Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability

The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected in...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 21; no. 1; pp. 388 - 395
Main Authors Dieleman, Catherine M, Branfireun, Brian A, McLaughlin, James W, Lindo, Zoë
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.01.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1354-1013
1365-2486
1365-2486
DOI10.1111/gcb.12643

Cover

Abstract The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO₂), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO₂had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
AbstractList The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO sub(2)), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 degree C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 degree C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 degree C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO sub(2) had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO 2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO 2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO₂), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO₂had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO₂), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO₂had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.
Author McLaughlin, James W.
Lindo, Zoë
Branfireun, Brian A.
Dieleman, Catherine M.
Author_xml – sequence: 1
  fullname: Dieleman, Catherine M
– sequence: 2
  fullname: Branfireun, Brian A
– sequence: 3
  fullname: McLaughlin, James W
– sequence: 4
  fullname: Lindo, Zoë
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24957384$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAYhSNURC-w4AXAEhtYpPU9DjuIYCiqQBWULi3HsacuSTzYTmHeHqczg1AFUr3xRd850vH5D4u90Y-mKJ4ieIzyOlnq9hhhTsmD4gARzkpMBd-bz4yWCCKyXxzGeA0hJBjyR8U-pjWriKAHxU3Tu0ElA_SVGpcGdMHdmAgUiFfOJuBGsDIq9WrsgNE-rmMyA1jlewLaD8M0urR-DU6HVe-0Ss6PEVgf_mLtNOr5HcwWManW9VnyuHhoVR_Nk-1-VFy8f_e1-VCefV6cNm_OSs0YIqVoeafbjtedrqgQvKIQKcwErWzbtUZQZWvcVYZiy1stiOXGaAYtoRXpYCfIUfFy47sK_sdkYpKDi9r0OYDxU5SI15QKSsl9UIo5wlBU90BJxXjNxOz64g567acw5swzxQmDHKNMPdtSUzuYTq5CLiWs5a6nDJxsAB18jMFYqV26_e8UlOslgnKeBJknQd5OQla8uqPYmf6L3br_dL1Z_x-Ui-btTlFuFC6X_OuPQoXvklc5vLz8tJD0_FKcf1t8lE3mn294q7xUy-CivPiCIWIQoppzRMlvX27aXw
CitedBy_id crossref_primary_10_1007_s10021_020_00526_3
crossref_primary_10_1016_j_ecoinf_2024_102772
crossref_primary_10_3390_plants14050743
crossref_primary_10_1111_gcb_13319
crossref_primary_10_1016_j_scitotenv_2020_143776
crossref_primary_10_1007_s00248_023_02289_5
crossref_primary_10_1007_s11368_017_1820_3
crossref_primary_10_3389_feart_2021_650662
crossref_primary_10_1002_lno_11978
crossref_primary_10_1016_j_ecoinf_2017_05_001
crossref_primary_10_1016_j_ecolind_2016_05_041
crossref_primary_10_1038_srep33907
crossref_primary_10_3390_microorganisms12071344
crossref_primary_10_1002_ece3_7592
crossref_primary_10_3389_fenvs_2023_1100443
crossref_primary_10_1080_15481603_2023_2267851
crossref_primary_10_1016_j_jhydrol_2022_127687
crossref_primary_10_3389_fpls_2016_01623
crossref_primary_10_1038_s41598_021_97698_2
crossref_primary_10_1016_j_catena_2019_02_027
crossref_primary_10_1098_rstb_2017_0395
crossref_primary_10_1016_j_agrformet_2023_109671
crossref_primary_10_3390_f15040713
crossref_primary_10_1007_s11104_020_04664_4
crossref_primary_10_1111_gcb_15753
crossref_primary_10_1111_gcb_14788
crossref_primary_10_1016_j_ecolind_2021_107367
crossref_primary_10_5194_gmd_15_1633_2022
crossref_primary_10_5194_bg_15_3937_2018
crossref_primary_10_1016_j_agrformet_2024_110261
crossref_primary_10_1007_s13157_021_01411_y
crossref_primary_10_1007_s11258_020_01037_w
crossref_primary_10_1038_s42003_019_0370_1
crossref_primary_10_1080_01431161_2024_2387133
crossref_primary_10_1007_s11104_016_2999_6
crossref_primary_10_3390_drones2040045
crossref_primary_10_1016_j_catena_2024_108191
crossref_primary_10_1139_er_2019_0064
crossref_primary_10_1002_ppp_2048
crossref_primary_10_1111_gcb_15865
crossref_primary_10_1007_s11769_016_0809_y
crossref_primary_10_1029_2019JG005339
crossref_primary_10_3390_atmos13010044
crossref_primary_10_1007_s10533_019_00590_5
crossref_primary_10_3390_w14172597
crossref_primary_10_3390_plants12203561
crossref_primary_10_1007_s10021_023_00820_w
crossref_primary_10_1007_s12374_017_0292_8
crossref_primary_10_14411_eje_2022_020
crossref_primary_10_3390_drones8030097
crossref_primary_10_1111_gcb_16904
crossref_primary_10_1007_s11104_023_06324_9
crossref_primary_10_1002_ece3_6057
crossref_primary_10_1007_s11104_023_06034_2
crossref_primary_10_1111_oik_07635
crossref_primary_10_1071_PC20040
crossref_primary_10_1016_j_soilbio_2023_109024
crossref_primary_10_1016_j_scitotenv_2018_01_162
crossref_primary_10_5194_bg_17_5693_2020
crossref_primary_10_1007_s10533_024_01116_4
crossref_primary_10_1051_itmconf_20182300030
crossref_primary_10_1016_j_geoderma_2016_09_028
crossref_primary_10_1016_j_soilbio_2017_08_026
crossref_primary_10_1016_j_ecolind_2022_109691
crossref_primary_10_1111_gcb_14715
crossref_primary_10_1111_gcb_15005
crossref_primary_10_1016_j_geoderma_2019_113890
crossref_primary_10_3390_insects13121147
crossref_primary_10_1016_j_agrformet_2022_109202
crossref_primary_10_1007_s10021_016_0035_6
crossref_primary_10_1002_eco_2503
crossref_primary_10_1016_j_soilbio_2024_109413
crossref_primary_10_1002_2017JG004361
crossref_primary_10_1016_j_pedobi_2020_150672
crossref_primary_10_1002_ecy_70040
crossref_primary_10_1098_rsos_170449
crossref_primary_10_1016_j_pedobi_2021_150772
crossref_primary_10_1007_s11676_019_00993_y
crossref_primary_10_1007_s10021_017_0159_3
crossref_primary_10_1007_s10021_021_00713_w
crossref_primary_10_1016_j_fmre_2022_09_025
crossref_primary_10_1016_j_scitotenv_2019_05_310
crossref_primary_10_5194_bg_21_3491_2024
crossref_primary_10_1016_j_soilbio_2018_01_029
crossref_primary_10_1016_j_jenvman_2021_112160
crossref_primary_10_1016_j_agee_2015_08_020
crossref_primary_10_3389_fevo_2022_1078104
crossref_primary_10_1007_s10021_016_0105_9
crossref_primary_10_1016_j_envexpbot_2022_105182
crossref_primary_10_1002_2016GB005471
crossref_primary_10_3389_frym_2020_00107
crossref_primary_10_1111_gcb_16003
crossref_primary_10_3389_feart_2021_631368
crossref_primary_10_3389_fpls_2022_1079283
crossref_primary_10_1016_j_jnc_2021_125994
crossref_primary_10_1111_nph_19772
crossref_primary_10_1002_ecs2_2619
crossref_primary_10_1016_j_scitotenv_2021_152077
crossref_primary_10_1071_WF21150
crossref_primary_10_1111_gcb_13763
crossref_primary_10_1111_gcb_14617
crossref_primary_10_1016_j_geoderma_2021_115074
crossref_primary_10_1002_edn3_281
crossref_primary_10_1016_j_biocon_2023_110332
crossref_primary_10_1007_s11356_018_2893_2
crossref_primary_10_1111_gcb_17203
crossref_primary_10_1111_gcb_16354
crossref_primary_10_1002_ajb2_16270
crossref_primary_10_1111_gcb_14057
crossref_primary_10_1016_j_soilbio_2015_09_003
crossref_primary_10_1016_j_agrformet_2017_12_248
crossref_primary_10_1016_j_soilbio_2017_01_005
crossref_primary_10_3389_fevo_2020_00207
crossref_primary_10_1016_j_apsoil_2024_105641
crossref_primary_10_1111_1365_2745_12413
crossref_primary_10_3390_atmos13010112
crossref_primary_10_1016_j_ecoleng_2017_06_047
crossref_primary_10_3390_w16081154
crossref_primary_10_1016_j_jenvman_2020_110636
crossref_primary_10_1111_ejss_13048
crossref_primary_10_1016_j_ecoinf_2025_103071
crossref_primary_10_1111_geb_13152
crossref_primary_10_1016_j_jenvman_2023_117783
crossref_primary_10_1016_j_ecolind_2024_112265
crossref_primary_10_2139_ssrn_4017537
crossref_primary_10_1016_j_envpol_2015_06_021
crossref_primary_10_1016_j_geoderma_2018_06_002
crossref_primary_10_1111_gcb_17182
crossref_primary_10_1016_j_foreco_2020_118735
crossref_primary_10_1111_jvs_12912
crossref_primary_10_1111_gcb_16651
crossref_primary_10_1016_j_catena_2021_105801
crossref_primary_10_1029_2024JG008041
crossref_primary_10_1007_s11676_024_01771_1
crossref_primary_10_1016_j_apsoil_2019_04_019
crossref_primary_10_1016_j_rse_2023_113921
crossref_primary_10_1088_1748_9326_acc194
crossref_primary_10_1016_j_scitotenv_2023_161859
crossref_primary_10_1016_j_scitotenv_2018_06_276
crossref_primary_10_1007_s10668_022_02767_9
crossref_primary_10_1093_femsle_fnaa172
crossref_primary_10_1111_gcb_14140
crossref_primary_10_5194_bg_16_4085_2019
crossref_primary_10_1016_j_catena_2020_104789
crossref_primary_10_1111_gcb_17408
crossref_primary_10_1016_j_quascirev_2016_07_013
crossref_primary_10_3390_ijgi9010020
crossref_primary_10_1080_20964129_2020_1806113
crossref_primary_10_1016_j_biocon_2017_08_025
crossref_primary_10_1007_s10661_018_6964_0
crossref_primary_10_1111_1365_2435_14480
crossref_primary_10_1016_j_foreco_2017_11_038
crossref_primary_10_1007_s11104_017_3291_0
crossref_primary_10_1016_j_pedobi_2019_150571
crossref_primary_10_1016_j_scitotenv_2016_08_020
crossref_primary_10_1111_gcb_16748
crossref_primary_10_1128_AEM_00241_21
crossref_primary_10_1007_s11104_016_3099_3
crossref_primary_10_1016_j_foreco_2017_10_017
crossref_primary_10_1111_nph_18755
crossref_primary_10_1016_j_cliser_2024_100498
crossref_primary_10_1080_11956860_2017_1412282
crossref_primary_10_5194_bg_20_2971_2023
crossref_primary_10_1007_s11104_021_05180_9
crossref_primary_10_1093_biosci_biab034
crossref_primary_10_1016_j_ecolind_2017_10_017
crossref_primary_10_1016_j_soilbio_2021_108501
crossref_primary_10_1016_j_ecolind_2022_109731
crossref_primary_10_1029_2024JG008511
crossref_primary_10_1111_1365_2745_12449
crossref_primary_10_1016_j_scitotenv_2022_154294
crossref_primary_10_1029_2022JG006923
crossref_primary_10_1007_s00248_016_0875_9
crossref_primary_10_1111_1365_2745_13411
crossref_primary_10_1139_facets_2022_0168
crossref_primary_10_3389_fenvs_2021_659953
crossref_primary_10_1016_j_scitotenv_2020_142111
crossref_primary_10_1016_j_ancene_2022_100347
crossref_primary_10_1007_s11104_018_3610_0
crossref_primary_10_1016_j_scitotenv_2019_05_072
crossref_primary_10_1007_s11104_015_2713_0
crossref_primary_10_1007_s12237_018_00490_1
crossref_primary_10_1111_gcb_13934
crossref_primary_10_1038_s41467_017_01350_5
crossref_primary_10_1016_j_ecolind_2021_108256
crossref_primary_10_1016_j_atmosenv_2017_01_049
crossref_primary_10_1016_j_ejrh_2022_101078
crossref_primary_10_1088_1748_9326_abc4fb
crossref_primary_10_1002_ldr_4842
crossref_primary_10_1016_j_quascirev_2020_106180
crossref_primary_10_1111_gcb_14465
crossref_primary_10_1007_s10533_016_0214_8
crossref_primary_10_3390_rs11141685
crossref_primary_10_1016_j_aquabot_2018_03_004
crossref_primary_10_1111_gcb_17603
crossref_primary_10_1111_nph_18601
crossref_primary_10_1002_ece3_8303
crossref_primary_10_1016_j_quascirev_2023_108466
crossref_primary_10_1371_journal_pone_0159043
crossref_primary_10_1098_rspb_2023_2622
crossref_primary_10_1016_j_jclepro_2023_136905
crossref_primary_10_1007_s11104_022_05346_z
crossref_primary_10_1007_s41207_019_0136_7
crossref_primary_10_3389_ffgc_2023_1170252
crossref_primary_10_1016_j_apsoil_2021_104252
Cites_doi 10.2307/1942268
10.1046/j.1365-2486.2001.00433.x
10.1890/06-0539
10.1111/j.1461-0248.2008.01160.x
10.1016/S0034-6667(96)00018-8
10.1007/s11273-013-9320-8
10.1111/gcb.12075
10.1029/2006GB002715
10.1038/ngeo1323
10.1111/j.1469-8137.2012.04254.x
10.1007/s00374-009-0406-7
10.1126/science.1237190
10.1111/j.1461-0248.2005.00877.x
10.1016/j.baae.2008.05.005
10.1002/eco.1493
10.1007/s10533-010-9444-3
10.2136/sssaj2009.0111
10.1038/35023137
10.1111/1365-2745.12025
10.1139/f95-059
10.1016/0169-5347(95)90007-1
10.1139/b93-002
10.1639/0007-2745(2002)105[0096:ROPMTB]2.0.CO;2
10.1038/nclimate1781
10.1007/s11258-007-9309-6
10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2
10.2307/3547057
10.1080/17550874.2010.487548
10.1111/gcb.12328
10.1007/s00442-008-0963-8
10.1007/BF02883146
10.1080/01490459709378054
10.1007/BF03161761
10.2307/1552080
10.1890/13-0270.1
10.1023/A:1020368130679
10.1002/(SICI)1099-1085(19970630)11:8<873::AID-HYP510>3.0.CO;2-6
10.1021/es061765v
10.1111/gcb.12202
10.1034/j.1600-0706.2003.12170.x
10.2307/1941811
10.2307/2963492
10.1016/0144-8617(91)90028-B
10.1007/s11273-012-9280-4
10.5194/bg-5-1475-2008
10.1639/05
10.1126/science.1136401
10.1111/ele.12088
10.1007/s10021-010-9349-y
10.1126/science.1174268
10.1002/j.1537-2197.1996.tb13908.x
ContentType Journal Article
Copyright 2014 John Wiley & Sons Ltd
2014 John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: 2014 John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
7S9
L.6
DOI 10.1111/gcb.12643
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts

MEDLINE
CrossRef
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 395
ExternalDocumentID 3527165041
24957384
10_1111_gcb_12643
GCB12643
ark_67375_WNG_4QW8QVGJ_C
US201500196614
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canada Research Chairs program
– fundername: Discovery Grant program
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
BSCLL
AEUQT
AFPWT
ESX
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
7S9
L.6
ID FETCH-LOGICAL-c5513-8b6dcbd69dc748867401a25847fbdbe84af92d7e42f6bc83f6eec50f3473d0d83
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:30:42 EDT 2025
Thu Jul 10 18:00:55 EDT 2025
Fri Jul 11 12:22:01 EDT 2025
Fri Jul 25 11:03:29 EDT 2025
Thu Apr 03 07:04:30 EDT 2025
Tue Jul 01 03:52:52 EDT 2025
Thu Apr 24 23:05:52 EDT 2025
Wed Jan 22 16:53:30 EST 2025
Tue Sep 09 05:32:08 EDT 2025
Thu Apr 03 09:43:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords carbon dioxide
poor fen
peatland
temperature
water table
Carex
Sphagnum
climate change
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5513-8b6dcbd69dc748867401a25847fbdbe84af92d7e42f6bc83f6eec50f3473d0d83
Notes http://dx.doi.org/10.1111/gcb.12643
Natural Sciences and Engineering Research Council of Canada
ark:/67375/WNG-4QW8QVGJ-C
ArticleID:GCB12643
Discovery Grant program
Canada Research Chairs program
istex:E9490A571E806A54F241E253E3F0BF982BF26BAD
Table S1. A summary of the plant species observed throughout the 12 month study. The average frequency describes the average number of mesocosms (n = 84 total) which contained the associated species throughout the experiment. The average abundance/percent cover describes the average number of individual or cover which was observed across all mesocosms for a species. The presence of Vaccinium oxycoccos L., Carex disperma Dewey, Sphagnum spp., Gaultheria hispidula (L.) Muhl. ex Bigelow, and Campylium stellatum var. stellatum (Hedw.) were all recorded in terms of percent cover. All remaining species were monitored by changes in abundance.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24957384
PQID 1636350621
PQPubID 30327
PageCount 8
ParticipantIDs proquest_miscellaneous_1694484438
proquest_miscellaneous_1642612087
proquest_miscellaneous_1637569588
proquest_journals_1636350621
pubmed_primary_24957384
crossref_citationtrail_10_1111_gcb_12643
crossref_primary_10_1111_gcb_12643
wiley_primary_10_1111_gcb_12643_GCB12643
istex_primary_ark_67375_WNG_4QW8QVGJ_C
fao_agris_US201500196614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2015
Publisher Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
References Bragazza L, Iacumin P (2009) Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition. Biology and Fertility of Soils, 46, 73-77.
Legasy K (1995) Forest Plants of Northeastern Ontario. Lone Pine Publishing, Edmonton.
Vitt DH, Bayley SE, Jin T-L (1995) Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Canadian Journal of Fisheries and Aquatic Sciences, 52, 587-606.
Kuhry P (1997) The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Review of Palaeobotany and Palynology, 96, 183-224.
Menéndez R, Megías AG, Hill JK et al. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470.
Thormann M, Szumigalski A, Bayley S (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands, 19, 305-317.
van Breemen N (1995) How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10, 270-275.
Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. American Journal of Botany, 83, 1241-1254.
Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007) Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science & Technology, 41, 3146-3152.
Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. 2014. Hydrological feedbacks in northern peatlands. Ecohydrology, doi: 10.1002/eco.1493.
Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia, 156, 155-167.
Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila E-S (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytologist, 196, 49-67.
Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiology Journal, 14, 299-316.
Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2013) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology, 95, 123-131.
Limpens J, Berendse F, Blodau C et al. (2008) Peatlands and the carbon cycle: from local processes to global implications - a synthesis. Biogeosciences, 5, 1475-1491.
Painter TJ (1991) Lindow man, tollund man and other peat-bog bodies: the preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers, 15, 123-142.
Eppinga M, Rietkerk M, Wassen M, de Ruiter P (2009) Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecology, 200, 53-68.
Heijmans MPD, Klees H, de Visser W, Berendse F (2002) Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecology, 162, 123-134.
Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81, 3464-3478.
Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522.
Rochefort L, Isselin-Nondedeu F, Boudreau S, Poulin M (2013) Comparing survey methods for monitoring vegetation change through time in a restored peatland. Wetlands Ecology and Management, 21, 71-85.
Breeuwer A, Robroek BM, Limpens J, Heijmans MPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 10, 330-339.
Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106, 395-409.
Molau U (2010) Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology & Diversity, 3, 29-34.
Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
Larmola T, Bubier JL, Kobyljanec C et al. (2013) Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19, 3729-3739.
Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science, 341, 504-508.
Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE (1993) Development of Sphagnum-dominated peatlands in boreal continental Canada. Canadian Journal of Botany, 71, 10-22.
Webster KL, McLaughlin JW (2010) Importance of the water table in controlling dissolved carbon along a fen nutrient gradient. Soil Science Society of America Journal, 74, 2254-2266.
Dise NB (2009) Peatland response to global change. Science, 326, 810-811.
Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2010) Field simulation of global change: transplanting northern bog mesocosms southward. Ecosystems, 13, 712-726.
Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecology Letters, 9, 311-318.
Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273-277.
de Mazancourt C, Isbell F, Larocque A et al. (2013) Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 16, 617-625.
Sutherland WJ, Freckleton RP, Godfray HCJ et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.
Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science, 315, 640-642.
Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos, 81, 368-388.
Guttal V, Jayaprakash C (2008) Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters, 11, 450-460.
Malmer N, Svensson B, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica, 29, 483-496.
Heijmans MPD, van der Knaap YAM, Holmgren M, Limpens J (2013) Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology, 19, 2240-2250.
Berendse F, van Breemen N, Rydin H et al. (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7, 591-598.
Klinger LF (1996) The myth of the classic hydrosere model of bog succession. Arctic and Alpine Research, 28, 1-9.
Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry, 103, 45-57.
Malmer N, Albinsson C, Svensson BM, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos, 100, 469-482.
Newmaster SG, Harris AG, Kershaw LJ (1997) Wetland Plants of Ontario. Lone Pine Publishing, Edmonton.
Faubert P, Rochefort L (2002) Response of peatland mosses to burial by wind-dispersed peat. The Bryologist, 105, 96-103.
Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nature Geoscience, 4, 895-900.
Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978-981.
Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochemical Cycles, 21, GB1007.
Jassey VEJ, Chiapusio G, Binet P et al. (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Global Change Biology, 19, 811-823.
Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325-349.
Rouse WR, Douglas MSV, Hecky RE et al. (1997) Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes, 11, 873-902.
Ballantyne D, Hribljan J, Pypker T, Chimner R (2013) Long-term water table manipulations alter peatland gaseous carbon fluxes in northern Michigan. Wetlands Ecology and Management, 22, 35-47.
2009; 46
2013; 3
2010; 13
1991; 15
2013; 22
2013; 21
1998; 81
2008; 5
1994; 29
2013; 19
1996; 28
2009; 10
2013; 16
1997; 11
1993; 71
1999; 19
1997; 96
2013; 95
1997; 14
2000; 406
2009; 200
2002; 105
2008; 156
2010; 3
2007; 21
2010; 74
2009; 326
1996; 66
1995; 52
1991; 1
2006; 9
1995; 10
2006; 273
2013; 101
1997
2007
1995
2008; 11
2013; 341
2011; 4
2011; 103
2012; 196
2003; 106
2007; 315
2001; 7
2002; 162
1996; 83
2000; 81
2014
2007; 41
1957; 27
2003; 100
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_30_1
Newmaster SG (e_1_2_6_40_1) 1997
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
IPCC (e_1_2_6_24_1) 2007
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
Legasy K (e_1_2_6_32_1) 1995
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecology Letters, 9, 311-318.
– reference: de Mazancourt C, Isbell F, Larocque A et al. (2013) Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 16, 617-625.
– reference: Malmer N, Albinsson C, Svensson BM, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos, 100, 469-482.
– reference: Rouse WR, Douglas MSV, Hecky RE et al. (1997) Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes, 11, 873-902.
– reference: Heijmans MPD, van der Knaap YAM, Holmgren M, Limpens J (2013) Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology, 19, 2240-2250.
– reference: Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochemical Cycles, 21, GB1007.
– reference: Limpens J, Berendse F, Blodau C et al. (2008) Peatlands and the carbon cycle: from local processes to global implications - a synthesis. Biogeosciences, 5, 1475-1491.
– reference: Breeuwer A, Robroek BM, Limpens J, Heijmans MPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 10, 330-339.
– reference: Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81, 3464-3478.
– reference: Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE (1993) Development of Sphagnum-dominated peatlands in boreal continental Canada. Canadian Journal of Botany, 71, 10-22.
– reference: Dise NB (2009) Peatland response to global change. Science, 326, 810-811.
– reference: Kuhry P (1997) The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Review of Palaeobotany and Palynology, 96, 183-224.
– reference: Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522.
– reference: Painter TJ (1991) Lindow man, tollund man and other peat-bog bodies: the preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers, 15, 123-142.
– reference: Rochefort L, Isselin-Nondedeu F, Boudreau S, Poulin M (2013) Comparing survey methods for monitoring vegetation change through time in a restored peatland. Wetlands Ecology and Management, 21, 71-85.
– reference: Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science, 315, 640-642.
– reference: Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325-349.
– reference: Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273-277.
– reference: Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. 2014. Hydrological feedbacks in northern peatlands. Ecohydrology, doi: 10.1002/eco.1493.
– reference: Klinger LF (1996) The myth of the classic hydrosere model of bog succession. Arctic and Alpine Research, 28, 1-9.
– reference: Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007) Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science & Technology, 41, 3146-3152.
– reference: Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila E-S (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytologist, 196, 49-67.
– reference: Eppinga M, Rietkerk M, Wassen M, de Ruiter P (2009) Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecology, 200, 53-68.
– reference: Bragazza L, Iacumin P (2009) Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition. Biology and Fertility of Soils, 46, 73-77.
– reference: Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science, 341, 504-508.
– reference: Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nature Geoscience, 4, 895-900.
– reference: Guttal V, Jayaprakash C (2008) Changing skewness: an early warning signal of regime shifts in ecosystems. Ecology Letters, 11, 450-460.
– reference: Heijmans MPD, Klees H, de Visser W, Berendse F (2002) Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecology, 162, 123-134.
– reference: Berendse F, van Breemen N, Rydin H et al. (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7, 591-598.
– reference: Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry, 103, 45-57.
– reference: Webster KL, McLaughlin JW (2010) Importance of the water table in controlling dissolved carbon along a fen nutrient gradient. Soil Science Society of America Journal, 74, 2254-2266.
– reference: Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos, 81, 368-388.
– reference: Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978-981.
– reference: Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. American Journal of Botany, 83, 1241-1254.
– reference: Molau U (2010) Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology & Diversity, 3, 29-34.
– reference: Vitt DH, Bayley SE, Jin T-L (1995) Seasonal variation in water chemistry over a bog-rich fen gradient in continental western Canada. Canadian Journal of Fisheries and Aquatic Sciences, 52, 587-606.
– reference: Menéndez R, Megías AG, Hill JK et al. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470.
– reference: Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiology Journal, 14, 299-316.
– reference: Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2010) Field simulation of global change: transplanting northern bog mesocosms southward. Ecosystems, 13, 712-726.
– reference: Legasy K (1995) Forest Plants of Northeastern Ontario. Lone Pine Publishing, Edmonton.
– reference: Ballantyne D, Hribljan J, Pypker T, Chimner R (2013) Long-term water table manipulations alter peatland gaseous carbon fluxes in northern Michigan. Wetlands Ecology and Management, 22, 35-47.
– reference: van Breemen N (1995) How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10, 270-275.
– reference: Larmola T, Bubier JL, Kobyljanec C et al. (2013) Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19, 3729-3739.
– reference: Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106, 395-409.
– reference: Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
– reference: Newmaster SG, Harris AG, Kershaw LJ (1997) Wetland Plants of Ontario. Lone Pine Publishing, Edmonton.
– reference: Thormann M, Szumigalski A, Bayley S (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands, 19, 305-317.
– reference: Malmer N, Svensson B, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica, 29, 483-496.
– reference: Sutherland WJ, Freckleton RP, Godfray HCJ et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.
– reference: Breeuwer A, Heijmans MPD, Robroek BM, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia, 156, 155-167.
– reference: Faubert P, Rochefort L (2002) Response of peatland mosses to burial by wind-dispersed peat. The Bryologist, 105, 96-103.
– reference: Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2013) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology, 95, 123-131.
– reference: Jassey VEJ, Chiapusio G, Binet P et al. (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Global Change Biology, 19, 811-823.
– volume: 19
  start-page: 305
  year: 1999
  end-page: 317
  article-title: Aboveground peat and carbon accumulation potentials along a bog‐fen‐marsh wetland gradient in southern boreal Alberta, Canada
  publication-title: Wetlands
– volume: 71
  start-page: 10
  year: 1993
  end-page: 22
  article-title: Development of ‐dominated peatlands in boreal continental Canada
  publication-title: Canadian Journal of Botany
– volume: 106
  start-page: 395
  year: 2003
  end-page: 409
  article-title: The role of bryophytes in carbon and nitrogen cycling
  publication-title: The Bryologist
– volume: 9
  start-page: 311
  year: 2006
  end-page: 318
  article-title: Rising variance: a leading indicator of ecological transition
  publication-title: Ecology Letters
– volume: 15
  start-page: 123
  year: 1991
  end-page: 142
  article-title: Lindow man, tollund man and other peat‐bog bodies: the preservative and antimicrobial action of , a reactive glycuronoglycan with tanning and sequestering properties
  publication-title: Carbohydrate Polymers
– volume: 315
  start-page: 640
  year: 2007
  end-page: 642
  article-title: Species interactions reverse grassland responses to changing climate
  publication-title: Science
– volume: 1
  start-page: 182
  year: 1991
  end-page: 195
  article-title: Northern peatlands: role in the carbon cycle and probable responses to climatic warming
  publication-title: Ecological Applications
– volume: 156
  start-page: 155
  year: 2008
  end-page: 167
  article-title: The effect of temperature on growth and competition between species
  publication-title: Oecologia
– volume: 105
  start-page: 96
  year: 2002
  end-page: 103
  article-title: Response of peatland mosses to burial by wind‐dispersed peat
  publication-title: The Bryologist
– volume: 4
  start-page: 895
  year: 2011
  end-page: 900
  article-title: Drought‐induced carbon loss in peatlands
  publication-title: Nature Geoscience
– volume: 19
  start-page: 811
  year: 2013
  end-page: 823
  article-title: Above‐ and belowground linkages in peatland: climate warming affects plant‐microbial interactions
  publication-title: Global Change Biology
– volume: 196
  start-page: 49
  year: 2012
  end-page: 67
  article-title: The resilience and functional role of moss in boreal and arctic ecosystems
  publication-title: New Phytologist
– volume: 83
  start-page: 1241
  year: 1996
  end-page: 1254
  article-title: Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes
  publication-title: American Journal of Botany
– volume: 46
  start-page: 73
  year: 2009
  end-page: 77
  article-title: Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition
  publication-title: Biology and Fertility of Soils
– volume: 406
  start-page: 978
  year: 2000
  end-page: 981
  article-title: Acclimation of ecosystem CO exchange in the Alaskan Arctic in response to decadal climate warming
  publication-title: Nature
– volume: 22
  start-page: 35
  year: 2013
  end-page: 47
  article-title: Long‐term water table manipulations alter peatland gaseous carbon fluxes in northern Michigan
  publication-title: Wetlands Ecology and Management
– year: 1997
– volume: 41
  start-page: 3146
  year: 2007
  end-page: 3152
  article-title: Interactions between elevated CO and warming could amplify DOC exports from peatland catchments
  publication-title: Environmental Science & Technology
– volume: 10
  start-page: 330
  year: 2009
  end-page: 339
  article-title: Decreased summer water table depth affects peatland vegetation
  publication-title: Basic and Applied Ecology
– volume: 5
  start-page: 1475
  year: 2008
  end-page: 1491
  article-title: Peatlands and the carbon cycle: from local processes to global implications – a synthesis
  publication-title: Biogeosciences
– volume: 341
  start-page: 504
  year: 2013
  end-page: 508
  article-title: The future of species under climate change: resilience or decline?
  publication-title: Science
– volume: 95
  start-page: 123
  year: 2013
  end-page: 131
  article-title: Plant functional types define magnitude of drought response in peatland CO exchange
  publication-title: Ecology
– volume: 273
  start-page: 1465
  year: 2006
  end-page: 1470
  article-title: Species richness changes lag behind climate change
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 14
  start-page: 299
  year: 1997
  end-page: 316
  article-title: Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat
  publication-title: Geomicrobiology Journal
– volume: 19
  start-page: 2240
  year: 2013
  end-page: 2250
  article-title: Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events
  publication-title: Global Change Biology
– volume: 13
  start-page: 712
  year: 2010
  end-page: 726
  article-title: Field simulation of global change: transplanting northern bog mesocosms southward
  publication-title: Ecosystems
– volume: 162
  start-page: 123
  year: 2002
  end-page: 134
  article-title: Response of a bog plant community to elevated CO and N supply
  publication-title: Plant Ecology
– volume: 21
  start-page: GB1007
  year: 2007
  article-title: Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment
  publication-title: Global Biogeochemical Cycles
– volume: 11
  start-page: 873
  year: 1997
  end-page: 902
  article-title: Effects of climate change on the freshwaters of Arctic and subarctic North America
  publication-title: Hydrological Processes
– year: 2007
– volume: 3
  start-page: 29
  year: 2010
  end-page: 34
  article-title: Long‐term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden
  publication-title: Plant Ecology & Diversity
– volume: 74
  start-page: 2254
  year: 2010
  end-page: 2266
  article-title: Importance of the water table in controlling dissolved carbon along a fen nutrient gradient
  publication-title: Soil Science Society of America Journal
– year: 2014
  article-title: Hydrological feedbacks in northern peatlands
  publication-title: Ecohydrology
– volume: 81
  start-page: 368
  year: 1998
  end-page: 388
  article-title: Carbon accumulation in peatland
  publication-title: Oikos
– volume: 7
  start-page: 591
  year: 2001
  end-page: 598
  article-title: Raised atmospheric CO levels and increased N deposition cause shifts in plant species composition and production in bogs
  publication-title: Global Change Biology
– volume: 52
  start-page: 587
  year: 1995
  end-page: 606
  article-title: Seasonal variation in water chemistry over a bog‐rich fen gradient in continental western Canada
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 28
  start-page: 1
  year: 1996
  end-page: 9
  article-title: The myth of the classic hydrosere model of bog succession
  publication-title: Arctic and Alpine Research
– volume: 16
  start-page: 617
  year: 2013
  end-page: 625
  article-title: Predicting ecosystem stability from community composition and biodiversity
  publication-title: Ecology Letters
– volume: 326
  start-page: 810
  year: 2009
  end-page: 811
  article-title: Peatland response to global change
  publication-title: Science
– volume: 200
  start-page: 53
  year: 2009
  end-page: 68
  article-title: Linking habitat modification to catastrophic shifts and vegetation patterns in bogs
  publication-title: Plant Ecology
– volume: 11
  start-page: 450
  year: 2008
  end-page: 460
  article-title: Changing skewness: an early warning signal of regime shifts in ecosystems
  publication-title: Ecology Letters
– volume: 101
  start-page: 58
  year: 2013
  end-page: 67
  article-title: Identification of 100 fundamental ecological questions
  publication-title: Journal of Ecology
– volume: 103
  start-page: 45
  year: 2011
  end-page: 57
  article-title: Cell‐wall polysaccharides play an important role in decay resistance of and actively depressed decomposition
  publication-title: Biogeochemistry
– volume: 96
  start-page: 183
  year: 1997
  end-page: 224
  article-title: The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico‐chemical properties
  publication-title: Review of Palaeobotany and Palynology
– volume: 100
  start-page: 469
  year: 2003
  end-page: 482
  article-title: Interferences between and vascular plants: effects on plant community structure and peat formation
  publication-title: Oikos
– volume: 66
  start-page: 503
  year: 1996
  end-page: 522
  article-title: Temperature and plant species control over litter decomposition in Alaskan tundra
  publication-title: Ecological Monographs
– volume: 3
  start-page: 273
  year: 2013
  end-page: 277
  article-title: Biogeochemical plant‐soil microbe feedback in response to climate warming in peatlands
  publication-title: Nature Climate Change
– volume: 10
  start-page: 270
  year: 1995
  end-page: 275
  article-title: How bogs down other plants
  publication-title: Trends in Ecology & Evolution
– volume: 19
  start-page: 3729
  year: 2013
  end-page: 3739
  article-title: Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog
  publication-title: Global Change Biology
– year: 1995
– volume: 81
  start-page: 3464
  year: 2000
  end-page: 3478
  article-title: Response of bog and fen plant communities to warming and water‐table manipulations
  publication-title: Ecology
– volume: 29
  start-page: 483
  year: 1994
  end-page: 496
  article-title: Interactions between mosses and field layer vascular plants in the development of peat‐forming systems
  publication-title: Folia Geobotanica et Phytotaxonomica
– volume: 27
  start-page: 325
  year: 1957
  end-page: 349
  article-title: An ordination of the upland forest communities of southern Wisconsin
  publication-title: Ecological Monographs
– volume: 21
  start-page: 71
  year: 2013
  end-page: 85
  article-title: Comparing survey methods for monitoring vegetation change through time in a restored peatland
  publication-title: Wetlands Ecology and Management
– ident: e_1_2_6_6_1
  doi: 10.2307/1942268
– ident: e_1_2_6_3_1
  doi: 10.1046/j.1365-2486.2001.00433.x
– ident: e_1_2_6_37_1
  doi: 10.1890/06-0539
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1461-0248.2008.01160.x
– ident: e_1_2_6_28_1
  doi: 10.1016/S0034-6667(96)00018-8
– ident: e_1_2_6_2_1
  doi: 10.1007/s11273-013-9320-8
– volume-title: Forest Plants of Northeastern Ontario
  year: 1995
  ident: e_1_2_6_32_1
– ident: e_1_2_6_25_1
  doi: 10.1111/gcb.12075
– ident: e_1_2_6_45_1
  doi: 10.1029/2006GB002715
– ident: e_1_2_6_16_1
  doi: 10.1038/ngeo1323
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1469-8137.2012.04254.x
– ident: e_1_2_6_4_1
  doi: 10.1007/s00374-009-0406-7
– ident: e_1_2_6_39_1
  doi: 10.1126/science.1237190
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1461-0248.2005.00877.x
– ident: e_1_2_6_9_1
  doi: 10.1016/j.baae.2008.05.005
– ident: e_1_2_6_52_1
  doi: 10.1002/eco.1493
– ident: e_1_2_6_20_1
  doi: 10.1007/s10533-010-9444-3
– ident: e_1_2_6_53_1
  doi: 10.2136/sssaj2009.0111
– ident: e_1_2_6_41_1
  doi: 10.1038/35023137
– ident: e_1_2_6_46_1
  doi: 10.1111/1365-2745.12025
– ident: e_1_2_6_51_1
  doi: 10.1139/f95-059
– ident: e_1_2_6_7_1
  doi: 10.1016/0169-5347(95)90007-1
– ident: e_1_2_6_29_1
  doi: 10.1139/b93-002
– ident: e_1_2_6_15_1
  doi: 10.1639/0007-2745(2002)105[0096:ROPMTB]2.0.CO;2
– ident: e_1_2_6_5_1
  doi: 10.1038/nclimate1781
– ident: e_1_2_6_14_1
  doi: 10.1007/s11258-007-9309-6
– ident: e_1_2_6_54_1
  doi: 10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2
– ident: e_1_2_6_12_1
  doi: 10.2307/3547057
– ident: e_1_2_6_38_1
  doi: 10.1080/17550874.2010.487548
– ident: e_1_2_6_31_1
  doi: 10.1111/gcb.12328
– ident: e_1_2_6_8_1
  doi: 10.1007/s00442-008-0963-8
– ident: e_1_2_6_34_1
  doi: 10.1007/BF02883146
– volume-title: Wetland Plants of Ontario
  year: 1997
  ident: e_1_2_6_40_1
– ident: e_1_2_6_55_1
  doi: 10.1080/01490459709378054
– ident: e_1_2_6_48_1
  doi: 10.1007/BF03161761
– volume-title: Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_6_24_1
– ident: e_1_2_6_26_1
  doi: 10.2307/1552080
– ident: e_1_2_6_30_1
  doi: 10.1890/13-0270.1
– ident: e_1_2_6_21_1
  doi: 10.1023/A:1020368130679
– ident: e_1_2_6_44_1
  doi: 10.1002/(SICI)1099-1085(19970630)11:8<873::AID-HYP510>3.0.CO;2-6
– ident: e_1_2_6_17_1
  doi: 10.1021/es061765v
– ident: e_1_2_6_22_1
  doi: 10.1111/gcb.12202
– ident: e_1_2_6_35_1
  doi: 10.1034/j.1600-0706.2003.12170.x
– ident: e_1_2_6_18_1
  doi: 10.2307/1941811
– ident: e_1_2_6_23_1
  doi: 10.2307/2963492
– ident: e_1_2_6_42_1
  doi: 10.1016/0144-8617(91)90028-B
– ident: e_1_2_6_43_1
  doi: 10.1007/s11273-012-9280-4
– ident: e_1_2_6_33_1
  doi: 10.5194/bg-5-1475-2008
– ident: e_1_2_6_49_1
  doi: 10.1639/05
– ident: e_1_2_6_47_1
  doi: 10.1126/science.1136401
– ident: e_1_2_6_36_1
  doi: 10.1111/ele.12088
– ident: e_1_2_6_10_1
  doi: 10.1007/s10021-010-9349-y
– ident: e_1_2_6_13_1
  doi: 10.1126/science.1174268
– ident: e_1_2_6_27_1
  doi: 10.1002/j.1537-2197.1996.tb13908.x
SSID ssj0003206
Score 2.5572102
Snippet The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 388
SubjectTerms Analysis of Variance
Biodiversity
botanical composition
Carbon dioxide
Carbon Dioxide - metabolism
Carex
Climate Change
Climate effects
Climatic conditions
Community composition
Community structure
Ecological function
Ecosystem
Ecosystems
Fens
graminoids
Groundwater
High temperature
Hydrogen-Ion Concentration
Models, Biological
Peat
peatland
Peatlands
Plant communities
Plant species
poor fen
Pore water
Species Specificity
Sphagnopsida - physiology
Sphagnum
synergism
Synergistic effect
Temperature
variance
Water table
Title Climate change drives a shift in peatland ecosystem plant community: Implications for ecosystem function and stability
URI https://api.istex.fr/ark:/67375/WNG-4QW8QVGJ-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12643
https://www.ncbi.nlm.nih.gov/pubmed/24957384
https://www.proquest.com/docview/1636350621
https://www.proquest.com/docview/1637569588
https://www.proquest.com/docview/1642612087
https://www.proquest.com/docview/1694484438
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbGJCReGBTGAgMZhKa9tEpiJ3bgCcrWMWmTBpTtAcmKHWdUm9KqTRHl13Nnp1mHxoR4i9NLlFzvzt855-8IeS2NNbHBRXcR8i7PI3CpUpuuMSUzBhIA7Yi0j47TgyE_PEvO1sjb5V4Yzw_RLrihZ7h4jQ6e69mKk58b3YtgOkemz4ilyJv_4dMVdRSLXV_NiCUcQk3EGlYhrOJpr7w2F90p8zEgVFTuz5vg5nX06qaf_Q3ybfngvurkojevdc_8-oPT8T_f7AG538BS-s7b0UOyZqsOuesbVS46ZHPvaj8ciDUBYdYhwRGA7vHUidEd2r8cAQJ2o0fkhx9Z6jcX02KKFLc0p7Pvo7Kmo4pOYCLAykoKObCnlKYTGNfU-G0r9eIN_bhS8k4BYa_I4pyM5yneAlCuq_NdPCbD_b0v_YNu0-aha7C7TFfqtDC6SLPCCAgnKfYIzGP8fFvqQlvJ8zKLC2F5XKbaSFam1pokLBkXrAgLyTbJejWu7BahQmsL6YK0kTA8ymxmSxnxJAszrUMm8oDsLv9wZRoOdGzFcamWuRDoXjndB-RVKzrxxB83CW2B1aj8HAKyGn6OcfkICYcA8wRkx5lSe3E-vcAiOpGo0-OB4ien8uTr4FD1A7K9tDXVxI-ZApQMSDBM4yggL9ufwfPxc05e2fHcyYgkzRIpb5PBFDkOpbhNJoMcnXMG93nibb19aOxMLpiEt9l1Fvt3VahB_707ePrvos_IPVSZX9HaJuv1dG6fA8ar9QvnzL8BahlLaA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQvfAzGAgMMQtNeWiWxEzuIFyhbu7FWGqxsL8iKHWdUm9qqTRHlr-fOSbMOjQnxFqeXKLnex-8u5ztC3khjTWgw6S583uBpACqVa9MwJmfGQACgXSPtbi_u9PnBaXS6Qt4t9sKU_SHqhBtqhrPXqOCYkF7S8jOjmwH4c7ZKbnEAGhh6ffx82TyKhW6yZsAiDsYmYFVfIazjqS-94o1W83QEGBXZ-_M6wHkVvzoHtHeffFs8ell3ct6cFbppfv3R1fF_3-0BuVchU_q-FKWHZMUO18ntclblfJ1s7F5uiQOyyiZM14nXBdw9mjgyuk1bFwMAwW71iPwoV5aW-4tpNsEutzSl0--DvKCDIR2DL8DiSgphcNlVmo5hXVBT7lwp5m_p_lLVOwWQvUSLbhnPU7wFAF1X6jt_TPp7u8etTqOa9NAwOGCmIXWcGZ3FSWYEWJQYxwSmIX7BzXWmreRpnoSZsDzMY20ky2NrTeTnjAuW-ZlkG2RtOBraTUKF1hYiBmkDYXiQ2MTmMuBR4ida-0ykHtlZ_OPKVG3QcRrHhVqEQ8B75Xjvkdc16bjs_XEd0SaIjUrPwCar_pcQM0jYcwhgj0e2nSzVF6eTc6yjE5E66bUVPzqRR1_bB6rlka2FsKnKhEwVAGUAg34cBh55Vf8Myo9fdNKhHc0cjYjiJJLyJhqMkkNfiptoEgjTOWdwnyelsNcPjcPJBZPwNjtOZP_OCtVufXAHT_-d9CW50znuHqrD_d6nZ-Qusq9McG2RtWIys88B8hX6hdPs3wd9T4c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa2IRAv_CiMBQYYhKa9tEpiJ3bgCcrabbCKwcr2gGTFjj2qTW3Vpojy13O206xDY0K8xeklSq535--c83cIveJKq1jZRXcW0ibNI3ApI1VTKUOUggRAOiLtg16626f7J8nJCnqz2Avj-SHqBTfrGS5eWwcfF2bJyU-VbEUwnZNVdIOmgCQsIvp8wR1FYtdYMyIJhVgTkYpWyJbx1JdemoxWTT4CiGq1-_MqvHkZvrr5p3MXfVs8uS87OWvNStlSv_4gdfzPV7uH7lS4FL_1hnQfrehhA930nSrnDbS-c7EhDsSqiDBtoOAAUPdo4sTwFm6fDwACu9ED9MOPNPa7i3ExsRy3OMfT7wNT4sEQj2EmsKWVGJJgzymNxzAusfL7Vsr5a7y3VPOOAWIvydpJ2Z7H9hYAc12h7_wh6nd2jtq7zarPQ1PZ9jJNLtNCySLNCsUgnqS2SWAe2--3RhZSc5qbLC6YprFJpeLEpFqrJDSEMlKEBSfraG04GuoNhJmUGvIFriOmaJTpTBse0SQLMylDwvIAbS_-cKEqEnTbi-NcLJIh0L1wug_Qy1p07Jk_rhLaAKsR-SlEZNH_Etv1I8s4BKAnQFvOlOqL88mZraJjiTjudQU9POaHX7v7oh2gzYWtiSqATAXAZICCYRpHAXpR_wyub7_n5EM9mjkZlqRZwvl1MjZHjkPOrpPJIEmnlMB9Hnlbrx_atiZnhMPbbDuL_bsqRLf9zh08_nfR5-jWp_cd8XGv9-EJum2151e3NtFaOZnpp4D3SvnM-fVv2ApONg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+change+drives+a+shift+in+peatland+ecosystem+plant+community%3A+implications+for+ecosystem+function+and+stability&rft.jtitle=Global+change+biology&rft.au=Dieleman%2C+Catherine+M&rft.au=Branfireun%2C+Brian+A&rft.au=McLaughlin%2C+James+W&rft.au=Lindo%2C+Zo%C3%AB&rft.date=2015-01-01&rft.eissn=1365-2486&rft.volume=21&rft.issue=1&rft.spage=388&rft_id=info:doi/10.1111%2Fgcb.12643&rft_id=info%3Apmid%2F24957384&rft.externalDocID=24957384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon