Temporal genetic analysis of the endangered tidewater goby: extinction–colonization dynamics or drift in isolation?
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular a...
Saved in:
Published in | Molecular ecology Vol. 24; no. 22; pp. 5544 - 5560 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Scientific Publications
01.11.2015
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0962-1083 1365-294X 1365-294X |
DOI | 10.1111/mec.13424 |
Cover
Abstract | Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field‐based approaches for assessment of the extinction–colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction–colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction–colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within‐site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20–30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction–colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction–colonization dynamics or as a stand‐alone tool when field data are lacking. |
---|---|
AbstractList | Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking. Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field‐based approaches for assessment of the extinction–colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction–colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction–colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within‐site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20–30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction–colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction–colonization dynamics or as a stand‐alone tool when field data are lacking. Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking.Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking. Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction–colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field‐based approaches for assessment of the extinction–colonization dynamics of tidewater goby ( Eucyclogobius newberryi ) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction–colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction–colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within‐site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20–30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction–colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction–colonization dynamics or as a stand‐alone tool when field data are lacking. |
Author | Hellmair, Michael Goldsmith, Greg McCraney, W. Tyler Kinziger, Andrew P. Jacobs, David K. |
Author_xml | – sequence: 1 fullname: Kinziger, Andrew P – sequence: 2 fullname: Hellmair, Michael – sequence: 3 fullname: McCraney, W. Tyler – sequence: 4 fullname: Jacobs, David K – sequence: 5 fullname: Goldsmith, Greg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26460923$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAYhS1URC-w4AXAEhtYpPU9STcIjUqLVECorWBnOcmfwSWxB9ujdljxDrwhT4LnxqICgTeW5e8c_T4--2jHeQcIPabkkOZ1NEJ7SLlg4h7ao1zJgtXi0w7aI7ViBSUV30X7MV4TQjmT8gHaZUooUjO-h-aXMM58MAOegoNkW2ycGRbRRux7nD4DBtcZN4UAHU62gxuTIOCpbxbHGG6TdW2y3v38_qP1g3f2m1kecbdwZrRtNgm4C7ZP2Dpsox9W1y8fovu9GSI82uwH6Or1yeXkrDh_f_pm8uq8aKWkolAtY8zkOUXbKCYYMFDQl6SRXcc47ThlSjUyP6URfVkb03MquQHVdJ0xTPID9HztOwv-6xxi0qONLQyDceDnUdOKcEo5Z-zfaFkRSUsh_gdVpKo5LZcDPLuDXvt5yAkvKVnKihAlMvVkQ82bETo9C3Y0YaG335SBozXQBh9jgF63Nq2iTMHYQVOil0XQuQh6VYSseHFHsTX9E7txv7EDLP4O6rcnk62iWCtsTHD7W2HCF61KXkr98d1pDveMfeAV0xeZf7rme-O1mQYb9dUFI1QRQmrCVcV_ATed2kU |
CitedBy_id | crossref_primary_10_1093_jhered_esae053 crossref_primary_10_1111_jfb_14401 crossref_primary_10_1007_s10592_019_01161_9 crossref_primary_10_1111_mec_15693 crossref_primary_10_1111_mec_16710 crossref_primary_10_2989_1814232X_2024_2384454 crossref_primary_10_1111_1755_0998_12501 |
Cites_doi | 10.1111/j.1365-294X.2012.05478.x 10.2307/3546736 10.1046/j.1365-2540.2000.00795.x 10.1111/j.0014-3820.2001.tb00636.x 10.1111/j.1558-5646.1975.tb00807.x 10.1093/genetics/160.2.741 10.1890/02-3090 10.2307/5591 10.1046/j.0173-9565.2003.00795.x 10.1111/j.1471-8286.2004.00770.x 10.1111/j.1752-4571.2009.00104.x 10.1111/j.2007.0030-1299.16202.x 10.1002/0470047356 10.1111/1755-0998.12157 10.1111/j.1365-2656.2009.01609.x 10.1577/1548-8675(1999)019<0618:PPAROE>2.0.CO;2 10.1111/j.1365-294X.2004.02396.x 10.1111/j.1558-5646.1989.tb04220.x 10.1007/s10592-009-9999-5 10.1534/genetics.107.075481 10.1016/j.tree.2004.07.003 10.1111/j.1600-0706.2012.20781.x 10.2331/suisan.57.2223 10.1016/j.tree.2013.01.002 10.1046/j.1365-294x.1998.00414.x 10.1214/aos/1013699998 10.1016/S0006-3207(03)00190-3 10.1016/j.tree.2012.07.001 10.1371/journal.pone.0028244 10.1111/mec.12673 10.1038/33136 10.1111/j.1558-5646.1997.tb02422.x 10.1111/j.1471-8286.2004.00845.x 10.1111/j.1467-2979.2008.00304.x 10.1007/s10592-005-9100-y 10.1111/j.1558-5646.1988.tb02518.x 10.1111/j.1558-5646.1998.tb05157.x 10.1038/sj.hdy.6800774 10.1007/s12686-011-9548-7 10.1007/s10592-009-0008-9 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 10.1111/j.1558-5646.1999.tb04571.x 10.1371/journal.pone.0113139 10.1007/s10592-013-0516-5 10.1046/j.1471-8286.2003.00566.x 10.1111/j.1365-294X.2005.02553.x 10.1111/j.1095-8312.1991.tb00558.x 10.1146/annurev.es.25.110194.001123 10.1016/0040-5809(77)90045-4 10.2307/3670165 10.1007/s10530-011-0054-3 10.1007/s101260000051 10.1016/j.tree.2007.08.017 10.1111/j.1558-5646.1990.tb05243.x 10.1007/BF00346827 10.1046/j.1523-1739.1999.98016.x 10.1046/j.1523-1739.1999.98133.x 10.1186/1471-2156-6-13 10.1111/j.1365-294X.2010.04755.x 10.1534/genetics.104.038349 10.1111/mec.12563 10.1023/A:1007478207892 10.1046/j.1365-294x.2000.01031.x |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons Ltd 2015 John Wiley & Sons Ltd. Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2015 John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons Ltd. – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/mec.13424 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Entomology Abstracts AGRICOLA Genetics Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 5560 |
ExternalDocumentID | 3923661631 26460923 10_1111_mec_13424 MEC13424 ark_67375_WNG_18H2Q382_S US201600090368 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | California |
GeographicLocations_xml | – name: California |
GrantInformation_xml | – fundername: United States Fish and Wildlife Service |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5514-6c222a9234cb6242e2e6ef70b5dd231d31266b5609b4f79aaf3153ae6bddaa253 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Sep 05 17:19:44 EDT 2025 Thu Aug 07 14:59:20 EDT 2025 Thu Sep 04 23:25:42 EDT 2025 Wed Aug 13 07:52:06 EDT 2025 Wed Feb 19 02:17:10 EST 2025 Tue Jul 01 03:21:56 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 Wed Jan 22 16:28:54 EST 2025 Wed Oct 30 09:45:32 EDT 2024 Wed Dec 27 19:02:23 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | microsatellites metapopulation tidewater goby conservation extinction colonization |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5514-6c222a9234cb6242e2e6ef70b5dd231d31266b5609b4f79aaf3153ae6bddaa253 |
Notes | http://dx.doi.org/10.1111/mec.13424 Fig. S1. Summary of repeat field surveys and temporal genetic analysis for 10 sites with multiple years of collections, including (i) site occupancy histories from field surveys, tabulated on an annual basis (1 = occupied, 0 = unoccupied, * indicates year of genetic tissue collection), (ii) estimates of genetic diversity within each temporal genetic collection (N = sample size, Ho = observed heterozygosity, He = expected heterozygosity, A = allelic richness, Ar = rarefied allelic richness, Ap = rarefied private allelic richness), (iii) results from site-specific Bayesian cluster analysis using structure assuming the data were composed of two genetically distinct clusters, (iv) Genetic differentiation (FST) between population pairs (below diagonal) and P-values from permutation tests for significance (above diagonal).Appendix S1. Probability of at least one site going extinct by year n across m sites. Table S1. Microsatellite loci details including allelic richness across all populations, size range (including amplified flanking regions and microsatellite repeats) in base pairs (bp), Hardy-Weinberg expected heterozygosity (He), and references. Table S2. Genetic differentiation (FST) between population pairs (below diagonal) and p-values from permutation tests for significance (above diagonal). Table S3. Summary of the 16 time intervals for which both temporal genetic and repeat field collections are available, including the site, time interval, interpretation from temporal genetic analysis, findings from naïve inspection of repeat field survey data, and inference to extinction-colonization dynamics for the time interval. ArticleID:MEC13424 istex:12C35BA6EEA0F67EFC9678887C9655EAA221D5B9 ark:/67375/WNG-18H2Q382-S United States Fish and Wildlife Service ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26460923 |
PQID | 1757580064 |
PQPubID | 31465 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1803113322 proquest_miscellaneous_1780517442 proquest_miscellaneous_1760893175 proquest_journals_1757580064 pubmed_primary_26460923 crossref_citationtrail_10_1111_mec_13424 crossref_primary_10_1111_mec_13424 wiley_primary_10_1111_mec_13424_MEC13424 istex_primary_ark_67375_WNG_18H2Q382_S fao_agris_US201600090368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2015 |
Publisher | Blackwell Scientific Publications Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Scientific Publications – name: Blackwell Publishing Ltd |
References | Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. Lamy T, Pointier JP, Jarne P, David P (2012) Testing metapopulation dynamics using genetic, demographic and ecological data. Molecular Ecology, 21, 1394-1410. Hanski I (1994) A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151-162. McCarthy MA, Moore JL, Morris WK et al. (2013) The influence of abundance on detectability. Oikos, 122, 717-726. Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209-219. Kinziger AP, Nakamoto RJ, Harvey BC (2013) Local-scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow (Ptychocheilus grandis). Conservation Genetics, 15, 1-9. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14, 209-214. Goldberg SR (1977) Seasonal ovarian cycle of the tidewater goby, Eucyclogobius newberryi (Gobiidae). The Southwestern Naturalist, 22, 557-559. Hellmair M, Goldsmith G, Kinziger AP (2011) Preying on invasives: the exotic New Zealand mudsnail in the diet of the endangered tidewater goby. Biological Invasions, 13, 2197-2201. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898-1914. Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology, 12, 253-262. Berthier P, Beaumont MA, Cornuet JM, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics, 160, 741-751. Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935. Brown IL, Ehrlich PR (1980) Population biology of the checkerspot butterfly, Euphydryas chalcedona. Structure of the Jasper Ridge colony. Oecologia (Berlin), 47, 239-251. Hastings A, Harrison S (1994) Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167-188. Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution, 52, 240-250. Luikart G, Allendorf FW, Cornuet J-M (1999) Temporal change in allele frequencies provide useful estimates of population bottleneck size. Conservation Biology, 12, 523-530. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. McCraney WT, Goldsmith G, Jacobs DK, Kinziger AP (2010) Rampant drift in artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi). Molecular Ecology, 19, 3315-3327. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494. Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK (2014) Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Molecular Ecology, 23, 1071-1084. Whitlock MC, McCauley DE (1990) Some population genetic consequences of colony formation and extinction - genetic correlations within founding groups. Evolution, 44, 1717-1724. Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution, 51, 354-362. Gilpin M (1991) The genetic effective size of a metapopulation. Biological Journal of the Linnean Society, 42, 165-175. Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE, 6, e28244. Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution, 42, 995-1005. Anderson EC (2005) An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood. Genetics, 170, 955-967. Swenson RO (1999) The ecology, behavior, and conservation of the tidewater goby, Eucyclogobius newberryi. Environmental Biology of Fishes, 55, 99-114. Nachman MW (2013) Genomics and museum specimens. Molecular Ecology, 22, 5966-5968. Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3, 244-262. Lafferty KD, Swift CC, Ambrose RF (1999a) Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby. Conservation Biology, 13, 1447-1453. Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461. Earl DA, Louie KD, Bardeleben C, Swift CC, Jacobs DK (2010) Rangewide microsatellite phylogeography of the endangered tidewater goby, Eucyclogobius newberryi (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal. Conservation Genetics, 11, 103-114. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Molecular Ecology, 9, 1517-1528. Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular Ecology, 7, 963-974. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10. Frankham R, Brook BW, Bradshaw CJ, Traill LW, Spielman D (2013) 50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology Evolution, 28, 187-188. Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626. Hogg JT, Forbes SH, Steele BM, Luikart G (2006) Genetic rescue of an insular population of large mammals. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 1491-1499. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology and Evolution, 22, 634-642. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4, 792-794. Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116, 195-203. Ahnelt H, Goschl J, Dawson MN, Jacobs DK (2004) Geographical variation in the cephalic lateral line canals of Eucyclogobius newberryi (Teleostei, Gobiidae) and its comparison with molecular phylogeography. Folia Zoologica, 53, 385-398. Hellmair M, Kinziger AP (2014) Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity. PLoS ONE, 9, e113139. MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization and local extinction probabilities when a species is detected imperfectly. Ecology, 84, 2200-2207. Dawson MN, Staton JL, Jacobs DK (2001) Phylogeography of the tidewater goby, Eucyclogobius newberryi (Teleostei, Gobiidae), in coastal California. Evolution, 55, 1167-1179. United States Fish and Wildlife Service (2005) Recovery Plan for the Tidewater Goby (Eucyclogobius newberryi). United States Fish and Wildlife Service, Portland, Oregon. Lafferty KD, Swift CC, Ambrose RF (1999b) Postflood persistence and recolonization of endangered tidewater goby populations. North American Journal of Fisheries Management, 19, 618-622. Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255. Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Annals of Statistics, 29, 1165-1188. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5, 187-189. Hanski I, Gaggiotti OE (2004) Ecology, Genetics, and Evolution of Metapopulations. Academic Press, San Diego, California. Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27, 578-584. Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics, 7, 783-787. Nakajima N, Kanda N, Fujio Y (1991) Fluctuation of gene frequency in sub-populations originated from one guppy population. Bulletin of the Japanese Society of Scientific Fisheries, 57, 2223-2227. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. Driscoll DA (2008) The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape. Oikos, 117, 297-309. Mendonca H, Smith J, Brinegar C (2001) Isolation and characterization of four microsatellite loci in the tidewater goby (Eucyclogobius newberryi). Marine Biotechnology, 3, 91-95. Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends in Ecology and Evolution, 19, 489-496. Jensen JL, Bohonak AJ, Kelley ST (200 2010; 11 2005; 170 1980; 47 1999b; 19 2013; 28 1989; 43 2013; 22 2010; 19 1991; 57 1964; 49 2000; 9 2004; 4 2008; 9 2013; 122 1994; 25 1999; 87 1977; 22 2011; 13 2014; 23 1994; 63 1998; 392 1985; 18 2013; 15 1997; 51 1990; 44 2002; 83 1991; 42 2007; 177 1999; 12 2014; 14 1999; 55 2008; 117 1999; 53 2012; 27 1980 1988; 42 2001; 55 2014; 9 1998; 52 2010; 3 2003; 84 2007; 22 2012; 21 2003; 164 1989 2010; 79 2006; 273 2006; 7 2005 2004 2000; 155 2001; 29 2011; 6 2004; 53 2002; 160 2004; 116 2004; 19 1975; 29 2005; 5 2005; 96 2005; 6 2002; 70 2001; 3 1999a; 13 2013 1977; 12 1998; 7 2012; 4 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Crabtree CB (e_1_2_7_7_1) 1985; 18 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_31_1 e_1_2_7_52_1 United States Fish and Wildlife Service (e_1_2_7_68_1) 2005 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 Haag CR (e_1_2_7_22_1) 2005; 96 e_1_2_7_6_1 e_1_2_7_4_1 Franklin IR (e_1_2_7_18_1) 1980 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Krauss NC (e_1_2_7_39_1) 2002; 70 Swift CC (e_1_2_7_65_1) 1989 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 R Core Team (e_1_2_7_58_1) 2013 Ahnelt H (e_1_2_7_2_1) 2004; 53 Hanski I (e_1_2_7_25_1) 2004 Felsenstein J (e_1_2_7_15_1) 2005 |
References_xml | – reference: Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. – reference: Lamy T, Pointier JP, Jarne P, David P (2012) Testing metapopulation dynamics using genetic, demographic and ecological data. Molecular Ecology, 21, 1394-1410. – reference: Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology and Evolution, 22, 634-642. – reference: Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53, 1898-1914. – reference: Goldberg SR (1977) Seasonal ovarian cycle of the tidewater goby, Eucyclogobius newberryi (Gobiidae). The Southwestern Naturalist, 22, 557-559. – reference: Hanski I, Gaggiotti OE (2004) Ecology, Genetics, and Evolution of Metapopulations. Academic Press, San Diego, California. – reference: Kinziger AP, Nakamoto RJ, Harvey BC (2013) Local-scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow (Ptychocheilus grandis). Conservation Genetics, 15, 1-9. – reference: Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK (2014) Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Molecular Ecology, 23, 1071-1084. – reference: Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494. – reference: Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE, 6, e28244. – reference: Whitlock MC, McCauley DE (1990) Some population genetic consequences of colony formation and extinction - genetic correlations within founding groups. Evolution, 44, 1717-1724. – reference: Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) Version 3.68. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, Washington. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. – reference: McCarthy MA, Moore JL, Morris WK et al. (2013) The influence of abundance on detectability. Oikos, 122, 717-726. – reference: Hellmair M, Kinziger AP (2014) Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity. PLoS ONE, 9, e113139. – reference: Driscoll DA (2008) The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape. Oikos, 117, 297-309. – reference: Anderson EC (2005) An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood. Genetics, 170, 955-967. – reference: Hastings A, Harrison S (1994) Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167-188. – reference: Brown IL, Ehrlich PR (1980) Population biology of the checkerspot butterfly, Euphydryas chalcedona. Structure of the Jasper Ridge colony. Oecologia (Berlin), 47, 239-251. – reference: Berthier P, Beaumont MA, Cornuet JM, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics, 160, 741-751. – reference: Gilpin M (1991) The genetic effective size of a metapopulation. Biological Journal of the Linnean Society, 42, 165-175. – reference: Swift CC, Nelson JL, Maslow C, Stein T (1989) Biology and Distribution of the Tidewater Goby, Eucyclogobius newberryi (Pisces: Gobiidae) of California. Contributions in Science 404, Natural History Museum of Los Angeles County, Los Angeles, California. – reference: Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Annals of Statistics, 29, 1165-1188. – reference: Mendonca H, Smith J, Brinegar C (2001) Isolation and characterization of four microsatellite loci in the tidewater goby (Eucyclogobius newberryi). Marine Biotechnology, 3, 91-95. – reference: Ahnelt H, Goschl J, Dawson MN, Jacobs DK (2004) Geographical variation in the cephalic lateral line canals of Eucyclogobius newberryi (Teleostei, Gobiidae) and its comparison with molecular phylogeography. Folia Zoologica, 53, 385-398. – reference: Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology, 12, 253-262. – reference: Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461. – reference: R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at: http://www.R-project.org/. – reference: United States Fish and Wildlife Service (2005) Recovery Plan for the Tidewater Goby (Eucyclogobius newberryi). United States Fish and Wildlife Service, Portland, Oregon. – reference: Frankham R, Brook BW, Bradshaw CJ, Traill LW, Spielman D (2013) 50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology Evolution, 28, 187-188. – reference: Hanski I (1994) A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151-162. – reference: Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. – reference: Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics, 7, 783-787. – reference: Driscoll DA, Kirkpatrick JB, McQuillan PB, Bonham KJ (2010) Classic metapopulations are rare among common beetle species from a naturally fragmented landscape. Journal of Animal Ecology, 79, 294-303. – reference: Swenson RO (1999) The ecology, behavior, and conservation of the tidewater goby, Eucyclogobius newberryi. Environmental Biology of Fishes, 55, 99-114. – reference: Crabtree CB (1985) Allozyme variability in the tidewater goby, Eucyclogobius newberryi (Pisces: Gobiidae). Isozyme Bulletin, 18, 70. – reference: Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561-576. – reference: Nakajima N, Kanda N, Fujio Y (1991) Fluctuation of gene frequency in sub-populations originated from one guppy population. Bulletin of the Japanese Society of Scientific Fisheries, 57, 2223-2227. – reference: Dawson MN, Staton JL, Jacobs DK (2001) Phylogeography of the tidewater goby, Eucyclogobius newberryi (Teleostei, Gobiidae), in coastal California. Evolution, 55, 1167-1179. – reference: Hellmair M, Goldsmith G, Kinziger AP (2011) Preying on invasives: the exotic New Zealand mudsnail in the diet of the endangered tidewater goby. Biological Invasions, 13, 2197-2201. – reference: Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27, 578-584. – reference: Earl DA, Louie KD, Bardeleben C, Swift CC, Jacobs DK (2010) Rangewide microsatellite phylogeography of the endangered tidewater goby, Eucyclogobius newberryi (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal. Conservation Genetics, 11, 103-114. – reference: Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14, 209-214. – reference: Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255. – reference: Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. – reference: Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 11, 615-626. – reference: Luikart G, Allendorf FW, Cornuet J-M (1999) Temporal change in allele frequencies provide useful estimates of population bottleneck size. Conservation Biology, 12, 523-530. – reference: Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution, 51, 354-362. – reference: Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3, 244-262. – reference: Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics, 6, 13. – reference: McCraney WT, Goldsmith G, Jacobs DK, Kinziger AP (2010) Rampant drift in artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi). Molecular Ecology, 19, 3315-3327. – reference: Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116, 195-203. – reference: Lafferty KD, Swift CC, Ambrose RF (1999a) Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby. Conservation Biology, 13, 1447-1453. – reference: Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution, 52, 240-250. – reference: Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225. – reference: Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5, 187-189. – reference: Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10. – reference: Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution, 42, 995-1005. – reference: Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184. – reference: Haag CR, Riek M, Hottinger JW, Pajunen VI, Ebert D (2005) Founder events as determinants of within-island and among-island genetic structure of Daphnia metapopulations. Heredity, 96, 150-158. – reference: Lafferty KD, Swift CC, Ambrose RF (1999b) Postflood persistence and recolonization of endangered tidewater goby populations. North American Journal of Fisheries Management, 19, 618-622. – reference: Hogg JT, Forbes SH, Steele BM, Luikart G (2006) Genetic rescue of an insular population of large mammals. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 1491-1499. – reference: Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209-219. – reference: Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4, 792-794. – reference: Krauss NC, Militello A, Todoroff G (2002) Barrier breaching process and barrier spit breach, Stone Lagoon, California. Shore and Beach, 70, 21-28. – reference: MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization and local extinction probabilities when a species is detected imperfectly. Ecology, 84, 2200-2207. – reference: Nachman MW (2013) Genomics and museum specimens. Molecular Ecology, 22, 5966-5968. – reference: Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends in Ecology and Evolution, 19, 489-496. – reference: Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Molecular Ecology, 9, 1517-1528. – reference: Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics, 177, 927-935. – reference: Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular Ecology, 7, 963-974. – volume: 52 start-page: 240 year: 1998 end-page: 250 article-title: Inbreeding and its fitness effects in an insular population of song sparrows ( ) publication-title: Evolution – volume: 53 start-page: 1898 year: 1999 end-page: 1914 article-title: Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability publication-title: Evolution – volume: 116 start-page: 195 year: 2004 end-page: 203 article-title: Absent or undetected? Effects of non‐detection of species occurrence on wildlife‐habitat models publication-title: Biological Conservation – volume: 11 start-page: 103 year: 2010 end-page: 114 article-title: Rangewide microsatellite phylogeography of the endangered tidewater goby, (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal publication-title: Conservation Genetics – year: 2005 – volume: 63 start-page: 151 year: 1994 end-page: 162 article-title: A practical model of metapopulation dynamics publication-title: Journal of Animal Ecology – year: 1989 – volume: 7 start-page: 963 year: 1998 end-page: 974 article-title: Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change publication-title: Molecular Ecology – volume: 84 start-page: 2200 year: 2003 end-page: 2207 article-title: Estimating site occupancy, colonization and local extinction probabilities when a species is detected imperfectly publication-title: Ecology – volume: 87 start-page: 209 year: 1999 end-page: 219 article-title: Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes publication-title: Oikos – volume: 13 start-page: 2197 year: 2011 end-page: 2201 article-title: Preying on invasives: the exotic New Zealand mudsnail in the diet of the endangered tidewater goby publication-title: Biological Invasions – volume: 83 start-page: 2248 year: 2002 end-page: 2255 article-title: Estimating site occupancy rates when detection probabilities are less than one publication-title: Ecology – volume: 28 start-page: 187 year: 2013 end-page: 188 article-title: 50/500 rule and minimum viable populations: response to Jamieson and Allendorf publication-title: Trends in Ecology Evolution – volume: 4 start-page: 137 year: 2004 end-page: 138 article-title: DISTRUCT: a program for the graphical display of population structure publication-title: Molecular Ecology Notes – volume: 19 start-page: 489 year: 2004 end-page: 496 article-title: The alluring simplicity and complex reality of genetic rescue publication-title: Trends in Ecology and Evolution – volume: 6 start-page: 13 year: 2005 article-title: Isolation by distance, web service publication-title: BMC Genetics – volume: 29 start-page: 1165 year: 2001 end-page: 1188 article-title: The control of false discovery rate under dependency publication-title: Annals of Statistics – volume: 21 start-page: 1394 year: 2012 end-page: 1410 article-title: Testing metapopulation dynamics using genetic, demographic and ecological data publication-title: Molecular Ecology – volume: 22 start-page: 5966 year: 2013 end-page: 5968 article-title: Genomics and museum specimens publication-title: Molecular Ecology – volume: 3 start-page: 91 year: 2001 end-page: 95 article-title: Isolation and characterization of four microsatellite loci in the tidewater goby ( ) publication-title: Marine Biotechnology – volume: 15 start-page: 1 year: 2013 end-page: 9 article-title: Local‐scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow ( ) publication-title: Conservation Genetics – year: 2004 – volume: 42 start-page: 995 year: 1988 end-page: 1005 article-title: Extinction and recolonization: their effects on the genetic differentiation of local populations publication-title: Evolution – volume: 51 start-page: 354 year: 1997 end-page: 362 article-title: Increased probability of extinction due to decreased genetic effective population size: experimental populations of publication-title: Evolution – volume: 44 start-page: 1717 year: 1990 end-page: 1724 article-title: Some population genetic consequences of colony formation and extinction – genetic correlations within founding groups publication-title: Evolution – volume: 117 start-page: 297 year: 2008 end-page: 309 article-title: The frequency of metapopulations, metacommunities and nestedness in a fragmented landscape publication-title: Oikos – volume: 273 start-page: 1491 year: 2006 end-page: 1499 article-title: Genetic rescue of an insular population of large mammals publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences – volume: 5 start-page: 187 year: 2005 end-page: 189 article-title: HP‐RARE 1.0: a computer program for performing rarefaction on measures of allelic richness publication-title: Molecular Ecology Notes – volume: 29 start-page: 1 year: 1975 end-page: 10 article-title: The bottleneck effect and genetic variability in populations publication-title: Evolution – volume: 19 start-page: 618 year: 1999b end-page: 622 article-title: Postflood persistence and recolonization of endangered tidewater goby populations publication-title: North American Journal of Fisheries Management – volume: 7 start-page: 783 year: 2006 end-page: 787 article-title: Beyond Bonferroni: less conservative analyses for conservation genetics publication-title: Conservation Genetics – volume: 42 start-page: 165 year: 1991 end-page: 175 article-title: The genetic effective size of a metapopulation publication-title: Biological Journal of the Linnean Society – volume: 9 start-page: e113139 year: 2014 article-title: Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity publication-title: PLoS ONE – volume: 12 start-page: 253 year: 1977 end-page: 262 article-title: Gene flow and genetic drift in a species subject to frequent local extinctions publication-title: Theoretical Population Biology – volume: 25 start-page: 167 year: 1994 end-page: 188 article-title: Metapopulation dynamics and genetics publication-title: Annual Review of Ecology and Systematics – volume: 14 start-page: 209 year: 2014 end-page: 214 article-title: NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size ( ) from genetic data publication-title: Molecular Ecology Resources – volume: 6 start-page: e28244 year: 2011 article-title: Population size influences amphibian detection probability: implications for biodiversity monitoring programs publication-title: PLoS ONE – volume: 9 start-page: 450 year: 2008 end-page: 461 article-title: Waking the dead: the value of population genetic analyses of historical samples publication-title: Fish and Fisheries – volume: 70 start-page: 21 year: 2002 end-page: 28 article-title: Barrier breaching process and barrier spit breach, Stone Lagoon, California publication-title: Shore and Beach – volume: 12 start-page: 523 year: 1999 end-page: 530 article-title: Temporal change in allele frequencies provide useful estimates of population bottleneck size publication-title: Conservation Biology – volume: 170 start-page: 955 year: 2005 end-page: 967 article-title: An efficient Monte Carlo method for estimating from temporally spaced samples using a coalescent‐based likelihood publication-title: Genetics – volume: 23 start-page: 1071 year: 2014 end-page: 1084 article-title: Human‐facilitated metapopulation dynamics in an emerging pest species, publication-title: Molecular Ecology – volume: 27 start-page: 578 year: 2012 end-page: 584 article-title: How does the 50/500 rule apply to MVPs? publication-title: Trends in Ecology and Evolution – volume: 164 start-page: 1567 year: 2003 end-page: 1587 article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies publication-title: Genetics – volume: 160 start-page: 741 year: 2002 end-page: 751 article-title: Likelihood‐based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach publication-title: Genetics – volume: 49 start-page: 561 year: 1964 end-page: 576 article-title: The stepping stone model of population structure and the decrease of genetic correlation with distance publication-title: Genetics – volume: 3 start-page: 244 year: 2010 end-page: 262 article-title: Linkage disequilibrium estimates of contemporary using highly variable genetic markers: a largely untapped resource for applied conservation and evolution publication-title: Evolutionary Applications – volume: 47 start-page: 239 year: 1980 end-page: 251 article-title: Population biology of the checkerspot butterfly, . Structure of the Jasper Ridge colony publication-title: Oecologia (Berlin) – volume: 7 start-page: 167 year: 2006 end-page: 184 article-title: A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci publication-title: Conservation Genetics – volume: 4 start-page: 792 year: 2004 end-page: 794 article-title: GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms publication-title: Molecular Ecology Notes – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 22 start-page: 557 year: 1977 end-page: 559 article-title: Seasonal ovarian cycle of the tidewater goby, (Gobiidae) publication-title: The Southwestern Naturalist – volume: 96 start-page: 150 year: 2005 end-page: 158 article-title: Founder events as determinants of within‐island and among‐island genetic structure of metapopulations publication-title: Heredity – volume: 55 start-page: 99 year: 1999 end-page: 114 article-title: The ecology, behavior, and conservation of the tidewater goby, publication-title: Environmental Biology of Fishes – volume: 19 start-page: 3315 year: 2010 end-page: 3327 article-title: Rampant drift in artificially fragmented populations of the endangered tidewater goby ( ) publication-title: Molecular Ecology – volume: 4 start-page: 359 year: 2012 end-page: 361 article-title: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method publication-title: Conservation Genetics Resources – volume: 122 start-page: 717 year: 2013 end-page: 726 article-title: The influence of abundance on detectability publication-title: Oikos – volume: 18 start-page: 70 year: 1985 article-title: Allozyme variability in the tidewater goby, (Pisces: Gobiidae) publication-title: Isozyme Bulletin – volume: 53 start-page: 385 year: 2004 end-page: 398 article-title: Geographical variation in the cephalic lateral line canals of (Teleostei, Gobiidae) and its comparison with molecular phylogeography publication-title: Folia Zoologica – volume: 79 start-page: 294 year: 2010 end-page: 303 article-title: Classic metapopulations are rare among common beetle species from a naturally fragmented landscape publication-title: Journal of Animal Ecology – volume: 177 start-page: 927 year: 2007 end-page: 935 article-title: Unbiased estimator for genetic drift and effective population size publication-title: Genetics – volume: 55 start-page: 1167 year: 2001 end-page: 1179 article-title: Phylogeography of the tidewater goby, (Teleostei, Gobiidae), in coastal California publication-title: Evolution – volume: 43 start-page: 223 year: 1989 end-page: 225 article-title: Analyzing tables of statistical tests publication-title: Evolution – volume: 392 start-page: 491 year: 1998 end-page: 494 article-title: Inbreeding and extinction in a butterfly metapopulation publication-title: Nature – volume: 11 start-page: 615 year: 2010 end-page: 626 article-title: Genetic rescue guidelines with examples from Mexican wolves and Florida panthers publication-title: Conservation Genetics – volume: 57 start-page: 2223 year: 1991 end-page: 2227 article-title: Fluctuation of gene frequency in sub‐populations originated from one guppy population publication-title: Bulletin of the Japanese Society of Scientific Fisheries – volume: 22 start-page: 634 year: 2007 end-page: 642 article-title: Back to the future: museum specimens in population genetics publication-title: Trends in Ecology and Evolution – volume: 13 start-page: 1447 year: 1999a end-page: 1453 article-title: Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby publication-title: Conservation Biology – start-page: 135 year: 1980 end-page: 150 – year: 2013 – volume: 9 start-page: 1517 year: 2000 end-page: 1528 article-title: Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks publication-title: Molecular Ecology – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-294X.2012.05478.x – ident: e_1_2_7_24_1 doi: 10.2307/3546736 – ident: e_1_2_7_30_1 doi: 10.1046/j.1365-2540.2000.00795.x – ident: e_1_2_7_8_1 doi: 10.1111/j.0014-3820.2001.tb00636.x – ident: e_1_2_7_54_1 doi: 10.1111/j.1558-5646.1975.tb00807.x – volume: 53 start-page: 385 year: 2004 ident: e_1_2_7_2_1 article-title: Geographical variation in the cephalic lateral line canals of Eucyclogobius newberryi (Teleostei, Gobiidae) and its comparison with molecular phylogeography publication-title: Folia Zoologica – ident: e_1_2_7_5_1 doi: 10.1093/genetics/160.2.741 – ident: e_1_2_7_46_1 doi: 10.1890/02-3090 – ident: e_1_2_7_23_1 doi: 10.2307/5591 – ident: e_1_2_7_37_1 doi: 10.1046/j.0173-9565.2003.00795.x – ident: e_1_2_7_49_1 doi: 10.1111/j.1471-8286.2004.00770.x – ident: e_1_2_7_72_1 doi: 10.1111/j.1752-4571.2009.00104.x – ident: e_1_2_7_10_1 doi: 10.1111/j.2007.0030-1299.16202.x – ident: e_1_2_7_53_1 doi: 10.1002/0470047356 – ident: e_1_2_7_9_1 doi: 10.1111/1755-0998.12157 – ident: e_1_2_7_11_1 doi: 10.1111/j.1365-2656.2009.01609.x – ident: e_1_2_7_41_1 doi: 10.1577/1548-8675(1999)019<0618:PPAROE>2.0.CO;2 – ident: e_1_2_7_57_1 doi: 10.1111/j.1365-294X.2004.02396.x – ident: e_1_2_7_59_1 doi: 10.1111/j.1558-5646.1989.tb04220.x – volume: 18 start-page: 70 year: 1985 ident: e_1_2_7_7_1 article-title: Allozyme variability in the tidewater goby, Eucyclogobius newberryi (Pisces: Gobiidae) publication-title: Isozyme Bulletin – ident: e_1_2_7_27_1 doi: 10.1007/s10592-009-9999-5 – volume: 70 start-page: 21 year: 2002 ident: e_1_2_7_39_1 article-title: Barrier breaching process and barrier spit breach, Stone Lagoon, California publication-title: Shore and Beach – ident: e_1_2_7_34_1 doi: 10.1534/genetics.107.075481 – ident: e_1_2_7_66_1 doi: 10.1016/j.tree.2004.07.003 – ident: e_1_2_7_47_1 doi: 10.1111/j.1600-0706.2012.20781.x – ident: e_1_2_7_52_1 doi: 10.2331/suisan.57.2223 – ident: e_1_2_7_17_1 doi: 10.1016/j.tree.2013.01.002 – ident: e_1_2_7_43_1 doi: 10.1046/j.1365-294x.1998.00414.x – ident: e_1_2_7_4_1 doi: 10.1214/aos/1013699998 – ident: e_1_2_7_21_1 doi: 10.1016/S0006-3207(03)00190-3 – ident: e_1_2_7_32_1 doi: 10.1016/j.tree.2012.07.001 – ident: e_1_2_7_67_1 doi: 10.1371/journal.pone.0028244 – volume-title: Ecology, Genetics, and Evolution of Metapopulations year: 2004 ident: e_1_2_7_25_1 – ident: e_1_2_7_16_1 doi: 10.1111/mec.12673 – ident: e_1_2_7_61_1 doi: 10.1038/33136 – ident: e_1_2_7_55_1 doi: 10.1111/j.1558-5646.1997.tb02422.x – ident: e_1_2_7_35_1 doi: 10.1111/j.1471-8286.2004.00845.x – ident: e_1_2_7_56_1 doi: 10.1111/j.1467-2979.2008.00304.x – ident: e_1_2_7_71_1 doi: 10.1007/s10592-005-9100-y – ident: e_1_2_7_69_1 doi: 10.1111/j.1558-5646.1988.tb02518.x – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_7_58_1 – ident: e_1_2_7_36_1 doi: 10.1111/j.1558-5646.1998.tb05157.x – volume: 96 start-page: 150 year: 2005 ident: e_1_2_7_22_1 article-title: Founder events as determinants of within‐island and among‐island genetic structure of Daphnia metapopulations publication-title: Heredity doi: 10.1038/sj.hdy.6800774 – ident: e_1_2_7_12_1 doi: 10.1007/s12686-011-9548-7 – ident: e_1_2_7_13_1 doi: 10.1007/s10592-009-0008-9 – ident: e_1_2_7_45_1 doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 – ident: e_1_2_7_31_1 doi: 10.1111/j.1558-5646.1999.tb04571.x – ident: e_1_2_7_28_1 doi: 10.1371/journal.pone.0113139 – ident: e_1_2_7_38_1 doi: 10.1007/s10592-013-0516-5 – ident: e_1_2_7_60_1 doi: 10.1046/j.1471-8286.2003.00566.x – ident: e_1_2_7_14_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_7_19_1 doi: 10.1111/j.1095-8312.1991.tb00558.x – ident: e_1_2_7_26_1 doi: 10.1146/annurev.es.25.110194.001123 – volume-title: PHYLIP (Phylogeny Inference Package) Version 3.68 year: 2005 ident: e_1_2_7_15_1 – ident: e_1_2_7_62_1 doi: 10.1016/0040-5809(77)90045-4 – ident: e_1_2_7_20_1 doi: 10.2307/3670165 – ident: e_1_2_7_29_1 doi: 10.1007/s10530-011-0054-3 – ident: e_1_2_7_50_1 doi: 10.1007/s101260000051 – ident: e_1_2_7_70_1 doi: 10.1016/j.tree.2007.08.017 – volume-title: Biology and Distribution of the Tidewater Goby, Eucyclogobius newberryi (Pisces: Gobiidae) of California year: 1989 ident: e_1_2_7_65_1 – ident: e_1_2_7_73_1 doi: 10.1111/j.1558-5646.1990.tb05243.x – ident: e_1_2_7_6_1 doi: 10.1007/BF00346827 – ident: e_1_2_7_40_1 doi: 10.1046/j.1523-1739.1999.98016.x – ident: e_1_2_7_44_1 doi: 10.1046/j.1523-1739.1999.98133.x – volume-title: Recovery Plan for the Tidewater Goby (Eucyclogobius newberryi) year: 2005 ident: e_1_2_7_68_1 – ident: e_1_2_7_33_1 doi: 10.1186/1471-2156-6-13 – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-294X.2010.04755.x – start-page: 135 volume-title: Conservation Biology an Evolutionary‐Ecological Perspective year: 1980 ident: e_1_2_7_18_1 – ident: e_1_2_7_3_1 doi: 10.1534/genetics.104.038349 – ident: e_1_2_7_51_1 doi: 10.1111/mec.12563 – ident: e_1_2_7_64_1 doi: 10.1023/A:1007478207892 – ident: e_1_2_7_63_1 doi: 10.1046/j.1365-294x.2000.01031.x |
SSID | ssj0013255 |
Score | 2.2048454 |
Snippet | Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5544 |
SubjectTerms | Animals California Cluster Analysis Colonization conservation Eucyclogobius newberryi extinction Extinction, Biological field experimentation Gene Flow Gene Frequency Genetic diversity Genetic Drift genetic techniques and protocols Genetic Variation Genetics, Population Genotype metapopulation Metapopulations Microsatellite Repeats microsatellites Models, Genetic Perciformes - genetics Population Density Population Dynamics Sequence Analysis, DNA Spatio-Temporal Analysis Species extinction Tidewater tidewater goby Translocation |
Title | Temporal genetic analysis of the endangered tidewater goby: extinction–colonization dynamics or drift in isolation? |
URI | https://api.istex.fr/ark:/67375/WNG-18H2Q382-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.13424 https://www.ncbi.nlm.nih.gov/pubmed/26460923 https://www.proquest.com/docview/1757580064 https://www.proquest.com/docview/1760893175 https://www.proquest.com/docview/1780517442 https://www.proquest.com/docview/1803113322 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9VAEMeHWhB80XpttMoqIr7kkOxuLtUHkXrqQWhB24N9EJa9pYS2iaQ51OOT38Fv6CdxdnOhlVrEt0AmIWfOzOxvN5n_AjyPqMJRxkQh14rjBIWrUEouw5wxbWxiKdduQX9nN53N-YeD5GAFXg-9MJ0-xLjg5jLD12uX4FKdnkvyE6snMePUaYHGLHW6-e8-0XNvEPyOp0joFEtNznpVIfcVz3jlhbHoWiFrJFTn3G-X4eZFevXDz_Yt-DI8ePfVydFk0aqJ_v6HpuN__rI1uNljKXnbxdFtWLHVHbjebVS5xKOpF7de3oXFfqdldUww8lwDJJG9rAmpC4I0SSxO8t1SoTWkLY09Q5htyGGtlq8IDgRl5Rspfv346e44dIESs6zkSanxJg0xTVm0pKxIiXnhT7-5B_Pt6f7WLOy3bgi1Q7Aw1cgdEuERQ8B1oFhqU1tkkUqMQaI0LEYwUEhbm4oX2aaUBcPSK22qjJGSJuw-rFZ1ZdeBJIWWGc215YhuJs-USmwsY4yvLIoKlQXwcvgThe51zd32GsdimN-gP4X3ZwDPRtOvnZjHZUbrGAlCHmKRFfM96iT4IrealeYBvPDhMV4smyP3YVyWiM-770Wcz-hHllOxF8DGED-irwmnAkENJ2eOAQN4Op7GbHavaGRl64WzSSMkSDS9yib3-uKcXmGTY7GOGVbrAB508Ts-NCIw-p0ydJyPwr-7QuxMt_zBw383fQQ30GVJ1665Aatts7CPkdta9cQn6G_Trzu- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3da9RAEMCHtiL64rc2WnUVEV9yJJvNR0UQqVdP7R1o72hfZNmvlNA2kXiHnk_-D_6H_iXObj5opRbxLZBJSCYzs7-d7MwCPAmoxFFGBz5TkuEEhUlfCCb8LIqUNrGhTNmE_niSjGbs3X68vwIvulqYpj9En3CznuHitXVwm5A-4eXHRg3CiFG2ChcYgoader3-SE_8Q3B7niKjUww2WdT2FbLrePpLT41Gq7mokFGter-dBZyn-dUNQNtX4VP36M26k8PBYi4H6vsfXR3_992uwZWWTMmrxpSuw4opb8DFZq_KJR4NXX_r5U1YTJt2VkcEjc_WQBLRdjYhVU4QKInBeb7NFhpN5oU2X5Fna3JQyeVzgmNBUbpail8_fto7doWgRC9LcVwovElNdF3kc1KUpEDXcKdf3oLZ9nC6NfLb3Rt8ZSnMTxSih0B-RCuwRSiGmsTkaSBjrREqdRQiG0gErk3J8nRTiDzC6CtMIrUWgsbRbVgrq9KsA4lzJVKaKcOQ3nSWShmbUIRoYmkQ5DL14Fn3FblqW5vbHTaOeDfFQX1yp08PHvein5t-HmcJraMpcHGAcZbPdqntwhfYhFaSefDU2Ud_sagP7dq4NOZ7kzc8zEb0Q5RRvuvBRmdAvA0LXziyGs7PLAZ68Kg_jQ5t_9KI0lQLK5MECJEoep5M5lqMM3qOTIbxOowwYHtwpzHg_qGRglHvNELFOTP8uyr4eLjlDu7-u-hDuDSajnf4ztvJ-3twGdUXN9WbG7A2rxfmPmLcXD5w3vobf0A_3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdHbRGIC2-oocCCEOLiyF6vH4EDQiUhPBoBbUQPSKt9ubLa2lVwBOHEd-Ab8kmYXT_UolIhbpY8tpzJzOxv157_AjwKqMRRRgc-U5LhBIVJXwgm_CyKlDaxoUzZBf2taTKZsTe78e4KPOt6YRp9iH7BzWaGq9c2wY90fizJD40ahBGjbBXOsQRJwhLRR3rsFYLb8hQRnWKtyaJWVsh-xtNfemIwWs1FhYhqvfvtNN48ia9u_Blfhs_dkzefnewPFrUcqO9_iDr-50-7ApdaLiUvmkC6CiumvAbnm50ql3g0curWy-uw2GnErA4Ihp7tgCSi1TUhVU4QJ4nBWb5dKzSa1IU2X5Fm52SvksunBEeConSdFL9-_LR37NpAiV6W4rBQeJM50fMir0lRkgITw51-fgNm49HO5sRv927wlWUwP1EIHgLpEWPAtqAYahKTp4GMtUak1FGIZCARt4aS5elQiDzC2itMIrUWgsbRTVgrq9KsA4lzJVKaKcOQ3XSWShmbUIQYYGkQ5DL14En3J3LVCpvb_TUOeDfBQX9y508PHvamR42ax2lG6xgJXOxhleWzbWo1-AK7nJVkHjx24dFfLOb79su4NOafpq94mE3ohyijfNuDjS5-eFsUvnAkNZydWQj04EF_GtPZvqMRpakW1gZDeWih7iybzAmMM3qGTYbVOoywXHtwq4nf_qGRgdHvNELHuSj8uyv41mjTHdz-d9P7cOH9yzF_93r69g5cRO_FTevmBqzV84W5iwxXy3suV38Digs-jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+genetic+analysis+of+the+endangered+tidewater+goby%3A+extinction%E2%80%93colonization+dynamics+or+drift+in+isolation%3F&rft.jtitle=Molecular+ecology&rft.au=Kinziger%2C+Andrew+P&rft.au=Hellmair%2C+Michael&rft.au=McCraney%2C+W+Tyler&rft.au=Jacobs%2C+David+K&rft.date=2015-11-01&rft.issn=0962-1083&rft.volume=24&rft.issue=22+p.5544-5560&rft.spage=5544&rft.epage=5560&rft_id=info:doi/10.1111%2Fmec.13424&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |