dzGbsGKq27D1a91WJC_A4Nu7SZk2BZ2kVMMv4O-8Sb57qZoZidDQ3wyWe1XfMlo7HeHpqQcTo5JwxMwGxNVWTI6q2N4cxcOLmVw78FqVVfuPpBU8yJ1TuVKMQypuPAHvRsEV4VxvGNtBC8XAylNQ2buz9Q4kW1QU2oZxjyCp63oaM7gcZHQi6CNVkKNv_mUtzyVh_0PEnFvZ-tzfihZBJsLdcnG2ycSIZiPu1jKI3jSNqOf-s0XVbl65mWwjwLhMcqsz7XbvoxmKaJwTiPIl_TeCngO8OWWangcuMAxYPUdwPEIFvLvHsrd3rtw8eD_RR_Dtf1uT37c6e9twHWEis3i0yasTscz9xDh2FQ_Cm5A4Oiy_e4PDFpCXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+individual+variation+in+metabolic+phenotype+predict+fish+behaviour+and+performance%3F&rft.jtitle=Journal+of+fish+biology&rft.au=Metcalfe%2C+N.+B.&rft.au=Van+Leeuwen%2C+T.+E.&rft.au=Killen%2C+S.+S.&rft.date=2016-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-1112&rft.eissn=1095-8649&rft.volume=88&rft.issue=1&rft.spage=298&rft.epage=321&rft_id=info:doi/10.1111%2Fjfb.12699&rft.externalDBID=10.1111%252Fjfb.12699&rft.externalDocID=JFB12699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1112&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1112&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1112&client=summon