Temporal genetic analysis of the endangered tidewater goby: extinction–colonization dynamics or drift in isolation?

Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular a...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 24; no. 22; pp. 5544 - 5560
Main Authors Kinziger, Andrew P, Hellmair, Michael, McCraney, W. Tyler, Jacobs, David K, Goldsmith, Greg
Format Journal Article
LanguageEnglish
Published England Blackwell Scientific Publications 01.11.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0962-1083
1365-294X
1365-294X
DOI10.1111/mec.13424

Cover

Abstract Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field‐based approaches for assessment of the extinction–colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction–colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction–colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within‐site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20–30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction–colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction–colonization dynamics or as a stand‐alone tool when field data are lacking.
AbstractList Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking.
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field‐based approaches for assessment of the extinction–colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction–colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction–colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within‐site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20–30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction–colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction–colonization dynamics or as a stand‐alone tool when field data are lacking.
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking.Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking.
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field‐based approaches for assessment of the extinction–colonization dynamics of tidewater goby ( Eucyclogobius newberryi ) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction–colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction–colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within‐site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20–30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction–colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction–colonization dynamics or as a stand‐alone tool when field data are lacking.
Author Hellmair, Michael
Goldsmith, Greg
McCraney, W. Tyler
Kinziger, Andrew P.
Jacobs, David K.
Author_xml – sequence: 1
  fullname: Kinziger, Andrew P
– sequence: 2
  fullname: Hellmair, Michael
– sequence: 3
  fullname: McCraney, W. Tyler
– sequence: 4
  fullname: Jacobs, David K
– sequence: 5
  fullname: Goldsmith, Greg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26460923$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAYhS1URC-w4AXAEhtYpPU9STcIjUqLVECorWBnOcmfwSWxB9ujdljxDrwhT4LnxqICgTeW5e8c_T4--2jHeQcIPabkkOZ1NEJ7SLlg4h7ao1zJgtXi0w7aI7ViBSUV30X7MV4TQjmT8gHaZUooUjO-h-aXMM58MAOegoNkW2ycGRbRRux7nD4DBtcZN4UAHU62gxuTIOCpbxbHGG6TdW2y3v38_qP1g3f2m1kecbdwZrRtNgm4C7ZP2Dpsox9W1y8fovu9GSI82uwH6Or1yeXkrDh_f_pm8uq8aKWkolAtY8zkOUXbKCYYMFDQl6SRXcc47ThlSjUyP6URfVkb03MquQHVdJ0xTPID9HztOwv-6xxi0qONLQyDceDnUdOKcEo5Z-zfaFkRSUsh_gdVpKo5LZcDPLuDXvt5yAkvKVnKihAlMvVkQ82bETo9C3Y0YaG335SBozXQBh9jgF63Nq2iTMHYQVOil0XQuQh6VYSseHFHsTX9E7txv7EDLP4O6rcnk62iWCtsTHD7W2HCF61KXkr98d1pDveMfeAV0xeZf7rme-O1mQYb9dUFI1QRQmrCVcV_ATed2kU
CitedBy_id crossref_primary_10_1093_jhered_esae053
crossref_primary_10_1111_jfb_14401
crossref_primary_10_1007_s10592_019_01161_9
crossref_primary_10_1111_mec_15693
crossref_primary_10_1111_mec_16710
crossref_primary_10_2989_1814232X_2024_2384454
crossref_primary_10_1111_1755_0998_12501
Cites_doi 10.1111/j.1365-294X.2012.05478.x
10.2307/3546736
10.1046/j.1365-2540.2000.00795.x
10.1111/j.0014-3820.2001.tb00636.x
10.1111/j.1558-5646.1975.tb00807.x
10.1093/genetics/160.2.741
10.1890/02-3090
10.2307/5591
10.1046/j.0173-9565.2003.00795.x
10.1111/j.1471-8286.2004.00770.x
10.1111/j.1752-4571.2009.00104.x
10.1111/j.2007.0030-1299.16202.x
10.1002/0470047356
10.1111/1755-0998.12157
10.1111/j.1365-2656.2009.01609.x
10.1577/1548-8675(1999)019<0618:PPAROE>2.0.CO;2
10.1111/j.1365-294X.2004.02396.x
10.1111/j.1558-5646.1989.tb04220.x
10.1007/s10592-009-9999-5
10.1534/genetics.107.075481
10.1016/j.tree.2004.07.003
10.1111/j.1600-0706.2012.20781.x
10.2331/suisan.57.2223
10.1016/j.tree.2013.01.002
10.1046/j.1365-294x.1998.00414.x
10.1214/aos/1013699998
10.1016/S0006-3207(03)00190-3
10.1016/j.tree.2012.07.001
10.1371/journal.pone.0028244
10.1111/mec.12673
10.1038/33136
10.1111/j.1558-5646.1997.tb02422.x
10.1111/j.1471-8286.2004.00845.x
10.1111/j.1467-2979.2008.00304.x
10.1007/s10592-005-9100-y
10.1111/j.1558-5646.1988.tb02518.x
10.1111/j.1558-5646.1998.tb05157.x
10.1038/sj.hdy.6800774
10.1007/s12686-011-9548-7
10.1007/s10592-009-0008-9
10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
10.1111/j.1558-5646.1999.tb04571.x
10.1371/journal.pone.0113139
10.1007/s10592-013-0516-5
10.1046/j.1471-8286.2003.00566.x
10.1111/j.1365-294X.2005.02553.x
10.1111/j.1095-8312.1991.tb00558.x
10.1146/annurev.es.25.110194.001123
10.1016/0040-5809(77)90045-4
10.2307/3670165
10.1007/s10530-011-0054-3
10.1007/s101260000051
10.1016/j.tree.2007.08.017
10.1111/j.1558-5646.1990.tb05243.x
10.1007/BF00346827
10.1046/j.1523-1739.1999.98016.x
10.1046/j.1523-1739.1999.98133.x
10.1186/1471-2156-6-13
10.1111/j.1365-294X.2010.04755.x
10.1534/genetics.104.038349
10.1111/mec.12563
10.1023/A:1007478207892
10.1046/j.1365-294x.2000.01031.x
ContentType Journal Article
Copyright 2015 John Wiley & Sons Ltd
2015 John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: 2015 John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.13424
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Entomology Abstracts

AGRICOLA
Genetics Abstracts
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 5560
ExternalDocumentID 3923661631
26460923
10_1111_mec_13424
MEC13424
ark_67375_WNG_18H2Q382_S
US201600090368
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations California
GeographicLocations_xml – name: California
GrantInformation_xml – fundername: United States Fish and Wildlife Service
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5514-6c222a9234cb6242e2e6ef70b5dd231d31266b5609b4f79aaf3153ae6bddaa253
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:19:44 EDT 2025
Thu Aug 07 14:59:20 EDT 2025
Thu Sep 04 23:25:42 EDT 2025
Wed Aug 13 07:52:06 EDT 2025
Wed Feb 19 02:17:10 EST 2025
Tue Jul 01 03:21:56 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Wed Jan 22 16:28:54 EST 2025
Wed Oct 30 09:45:32 EDT 2024
Wed Dec 27 19:02:23 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords microsatellites
metapopulation
tidewater goby
conservation
extinction
colonization
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5514-6c222a9234cb6242e2e6ef70b5dd231d31266b5609b4f79aaf3153ae6bddaa253
Notes http://dx.doi.org/10.1111/mec.13424
Fig. S1. Summary of repeat field surveys and temporal genetic analysis for 10 sites with multiple years of collections, including (i) site occupancy histories from field surveys, tabulated on an annual basis (1 = occupied, 0 = unoccupied, * indicates year of genetic tissue collection), (ii) estimates of genetic diversity within each temporal genetic collection (N = sample size, Ho = observed heterozygosity, He = expected heterozygosity, A = allelic richness, Ar = rarefied allelic richness, Ap = rarefied private allelic richness), (iii) results from site-specific Bayesian cluster analysis using structure assuming the data were composed of two genetically distinct clusters, (iv) Genetic differentiation (FST) between population pairs (below diagonal) and P-values from permutation tests for significance (above diagonal).Appendix S1. Probability of at least one site going extinct by year n across m sites. Table S1. Microsatellite loci details including allelic richness across all populations, size range (including amplified flanking regions and microsatellite repeats) in base pairs (bp), Hardy-Weinberg expected heterozygosity (He), and references. Table S2. Genetic differentiation (FST) between population pairs (below diagonal) and p-values from permutation tests for significance (above diagonal). Table S3. Summary of the 16 time intervals for which both temporal genetic and repeat field collections are available, including the site, time interval, interpretation from temporal genetic analysis, findings from naïve inspection of repeat field survey data, and inference to extinction-colonization dynamics for the time interval.
ArticleID:MEC13424
istex:12C35BA6EEA0F67EFC9678887C9655EAA221D5B9
ark:/67375/WNG-18H2Q382-S
United States Fish and Wildlife Service
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26460923
PQID 1757580064
PQPubID 31465
PageCount 17
ParticipantIDs proquest_miscellaneous_1803113322
proquest_miscellaneous_1780517442
proquest_miscellaneous_1760893175
proquest_journals_1757580064
pubmed_primary_26460923
crossref_citationtrail_10_1111_mec_13424
crossref_primary_10_1111_mec_13424
wiley_primary_10_1111_mec_13424_MEC13424
istex_primary_ark_67375_WNG_18H2Q382_S
fao_agris_US201600090368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2015
Publisher Blackwell Scientific Publications
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Scientific Publications
– name: Blackwell Publishing Ltd
References Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361.
Lamy T, Pointier JP, Jarne P, David P (2012) Testing metapopulation dynamics using genetic, demographic and ecological data. Molecular Ecology, 21, 1394-1410.
Hanski I (1994) A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151-162.
McCarthy MA, Moore JL, Morris WK et al. (2013) The influence of abundance on detectability. Oikos, 122, 717-726.
Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209-219.
Kinziger AP, Nakamoto RJ, Harvey BC (2013) Local-scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow (Ptychocheilus grandis). Conservation Genetics, 15, 1-9.
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14, 209-214.
Goldberg SR (1977) Seasonal ovarian cycle of the tidewater goby, Eucyclogobius newberryi (Gobiidae). The Southwestern Naturalist, 22, 557-559.
Hellmair M, Goldsmith G, Kinziger AP (2011) Preying on invasives: the exotic New Zealand mudsnail in the diet of the endangered tidewater goby. Biological Invasions, 13, 2197-2201.
Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898-1914.
Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology, 12, 253-262.
Berthier P, Beaumont MA, Cornuet JM, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics, 160, 741-751.
Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935.
Brown IL, Ehrlich PR (1980) Population biology of the checkerspot butterfly, Euphydryas chalcedona. Structure of the Jasper Ridge colony. Oecologia (Berlin), 47, 239-251.
Hastings A, Harrison S (1994) Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167-188.
Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution, 52, 240-250.
Luikart G, Allendorf FW, Cornuet J-M (1999) Temporal change in allele frequencies provide useful estimates of population bottleneck size. Conservation Biology, 12, 523-530.
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587.
McCraney WT, Goldsmith G, Jacobs DK, Kinziger AP (2010) Rampant drift in artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi). Molecular Ecology, 19, 3315-3327.
Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184.
Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494.
Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK (2014) Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Molecular Ecology, 23, 1071-1084.
Whitlock MC, McCauley DE (1990) Some population genetic consequences of colony formation and extinction - genetic correlations within founding groups. Evolution, 44, 1717-1724.
Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution, 51, 354-362.
Gilpin M (1991) The genetic effective size of a metapopulation. Biological Journal of the Linnean Society, 42, 165-175.
Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE, 6, e28244.
Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution, 42, 995-1005.
Anderson EC (2005) An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood. Genetics, 170, 955-967.
Swenson RO (1999) The ecology, behavior, and conservation of the tidewater goby, Eucyclogobius newberryi. Environmental Biology of Fishes, 55, 99-114.
Nachman MW (2013) Genomics and museum specimens. Molecular Ecology, 22, 5966-5968.
Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3, 244-262.
Lafferty KD, Swift CC, Ambrose RF (1999a) Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby. Conservation Biology, 13, 1447-1453.
Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461.
Earl DA, Louie KD, Bardeleben C, Swift CC, Jacobs DK (2010) Rangewide microsatellite phylogeography of the endangered tidewater goby, Eucyclogobius newberryi (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal. Conservation Genetics, 11, 103-114.
Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Molecular Ecology, 9, 1517-1528.
Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular Ecology, 7, 963-974.
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
Frankham R, Brook BW, Bradshaw CJ, Traill LW, Spielman D (2013) 50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology Evolution, 28, 187-188.
Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626.
Hogg JT, Forbes SH, Steele BM, Luikart G (2006) Genetic rescue of an insular population of large mammals. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 1491-1499.
Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138.
Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology and Evolution, 22, 634-642.
Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4, 792-794.
Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116, 195-203.
Ahnelt H, Goschl J, Dawson MN, Jacobs DK (2004) Geographical variation in the cephalic lateral line canals of Eucyclogobius newberryi (Teleostei, Gobiidae) and its comparison with molecular phylogeography. Folia Zoologica, 53, 385-398.
Hellmair M, Kinziger AP (2014) Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity. PLoS ONE, 9, e113139.
MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization and local extinction probabilities when a species is detected imperfectly. Ecology, 84, 2200-2207.
Dawson MN, Staton JL, Jacobs DK (2001) Phylogeography of the tidewater goby, Eucyclogobius newberryi (Teleostei, Gobiidae), in coastal California. Evolution, 55, 1167-1179.
United States Fish and Wildlife Service (2005) Recovery Plan for the Tidewater Goby (Eucyclogobius newberryi). United States Fish and Wildlife Service, Portland, Oregon.
Lafferty KD, Swift CC, Ambrose RF (1999b) Postflood persistence and recolonization of endangered tidewater goby populations. North American Journal of Fisheries Management, 19, 618-622.
Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Annals of Statistics, 29, 1165-1188.
Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5, 187-189.
Hanski I, Gaggiotti OE (2004) Ecology, Genetics, and Evolution of Metapopulations. Academic Press, San Diego, California.
Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27, 578-584.
Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics, 7, 783-787.
Nakajima N, Kanda N, Fujio Y (1991) Fluctuation of gene frequency in sub-populations originated from one guppy population. Bulletin of the Japanese Society of Scientific Fisheries, 57, 2223-2227.
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Driscoll DA (2008) The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape. Oikos, 117, 297-309.
Mendonca H, Smith J, Brinegar C (2001) Isolation and characterization of four microsatellite loci in the tidewater goby (Eucyclogobius newberryi). Marine Biotechnology, 3, 91-95.
Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends in Ecology and Evolution, 19, 489-496.
Jensen JL, Bohonak AJ, Kelley ST (200
2010; 11
2005; 170
1980; 47
1999b; 19
2013; 28
1989; 43
2013; 22
2010; 19
1991; 57
1964; 49
2000; 9
2004; 4
2008; 9
2013; 122
1994; 25
1999; 87
1977; 22
2011; 13
2014; 23
1994; 63
1998; 392
1985; 18
2013; 15
1997; 51
1990; 44
2002; 83
1991; 42
2007; 177
1999; 12
2014; 14
1999; 55
2008; 117
1999; 53
2012; 27
1980
1988; 42
2001; 55
2014; 9
1998; 52
2010; 3
2003; 84
2007; 22
2012; 21
2003; 164
1989
2010; 79
2006; 273
2006; 7
2005
2004
2000; 155
2001; 29
2011; 6
2004; 53
2002; 160
2004; 116
2004; 19
1975; 29
2005; 5
2005; 96
2005; 6
2002; 70
2001; 3
1999a; 13
2013
1977; 12
1998; 7
2012; 4
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Crabtree CB (e_1_2_7_7_1) 1985; 18
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_31_1
e_1_2_7_52_1
United States Fish and Wildlife Service (e_1_2_7_68_1) 2005
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
Haag CR (e_1_2_7_22_1) 2005; 96
e_1_2_7_6_1
e_1_2_7_4_1
Franklin IR (e_1_2_7_18_1) 1980
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Krauss NC (e_1_2_7_39_1) 2002; 70
Swift CC (e_1_2_7_65_1) 1989
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
R Core Team (e_1_2_7_58_1) 2013
Ahnelt H (e_1_2_7_2_1) 2004; 53
Hanski I (e_1_2_7_25_1) 2004
Felsenstein J (e_1_2_7_15_1) 2005
References_xml – reference: Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138.
– reference: Lamy T, Pointier JP, Jarne P, David P (2012) Testing metapopulation dynamics using genetic, demographic and ecological data. Molecular Ecology, 21, 1394-1410.
– reference: Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology and Evolution, 22, 634-642.
– reference: Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898-1914.
– reference: Goldberg SR (1977) Seasonal ovarian cycle of the tidewater goby, Eucyclogobius newberryi (Gobiidae). The Southwestern Naturalist, 22, 557-559.
– reference: Hanski I, Gaggiotti OE (2004) Ecology, Genetics, and Evolution of Metapopulations. Academic Press, San Diego, California.
– reference: Kinziger AP, Nakamoto RJ, Harvey BC (2013) Local-scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow (Ptychocheilus grandis). Conservation Genetics, 15, 1-9.
– reference: Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK (2014) Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Molecular Ecology, 23, 1071-1084.
– reference: Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494.
– reference: Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE, 6, e28244.
– reference: Whitlock MC, McCauley DE (1990) Some population genetic consequences of colony formation and extinction - genetic correlations within founding groups. Evolution, 44, 1717-1724.
– reference: Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) Version 3.68. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, Washington.
– reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
– reference: McCarthy MA, Moore JL, Morris WK et al. (2013) The influence of abundance on detectability. Oikos, 122, 717-726.
– reference: Hellmair M, Kinziger AP (2014) Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity. PLoS ONE, 9, e113139.
– reference: Driscoll DA (2008) The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape. Oikos, 117, 297-309.
– reference: Anderson EC (2005) An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood. Genetics, 170, 955-967.
– reference: Hastings A, Harrison S (1994) Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167-188.
– reference: Brown IL, Ehrlich PR (1980) Population biology of the checkerspot butterfly, Euphydryas chalcedona. Structure of the Jasper Ridge colony. Oecologia (Berlin), 47, 239-251.
– reference: Berthier P, Beaumont MA, Cornuet JM, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics, 160, 741-751.
– reference: Gilpin M (1991) The genetic effective size of a metapopulation. Biological Journal of the Linnean Society, 42, 165-175.
– reference: Swift CC, Nelson JL, Maslow C, Stein T (1989) Biology and Distribution of the Tidewater Goby, Eucyclogobius newberryi (Pisces: Gobiidae) of California. Contributions in Science 404, Natural History Museum of Los Angeles County, Los Angeles, California.
– reference: Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Annals of Statistics, 29, 1165-1188.
– reference: Mendonca H, Smith J, Brinegar C (2001) Isolation and characterization of four microsatellite loci in the tidewater goby (Eucyclogobius newberryi). Marine Biotechnology, 3, 91-95.
– reference: Ahnelt H, Goschl J, Dawson MN, Jacobs DK (2004) Geographical variation in the cephalic lateral line canals of Eucyclogobius newberryi (Teleostei, Gobiidae) and its comparison with molecular phylogeography. Folia Zoologica, 53, 385-398.
– reference: Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology, 12, 253-262.
– reference: Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461.
– reference: R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at: http://www.R-project.org/.
– reference: United States Fish and Wildlife Service (2005) Recovery Plan for the Tidewater Goby (Eucyclogobius newberryi). United States Fish and Wildlife Service, Portland, Oregon.
– reference: Frankham R, Brook BW, Bradshaw CJ, Traill LW, Spielman D (2013) 50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology Evolution, 28, 187-188.
– reference: Hanski I (1994) A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151-162.
– reference: Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587.
– reference: Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics, 7, 783-787.
– reference: Driscoll DA, Kirkpatrick JB, McQuillan PB, Bonham KJ (2010) Classic metapopulations are rare among common beetle species from a naturally fragmented landscape. Journal of Animal Ecology, 79, 294-303.
– reference: Swenson RO (1999) The ecology, behavior, and conservation of the tidewater goby, Eucyclogobius newberryi. Environmental Biology of Fishes, 55, 99-114.
– reference: Crabtree CB (1985) Allozyme variability in the tidewater goby, Eucyclogobius newberryi (Pisces: Gobiidae). Isozyme Bulletin, 18, 70.
– reference: Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561-576.
– reference: Nakajima N, Kanda N, Fujio Y (1991) Fluctuation of gene frequency in sub-populations originated from one guppy population. Bulletin of the Japanese Society of Scientific Fisheries, 57, 2223-2227.
– reference: Dawson MN, Staton JL, Jacobs DK (2001) Phylogeography of the tidewater goby, Eucyclogobius newberryi (Teleostei, Gobiidae), in coastal California. Evolution, 55, 1167-1179.
– reference: Hellmair M, Goldsmith G, Kinziger AP (2011) Preying on invasives: the exotic New Zealand mudsnail in the diet of the endangered tidewater goby. Biological Invasions, 13, 2197-2201.
– reference: Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27, 578-584.
– reference: Earl DA, Louie KD, Bardeleben C, Swift CC, Jacobs DK (2010) Rangewide microsatellite phylogeography of the endangered tidewater goby, Eucyclogobius newberryi (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal. Conservation Genetics, 11, 103-114.
– reference: Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14, 209-214.
– reference: Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
– reference: Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361.
– reference: Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626.
– reference: Luikart G, Allendorf FW, Cornuet J-M (1999) Temporal change in allele frequencies provide useful estimates of population bottleneck size. Conservation Biology, 12, 523-530.
– reference: Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution, 51, 354-362.
– reference: Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3, 244-262.
– reference: Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics, 6, 13.
– reference: McCraney WT, Goldsmith G, Jacobs DK, Kinziger AP (2010) Rampant drift in artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi). Molecular Ecology, 19, 3315-3327.
– reference: Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116, 195-203.
– reference: Lafferty KD, Swift CC, Ambrose RF (1999a) Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby. Conservation Biology, 13, 1447-1453.
– reference: Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution, 52, 240-250.
– reference: Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225.
– reference: Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5, 187-189.
– reference: Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
– reference: Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution, 42, 995-1005.
– reference: Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184.
– reference: Haag CR, Riek M, Hottinger JW, Pajunen VI, Ebert D (2005) Founder events as determinants of within-island and among-island genetic structure of Daphnia metapopulations. Heredity, 96, 150-158.
– reference: Lafferty KD, Swift CC, Ambrose RF (1999b) Postflood persistence and recolonization of endangered tidewater goby populations. North American Journal of Fisheries Management, 19, 618-622.
– reference: Hogg JT, Forbes SH, Steele BM, Luikart G (2006) Genetic rescue of an insular population of large mammals. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 1491-1499.
– reference: Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209-219.
– reference: Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4, 792-794.
– reference: Krauss NC, Militello A, Todoroff G (2002) Barrier breaching process and barrier spit breach, Stone Lagoon, California. Shore and Beach, 70, 21-28.
– reference: MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization and local extinction probabilities when a species is detected imperfectly. Ecology, 84, 2200-2207.
– reference: Nachman MW (2013) Genomics and museum specimens. Molecular Ecology, 22, 5966-5968.
– reference: Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends in Ecology and Evolution, 19, 489-496.
– reference: Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Molecular Ecology, 9, 1517-1528.
– reference: Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935.
– reference: Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular Ecology, 7, 963-974.
– volume: 52
  start-page: 240
  year: 1998
  end-page: 250
  article-title: Inbreeding and its fitness effects in an insular population of song sparrows ( )
  publication-title: Evolution
– volume: 53
  start-page: 1898
  year: 1999
  end-page: 1914
  article-title: Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability
  publication-title: Evolution
– volume: 116
  start-page: 195
  year: 2004
  end-page: 203
  article-title: Absent or undetected? Effects of non‐detection of species occurrence on wildlife‐habitat models
  publication-title: Biological Conservation
– volume: 11
  start-page: 103
  year: 2010
  end-page: 114
  article-title: Rangewide microsatellite phylogeography of the endangered tidewater goby, (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal
  publication-title: Conservation Genetics
– year: 2005
– volume: 63
  start-page: 151
  year: 1994
  end-page: 162
  article-title: A practical model of metapopulation dynamics
  publication-title: Journal of Animal Ecology
– year: 1989
– volume: 7
  start-page: 963
  year: 1998
  end-page: 974
  article-title: Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change
  publication-title: Molecular Ecology
– volume: 84
  start-page: 2200
  year: 2003
  end-page: 2207
  article-title: Estimating site occupancy, colonization and local extinction probabilities when a species is detected imperfectly
  publication-title: Ecology
– volume: 87
  start-page: 209
  year: 1999
  end-page: 219
  article-title: Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes
  publication-title: Oikos
– volume: 13
  start-page: 2197
  year: 2011
  end-page: 2201
  article-title: Preying on invasives: the exotic New Zealand mudsnail in the diet of the endangered tidewater goby
  publication-title: Biological Invasions
– volume: 83
  start-page: 2248
  year: 2002
  end-page: 2255
  article-title: Estimating site occupancy rates when detection probabilities are less than one
  publication-title: Ecology
– volume: 28
  start-page: 187
  year: 2013
  end-page: 188
  article-title: 50/500 rule and minimum viable populations: response to Jamieson and Allendorf
  publication-title: Trends in Ecology Evolution
– volume: 4
  start-page: 137
  year: 2004
  end-page: 138
  article-title: DISTRUCT: a program for the graphical display of population structure
  publication-title: Molecular Ecology Notes
– volume: 19
  start-page: 489
  year: 2004
  end-page: 496
  article-title: The alluring simplicity and complex reality of genetic rescue
  publication-title: Trends in Ecology and Evolution
– volume: 6
  start-page: 13
  year: 2005
  article-title: Isolation by distance, web service
  publication-title: BMC Genetics
– volume: 29
  start-page: 1165
  year: 2001
  end-page: 1188
  article-title: The control of false discovery rate under dependency
  publication-title: Annals of Statistics
– volume: 21
  start-page: 1394
  year: 2012
  end-page: 1410
  article-title: Testing metapopulation dynamics using genetic, demographic and ecological data
  publication-title: Molecular Ecology
– volume: 22
  start-page: 5966
  year: 2013
  end-page: 5968
  article-title: Genomics and museum specimens
  publication-title: Molecular Ecology
– volume: 3
  start-page: 91
  year: 2001
  end-page: 95
  article-title: Isolation and characterization of four microsatellite loci in the tidewater goby ( )
  publication-title: Marine Biotechnology
– volume: 15
  start-page: 1
  year: 2013
  end-page: 9
  article-title: Local‐scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow ( )
  publication-title: Conservation Genetics
– year: 2004
– volume: 42
  start-page: 995
  year: 1988
  end-page: 1005
  article-title: Extinction and recolonization: their effects on the genetic differentiation of local populations
  publication-title: Evolution
– volume: 51
  start-page: 354
  year: 1997
  end-page: 362
  article-title: Increased probability of extinction due to decreased genetic effective population size: experimental populations of
  publication-title: Evolution
– volume: 44
  start-page: 1717
  year: 1990
  end-page: 1724
  article-title: Some population genetic consequences of colony formation and extinction – genetic correlations within founding groups
  publication-title: Evolution
– volume: 117
  start-page: 297
  year: 2008
  end-page: 309
  article-title: The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape
  publication-title: Oikos
– volume: 273
  start-page: 1491
  year: 2006
  end-page: 1499
  article-title: Genetic rescue of an insular population of large mammals
  publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences
– volume: 5
  start-page: 187
  year: 2005
  end-page: 189
  article-title: HP‐RARE 1.0: a computer program for performing rarefaction on measures of allelic richness
  publication-title: Molecular Ecology Notes
– volume: 29
  start-page: 1
  year: 1975
  end-page: 10
  article-title: The bottleneck effect and genetic variability in populations
  publication-title: Evolution
– volume: 19
  start-page: 618
  year: 1999b
  end-page: 622
  article-title: Postflood persistence and recolonization of endangered tidewater goby populations
  publication-title: North American Journal of Fisheries Management
– volume: 7
  start-page: 783
  year: 2006
  end-page: 787
  article-title: Beyond Bonferroni: less conservative analyses for conservation genetics
  publication-title: Conservation Genetics
– volume: 42
  start-page: 165
  year: 1991
  end-page: 175
  article-title: The genetic effective size of a metapopulation
  publication-title: Biological Journal of the Linnean Society
– volume: 9
  start-page: e113139
  year: 2014
  article-title: Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity
  publication-title: PLoS ONE
– volume: 12
  start-page: 253
  year: 1977
  end-page: 262
  article-title: Gene flow and genetic drift in a species subject to frequent local extinctions
  publication-title: Theoretical Population Biology
– volume: 25
  start-page: 167
  year: 1994
  end-page: 188
  article-title: Metapopulation dynamics and genetics
  publication-title: Annual Review of Ecology and Systematics
– volume: 14
  start-page: 209
  year: 2014
  end-page: 214
  article-title: NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size ( ) from genetic data
  publication-title: Molecular Ecology Resources
– volume: 6
  start-page: e28244
  year: 2011
  article-title: Population size influences amphibian detection probability: implications for biodiversity monitoring programs
  publication-title: PLoS ONE
– volume: 9
  start-page: 450
  year: 2008
  end-page: 461
  article-title: Waking the dead: the value of population genetic analyses of historical samples
  publication-title: Fish and Fisheries
– volume: 70
  start-page: 21
  year: 2002
  end-page: 28
  article-title: Barrier breaching process and barrier spit breach, Stone Lagoon, California
  publication-title: Shore and Beach
– volume: 12
  start-page: 523
  year: 1999
  end-page: 530
  article-title: Temporal change in allele frequencies provide useful estimates of population bottleneck size
  publication-title: Conservation Biology
– volume: 170
  start-page: 955
  year: 2005
  end-page: 967
  article-title: An efficient Monte Carlo method for estimating from temporally spaced samples using a coalescent‐based likelihood
  publication-title: Genetics
– volume: 23
  start-page: 1071
  year: 2014
  end-page: 1084
  article-title: Human‐facilitated metapopulation dynamics in an emerging pest species,
  publication-title: Molecular Ecology
– volume: 27
  start-page: 578
  year: 2012
  end-page: 584
  article-title: How does the 50/500 rule apply to MVPs?
  publication-title: Trends in Ecology and Evolution
– volume: 164
  start-page: 1567
  year: 2003
  end-page: 1587
  article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies
  publication-title: Genetics
– volume: 160
  start-page: 741
  year: 2002
  end-page: 751
  article-title: Likelihood‐based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach
  publication-title: Genetics
– volume: 49
  start-page: 561
  year: 1964
  end-page: 576
  article-title: The stepping stone model of population structure and the decrease of genetic correlation with distance
  publication-title: Genetics
– volume: 3
  start-page: 244
  year: 2010
  end-page: 262
  article-title: Linkage disequilibrium estimates of contemporary using highly variable genetic markers: a largely untapped resource for applied conservation and evolution
  publication-title: Evolutionary Applications
– volume: 47
  start-page: 239
  year: 1980
  end-page: 251
  article-title: Population biology of the checkerspot butterfly, . Structure of the Jasper Ridge colony
  publication-title: Oecologia (Berlin)
– volume: 7
  start-page: 167
  year: 2006
  end-page: 184
  article-title: A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci
  publication-title: Conservation Genetics
– volume: 4
  start-page: 792
  year: 2004
  end-page: 794
  article-title: GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms
  publication-title: Molecular Ecology Notes
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 22
  start-page: 557
  year: 1977
  end-page: 559
  article-title: Seasonal ovarian cycle of the tidewater goby, (Gobiidae)
  publication-title: The Southwestern Naturalist
– volume: 96
  start-page: 150
  year: 2005
  end-page: 158
  article-title: Founder events as determinants of within‐island and among‐island genetic structure of metapopulations
  publication-title: Heredity
– volume: 55
  start-page: 99
  year: 1999
  end-page: 114
  article-title: The ecology, behavior, and conservation of the tidewater goby, 
  publication-title: Environmental Biology of Fishes
– volume: 19
  start-page: 3315
  year: 2010
  end-page: 3327
  article-title: Rampant drift in artificially fragmented populations of the endangered tidewater goby ( )
  publication-title: Molecular Ecology
– volume: 4
  start-page: 359
  year: 2012
  end-page: 361
  article-title: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method
  publication-title: Conservation Genetics Resources
– volume: 122
  start-page: 717
  year: 2013
  end-page: 726
  article-title: The influence of abundance on detectability
  publication-title: Oikos
– volume: 18
  start-page: 70
  year: 1985
  article-title: Allozyme variability in the tidewater goby, (Pisces: Gobiidae)
  publication-title: Isozyme Bulletin
– volume: 53
  start-page: 385
  year: 2004
  end-page: 398
  article-title: Geographical variation in the cephalic lateral line canals of (Teleostei, Gobiidae) and its comparison with molecular phylogeography
  publication-title: Folia Zoologica
– volume: 79
  start-page: 294
  year: 2010
  end-page: 303
  article-title: Classic metapopulations are rare among common beetle species from a naturally fragmented landscape
  publication-title: Journal of Animal Ecology
– volume: 177
  start-page: 927
  year: 2007
  end-page: 935
  article-title: Unbiased estimator for genetic drift and effective population size
  publication-title: Genetics
– volume: 55
  start-page: 1167
  year: 2001
  end-page: 1179
  article-title: Phylogeography of the tidewater goby, (Teleostei, Gobiidae), in coastal California
  publication-title: Evolution
– volume: 43
  start-page: 223
  year: 1989
  end-page: 225
  article-title: Analyzing tables of statistical tests
  publication-title: Evolution
– volume: 392
  start-page: 491
  year: 1998
  end-page: 494
  article-title: Inbreeding and extinction in a butterfly metapopulation
  publication-title: Nature
– volume: 11
  start-page: 615
  year: 2010
  end-page: 626
  article-title: Genetic rescue guidelines with examples from Mexican wolves and Florida panthers
  publication-title: Conservation Genetics
– volume: 57
  start-page: 2223
  year: 1991
  end-page: 2227
  article-title: Fluctuation of gene frequency in sub‐populations originated from one guppy population
  publication-title: Bulletin of the Japanese Society of Scientific Fisheries
– volume: 22
  start-page: 634
  year: 2007
  end-page: 642
  article-title: Back to the future: museum specimens in population genetics
  publication-title: Trends in Ecology and Evolution
– volume: 13
  start-page: 1447
  year: 1999a
  end-page: 1453
  article-title: Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby
  publication-title: Conservation Biology
– start-page: 135
  year: 1980
  end-page: 150
– year: 2013
– volume: 9
  start-page: 1517
  year: 2000
  end-page: 1528
  article-title: Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks
  publication-title: Molecular Ecology
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1365-294X.2012.05478.x
– ident: e_1_2_7_24_1
  doi: 10.2307/3546736
– ident: e_1_2_7_30_1
  doi: 10.1046/j.1365-2540.2000.00795.x
– ident: e_1_2_7_8_1
  doi: 10.1111/j.0014-3820.2001.tb00636.x
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1558-5646.1975.tb00807.x
– volume: 53
  start-page: 385
  year: 2004
  ident: e_1_2_7_2_1
  article-title: Geographical variation in the cephalic lateral line canals of Eucyclogobius newberryi (Teleostei, Gobiidae) and its comparison with molecular phylogeography
  publication-title: Folia Zoologica
– ident: e_1_2_7_5_1
  doi: 10.1093/genetics/160.2.741
– ident: e_1_2_7_46_1
  doi: 10.1890/02-3090
– ident: e_1_2_7_23_1
  doi: 10.2307/5591
– ident: e_1_2_7_37_1
  doi: 10.1046/j.0173-9565.2003.00795.x
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1471-8286.2004.00770.x
– ident: e_1_2_7_72_1
  doi: 10.1111/j.1752-4571.2009.00104.x
– ident: e_1_2_7_10_1
  doi: 10.1111/j.2007.0030-1299.16202.x
– ident: e_1_2_7_53_1
  doi: 10.1002/0470047356
– ident: e_1_2_7_9_1
  doi: 10.1111/1755-0998.12157
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1365-2656.2009.01609.x
– ident: e_1_2_7_41_1
  doi: 10.1577/1548-8675(1999)019<0618:PPAROE>2.0.CO;2
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1558-5646.1989.tb04220.x
– volume: 18
  start-page: 70
  year: 1985
  ident: e_1_2_7_7_1
  article-title: Allozyme variability in the tidewater goby, Eucyclogobius newberryi (Pisces: Gobiidae)
  publication-title: Isozyme Bulletin
– ident: e_1_2_7_27_1
  doi: 10.1007/s10592-009-9999-5
– volume: 70
  start-page: 21
  year: 2002
  ident: e_1_2_7_39_1
  article-title: Barrier breaching process and barrier spit breach, Stone Lagoon, California
  publication-title: Shore and Beach
– ident: e_1_2_7_34_1
  doi: 10.1534/genetics.107.075481
– ident: e_1_2_7_66_1
  doi: 10.1016/j.tree.2004.07.003
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1600-0706.2012.20781.x
– ident: e_1_2_7_52_1
  doi: 10.2331/suisan.57.2223
– ident: e_1_2_7_17_1
  doi: 10.1016/j.tree.2013.01.002
– ident: e_1_2_7_43_1
  doi: 10.1046/j.1365-294x.1998.00414.x
– ident: e_1_2_7_4_1
  doi: 10.1214/aos/1013699998
– ident: e_1_2_7_21_1
  doi: 10.1016/S0006-3207(03)00190-3
– ident: e_1_2_7_32_1
  doi: 10.1016/j.tree.2012.07.001
– ident: e_1_2_7_67_1
  doi: 10.1371/journal.pone.0028244
– volume-title: Ecology, Genetics, and Evolution of Metapopulations
  year: 2004
  ident: e_1_2_7_25_1
– ident: e_1_2_7_16_1
  doi: 10.1111/mec.12673
– ident: e_1_2_7_61_1
  doi: 10.1038/33136
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1558-5646.1997.tb02422.x
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1471-8286.2004.00845.x
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1467-2979.2008.00304.x
– ident: e_1_2_7_71_1
  doi: 10.1007/s10592-005-9100-y
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1558-5646.1988.tb02518.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_7_58_1
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1558-5646.1998.tb05157.x
– volume: 96
  start-page: 150
  year: 2005
  ident: e_1_2_7_22_1
  article-title: Founder events as determinants of within‐island and among‐island genetic structure of Daphnia metapopulations
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800774
– ident: e_1_2_7_12_1
  doi: 10.1007/s12686-011-9548-7
– ident: e_1_2_7_13_1
  doi: 10.1007/s10592-009-0008-9
– ident: e_1_2_7_45_1
  doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1558-5646.1999.tb04571.x
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.pone.0113139
– ident: e_1_2_7_38_1
  doi: 10.1007/s10592-013-0516-5
– ident: e_1_2_7_60_1
  doi: 10.1046/j.1471-8286.2003.00566.x
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1095-8312.1991.tb00558.x
– ident: e_1_2_7_26_1
  doi: 10.1146/annurev.es.25.110194.001123
– volume-title: PHYLIP (Phylogeny Inference Package) Version 3.68
  year: 2005
  ident: e_1_2_7_15_1
– ident: e_1_2_7_62_1
  doi: 10.1016/0040-5809(77)90045-4
– ident: e_1_2_7_20_1
  doi: 10.2307/3670165
– ident: e_1_2_7_29_1
  doi: 10.1007/s10530-011-0054-3
– ident: e_1_2_7_50_1
  doi: 10.1007/s101260000051
– ident: e_1_2_7_70_1
  doi: 10.1016/j.tree.2007.08.017
– volume-title: Biology and Distribution of the Tidewater Goby, Eucyclogobius newberryi (Pisces: Gobiidae) of California
  year: 1989
  ident: e_1_2_7_65_1
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1558-5646.1990.tb05243.x
– ident: e_1_2_7_6_1
  doi: 10.1007/BF00346827
– ident: e_1_2_7_40_1
  doi: 10.1046/j.1523-1739.1999.98016.x
– ident: e_1_2_7_44_1
  doi: 10.1046/j.1523-1739.1999.98133.x
– volume-title: Recovery Plan for the Tidewater Goby (Eucyclogobius newberryi)
  year: 2005
  ident: e_1_2_7_68_1
– ident: e_1_2_7_33_1
  doi: 10.1186/1471-2156-6-13
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1365-294X.2010.04755.x
– start-page: 135
  volume-title: Conservation Biology an Evolutionary‐Ecological Perspective
  year: 1980
  ident: e_1_2_7_18_1
– ident: e_1_2_7_3_1
  doi: 10.1534/genetics.104.038349
– ident: e_1_2_7_51_1
  doi: 10.1111/mec.12563
– ident: e_1_2_7_64_1
  doi: 10.1023/A:1007478207892
– ident: e_1_2_7_63_1
  doi: 10.1046/j.1365-294x.2000.01031.x
SSID ssj0013255
Score 2.2048454
Snippet Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5544
SubjectTerms Animals
California
Cluster Analysis
Colonization
conservation
Eucyclogobius newberryi
extinction
Extinction, Biological
field experimentation
Gene Flow
Gene Frequency
Genetic diversity
Genetic Drift
genetic techniques and protocols
Genetic Variation
Genetics, Population
Genotype
metapopulation
Metapopulations
Microsatellite Repeats
microsatellites
Models, Genetic
Perciformes - genetics
Population Density
Population Dynamics
Sequence Analysis, DNA
Spatio-Temporal Analysis
Species extinction
Tidewater
tidewater goby
Translocation
Title Temporal genetic analysis of the endangered tidewater goby: extinction–colonization dynamics or drift in isolation?
URI https://api.istex.fr/ark:/67375/WNG-18H2Q382-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.13424
https://www.ncbi.nlm.nih.gov/pubmed/26460923
https://www.proquest.com/docview/1757580064
https://www.proquest.com/docview/1760893175
https://www.proquest.com/docview/1780517442
https://www.proquest.com/docview/1803113322
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9VAEMeHWhB80XpttMoqIr7kkOxuLtUHkXrqQWhB24N9EJa9pYS2iaQ51OOT38Fv6CdxdnOhlVrEt0AmIWfOzOxvN5n_AjyPqMJRxkQh14rjBIWrUEouw5wxbWxiKdduQX9nN53N-YeD5GAFXg-9MJ0-xLjg5jLD12uX4FKdnkvyE6snMePUaYHGLHW6-e8-0XNvEPyOp0joFEtNznpVIfcVz3jlhbHoWiFrJFTn3G-X4eZFevXDz_Yt-DI8ePfVydFk0aqJ_v6HpuN__rI1uNljKXnbxdFtWLHVHbjebVS5xKOpF7de3oXFfqdldUww8lwDJJG9rAmpC4I0SSxO8t1SoTWkLY09Q5htyGGtlq8IDgRl5Rspfv346e44dIESs6zkSanxJg0xTVm0pKxIiXnhT7-5B_Pt6f7WLOy3bgi1Q7Aw1cgdEuERQ8B1oFhqU1tkkUqMQaI0LEYwUEhbm4oX2aaUBcPSK22qjJGSJuw-rFZ1ZdeBJIWWGc215YhuJs-USmwsY4yvLIoKlQXwcvgThe51zd32GsdimN-gP4X3ZwDPRtOvnZjHZUbrGAlCHmKRFfM96iT4IrealeYBvPDhMV4smyP3YVyWiM-770Wcz-hHllOxF8DGED-irwmnAkENJ2eOAQN4Op7GbHavaGRl64WzSSMkSDS9yib3-uKcXmGTY7GOGVbrAB508Ts-NCIw-p0ydJyPwr-7QuxMt_zBw383fQQ30GVJ1665Aatts7CPkdta9cQn6G_Trzu-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3da9RAEMCHtiL64rc2WnUVEV9yJJvNR0UQqVdP7R1o72hfZNmvlNA2kXiHnk_-D_6H_iXObj5opRbxLZBJSCYzs7-d7MwCPAmoxFFGBz5TkuEEhUlfCCb8LIqUNrGhTNmE_niSjGbs3X68vwIvulqYpj9En3CznuHitXVwm5A-4eXHRg3CiFG2ChcYgoader3-SE_8Q3B7niKjUww2WdT2FbLrePpLT41Gq7mokFGter-dBZyn-dUNQNtX4VP36M26k8PBYi4H6vsfXR3_992uwZWWTMmrxpSuw4opb8DFZq_KJR4NXX_r5U1YTJt2VkcEjc_WQBLRdjYhVU4QKInBeb7NFhpN5oU2X5Fna3JQyeVzgmNBUbpail8_fto7doWgRC9LcVwovElNdF3kc1KUpEDXcKdf3oLZ9nC6NfLb3Rt8ZSnMTxSih0B-RCuwRSiGmsTkaSBjrREqdRQiG0gErk3J8nRTiDzC6CtMIrUWgsbRbVgrq9KsA4lzJVKaKcOQ3nSWShmbUIRoYmkQ5DL14Fn3FblqW5vbHTaOeDfFQX1yp08PHvein5t-HmcJraMpcHGAcZbPdqntwhfYhFaSefDU2Ud_sagP7dq4NOZ7kzc8zEb0Q5RRvuvBRmdAvA0LXziyGs7PLAZ68Kg_jQ5t_9KI0lQLK5MECJEoep5M5lqMM3qOTIbxOowwYHtwpzHg_qGRglHvNELFOTP8uyr4eLjlDu7-u-hDuDSajnf4ztvJ-3twGdUXN9WbG7A2rxfmPmLcXD5w3vobf0A_3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdHbRGIC2-oocCCEOLiyF6vH4EDQiUhPBoBbUQPSKt9ubLa2lVwBOHEd-Ab8kmYXT_UolIhbpY8tpzJzOxv157_AjwKqMRRRgc-U5LhBIVJXwgm_CyKlDaxoUzZBf2taTKZsTe78e4KPOt6YRp9iH7BzWaGq9c2wY90fizJD40ahBGjbBXOsQRJwhLRR3rsFYLb8hQRnWKtyaJWVsh-xtNfemIwWs1FhYhqvfvtNN48ia9u_Blfhs_dkzefnewPFrUcqO9_iDr-50-7ApdaLiUvmkC6CiumvAbnm50ql3g0curWy-uw2GnErA4Ihp7tgCSi1TUhVU4QJ4nBWb5dKzSa1IU2X5Fm52SvksunBEeConSdFL9-_LR37NpAiV6W4rBQeJM50fMir0lRkgITw51-fgNm49HO5sRv927wlWUwP1EIHgLpEWPAtqAYahKTp4GMtUak1FGIZCARt4aS5elQiDzC2itMIrUWgsbRTVgrq9KsA4lzJVKaKcOQ3XSWShmbUIQYYGkQ5DL14En3J3LVCpvb_TUOeDfBQX9y508PHvamR42ax2lG6xgJXOxhleWzbWo1-AK7nJVkHjx24dFfLOb79su4NOafpq94mE3ohyijfNuDjS5-eFsUvnAkNZydWQj04EF_GtPZvqMRpakW1gZDeWih7iybzAmMM3qGTYbVOoywXHtwq4nf_qGRgdHvNELHuSj8uyv41mjTHdz-d9P7cOH9yzF_93r69g5cRO_FTevmBqzV84W5iwxXy3suV38Digs-jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+genetic+analysis+of+the+endangered+tidewater+goby%3A+extinction%E2%80%93colonization+dynamics+or+drift+in+isolation%3F&rft.jtitle=Molecular+ecology&rft.au=Kinziger%2C+Andrew+P&rft.au=Hellmair%2C+Michael&rft.au=McCraney%2C+W+Tyler&rft.au=Jacobs%2C+David+K&rft.date=2015-11-01&rft.issn=0962-1083&rft.volume=24&rft.issue=22+p.5544-5560&rft.spage=5544&rft.epage=5560&rft_id=info:doi/10.1111%2Fmec.13424&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon