Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected in...
Saved in:
Published in | Global change biology Vol. 21; no. 1; pp. 388 - 395 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science
01.01.2015
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1354-1013 1365-2486 1365-2486 |
DOI | 10.1111/gcb.12643 |
Cover
Abstract | The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO₂), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO₂had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. |
---|---|
AbstractList | The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO sub(2)), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 degree C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 degree C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 degree C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO sub(2) had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO 2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO 2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO₂), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO₂had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO₂), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO₂had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. |
Author | McLaughlin, James W. Lindo, Zoë Branfireun, Brian A. Dieleman, Catherine M. |
Author_xml | – sequence: 1 fullname: Dieleman, Catherine M – sequence: 2 fullname: Branfireun, Brian A – sequence: 3 fullname: McLaughlin, James W – sequence: 4 fullname: Lindo, Zoë |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24957384$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAYhSNURC-w4AXAEhtYpPU9DjuIYCiqQBWULi3HsacuSTzYTmHeHqczg1AFUr3xRd850vH5D4u90Y-mKJ4ieIzyOlnq9hhhTsmD4gARzkpMBd-bz4yWCCKyXxzGeA0hJBjyR8U-pjWriKAHxU3Tu0ElA_SVGpcGdMHdmAgUiFfOJuBGsDIq9WrsgNE-rmMyA1jlewLaD8M0urR-DU6HVe-0Ss6PEVgf_mLtNOr5HcwWManW9VnyuHhoVR_Nk-1-VFy8f_e1-VCefV6cNm_OSs0YIqVoeafbjtedrqgQvKIQKcwErWzbtUZQZWvcVYZiy1stiOXGaAYtoRXpYCfIUfFy47sK_sdkYpKDi9r0OYDxU5SI15QKSsl9UIo5wlBU90BJxXjNxOz64g567acw5swzxQmDHKNMPdtSUzuYTq5CLiWs5a6nDJxsAB18jMFYqV26_e8UlOslgnKeBJknQd5OQla8uqPYmf6L3br_dL1Z_x-Ui-btTlFuFC6X_OuPQoXvklc5vLz8tJD0_FKcf1t8lE3mn294q7xUy-CivPiCIWIQoppzRMlvX27aXw |
CitedBy_id | crossref_primary_10_1007_s10021_020_00526_3 crossref_primary_10_1016_j_ecoinf_2024_102772 crossref_primary_10_3390_plants14050743 crossref_primary_10_1111_gcb_13319 crossref_primary_10_1016_j_scitotenv_2020_143776 crossref_primary_10_1007_s00248_023_02289_5 crossref_primary_10_1007_s11368_017_1820_3 crossref_primary_10_3389_feart_2021_650662 crossref_primary_10_1002_lno_11978 crossref_primary_10_1016_j_ecoinf_2017_05_001 crossref_primary_10_1016_j_ecolind_2016_05_041 crossref_primary_10_1038_srep33907 crossref_primary_10_3390_microorganisms12071344 crossref_primary_10_1002_ece3_7592 crossref_primary_10_3389_fenvs_2023_1100443 crossref_primary_10_1080_15481603_2023_2267851 crossref_primary_10_1016_j_jhydrol_2022_127687 crossref_primary_10_3389_fpls_2016_01623 crossref_primary_10_1038_s41598_021_97698_2 crossref_primary_10_1016_j_catena_2019_02_027 crossref_primary_10_1098_rstb_2017_0395 crossref_primary_10_1016_j_agrformet_2023_109671 crossref_primary_10_3390_f15040713 crossref_primary_10_1007_s11104_020_04664_4 crossref_primary_10_1111_gcb_15753 crossref_primary_10_1111_gcb_14788 crossref_primary_10_1016_j_ecolind_2021_107367 crossref_primary_10_5194_gmd_15_1633_2022 crossref_primary_10_5194_bg_15_3937_2018 crossref_primary_10_1016_j_agrformet_2024_110261 crossref_primary_10_1007_s13157_021_01411_y crossref_primary_10_1007_s11258_020_01037_w crossref_primary_10_1038_s42003_019_0370_1 crossref_primary_10_1080_01431161_2024_2387133 crossref_primary_10_1007_s11104_016_2999_6 crossref_primary_10_3390_drones2040045 crossref_primary_10_1016_j_catena_2024_108191 crossref_primary_10_1139_er_2019_0064 crossref_primary_10_1002_ppp_2048 crossref_primary_10_1111_gcb_15865 crossref_primary_10_1007_s11769_016_0809_y crossref_primary_10_1029_2019JG005339 crossref_primary_10_3390_atmos13010044 crossref_primary_10_1007_s10533_019_00590_5 crossref_primary_10_3390_w14172597 crossref_primary_10_3390_plants12203561 crossref_primary_10_1007_s10021_023_00820_w crossref_primary_10_1007_s12374_017_0292_8 crossref_primary_10_14411_eje_2022_020 crossref_primary_10_3390_drones8030097 crossref_primary_10_1111_gcb_16904 crossref_primary_10_1007_s11104_023_06324_9 crossref_primary_10_1002_ece3_6057 crossref_primary_10_1007_s11104_023_06034_2 crossref_primary_10_1111_oik_07635 crossref_primary_10_1071_PC20040 crossref_primary_10_1016_j_soilbio_2023_109024 crossref_primary_10_1016_j_scitotenv_2018_01_162 crossref_primary_10_5194_bg_17_5693_2020 crossref_primary_10_1007_s10533_024_01116_4 crossref_primary_10_1051_itmconf_20182300030 crossref_primary_10_1016_j_geoderma_2016_09_028 crossref_primary_10_1016_j_soilbio_2017_08_026 crossref_primary_10_1016_j_ecolind_2022_109691 crossref_primary_10_1111_gcb_14715 crossref_primary_10_1111_gcb_15005 crossref_primary_10_1016_j_geoderma_2019_113890 crossref_primary_10_3390_insects13121147 crossref_primary_10_1016_j_agrformet_2022_109202 crossref_primary_10_1007_s10021_016_0035_6 crossref_primary_10_1002_eco_2503 crossref_primary_10_1016_j_soilbio_2024_109413 crossref_primary_10_1002_2017JG004361 crossref_primary_10_1016_j_pedobi_2020_150672 crossref_primary_10_1002_ecy_70040 crossref_primary_10_1098_rsos_170449 crossref_primary_10_1016_j_pedobi_2021_150772 crossref_primary_10_1007_s11676_019_00993_y crossref_primary_10_1007_s10021_017_0159_3 crossref_primary_10_1007_s10021_021_00713_w crossref_primary_10_1016_j_fmre_2022_09_025 crossref_primary_10_1016_j_scitotenv_2019_05_310 crossref_primary_10_5194_bg_21_3491_2024 crossref_primary_10_1016_j_soilbio_2018_01_029 crossref_primary_10_1016_j_jenvman_2021_112160 crossref_primary_10_1016_j_agee_2015_08_020 crossref_primary_10_3389_fevo_2022_1078104 crossref_primary_10_1007_s10021_016_0105_9 crossref_primary_10_1016_j_envexpbot_2022_105182 crossref_primary_10_1002_2016GB005471 crossref_primary_10_3389_frym_2020_00107 crossref_primary_10_1111_gcb_16003 crossref_primary_10_3389_feart_2021_631368 crossref_primary_10_3389_fpls_2022_1079283 crossref_primary_10_1016_j_jnc_2021_125994 crossref_primary_10_1111_nph_19772 crossref_primary_10_1002_ecs2_2619 crossref_primary_10_1016_j_scitotenv_2021_152077 crossref_primary_10_1071_WF21150 crossref_primary_10_1111_gcb_13763 crossref_primary_10_1111_gcb_14617 crossref_primary_10_1016_j_geoderma_2021_115074 crossref_primary_10_1002_edn3_281 crossref_primary_10_1016_j_biocon_2023_110332 crossref_primary_10_1007_s11356_018_2893_2 crossref_primary_10_1111_gcb_17203 crossref_primary_10_1111_gcb_16354 crossref_primary_10_1002_ajb2_16270 crossref_primary_10_1111_gcb_14057 crossref_primary_10_1016_j_soilbio_2015_09_003 crossref_primary_10_1016_j_agrformet_2017_12_248 crossref_primary_10_1016_j_soilbio_2017_01_005 crossref_primary_10_3389_fevo_2020_00207 crossref_primary_10_1016_j_apsoil_2024_105641 crossref_primary_10_1111_1365_2745_12413 crossref_primary_10_3390_atmos13010112 crossref_primary_10_1016_j_ecoleng_2017_06_047 crossref_primary_10_3390_w16081154 crossref_primary_10_1016_j_jenvman_2020_110636 crossref_primary_10_1111_ejss_13048 crossref_primary_10_1016_j_ecoinf_2025_103071 crossref_primary_10_1111_geb_13152 crossref_primary_10_1016_j_jenvman_2023_117783 crossref_primary_10_1016_j_ecolind_2024_112265 crossref_primary_10_2139_ssrn_4017537 crossref_primary_10_1016_j_envpol_2015_06_021 crossref_primary_10_1016_j_geoderma_2018_06_002 crossref_primary_10_1111_gcb_17182 crossref_primary_10_1016_j_foreco_2020_118735 crossref_primary_10_1111_jvs_12912 crossref_primary_10_1111_gcb_16651 crossref_primary_10_1016_j_catena_2021_105801 crossref_primary_10_1029_2024JG008041 crossref_primary_10_1007_s11676_024_01771_1 crossref_primary_10_1016_j_apsoil_2019_04_019 crossref_primary_10_1016_j_rse_2023_113921 crossref_primary_10_1088_1748_9326_acc194 crossref_primary_10_1016_j_scitotenv_2023_161859 crossref_primary_10_1016_j_scitotenv_2018_06_276 crossref_primary_10_1007_s10668_022_02767_9 crossref_primary_10_1093_femsle_fnaa172 crossref_primary_10_1111_gcb_14140 crossref_primary_10_5194_bg_16_4085_2019 crossref_primary_10_1016_j_catena_2020_104789 crossref_primary_10_1111_gcb_17408 crossref_primary_10_1016_j_quascirev_2016_07_013 crossref_primary_10_3390_ijgi9010020 crossref_primary_10_1080_20964129_2020_1806113 crossref_primary_10_1016_j_biocon_2017_08_025 crossref_primary_10_1007_s10661_018_6964_0 crossref_primary_10_1111_1365_2435_14480 crossref_primary_10_1016_j_foreco_2017_11_038 crossref_primary_10_1007_s11104_017_3291_0 crossref_primary_10_1016_j_pedobi_2019_150571 crossref_primary_10_1016_j_scitotenv_2016_08_020 crossref_primary_10_1111_gcb_16748 crossref_primary_10_1128_AEM_00241_21 crossref_primary_10_1007_s11104_016_3099_3 crossref_primary_10_1016_j_foreco_2017_10_017 crossref_primary_10_1111_nph_18755 crossref_primary_10_1016_j_cliser_2024_100498 crossref_primary_10_1080_11956860_2017_1412282 crossref_primary_10_5194_bg_20_2971_2023 crossref_primary_10_1007_s11104_021_05180_9 crossref_primary_10_1093_biosci_biab034 crossref_primary_10_1016_j_ecolind_2017_10_017 crossref_primary_10_1016_j_soilbio_2021_108501 crossref_primary_10_1016_j_ecolind_2022_109731 crossref_primary_10_1029_2024JG008511 crossref_primary_10_1111_1365_2745_12449 crossref_primary_10_1016_j_scitotenv_2022_154294 crossref_primary_10_1029_2022JG006923 crossref_primary_10_1007_s00248_016_0875_9 crossref_primary_10_1111_1365_2745_13411 crossref_primary_10_1139_facets_2022_0168 crossref_primary_10_3389_fenvs_2021_659953 crossref_primary_10_1016_j_scitotenv_2020_142111 crossref_primary_10_1016_j_ancene_2022_100347 crossref_primary_10_1007_s11104_018_3610_0 crossref_primary_10_1016_j_scitotenv_2019_05_072 crossref_primary_10_1007_s11104_015_2713_0 crossref_primary_10_1007_s12237_018_00490_1 crossref_primary_10_1111_gcb_13934 crossref_primary_10_1038_s41467_017_01350_5 crossref_primary_10_1016_j_ecolind_2021_108256 crossref_primary_10_1016_j_atmosenv_2017_01_049 crossref_primary_10_1016_j_ejrh_2022_101078 crossref_primary_10_1088_1748_9326_abc4fb crossref_primary_10_1002_ldr_4842 crossref_primary_10_1016_j_quascirev_2020_106180 crossref_primary_10_1111_gcb_14465 crossref_primary_10_1007_s10533_016_0214_8 crossref_primary_10_3390_rs11141685 crossref_primary_10_1016_j_aquabot_2018_03_004 crossref_primary_10_1111_gcb_17603 crossref_primary_10_1111_nph_18601 crossref_primary_10_1002_ece3_8303 crossref_primary_10_1016_j_quascirev_2023_108466 crossref_primary_10_1371_journal_pone_0159043 crossref_primary_10_1098_rspb_2023_2622 crossref_primary_10_1016_j_jclepro_2023_136905 crossref_primary_10_1007_s11104_022_05346_z crossref_primary_10_1007_s41207_019_0136_7 crossref_primary_10_3389_ffgc_2023_1170252 crossref_primary_10_1016_j_apsoil_2021_104252 |
Cites_doi | 10.2307/1942268 10.1046/j.1365-2486.2001.00433.x 10.1890/06-0539 10.1111/j.1461-0248.2008.01160.x 10.1016/S0034-6667(96)00018-8 10.1007/s11273-013-9320-8 10.1111/gcb.12075 10.1029/2006GB002715 10.1038/ngeo1323 10.1111/j.1469-8137.2012.04254.x 10.1007/s00374-009-0406-7 10.1126/science.1237190 10.1111/j.1461-0248.2005.00877.x 10.1016/j.baae.2008.05.005 10.1002/eco.1493 10.1007/s10533-010-9444-3 10.2136/sssaj2009.0111 10.1038/35023137 10.1111/1365-2745.12025 10.1139/f95-059 10.1016/0169-5347(95)90007-1 10.1139/b93-002 10.1639/0007-2745(2002)105[0096:ROPMTB]2.0.CO;2 10.1038/nclimate1781 10.1007/s11258-007-9309-6 10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2 10.2307/3547057 10.1080/17550874.2010.487548 10.1111/gcb.12328 10.1007/s00442-008-0963-8 10.1007/BF02883146 10.1080/01490459709378054 10.1007/BF03161761 10.2307/1552080 10.1890/13-0270.1 10.1023/A:1020368130679 10.1002/(SICI)1099-1085(19970630)11:8<873::AID-HYP510>3.0.CO;2-6 10.1021/es061765v 10.1111/gcb.12202 10.1034/j.1600-0706.2003.12170.x 10.2307/1941811 10.2307/2963492 10.1016/0144-8617(91)90028-B 10.1007/s11273-012-9280-4 10.5194/bg-5-1475-2008 10.1639/05 10.1126/science.1136401 10.1111/ele.12088 10.1007/s10021-010-9349-y 10.1126/science.1174268 10.1002/j.1537-2197.1996.tb13908.x |
ContentType | Journal Article |
Copyright | 2014 John Wiley & Sons Ltd 2014 John Wiley & Sons Ltd. Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2014 John Wiley & Sons Ltd – notice: 2014 John Wiley & Sons Ltd. – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7U6 7S9 L.6 |
DOI | 10.1111/gcb.12643 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts MEDLINE CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 395 |
ExternalDocumentID | 3527165041 24957384 10_1111_gcb_12643 GCB12643 ark_67375_WNG_4QW8QVGJ_C US201500196614 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canada Research Chairs program – fundername: Discovery Grant program – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY BSCLL AEUQT AFPWT ESX WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c5513-8b6dcbd69dc748867401a25847fbdbe84af92d7e42f6bc83f6eec50f3473d0d83 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:30:42 EDT 2025 Thu Jul 10 18:00:55 EDT 2025 Fri Jul 11 12:22:01 EDT 2025 Fri Jul 25 11:03:29 EDT 2025 Thu Apr 03 07:04:30 EDT 2025 Tue Jul 01 03:52:52 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 Wed Jan 22 16:53:30 EST 2025 Tue Sep 09 05:32:08 EDT 2025 Thu Apr 03 09:43:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | carbon dioxide poor fen peatland temperature water table Carex Sphagnum climate change |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5513-8b6dcbd69dc748867401a25847fbdbe84af92d7e42f6bc83f6eec50f3473d0d83 |
Notes | http://dx.doi.org/10.1111/gcb.12643 Natural Sciences and Engineering Research Council of Canada ark:/67375/WNG-4QW8QVGJ-C ArticleID:GCB12643 Discovery Grant program Canada Research Chairs program istex:E9490A571E806A54F241E253E3F0BF982BF26BAD Table S1. A summary of the plant species observed throughout the 12 month study. The average frequency describes the average number of mesocosms (n = 84 total) which contained the associated species throughout the experiment. The average abundance/percent cover describes the average number of individual or cover which was observed across all mesocosms for a species. The presence of Vaccinium oxycoccos L., Carex disperma Dewey, Sphagnum spp., Gaultheria hispidula (L.) Muhl. ex Bigelow, and Campylium stellatum var. stellatum (Hedw.) were all recorded in terms of percent cover. All remaining species were monitored by changes in abundance. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24957384 |
PQID | 1636350621 |
PQPubID | 30327 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1694484438 proquest_miscellaneous_1642612087 proquest_miscellaneous_1637569588 proquest_journals_1636350621 pubmed_primary_24957384 crossref_citationtrail_10_1111_gcb_12643 crossref_primary_10_1111_gcb_12643 wiley_primary_10_1111_gcb_12643_GCB12643 istex_primary_ark_67375_WNG_4QW8QVGJ_C fao_agris_US201500196614 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2015 |
Publisher | Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | Bragazza L, Iacumin P (2009) Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition. Biology and Fertility of Soils, 46, 73-77. Legasy K (1995) Forest Plants of Northeastern Ontario. Lone Pine Publishing, Edmonton. Vitt DH, Bayley SE, Jin T-L (1995) Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Canadian Journal of Fisheries and Aquatic Sciences, 52, 587-606. Kuhry P (1997) The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Review of Palaeobotany and Palynology, 96, 183-224. Menéndez R, Megías AG, Hill JK et al. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470. Thormann M, Szumigalski A, Bayley S (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands, 19, 305-317. van Breemen N (1995) How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10, 270-275. Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. American Journal of Botany, 83, 1241-1254. Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007) Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science & Technology, 41, 3146-3152. Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. 2014. Hydrological feedbacks in northern peatlands. Ecohydrology, doi: 10.1002/eco.1493. Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia, 156, 155-167. Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila E-S (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytologist, 196, 49-67. Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiology Journal, 14, 299-316. Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2013) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology, 95, 123-131. Limpens J, Berendse F, Blodau C et al. (2008) Peatlands and the carbon cycle: from local processes to global implications - a synthesis. Biogeosciences, 5, 1475-1491. Painter TJ (1991) Lindow man, tollund man and other peat-bog bodies: the preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers, 15, 123-142. Eppinga M, Rietkerk M, Wassen M, de Ruiter P (2009) Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecology, 200, 53-68. Heijmans MPD, Klees H, de Visser W, Berendse F (2002) Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecology, 162, 123-134. Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81, 3464-3478. Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522. Rochefort L, Isselin-Nondedeu F, Boudreau S, Poulin M (2013) Comparing survey methods for monitoring vegetation change through time in a restored peatland. Wetlands Ecology and Management, 21, 71-85. Breeuwer A, Robroek BM, Limpens J, Heijmans MPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 10, 330-339. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106, 395-409. Molau U (2010) Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology & Diversity, 3, 29-34. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195. Larmola T, Bubier JL, Kobyljanec C et al. (2013) Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19, 3729-3739. Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science, 341, 504-508. Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE (1993) Development of Sphagnum-dominated peatlands in boreal continental Canada. Canadian Journal of Botany, 71, 10-22. Webster KL, McLaughlin JW (2010) Importance of the water table in controlling dissolved carbon along a fen nutrient gradient. Soil Science Society of America Journal, 74, 2254-2266. Dise NB (2009) Peatland response to global change. Science, 326, 810-811. Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2010) Field simulation of global change: transplanting northern bog mesocosms southward. Ecosystems, 13, 712-726. Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecology Letters, 9, 311-318. Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273-277. de Mazancourt C, Isbell F, Larocque A et al. (2013) Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 16, 617-625. Sutherland WJ, Freckleton RP, Godfray HCJ et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67. Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science, 315, 640-642. Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos, 81, 368-388. Guttal V, Jayaprakash C (2008) Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters, 11, 450-460. Malmer N, Svensson B, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica, 29, 483-496. Heijmans MPD, van der Knaap YAM, Holmgren M, Limpens J (2013) Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology, 19, 2240-2250. Berendse F, van Breemen N, Rydin H et al. (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7, 591-598. Klinger LF (1996) The myth of the classic hydrosere model of bog succession. Arctic and Alpine Research, 28, 1-9. Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry, 103, 45-57. Malmer N, Albinsson C, Svensson BM, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos, 100, 469-482. Newmaster SG, Harris AG, Kershaw LJ (1997) Wetland Plants of Ontario. Lone Pine Publishing, Edmonton. Faubert P, Rochefort L (2002) Response of peatland mosses to burial by wind-dispersed peat. The Bryologist, 105, 96-103. Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nature Geoscience, 4, 895-900. Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978-981. Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochemical Cycles, 21, GB1007. Jassey VEJ, Chiapusio G, Binet P et al. (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Global Change Biology, 19, 811-823. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325-349. Rouse WR, Douglas MSV, Hecky RE et al. (1997) Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes, 11, 873-902. Ballantyne D, Hribljan J, Pypker T, Chimner R (2013) Long-term water table manipulations alter peatland gaseous carbon fluxes in northern Michigan. Wetlands Ecology and Management, 22, 35-47. 2009; 46 2013; 3 2010; 13 1991; 15 2013; 22 2013; 21 1998; 81 2008; 5 1994; 29 2013; 19 1996; 28 2009; 10 2013; 16 1997; 11 1993; 71 1999; 19 1997; 96 2013; 95 1997; 14 2000; 406 2009; 200 2002; 105 2008; 156 2010; 3 2007; 21 2010; 74 2009; 326 1996; 66 1995; 52 1991; 1 2006; 9 1995; 10 2006; 273 2013; 101 1997 2007 1995 2008; 11 2013; 341 2011; 4 2011; 103 2012; 196 2003; 106 2007; 315 2001; 7 2002; 162 1996; 83 2000; 81 2014 2007; 41 1957; 27 2003; 100 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_30_1 Newmaster SG (e_1_2_6_40_1) 1997 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 IPCC (e_1_2_6_24_1) 2007 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 Legasy K (e_1_2_6_32_1) 1995 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecology Letters, 9, 311-318. – reference: de Mazancourt C, Isbell F, Larocque A et al. (2013) Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 16, 617-625. – reference: Malmer N, Albinsson C, Svensson BM, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos, 100, 469-482. – reference: Rouse WR, Douglas MSV, Hecky RE et al. (1997) Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes, 11, 873-902. – reference: Heijmans MPD, van der Knaap YAM, Holmgren M, Limpens J (2013) Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology, 19, 2240-2250. – reference: Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochemical Cycles, 21, GB1007. – reference: Limpens J, Berendse F, Blodau C et al. (2008) Peatlands and the carbon cycle: from local processes to global implications - a synthesis. Biogeosciences, 5, 1475-1491. – reference: Breeuwer A, Robroek BM, Limpens J, Heijmans MPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 10, 330-339. – reference: Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81, 3464-3478. – reference: Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE (1993) Development of Sphagnum-dominated peatlands in boreal continental Canada. Canadian Journal of Botany, 71, 10-22. – reference: Dise NB (2009) Peatland response to global change. Science, 326, 810-811. – reference: Kuhry P (1997) The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Review of Palaeobotany and Palynology, 96, 183-224. – reference: Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522. – reference: Painter TJ (1991) Lindow man, tollund man and other peat-bog bodies: the preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers, 15, 123-142. – reference: Rochefort L, Isselin-Nondedeu F, Boudreau S, Poulin M (2013) Comparing survey methods for monitoring vegetation change through time in a restored peatland. Wetlands Ecology and Management, 21, 71-85. – reference: Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science, 315, 640-642. – reference: Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325-349. – reference: Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273-277. – reference: Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. 2014. Hydrological feedbacks in northern peatlands. Ecohydrology, doi: 10.1002/eco.1493. – reference: Klinger LF (1996) The myth of the classic hydrosere model of bog succession. Arctic and Alpine Research, 28, 1-9. – reference: Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007) Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science & Technology, 41, 3146-3152. – reference: Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila E-S (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytologist, 196, 49-67. – reference: Eppinga M, Rietkerk M, Wassen M, de Ruiter P (2009) Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecology, 200, 53-68. – reference: Bragazza L, Iacumin P (2009) Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition. Biology and Fertility of Soils, 46, 73-77. – reference: Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science, 341, 504-508. – reference: Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nature Geoscience, 4, 895-900. – reference: Guttal V, Jayaprakash C (2008) Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters, 11, 450-460. – reference: Heijmans MPD, Klees H, de Visser W, Berendse F (2002) Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecology, 162, 123-134. – reference: Berendse F, van Breemen N, Rydin H et al. (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7, 591-598. – reference: Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry, 103, 45-57. – reference: Webster KL, McLaughlin JW (2010) Importance of the water table in controlling dissolved carbon along a fen nutrient gradient. Soil Science Society of America Journal, 74, 2254-2266. – reference: Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos, 81, 368-388. – reference: Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978-981. – reference: Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. American Journal of Botany, 83, 1241-1254. – reference: Molau U (2010) Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology & Diversity, 3, 29-34. – reference: Vitt DH, Bayley SE, Jin T-L (1995) Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Canadian Journal of Fisheries and Aquatic Sciences, 52, 587-606. – reference: Menéndez R, Megías AG, Hill JK et al. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470. – reference: Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiology Journal, 14, 299-316. – reference: Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2010) Field simulation of global change: transplanting northern bog mesocosms southward. Ecosystems, 13, 712-726. – reference: Legasy K (1995) Forest Plants of Northeastern Ontario. Lone Pine Publishing, Edmonton. – reference: Ballantyne D, Hribljan J, Pypker T, Chimner R (2013) Long-term water table manipulations alter peatland gaseous carbon fluxes in northern Michigan. Wetlands Ecology and Management, 22, 35-47. – reference: van Breemen N (1995) How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10, 270-275. – reference: Larmola T, Bubier JL, Kobyljanec C et al. (2013) Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19, 3729-3739. – reference: Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106, 395-409. – reference: Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195. – reference: Newmaster SG, Harris AG, Kershaw LJ (1997) Wetland Plants of Ontario. Lone Pine Publishing, Edmonton. – reference: Thormann M, Szumigalski A, Bayley S (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands, 19, 305-317. – reference: Malmer N, Svensson B, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica, 29, 483-496. – reference: Sutherland WJ, Freckleton RP, Godfray HCJ et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67. – reference: Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia, 156, 155-167. – reference: Faubert P, Rochefort L (2002) Response of peatland mosses to burial by wind-dispersed peat. The Bryologist, 105, 96-103. – reference: Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2013) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology, 95, 123-131. – reference: Jassey VEJ, Chiapusio G, Binet P et al. (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Global Change Biology, 19, 811-823. – volume: 19 start-page: 305 year: 1999 end-page: 317 article-title: Aboveground peat and carbon accumulation potentials along a bog‐fen‐marsh wetland gradient in southern boreal Alberta, Canada publication-title: Wetlands – volume: 71 start-page: 10 year: 1993 end-page: 22 article-title: Development of ‐dominated peatlands in boreal continental Canada publication-title: Canadian Journal of Botany – volume: 106 start-page: 395 year: 2003 end-page: 409 article-title: The role of bryophytes in carbon and nitrogen cycling publication-title: The Bryologist – volume: 9 start-page: 311 year: 2006 end-page: 318 article-title: Rising variance: a leading indicator of ecological transition publication-title: Ecology Letters – volume: 15 start-page: 123 year: 1991 end-page: 142 article-title: Lindow man, tollund man and other peat‐bog bodies: the preservative and antimicrobial action of , a reactive glycuronoglycan with tanning and sequestering properties publication-title: Carbohydrate Polymers – volume: 315 start-page: 640 year: 2007 end-page: 642 article-title: Species interactions reverse grassland responses to changing climate publication-title: Science – volume: 1 start-page: 182 year: 1991 end-page: 195 article-title: Northern peatlands: role in the carbon cycle and probable responses to climatic warming publication-title: Ecological Applications – volume: 156 start-page: 155 year: 2008 end-page: 167 article-title: The effect of temperature on growth and competition between species publication-title: Oecologia – volume: 105 start-page: 96 year: 2002 end-page: 103 article-title: Response of peatland mosses to burial by wind‐dispersed peat publication-title: The Bryologist – volume: 4 start-page: 895 year: 2011 end-page: 900 article-title: Drought‐induced carbon loss in peatlands publication-title: Nature Geoscience – volume: 19 start-page: 811 year: 2013 end-page: 823 article-title: Above‐ and belowground linkages in peatland: climate warming affects plant‐microbial interactions publication-title: Global Change Biology – volume: 196 start-page: 49 year: 2012 end-page: 67 article-title: The resilience and functional role of moss in boreal and arctic ecosystems publication-title: New Phytologist – volume: 83 start-page: 1241 year: 1996 end-page: 1254 article-title: Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes publication-title: American Journal of Botany – volume: 46 start-page: 73 year: 2009 end-page: 77 article-title: Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition publication-title: Biology and Fertility of Soils – volume: 406 start-page: 978 year: 2000 end-page: 981 article-title: Acclimation of ecosystem CO exchange in the Alaskan Arctic in response to decadal climate warming publication-title: Nature – volume: 22 start-page: 35 year: 2013 end-page: 47 article-title: Long‐term water table manipulations alter peatland gaseous carbon fluxes in northern Michigan publication-title: Wetlands Ecology and Management – year: 1997 – volume: 41 start-page: 3146 year: 2007 end-page: 3152 article-title: Interactions between elevated CO and warming could amplify DOC exports from peatland catchments publication-title: Environmental Science & Technology – volume: 10 start-page: 330 year: 2009 end-page: 339 article-title: Decreased summer water table depth affects peatland vegetation publication-title: Basic and Applied Ecology – volume: 5 start-page: 1475 year: 2008 end-page: 1491 article-title: Peatlands and the carbon cycle: from local processes to global implications – a synthesis publication-title: Biogeosciences – volume: 341 start-page: 504 year: 2013 end-page: 508 article-title: The future of species under climate change: resilience or decline? publication-title: Science – volume: 95 start-page: 123 year: 2013 end-page: 131 article-title: Plant functional types define magnitude of drought response in peatland CO exchange publication-title: Ecology – volume: 273 start-page: 1465 year: 2006 end-page: 1470 article-title: Species richness changes lag behind climate change publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 14 start-page: 299 year: 1997 end-page: 316 article-title: Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat publication-title: Geomicrobiology Journal – volume: 19 start-page: 2240 year: 2013 end-page: 2250 article-title: Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events publication-title: Global Change Biology – volume: 13 start-page: 712 year: 2010 end-page: 726 article-title: Field simulation of global change: transplanting northern bog mesocosms southward publication-title: Ecosystems – volume: 162 start-page: 123 year: 2002 end-page: 134 article-title: Response of a bog plant community to elevated CO and N supply publication-title: Plant Ecology – volume: 21 start-page: GB1007 year: 2007 article-title: Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment publication-title: Global Biogeochemical Cycles – volume: 11 start-page: 873 year: 1997 end-page: 902 article-title: Effects of climate change on the freshwaters of Arctic and subarctic North America publication-title: Hydrological Processes – year: 2007 – volume: 3 start-page: 29 year: 2010 end-page: 34 article-title: Long‐term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden publication-title: Plant Ecology & Diversity – volume: 74 start-page: 2254 year: 2010 end-page: 2266 article-title: Importance of the water table in controlling dissolved carbon along a fen nutrient gradient publication-title: Soil Science Society of America Journal – year: 2014 article-title: Hydrological feedbacks in northern peatlands publication-title: Ecohydrology – volume: 81 start-page: 368 year: 1998 end-page: 388 article-title: Carbon accumulation in peatland publication-title: Oikos – volume: 7 start-page: 591 year: 2001 end-page: 598 article-title: Raised atmospheric CO levels and increased N deposition cause shifts in plant species composition and production in bogs publication-title: Global Change Biology – volume: 52 start-page: 587 year: 1995 end-page: 606 article-title: Seasonal variation in water chemistry over a bog‐rich fen gradient in continental western Canada publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 28 start-page: 1 year: 1996 end-page: 9 article-title: The myth of the classic hydrosere model of bog succession publication-title: Arctic and Alpine Research – volume: 16 start-page: 617 year: 2013 end-page: 625 article-title: Predicting ecosystem stability from community composition and biodiversity publication-title: Ecology Letters – volume: 326 start-page: 810 year: 2009 end-page: 811 article-title: Peatland response to global change publication-title: Science – volume: 200 start-page: 53 year: 2009 end-page: 68 article-title: Linking habitat modification to catastrophic shifts and vegetation patterns in bogs publication-title: Plant Ecology – volume: 11 start-page: 450 year: 2008 end-page: 460 article-title: Changing skewness: an early warning signal of regime shifts in ecosystems publication-title: Ecology Letters – volume: 101 start-page: 58 year: 2013 end-page: 67 article-title: Identification of 100 fundamental ecological questions publication-title: Journal of Ecology – volume: 103 start-page: 45 year: 2011 end-page: 57 article-title: Cell‐wall polysaccharides play an important role in decay resistance of and actively depressed decomposition publication-title: Biogeochemistry – volume: 96 start-page: 183 year: 1997 end-page: 224 article-title: The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico‐chemical properties publication-title: Review of Palaeobotany and Palynology – volume: 100 start-page: 469 year: 2003 end-page: 482 article-title: Interferences between and vascular plants: effects on plant community structure and peat formation publication-title: Oikos – volume: 66 start-page: 503 year: 1996 end-page: 522 article-title: Temperature and plant species control over litter decomposition in Alaskan tundra publication-title: Ecological Monographs – volume: 3 start-page: 273 year: 2013 end-page: 277 article-title: Biogeochemical plant‐soil microbe feedback in response to climate warming in peatlands publication-title: Nature Climate Change – volume: 10 start-page: 270 year: 1995 end-page: 275 article-title: How bogs down other plants publication-title: Trends in Ecology & Evolution – volume: 19 start-page: 3729 year: 2013 end-page: 3739 article-title: Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog publication-title: Global Change Biology – year: 1995 – volume: 81 start-page: 3464 year: 2000 end-page: 3478 article-title: Response of bog and fen plant communities to warming and water‐table manipulations publication-title: Ecology – volume: 29 start-page: 483 year: 1994 end-page: 496 article-title: Interactions between mosses and field layer vascular plants in the development of peat‐forming systems publication-title: Folia Geobotanica et Phytotaxonomica – volume: 27 start-page: 325 year: 1957 end-page: 349 article-title: An ordination of the upland forest communities of southern Wisconsin publication-title: Ecological Monographs – volume: 21 start-page: 71 year: 2013 end-page: 85 article-title: Comparing survey methods for monitoring vegetation change through time in a restored peatland publication-title: Wetlands Ecology and Management – ident: e_1_2_6_6_1 doi: 10.2307/1942268 – ident: e_1_2_6_3_1 doi: 10.1046/j.1365-2486.2001.00433.x – ident: e_1_2_6_37_1 doi: 10.1890/06-0539 – ident: e_1_2_6_19_1 doi: 10.1111/j.1461-0248.2008.01160.x – ident: e_1_2_6_28_1 doi: 10.1016/S0034-6667(96)00018-8 – ident: e_1_2_6_2_1 doi: 10.1007/s11273-013-9320-8 – volume-title: Forest Plants of Northeastern Ontario year: 1995 ident: e_1_2_6_32_1 – ident: e_1_2_6_25_1 doi: 10.1111/gcb.12075 – ident: e_1_2_6_45_1 doi: 10.1029/2006GB002715 – ident: e_1_2_6_16_1 doi: 10.1038/ngeo1323 – ident: e_1_2_6_50_1 doi: 10.1111/j.1469-8137.2012.04254.x – ident: e_1_2_6_4_1 doi: 10.1007/s00374-009-0406-7 – ident: e_1_2_6_39_1 doi: 10.1126/science.1237190 – ident: e_1_2_6_11_1 doi: 10.1111/j.1461-0248.2005.00877.x – ident: e_1_2_6_9_1 doi: 10.1016/j.baae.2008.05.005 – ident: e_1_2_6_52_1 doi: 10.1002/eco.1493 – ident: e_1_2_6_20_1 doi: 10.1007/s10533-010-9444-3 – ident: e_1_2_6_53_1 doi: 10.2136/sssaj2009.0111 – ident: e_1_2_6_41_1 doi: 10.1038/35023137 – ident: e_1_2_6_46_1 doi: 10.1111/1365-2745.12025 – ident: e_1_2_6_51_1 doi: 10.1139/f95-059 – ident: e_1_2_6_7_1 doi: 10.1016/0169-5347(95)90007-1 – ident: e_1_2_6_29_1 doi: 10.1139/b93-002 – ident: e_1_2_6_15_1 doi: 10.1639/0007-2745(2002)105[0096:ROPMTB]2.0.CO;2 – ident: e_1_2_6_5_1 doi: 10.1038/nclimate1781 – ident: e_1_2_6_14_1 doi: 10.1007/s11258-007-9309-6 – ident: e_1_2_6_54_1 doi: 10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2 – ident: e_1_2_6_12_1 doi: 10.2307/3547057 – ident: e_1_2_6_38_1 doi: 10.1080/17550874.2010.487548 – ident: e_1_2_6_31_1 doi: 10.1111/gcb.12328 – ident: e_1_2_6_8_1 doi: 10.1007/s00442-008-0963-8 – ident: e_1_2_6_34_1 doi: 10.1007/BF02883146 – volume-title: Wetland Plants of Ontario year: 1997 ident: e_1_2_6_40_1 – ident: e_1_2_6_55_1 doi: 10.1080/01490459709378054 – ident: e_1_2_6_48_1 doi: 10.1007/BF03161761 – volume-title: Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_6_24_1 – ident: e_1_2_6_26_1 doi: 10.2307/1552080 – ident: e_1_2_6_30_1 doi: 10.1890/13-0270.1 – ident: e_1_2_6_21_1 doi: 10.1023/A:1020368130679 – ident: e_1_2_6_44_1 doi: 10.1002/(SICI)1099-1085(19970630)11:8<873::AID-HYP510>3.0.CO;2-6 – ident: e_1_2_6_17_1 doi: 10.1021/es061765v – ident: e_1_2_6_22_1 doi: 10.1111/gcb.12202 – ident: e_1_2_6_35_1 doi: 10.1034/j.1600-0706.2003.12170.x – ident: e_1_2_6_18_1 doi: 10.2307/1941811 – ident: e_1_2_6_23_1 doi: 10.2307/2963492 – ident: e_1_2_6_42_1 doi: 10.1016/0144-8617(91)90028-B – ident: e_1_2_6_43_1 doi: 10.1007/s11273-012-9280-4 – ident: e_1_2_6_33_1 doi: 10.5194/bg-5-1475-2008 – ident: e_1_2_6_49_1 doi: 10.1639/05 – ident: e_1_2_6_47_1 doi: 10.1126/science.1136401 – ident: e_1_2_6_36_1 doi: 10.1111/ele.12088 – ident: e_1_2_6_10_1 doi: 10.1007/s10021-010-9349-y – ident: e_1_2_6_13_1 doi: 10.1126/science.1174268 – ident: e_1_2_6_27_1 doi: 10.1002/j.1537-2197.1996.tb13908.x |
SSID | ssj0003206 |
Score | 2.5572102 |
Snippet | The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 388 |
SubjectTerms | Analysis of Variance Biodiversity botanical composition Carbon dioxide Carbon Dioxide - metabolism Carex Climate Change Climate effects Climatic conditions Community composition Community structure Ecological function Ecosystem Ecosystems Fens graminoids Groundwater High temperature Hydrogen-Ion Concentration Models, Biological Peat peatland Peatlands Plant communities Plant species poor fen Pore water Species Specificity Sphagnopsida - physiology Sphagnum synergism Synergistic effect Temperature variance Water table |
Title | Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability |
URI | https://api.istex.fr/ark:/67375/WNG-4QW8QVGJ-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12643 https://www.ncbi.nlm.nih.gov/pubmed/24957384 https://www.proquest.com/docview/1636350621 https://www.proquest.com/docview/1637569588 https://www.proquest.com/docview/1642612087 https://www.proquest.com/docview/1694484438 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbGJCReGBTGAgMZhKa9tEpiJ3bgCcrWMWmTBpTtAcmKHWdUm9KqTRHl13Nnp1mHxoR4i9NLlFzvzt855-8IeS2NNbHBRXcR8i7PI3CpUpuuMSUzBhIA7Yi0j47TgyE_PEvO1sjb5V4Yzw_RLrihZ7h4jQ6e69mKk58b3YtgOkemz4ilyJv_4dMVdRSLXV_NiCUcQk3EGlYhrOJpr7w2F90p8zEgVFTuz5vg5nX06qaf_Q3ybfngvurkojevdc_8-oPT8T_f7AG538BS-s7b0UOyZqsOuesbVS46ZHPvaj8ciDUBYdYhwRGA7vHUidEd2r8cAQJ2o0fkhx9Z6jcX02KKFLc0p7Pvo7Kmo4pOYCLAykoKObCnlKYTGNfU-G0r9eIN_bhS8k4BYa_I4pyM5yneAlCuq_NdPCbD_b0v_YNu0-aha7C7TFfqtDC6SLPCCAgnKfYIzGP8fFvqQlvJ8zKLC2F5XKbaSFam1pokLBkXrAgLyTbJejWu7BahQmsL6YK0kTA8ymxmSxnxJAszrUMm8oDsLv9wZRoOdGzFcamWuRDoXjndB-RVKzrxxB83CW2B1aj8HAKyGn6OcfkICYcA8wRkx5lSe3E-vcAiOpGo0-OB4ien8uTr4FD1A7K9tDXVxI-ZApQMSDBM4yggL9ufwfPxc05e2fHcyYgkzRIpb5PBFDkOpbhNJoMcnXMG93nibb19aOxMLpiEt9l1Fvt3VahB_707ePrvos_IPVSZX9HaJuv1dG6fA8ar9QvnzL8BahlLaA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQvfAzGAgMMQtNeWiWxEzuIFyhbu7FWGqxsL8iKHWdUm9qqTRHlr-fOSbMOjQnxFqeXKLnex-8u5ztC3khjTWgw6S583uBpACqVa9MwJmfGQACgXSPtbi_u9PnBaXS6Qt4t9sKU_SHqhBtqhrPXqOCYkF7S8jOjmwH4c7ZKbnEAGhh6ffx82TyKhW6yZsAiDsYmYFVfIazjqS-94o1W83QEGBXZ-_M6wHkVvzoHtHeffFs8ell3ct6cFbppfv3R1fF_3-0BuVchU_q-FKWHZMUO18ntclblfJ1s7F5uiQOyyiZM14nXBdw9mjgyuk1bFwMAwW71iPwoV5aW-4tpNsEutzSl0--DvKCDIR2DL8DiSgphcNlVmo5hXVBT7lwp5m_p_lLVOwWQvUSLbhnPU7wFAF1X6jt_TPp7u8etTqOa9NAwOGCmIXWcGZ3FSWYEWJQYxwSmIX7BzXWmreRpnoSZsDzMY20ky2NrTeTnjAuW-ZlkG2RtOBraTUKF1hYiBmkDYXiQ2MTmMuBR4ida-0ykHtlZ_OPKVG3QcRrHhVqEQ8B75Xjvkdc16bjs_XEd0SaIjUrPwCar_pcQM0jYcwhgj0e2nSzVF6eTc6yjE5E66bUVPzqRR1_bB6rlka2FsKnKhEwVAGUAg34cBh55Vf8Myo9fdNKhHc0cjYjiJJLyJhqMkkNfiptoEgjTOWdwnyelsNcPjcPJBZPwNjtOZP_OCtVufXAHT_-d9CW50znuHqrD_d6nZ-Qusq9McG2RtWIys88B8hX6hdPs3wd9T4c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa2IRAv_CiMBQYYhKa9tEpiJ3bgCcrabbCKwcr2gGTFjj2qTW3Vpojy13O206xDY0K8xeklSq535--c83cIveJKq1jZRXcW0ibNI3ApI1VTKUOUggRAOiLtg16626f7J8nJCnqz2Avj-SHqBTfrGS5eWwcfF2bJyU-VbEUwnZNVdIOmgCQsIvp8wR1FYtdYMyIJhVgTkYpWyJbx1JdemoxWTT4CiGq1-_MqvHkZvrr5p3MXfVs8uS87OWvNStlSv_4gdfzPV7uH7lS4FL_1hnQfrehhA930nSrnDbS-c7EhDsSqiDBtoOAAUPdo4sTwFm6fDwACu9ED9MOPNPa7i3ExsRy3OMfT7wNT4sEQj2EmsKWVGJJgzymNxzAusfL7Vsr5a7y3VPOOAWIvydpJ2Z7H9hYAc12h7_wh6nd2jtq7zarPQ1PZ9jJNLtNCySLNCsUgnqS2SWAe2--3RhZSc5qbLC6YprFJpeLEpFqrJDSEMlKEBSfraG04GuoNhJmUGvIFriOmaJTpTBse0SQLMylDwvIAbS_-cKEqEnTbi-NcLJIh0L1wug_Qy1p07Jk_rhLaAKsR-SlEZNH_Etv1I8s4BKAnQFvOlOqL88mZraJjiTjudQU9POaHX7v7oh2gzYWtiSqATAXAZICCYRpHAXpR_wyub7_n5EM9mjkZlqRZwvl1MjZHjkPOrpPJIEmnlMB9Hnlbrx_atiZnhMPbbDuL_bsqRLf9zh08_nfR5-jWp_cd8XGv9-EJum2151e3NtFaOZnpp4D3SvnM-fVv2ApONg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+change+drives+a+shift+in+peatland+ecosystem+plant+community%3A+implications+for+ecosystem+function+and+stability&rft.jtitle=Global+change+biology&rft.au=Dieleman%2C+Catherine+M&rft.au=Branfireun%2C+Brian+A&rft.au=McLaughlin%2C+James+W&rft.au=Lindo%2C+Zo%C3%AB&rft.date=2015-01-01&rft.eissn=1365-2486&rft.volume=21&rft.issue=1&rft.spage=388&rft_id=info:doi/10.1111%2Fgcb.12643&rft_id=info%3Apmid%2F24957384&rft.externalDocID=24957384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |