The relationship between Insulin-like Growth Factor 1, sex steroids and timing of the pubertal growth spurt

Summary Objective Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF‐1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel metho...

Full description

Saved in:
Bibliographic Details
Published inClinical endocrinology (Oxford) Vol. 82; no. 6; pp. 862 - 869
Main Authors Cole, T.J., Ahmed, M.L., Preece, M.A., Hindmarsh, P., Dunger, D.B.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2015
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0300-0664
1365-2265
1365-2265
DOI10.1111/cen.12682

Cover

Loading…
Abstract Summary Objective Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF‐1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel method of growth curve analysis. Design and Subjects Schoolboys (n = 54) and girls (n = 70) from Chard, Somerset, England, recruited in 1981 at age 8/9 and followed to age 16. Measurements Every 6 months, height and Tanner stages (genitalia, breast, pubic hair) were recorded, and in a subsample (24 boys, 27 girls), blood samples were taken. Serum IGF‐1, testosterone (boys) and oestradiol (girls) were measured by radioimmunoassay. Individual growth curves for each outcome were analysed using variants of the super‐imposition by translation and rotation (SITAR) method, which estimates a mean curve and subject‐specific random effects corresponding to size, and age and magnitude of peak velocity. Results The SITAR models fitted the data well, explaining 99%, 65%, 86% and 47% of variance for height, IGF‐1, testosterone and oestradiol, respectively, and 69–88% for the Tanner stages. During puberty, the variables all increased steeply in value in individuals, the ages at peak velocity for the different variables being highly correlated, particularly for IGF‐1 vs height (r = 0·74 for girls, 0·92 for boys). Conclusions IGF‐1, like height, the sex steroids and Tanner stages, rises steeply in individuals during puberty, with the timings of the rises tightly synchronized within individuals. This suggests that IGF‐1 may play an important role in determining the timing of puberty.
AbstractList Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF-1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel method of growth curve analysis.OBJECTIVEProgress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF-1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel method of growth curve analysis.Schoolboys (n = 54) and girls (n = 70) from Chard, Somerset, England, recruited in 1981 at age 8/9 and followed to age 16.DESIGN AND SUBJECTSSchoolboys (n = 54) and girls (n = 70) from Chard, Somerset, England, recruited in 1981 at age 8/9 and followed to age 16.Every 6 months, height and Tanner stages (genitalia, breast, pubic hair) were recorded, and in a subsample (24 boys, 27 girls), blood samples were taken. Serum IGF-1, testosterone (boys) and oestradiol (girls) were measured by radioimmunoassay. Individual growth curves for each outcome were analysed using variants of the super-imposition by translation and rotation (SITAR) method, which estimates a mean curve and subject-specific random effects corresponding to size, and age and magnitude of peak velocity.MEASUREMENTSEvery 6 months, height and Tanner stages (genitalia, breast, pubic hair) were recorded, and in a subsample (24 boys, 27 girls), blood samples were taken. Serum IGF-1, testosterone (boys) and oestradiol (girls) were measured by radioimmunoassay. Individual growth curves for each outcome were analysed using variants of the super-imposition by translation and rotation (SITAR) method, which estimates a mean curve and subject-specific random effects corresponding to size, and age and magnitude of peak velocity.The SITAR models fitted the data well, explaining 99%, 65%, 86% and 47% of variance for height, IGF-1, testosterone and oestradiol, respectively, and 69-88% for the Tanner stages. During puberty, the variables all increased steeply in value in individuals, the ages at peak velocity for the different variables being highly correlated, particularly for IGF-1 vs height (r = 0·74 for girls, 0·92 for boys).RESULTSThe SITAR models fitted the data well, explaining 99%, 65%, 86% and 47% of variance for height, IGF-1, testosterone and oestradiol, respectively, and 69-88% for the Tanner stages. During puberty, the variables all increased steeply in value in individuals, the ages at peak velocity for the different variables being highly correlated, particularly for IGF-1 vs height (r = 0·74 for girls, 0·92 for boys).IGF-1, like height, the sex steroids and Tanner stages, rises steeply in individuals during puberty, with the timings of the rises tightly synchronized within individuals. This suggests that IGF-1 may play an important role in determining the timing of puberty.CONCLUSIONSIGF-1, like height, the sex steroids and Tanner stages, rises steeply in individuals during puberty, with the timings of the rises tightly synchronized within individuals. This suggests that IGF-1 may play an important role in determining the timing of puberty.
Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF-1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel method of growth curve analysis. Schoolboys (n = 54) and girls (n = 70) from Chard, Somerset, England, recruited in 1981 at age 8/9 and followed to age 16. Every 6 months, height and Tanner stages (genitalia, breast, pubic hair) were recorded, and in a subsample (24 boys, 27 girls), blood samples were taken. Serum IGF-1, testosterone (boys) and oestradiol (girls) were measured by radioimmunoassay. Individual growth curves for each outcome were analysed using variants of the super-imposition by translation and rotation (SITAR) method, which estimates a mean curve and subject-specific random effects corresponding to size, and age and magnitude of peak velocity. The SITAR models fitted the data well, explaining 99%, 65%, 86% and 47% of variance for height, IGF-1, testosterone and oestradiol, respectively, and 69-88% for the Tanner stages. During puberty, the variables all increased steeply in value in individuals, the ages at peak velocity for the different variables being highly correlated, particularly for IGF-1 vs height (r = 0·74 for girls, 0·92 for boys). IGF-1, like height, the sex steroids and Tanner stages, rises steeply in individuals during puberty, with the timings of the rises tightly synchronized within individuals. This suggests that IGF-1 may play an important role in determining the timing of puberty.
Summary Objective Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF‐1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel method of growth curve analysis. Design and Subjects Schoolboys (n = 54) and girls (n = 70) from Chard, Somerset, England, recruited in 1981 at age 8/9 and followed to age 16. Measurements Every 6 months, height and Tanner stages (genitalia, breast, pubic hair) were recorded, and in a subsample (24 boys, 27 girls), blood samples were taken. Serum IGF‐1, testosterone (boys) and oestradiol (girls) were measured by radioimmunoassay. Individual growth curves for each outcome were analysed using variants of the super‐imposition by translation and rotation (SITAR) method, which estimates a mean curve and subject‐specific random effects corresponding to size, and age and magnitude of peak velocity. Results The SITAR models fitted the data well, explaining 99%, 65%, 86% and 47% of variance for height, IGF‐1, testosterone and oestradiol, respectively, and 69–88% for the Tanner stages. During puberty, the variables all increased steeply in value in individuals, the ages at peak velocity for the different variables being highly correlated, particularly for IGF‐1 vs height (r = 0·74 for girls, 0·92 for boys). Conclusions IGF‐1, like height, the sex steroids and Tanner stages, rises steeply in individuals during puberty, with the timings of the rises tightly synchronized within individuals. This suggests that IGF‐1 may play an important role in determining the timing of puberty.
Summary Objective Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF-1, are unknown. We reanalysed Chard growth study data to explore the tempo of puberty based on changes in both height and hormone levels, using a novel method of growth curve analysis. Design and Subjects Schoolboys (n = 54) and girls (n = 70) from Chard, Somerset, England, recruited in 1981 at age 8/9 and followed to age 16. Measurements Every 6 months, height and Tanner stages (genitalia, breast, pubic hair) were recorded, and in a subsample (24 boys, 27 girls), blood samples were taken. Serum IGF-1, testosterone (boys) and oestradiol (girls) were measured by radioimmunoassay. Individual growth curves for each outcome were analysed using variants of the super-imposition by translation and rotation (SITAR) method, which estimates a mean curve and subject-specific random effects corresponding to size, and age and magnitude of peak velocity. Results The SITAR models fitted the data well, explaining 99%, 65%, 86% and 47% of variance for height, IGF-1, testosterone and oestradiol, respectively, and 69-88% for the Tanner stages. During puberty, the variables all increased steeply in value in individuals, the ages at peak velocity for the different variables being highly correlated, particularly for IGF-1 vs height (r = 0·74 for girls, 0·92 for boys). Conclusions IGF-1, like height, the sex steroids and Tanner stages, rises steeply in individuals during puberty, with the timings of the rises tightly synchronized within individuals. This suggests that IGF-1 may play an important role in determining the timing of puberty.
Author Ahmed, M.L.
Dunger, D.B.
Preece, M.A.
Hindmarsh, P.
Cole, T.J.
AuthorAffiliation 1 Population Policy and Practice Programme UCL Institute of Child Health London UK
2 Department of Paediatrics Children's Hospital Oxford UK
5 Department of Paediatrics University of Cambridge School of Clinical Medicine Cambridge UK
4 Developmental Endocrinology Research Group UCL Institute of Child Health London UK
3 Genetics and Genomic Medicine Programme UCL Institute of Child Health London UK
AuthorAffiliation_xml – name: 2 Department of Paediatrics Children's Hospital Oxford UK
– name: 5 Department of Paediatrics University of Cambridge School of Clinical Medicine Cambridge UK
– name: 1 Population Policy and Practice Programme UCL Institute of Child Health London UK
– name: 3 Genetics and Genomic Medicine Programme UCL Institute of Child Health London UK
– name: 4 Developmental Endocrinology Research Group UCL Institute of Child Health London UK
Author_xml – sequence: 1
  givenname: T.J.
  surname: Cole
  fullname: Cole, T.J.
  email: tim.cole@ucl.ac.uk
  organization: Population Policy and Practice Programme, UCL Institute of Child Health, London, UK
– sequence: 2
  givenname: M.L.
  surname: Ahmed
  fullname: Ahmed, M.L.
  organization: Department of Paediatrics, Children's Hospital, Oxford, UK
– sequence: 3
  givenname: M.A.
  surname: Preece
  fullname: Preece, M.A.
  organization: Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
– sequence: 4
  givenname: P.
  surname: Hindmarsh
  fullname: Hindmarsh, P.
  organization: Developmental Endocrinology Research Group, UCL Institute of Child Health, London, UK
– sequence: 5
  givenname: D.B.
  surname: Dunger
  fullname: Dunger, D.B.
  organization: Department of Paediatrics, University of Cambridge School of Clinical Medicine, Cambridge, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25418044$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCghdAltiAxLS2x3ZmNkgoatJKVRGi_IiN5fHYiRvHDraHtG-P27QRVIK78cLfOTr3ngOw54PXALzE6AiXOVbaH2HCG_IEjHDNWUUIZ3tghGqEKsQ53QcHKV0hhFiDxs_APmEUN4jSEVheLjSM2slsg08Lu4adzhutPTzzaXDWV84uNZzFsMkLOJUqhwjxO5j0NUxZx2D7BKXvYbYr6-cwGJiL43rodMzSwflWmNZDzM_BUyNd0i_u30PwZXpyOTmtzj_OziYfzivFGCaVQqxva9M1SBKlqSZYy5aSFjcMY0NRq1pkpOF1i7jinTGN6iknxnSM9mOm6kPwfutbUqx0X66To3RiHe1KxhsRpBV__3i7EPPwS9CWtoyyYvDm3iCGn4NOWaxsUto56XUYksDl1JTUjNKCvn6EXoUh-rLeLYUZHpcp1Ks_E-2iPPRQgLdbQMWQUtRmh2AkbjsWJau467iwx49YZfNdf2UZ6_6n2Finb_5tLSYnFw-KaquwpeTrnULGpeDjeszEt4uZYJ-_nk5_fOLie_0bgpDIBQ
CitedBy_id crossref_primary_10_3390_ijerph17093277
crossref_primary_10_1016_j_jpeds_2016_12_052
crossref_primary_10_1017_S1368980019003239
crossref_primary_10_1016_j_envint_2020_106311
crossref_primary_10_1111_obr_13869
crossref_primary_10_1073_pnas_1517085113
crossref_primary_10_1007_s42000_024_00557_8
crossref_primary_10_3389_fped_2024_1372013
crossref_primary_10_1016_j_rpped_2015_09_001
crossref_primary_10_1289_ehp_1509869
crossref_primary_10_1111_apa_15092
crossref_primary_10_1016_j_ecoenv_2019_06_017
crossref_primary_10_1186_s13058_017_0804_y
crossref_primary_10_1371_journal_pone_0228646
crossref_primary_10_1515_jpem_2018_0482
crossref_primary_10_1210_jc_2018_02099
crossref_primary_10_3389_fped_2020_00052
crossref_primary_10_1093_aje_kwac148
crossref_primary_10_1097_LVT_0000000000000230
crossref_primary_10_1016_j_clnu_2019_04_012
crossref_primary_10_1111_jcmm_13109
crossref_primary_10_1152_ajpheart_00302_2023
crossref_primary_10_1113_EP091279
crossref_primary_10_3390_jpm14030255
crossref_primary_10_1080_09603123_2024_2401578
crossref_primary_10_1038_s41416_020_0897_4
crossref_primary_10_7759_cureus_22397
crossref_primary_10_1038_s41588_024_01798_4
crossref_primary_10_3390_ijerph17165637
crossref_primary_10_1371_journal_pone_0311180
crossref_primary_10_1093_aje_kwab250
crossref_primary_10_1210_jendso_bvab063
crossref_primary_10_1590_1516_3180_2016_0270210217
crossref_primary_10_1016_j_jadohealth_2020_07_016
crossref_primary_10_1515_jpem_2022_0161
crossref_primary_10_6065_apem_2018_23_3_148
crossref_primary_10_3390_children9091301
crossref_primary_10_1002_vms3_278
crossref_primary_10_1007_s00394_024_03528_2
crossref_primary_10_1016_j_yrtph_2019_104516
crossref_primary_10_1016_j_heliyon_2024_e27520
crossref_primary_10_1016_j_rppede_2015_09_003
crossref_primary_10_1007_s10534_023_00527_4
crossref_primary_10_4103_jisppd_jisppd_3_24
crossref_primary_10_1016_j_clinbiochem_2021_07_008
crossref_primary_10_1016_j_bone_2018_11_011
crossref_primary_10_3390_pharmaceutics13111930
crossref_primary_10_1002_ijc_31019
crossref_primary_10_3389_fbioe_2020_574010
crossref_primary_10_3390_nu15081849
crossref_primary_10_1080_03014460_2018_1453948
crossref_primary_10_3390_ijerph19095172
crossref_primary_10_1152_ajpheart_00287_2024
crossref_primary_10_23736_S0022_4707_21_12158_9
crossref_primary_10_3390_biology13121075
crossref_primary_10_1210_clinem_dgab561
crossref_primary_10_1210_clinem_dgac694
crossref_primary_10_3389_fphys_2022_917460
crossref_primary_10_1038_s41390_021_01690_5
crossref_primary_10_1093_ije_dyw134
crossref_primary_10_1016_j_neuroimage_2021_117970
crossref_primary_10_1159_000471876
crossref_primary_10_1371_journal_pone_0224892
crossref_primary_10_1057_s41599_023_02502_3
crossref_primary_10_1097_BPB_0000000000001171
crossref_primary_10_1210_jc_2015_2836
crossref_primary_10_1186_s12887_022_03580_z
crossref_primary_10_1002_jbmr_2570
Cites_doi 10.1016/j.yfrne.2014.05.007
10.1080/03014469800005482
10.1210/en.2008-0954
10.1136/bmj.d1980
10.1136/adc.41.220.613
10.3109/03014460.2013.856472
10.1016/S0140-6736(87)92932-1
10.3945/ajcn.112.037481
10.1210/jcem.87.3.8342
10.1136/adc.45.239.13
10.1210/jc.2011-3261
10.1002/ajmg.c.31357
10.1080/03014467800002601
10.1371/journal.pone.0019918
10.1542/peds.107.4.e59
10.1210/jc.85.2.808
10.1371/journal.pone.0090291
10.1159/000125924
10.1177/153537020523000503
10.1210/jcem.86.12.8117
10.1677/jme.0.0020201
10.1136/archdischild-2014-306237.81
10.1111/rssa.12020
10.1530/EJE-12-0106
10.1093/humrep/dem052
10.1210/jc.2008-2489
10.1136/adc.44.235.291
10.1038/ijo.2014.61
10.1210/jc.2005-2318
10.3109/09513598709082695
10.1159/000184763
10.1093/ije/dyq115
ContentType Journal Article
Copyright 2015 The Authors Published by John Wiley & Sons Ltd
2015 The Authors Clinical Endocrinology Published by John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: 2015 The Authors Published by John Wiley & Sons Ltd
– notice: 2015 The Authors Clinical Endocrinology Published by John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
NAPCQ
7X8
5PM
DOI 10.1111/cen.12682
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate T. J. Cole et al
EISSN 1365-2265
EndPage 869
ExternalDocumentID PMC4949545
3688456491
25418044
10_1111_cen_12682
CEN12682
ark_67375_WNG_5SVHFZQ6_X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations England
GeographicLocations_xml – name: England
GrantInformation_xml – fundername: NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
– fundername: UK Medical Research Council grant
  funderid: MR/J004839/1
– fundername: Medical Research Council
  grantid: MR/M012069/1
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: MR/J004839/1
– fundername: UK Medical Research Council grant
  grantid: MR/J004839/1
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
08P
0R~
10A
1OB
1OC
29B
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AAQQT
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
REN
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c5512-c05d93fb80a2ce4e21ea942918511f409c90faf63906c6bff8cd462ffb54d75c3
IEDL.DBID 24P
ISSN 0300-0664
1365-2265
IngestDate Thu Aug 21 14:04:30 EDT 2025
Fri Sep 05 04:04:51 EDT 2025
Wed Aug 13 06:01:56 EDT 2025
Mon Jul 21 06:03:03 EDT 2025
Tue Jul 01 01:33:13 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Wed Jan 22 16:37:39 EST 2025
Wed Oct 30 09:48:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2015 The Authors Clinical Endocrinology Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5512-c05d93fb80a2ce4e21ea942918511f409c90faf63906c6bff8cd462ffb54d75c3
Notes ark:/67375/WNG-5SVHFZQ6-X
istex:830E749D88FE7A191317D69EEA7DFD4E76B436FC
NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
UK Medical Research Council grant - No. MR/J004839/1
ArticleID:CEN12682
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5711-8200
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcen.12682
PMID 25418044
PQID 1681517777
PQPubID 36523
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4949545
proquest_miscellaneous_1682423544
proquest_journals_1681517777
pubmed_primary_25418044
crossref_primary_10_1111_cen_12682
crossref_citationtrail_10_1111_cen_12682
wiley_primary_10_1111_cen_12682_CEN12682
istex_primary_ark_67375_WNG_5SVHFZQ6_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Clinical endocrinology (Oxford)
PublicationTitleAlternate Clin Endocrinol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References Ong, K.K., Emmett, P., Northstone, K. et al. (2009) Infancy weight gain predicts childhood body fat and age at menarche in girls. The Journal of Clinical Endocrinology and Metabolism, 94, 1527-1532.
Stanhope, R., Brook, C.G.D., Pringle, P.J. et al. (1987) Induction of puberty by pulsatile gonadotropin releasing hormone. Lancet, 2, 552-555.
Suter, K.J., Pohl, C.R. & Wilson, M.E. (2000) Circulating concentrations of nocturnal leptin, growth hormone, and insulin-like growth factor-I increase before the onset of puberty in agonadal male monkeys: potential signals for the initiation of puberty. The Journal of Clinical Endocrinology and Metabolism, 85, 808-814.
Cole, T.J., Statnikov, Y., Santhakumaran, S. et al. (2014) Birth weight and longitudinal growth in infants born below 32 weeks' gestation: a UK population study. Archives of Disease in Childhood. Fetal and Neonatal Edition, 99, F34-F40.
Löfqvist, C., Andersson, E., Gelander, L. et al. (2001) Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. Journal of Clinical Endocrinology and Metabolism, 86, 5870-5876.
Marshall, W.A. & Tanner, J.M. (1969) Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44, 291-303.
Cole, T.J., Donaldson, M.D. & Ben-Shlomo, Y. (2010) SITAR - a useful instrument for growth curve analysis. International Journal of Epidemiology, 39, 1558-1566.
R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Wolfe, A., Divall, S. & Wu, S. (2014) The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Frontiers in Neuroendocrinology, 35, 558-572.
Thankamony, A., Ong, K.K., Ahmed, M.L. et al. (2012) Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls. The Journal of Clinical Endocrinology and Metabolism, 97, E786-E790.
Tanner, J.M., Whitehouse, R.H. & Takaishi, M. (1966) Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965 Parts I and II. Archives of Disease in Childhood, 41:454-471, 613-635.
Hiney, J.K., Ojeda, S.R. & Dees, W.L. (1991) Insulin-like growth factor-I - a possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology, 54, 420-423.
Daftary, S.S. & Gore, A.C. (2005) IGF-1 in the brain as a regulator of reproductive neuroendocrine function. Experimental Biology and Medicine, 230, 292-306.
Adair, L.S. (2001) Size at birth predicts age at menarche. Pediatrics, 107, E59.
Marshall, W.A. & Tanner, J.M. (1970) Variations in pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13-23.
Pizzi, C., Cole, T.J., Richiardi, L. et al. (2014) Prenatal influences on size, velocity and tempo of Infant growth: findings from three contemporary cohorts. PLoS One, 9, e90291.
Murray, P.G. & Clayton, P.E. (2013) Endocrine control of growth. American Journal of Medical Genetics. Part C, 163C, 76-85.
Hiney, J.K., Srivastava, V.K., Pine, M.D. et al. (2009) Insulin-like Growth Factor-I activates KiSS-1 gene expression in the brain of the prepubertal female rat. Endocrinology, 150, 376-384.
Wathen, N.C., Perry, L.A., Rubenstein, E. et al. (1987) A relationship between sex hormone binding globulin and dehydroepiandrosterone sulfate in normally menstruating females. Gynecological Endocrinology, 1, 47-50.
Johnson, L., Llewellyn, C.H., van Jaarsveld, C.H.M. et al. (2011) Genetic and environmental influences on infant growth: prospective analysis of the Gemini twin birth cohort. PLoS One, 6, e19918.
Ong, K., Kratzsch, J., Kiess, W. et al. (2002) Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. The Journal of Clinical Endocrinology and Metabolism, 87, 1041-1044.
Preece, M.A. & Baines, M.J. (1978) A new family of mathematical models describing the human growth curve. Annals of Human Biology, 5, 1-24.
Pizzi, C., Cole, T.J., Corvalan, C. et al. (2014) On modelling early life weight trajectories. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 371-396.
Mauras, N., Rogol, A.D., Haymond, M.W. et al. (1996) Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Hormone Research, 45, 74-80.
Sorensen, K., Aksglaede, L., Petersen, J.H. et al. (2012) Serum IGF1 and insulin levels in girls with normal and precocious puberty. European Journal of Endocrinology, 166, 903-910.
Johnson, L., van Jaarsveld, C.H.M., Llewellyn, C.H. et al. (2014) Associations between infant feeding and the size, tempo and velocity of infant weight gain: SITAR analysis of the Gemini twin birth cohort. International Journal of Obesity, 38, 980-987.
Cole, T.J., Pan, H. & Butler, G.E. (2014) A mixed effects model to estimate timing and intensity of pubertal growth from height and secondary sexual characteristics. Annals of Human Biology, 41, 76-83.
Gault, E.J., Perry, R.J., Cole, T.J. et al. (2011) Effect of oxandrolone and timing of pubertal induction on final height in Turner's syndrome: randomised, double blind, placebo controlled trial. BMJ, 342, d1980.
Buchanan, C.R., Cox, L.A., Dunger, D.B. et al. (1989) A longitudinal study of serum insulin-like growth factor I growth and pubertal development 1981-1988. Hormone Research, 31, 51.
Sandhu, J., Davey Smith, G., Holly, J. et al. (2006) Timing of puberty determines serum insulin-like growth factor-1 in late adulthood. The Journal of Clinical Endocrinology and Metabolism, 91, 3150-3157.
Prentice, A., Dibba, B., Sawo, Y. et al. (2012) The effect of prepubertal calcium carbonate supplementation on the age of peak height velocity in Gambian adolescents. American Journal of Clinical Nutrition, 96, 1042-1050.
Ledford, A.W. & Cole, T.J. (1998) Mathematical models of growth in stature throughout childhood. Annals of Human Biology, 25, 101-115.
Morrell, D.J., Dadi, H., More, J. et al. (1989) A monoclonal antibody to human insulin-like growth factor-I - characterization, use in radioimmunoassay and effect on the biological activities of the growth factor. Journal of Molecular Endocrinology, 2, 201-206.
Zhao, J., Xiong, D.-H., Guo, Y. et al. (2007) Polymorphism in the insulin-like growth factor 1 gene is associated with age at menarche in caucasian females. Human Reproduction, 22, 1789-1794.
1989; 2
1987; 1
1987; 2
2006; 91
2012; 166
2005; 230
1991; 54
2010; 39
2000; 85
1998
1978; 5
2009; 150
2013; 163C
2014; 41
2014; 177
2001; 107
2011; 6
2012; 97
2001; 86
2012; 96
1998; 25
1989; 31
2009; 94
2002; 87
1970; 45
2014; 38
1969; 44
2014; 35
2014
2014; 9
2007; 22
1966; 41
2011; 342
2014; 99
1996; 45
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Tanner J.M. (e_1_2_8_22_1) 1998
Ong K. (e_1_2_8_36_1) 2002; 87
R Core Team (e_1_2_8_24_1) 2014
e_1_2_8_32_1
Buchanan C.R. (e_1_2_8_5_1) 1989; 31
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Thankamony, A., Ong, K.K., Ahmed, M.L. et al. (2012) Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls. The Journal of Clinical Endocrinology and Metabolism, 97, E786-E790.
– reference: Johnson, L., van Jaarsveld, C.H.M., Llewellyn, C.H. et al. (2014) Associations between infant feeding and the size, tempo and velocity of infant weight gain: SITAR analysis of the Gemini twin birth cohort. International Journal of Obesity, 38, 980-987.
– reference: Stanhope, R., Brook, C.G.D., Pringle, P.J. et al. (1987) Induction of puberty by pulsatile gonadotropin releasing hormone. Lancet, 2, 552-555.
– reference: Cole, T.J., Donaldson, M.D. & Ben-Shlomo, Y. (2010) SITAR - a useful instrument for growth curve analysis. International Journal of Epidemiology, 39, 1558-1566.
– reference: Ledford, A.W. & Cole, T.J. (1998) Mathematical models of growth in stature throughout childhood. Annals of Human Biology, 25, 101-115.
– reference: Hiney, J.K., Srivastava, V.K., Pine, M.D. et al. (2009) Insulin-like Growth Factor-I activates KiSS-1 gene expression in the brain of the prepubertal female rat. Endocrinology, 150, 376-384.
– reference: Ong, K.K., Emmett, P., Northstone, K. et al. (2009) Infancy weight gain predicts childhood body fat and age at menarche in girls. The Journal of Clinical Endocrinology and Metabolism, 94, 1527-1532.
– reference: Adair, L.S. (2001) Size at birth predicts age at menarche. Pediatrics, 107, E59.
– reference: Marshall, W.A. & Tanner, J.M. (1969) Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44, 291-303.
– reference: Prentice, A., Dibba, B., Sawo, Y. et al. (2012) The effect of prepubertal calcium carbonate supplementation on the age of peak height velocity in Gambian adolescents. American Journal of Clinical Nutrition, 96, 1042-1050.
– reference: Ong, K., Kratzsch, J., Kiess, W. et al. (2002) Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. The Journal of Clinical Endocrinology and Metabolism, 87, 1041-1044.
– reference: Wathen, N.C., Perry, L.A., Rubenstein, E. et al. (1987) A relationship between sex hormone binding globulin and dehydroepiandrosterone sulfate in normally menstruating females. Gynecological Endocrinology, 1, 47-50.
– reference: Wolfe, A., Divall, S. & Wu, S. (2014) The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Frontiers in Neuroendocrinology, 35, 558-572.
– reference: Pizzi, C., Cole, T.J., Corvalan, C. et al. (2014) On modelling early life weight trajectories. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 371-396.
– reference: Sorensen, K., Aksglaede, L., Petersen, J.H. et al. (2012) Serum IGF1 and insulin levels in girls with normal and precocious puberty. European Journal of Endocrinology, 166, 903-910.
– reference: Suter, K.J., Pohl, C.R. & Wilson, M.E. (2000) Circulating concentrations of nocturnal leptin, growth hormone, and insulin-like growth factor-I increase before the onset of puberty in agonadal male monkeys: potential signals for the initiation of puberty. The Journal of Clinical Endocrinology and Metabolism, 85, 808-814.
– reference: Johnson, L., Llewellyn, C.H., van Jaarsveld, C.H.M. et al. (2011) Genetic and environmental influences on infant growth: prospective analysis of the Gemini twin birth cohort. PLoS One, 6, e19918.
– reference: Zhao, J., Xiong, D.-H., Guo, Y. et al. (2007) Polymorphism in the insulin-like growth factor 1 gene is associated with age at menarche in caucasian females. Human Reproduction, 22, 1789-1794.
– reference: Sandhu, J., Davey Smith, G., Holly, J. et al. (2006) Timing of puberty determines serum insulin-like growth factor-1 in late adulthood. The Journal of Clinical Endocrinology and Metabolism, 91, 3150-3157.
– reference: Mauras, N., Rogol, A.D., Haymond, M.W. et al. (1996) Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Hormone Research, 45, 74-80.
– reference: Marshall, W.A. & Tanner, J.M. (1970) Variations in pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13-23.
– reference: Preece, M.A. & Baines, M.J. (1978) A new family of mathematical models describing the human growth curve. Annals of Human Biology, 5, 1-24.
– reference: Cole, T.J., Statnikov, Y., Santhakumaran, S. et al. (2014) Birth weight and longitudinal growth in infants born below 32 weeks' gestation: a UK population study. Archives of Disease in Childhood. Fetal and Neonatal Edition, 99, F34-F40.
– reference: Löfqvist, C., Andersson, E., Gelander, L. et al. (2001) Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. Journal of Clinical Endocrinology and Metabolism, 86, 5870-5876.
– reference: Daftary, S.S. & Gore, A.C. (2005) IGF-1 in the brain as a regulator of reproductive neuroendocrine function. Experimental Biology and Medicine, 230, 292-306.
– reference: Cole, T.J., Pan, H. & Butler, G.E. (2014) A mixed effects model to estimate timing and intensity of pubertal growth from height and secondary sexual characteristics. Annals of Human Biology, 41, 76-83.
– reference: Morrell, D.J., Dadi, H., More, J. et al. (1989) A monoclonal antibody to human insulin-like growth factor-I - characterization, use in radioimmunoassay and effect on the biological activities of the growth factor. Journal of Molecular Endocrinology, 2, 201-206.
– reference: R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
– reference: Buchanan, C.R., Cox, L.A., Dunger, D.B. et al. (1989) A longitudinal study of serum insulin-like growth factor I growth and pubertal development 1981-1988. Hormone Research, 31, 51.
– reference: Hiney, J.K., Ojeda, S.R. & Dees, W.L. (1991) Insulin-like growth factor-I - a possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology, 54, 420-423.
– reference: Gault, E.J., Perry, R.J., Cole, T.J. et al. (2011) Effect of oxandrolone and timing of pubertal induction on final height in Turner's syndrome: randomised, double blind, placebo controlled trial. BMJ, 342, d1980.
– reference: Pizzi, C., Cole, T.J., Richiardi, L. et al. (2014) Prenatal influences on size, velocity and tempo of Infant growth: findings from three contemporary cohorts. PLoS One, 9, e90291.
– reference: Murray, P.G. & Clayton, P.E. (2013) Endocrine control of growth. American Journal of Medical Genetics. Part C, 163C, 76-85.
– reference: Tanner, J.M., Whitehouse, R.H. & Takaishi, M. (1966) Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965 Parts I and II. Archives of Disease in Childhood, 41:454-471, 613-635.
– volume: 41
  start-page: 613
  year: 1966
  end-page: 635
  article-title: Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965 Parts I and II
  publication-title: Archives of Disease in Childhood
– volume: 22
  start-page: 1789
  year: 2007
  end-page: 1794
  article-title: Polymorphism in the insulin‐like growth factor 1 gene is associated with age at menarche in caucasian females
  publication-title: Human Reproduction
– volume: 39
  start-page: 1558
  year: 2010
  end-page: 1566
  article-title: SITAR – a useful instrument for growth curve analysis
  publication-title: International Journal of Epidemiology
– volume: 35
  start-page: 558
  year: 2014
  end-page: 572
  article-title: The regulation of reproductive neuroendocrine function by insulin and insulin‐like growth factor‐1 (IGF‐1)
  publication-title: Frontiers in Neuroendocrinology
– volume: 25
  start-page: 101
  year: 1998
  end-page: 115
  article-title: Mathematical models of growth in stature throughout childhood
  publication-title: Annals of Human Biology
– volume: 45
  start-page: 74
  year: 1996
  end-page: 80
  article-title: Sex steroids, growth hormone, insulin‐like growth factor‐1: neuroendocrine and metabolic regulation in puberty
  publication-title: Hormone Research
– volume: 96
  start-page: 1042
  year: 2012
  end-page: 1050
  article-title: The effect of prepubertal calcium carbonate supplementation on the age of peak height velocity in Gambian adolescents
  publication-title: American Journal of Clinical Nutrition
– volume: 5
  start-page: 1
  year: 1978
  end-page: 24
  article-title: A new family of mathematical models describing the human growth curve
  publication-title: Annals of Human Biology
– volume: 9
  start-page: e90291
  year: 2014
  article-title: Prenatal influences on size, velocity and tempo of Infant growth: findings from three contemporary cohorts
  publication-title: PLoS One
– volume: 342
  start-page: d1980
  year: 2011
  article-title: Effect of oxandrolone and timing of pubertal induction on final height in Turner's syndrome: randomised, double blind, placebo controlled trial
  publication-title: BMJ
– volume: 2
  start-page: 201
  year: 1989
  end-page: 206
  article-title: A monoclonal antibody to human insulin‐like growth factor‐I ‐ characterization, use in radioimmunoassay and effect on the biological activities of the growth factor
  publication-title: Journal of Molecular Endocrinology
– volume: 6
  start-page: e19918
  year: 2011
  article-title: Genetic and environmental influences on infant growth: prospective analysis of the Gemini twin birth cohort
  publication-title: PLoS One
– volume: 54
  start-page: 420
  year: 1991
  end-page: 423
  article-title: Insulin‐like growth factor‐I ‐ a possible metabolic signal involved in the regulation of female puberty
  publication-title: Neuroendocrinology
– volume: 97
  start-page: E786
  year: 2012
  end-page: E790
  article-title: Higher levels of IGF‐I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls
  publication-title: The Journal of Clinical Endocrinology and Metabolism
– volume: 86
  start-page: 5870
  year: 2001
  end-page: 5876
  article-title: Reference values for IGF‐I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty
  publication-title: Journal of Clinical Endocrinology and Metabolism
– start-page: 7
  year: 1998
– year: 2014
– volume: 1
  start-page: 47
  year: 1987
  end-page: 50
  article-title: A relationship between sex hormone binding globulin and dehydroepiandrosterone sulfate in normally menstruating females
  publication-title: Gynecological Endocrinology
– volume: 38
  start-page: 980
  year: 2014
  end-page: 987
  article-title: Associations between infant feeding and the size, tempo and velocity of infant weight gain: SITAR analysis of the Gemini twin birth cohort
  publication-title: International Journal of Obesity
– volume: 91
  start-page: 3150
  year: 2006
  end-page: 3157
  article-title: Timing of puberty determines serum insulin‐like growth factor‐1 in late adulthood
  publication-title: The Journal of Clinical Endocrinology and Metabolism
– volume: 99
  start-page: F34
  year: 2014
  end-page: F40
  article-title: Birth weight and longitudinal growth in infants born below 32 weeks' gestation: a UK population study
  publication-title: Archives of Disease in Childhood. Fetal and Neonatal Edition
– volume: 166
  start-page: 903
  year: 2012
  end-page: 910
  article-title: Serum IGF1 and insulin levels in girls with normal and precocious puberty
  publication-title: European Journal of Endocrinology
– volume: 44
  start-page: 291
  year: 1969
  end-page: 303
  article-title: Variations in pattern of pubertal changes in girls
  publication-title: Archives of Disease in Childhood
– volume: 2
  start-page: 552
  year: 1987
  end-page: 555
  article-title: Induction of puberty by pulsatile gonadotropin releasing hormone
  publication-title: Lancet
– volume: 150
  start-page: 376
  year: 2009
  end-page: 384
  article-title: Insulin‐like Growth Factor‐I activates KiSS‐1 gene expression in the brain of the prepubertal female rat
  publication-title: Endocrinology
– volume: 163C
  start-page: 76
  year: 2013
  end-page: 85
  article-title: Endocrine control of growth
  publication-title: American Journal of Medical Genetics. Part C
– volume: 230
  start-page: 292
  year: 2005
  end-page: 306
  article-title: IGF‐1 in the brain as a regulator of reproductive neuroendocrine function
  publication-title: Experimental Biology and Medicine
– volume: 177
  start-page: 371
  year: 2014
  end-page: 396
  article-title: On modelling early life weight trajectories
  publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society)
– volume: 107
  start-page: E59
  year: 2001
  article-title: Size at birth predicts age at menarche
  publication-title: Pediatrics
– volume: 87
  start-page: 1041
  year: 2002
  end-page: 1044
  article-title: Circulating IGF‐I levels in childhood are related to both current body composition and early postnatal growth rate
  publication-title: The Journal of Clinical Endocrinology and Metabolism
– volume: 85
  start-page: 808
  year: 2000
  end-page: 814
  article-title: Circulating concentrations of nocturnal leptin, growth hormone, and insulin‐like growth factor‐I increase before the onset of puberty in agonadal male monkeys: potential signals for the initiation of puberty
  publication-title: The Journal of Clinical Endocrinology and Metabolism
– volume: 94
  start-page: 1527
  year: 2009
  end-page: 1532
  article-title: Infancy weight gain predicts childhood body fat and age at menarche in girls
  publication-title: The Journal of Clinical Endocrinology and Metabolism
– volume: 41
  start-page: 76
  year: 2014
  end-page: 83
  article-title: A mixed effects model to estimate timing and intensity of pubertal growth from height and secondary sexual characteristics
  publication-title: Annals of Human Biology
– volume: 31
  start-page: 51
  year: 1989
  article-title: A longitudinal study of serum insulin‐like growth factor I growth and pubertal development 1981–1988
  publication-title: Hormone Research
– volume: 45
  start-page: 13
  year: 1970
  end-page: 23
  article-title: Variations in pattern of pubertal changes in boys
  publication-title: Archives of Disease in Childhood
– ident: e_1_2_8_4_1
  doi: 10.1016/j.yfrne.2014.05.007
– ident: e_1_2_8_26_1
  doi: 10.1080/03014469800005482
– ident: e_1_2_8_31_1
  doi: 10.1210/en.2008-0954
– ident: e_1_2_8_15_1
  doi: 10.1136/bmj.d1980
– ident: e_1_2_8_27_1
  doi: 10.1136/adc.41.220.613
– ident: e_1_2_8_14_1
  doi: 10.3109/03014460.2013.856472
– ident: e_1_2_8_28_1
  doi: 10.1016/S0140-6736(87)92932-1
– ident: e_1_2_8_16_1
  doi: 10.3945/ajcn.112.037481
– volume: 87
  start-page: 1041
  year: 2002
  ident: e_1_2_8_36_1
  article-title: Circulating IGF‐I levels in childhood are related to both current body composition and early postnatal growth rate
  publication-title: The Journal of Clinical Endocrinology and Metabolism
  doi: 10.1210/jcem.87.3.8342
– ident: e_1_2_8_10_1
  doi: 10.1136/adc.45.239.13
– ident: e_1_2_8_7_1
  doi: 10.1210/jc.2011-3261
– ident: e_1_2_8_3_1
  doi: 10.1002/ajmg.c.31357
– ident: e_1_2_8_25_1
  doi: 10.1080/03014467800002601
– ident: e_1_2_8_18_1
  doi: 10.1371/journal.pone.0019918
– ident: e_1_2_8_34_1
  doi: 10.1542/peds.107.4.e59
– ident: e_1_2_8_2_1
  doi: 10.1210/jc.85.2.808
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: e_1_2_8_24_1
– ident: e_1_2_8_21_1
  doi: 10.1371/journal.pone.0090291
– ident: e_1_2_8_30_1
  doi: 10.1159/000125924
– ident: e_1_2_8_37_1
  doi: 10.1177/153537020523000503
– ident: e_1_2_8_8_1
  doi: 10.1210/jcem.86.12.8117
– ident: e_1_2_8_11_1
  doi: 10.1677/jme.0.0020201
– ident: e_1_2_8_17_1
  doi: 10.1136/archdischild-2014-306237.81
– ident: e_1_2_8_20_1
  doi: 10.1111/rssa.12020
– ident: e_1_2_8_6_1
  doi: 10.1530/EJE-12-0106
– ident: e_1_2_8_33_1
  doi: 10.1093/humrep/dem052
– ident: e_1_2_8_35_1
  doi: 10.1210/jc.2008-2489
– ident: e_1_2_8_9_1
  doi: 10.1136/adc.44.235.291
– volume: 31
  start-page: 51
  year: 1989
  ident: e_1_2_8_5_1
  article-title: A longitudinal study of serum insulin‐like growth factor I growth and pubertal development 1981–1988
  publication-title: Hormone Research
– ident: e_1_2_8_19_1
  doi: 10.1038/ijo.2014.61
– ident: e_1_2_8_23_1
– ident: e_1_2_8_32_1
  doi: 10.1210/jc.2005-2318
– start-page: 7
  volume-title: The Cambridge Encyclopedia of Human Growth and Development
  year: 1998
  ident: e_1_2_8_22_1
– ident: e_1_2_8_12_1
  doi: 10.3109/09513598709082695
– ident: e_1_2_8_29_1
  doi: 10.1159/000184763
– ident: e_1_2_8_13_1
  doi: 10.1093/ije/dyq115
SSID ssj0005807
Score 2.4276888
Snippet Summary Objective Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF‐1, are unknown....
Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF-1, are unknown. We reanalysed...
Summary Objective Progress through puberty involves a complex hormonal cascade, but the individual contributions of hormones, particularly IGF-1, are unknown....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 862
SubjectTerms Adolescent
Adolescent Development - physiology
Body Height - physiology
Child
England
Estradiol - blood
Female
Humans
Insulin-Like Growth Factor I - metabolism
Longitudinal Studies
Male
Original
Puberty - physiology
Sexual Maturation - physiology
Testosterone - blood
Title The relationship between Insulin-like Growth Factor 1, sex steroids and timing of the pubertal growth spurt
URI https://api.istex.fr/ark:/67375/WNG-5SVHFZQ6-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcen.12682
https://www.ncbi.nlm.nih.gov/pubmed/25418044
https://www.proquest.com/docview/1681517777
https://www.proquest.com/docview/1682423544
https://pubmed.ncbi.nlm.nih.gov/PMC4949545
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVkJcEG8CBRmEEAeC4iR2EnFCpdsFqStehRUXy_Gju-qSXW2yUo_8BH4jv4QZ50FXFIkcokgeK4nHE38TfzNDyFMXqQSAdxEaUQpwUJgLc1g4wqRwYOaRNcaTMY8nYnySvpvy6Q551cfCtPkhhh9uaBn-e40Grsr6gpFrW71kscjh-7uHobVYviBO3__hd3Sx0gmGTguRdmmFkMYzdN1ajPZwXM8vQ5p_EyYvAlm_Eo2uk2sdhKSvW53fIDu2ukmuHHeb5LfId1A9Xfckt9l8RTsyFn3bEs9__fi5mJ9ZegQueDOjI19yh7IXtLbnFBMnLOempqoytMGaX6d06SjgRApPh1v3C3radqxXm3Vzm5yMDj8fjMOuqkKoAR3FoY64KRJX5pGKtU1tzKwqYFViiL0cuHu6iJxygFwioUXpHJY3ErFzJU9NxnVyh-xWy8reIzQqE4A_AKAKBfpVpjCOc12oLFWM2VIF5Hk_vFJ3Kcex8sVC9q4HDKj0mgjIk0F01ebZuEzomdfRIKHWZ0hMy7j8OjmS_NOX8ejbByGnAdnvlSg7m6wlEznAmwyOgDwemsGacItEVXa58TIIMHmaBuRuq_PhZuBKszzClmxrNgwCmKl7u6Waz3zGbkwBBFAVxsPPm3-_oTw4nPiL-_8v-oBcBRTHW_7aPtlt1hv7EJBSUz7yFgHnNx_j38wGEU8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVgIuiPIMtGAQQhwIystOInFBVbdb6K5AtLDqxXL86K66ZFe7WalHfgK_sb-kM86DrigSOUXyWElmPPE39ucZQl7bQMYAvHNf84JDgBJaP4OJw49zC24eGK0dGXMw5P2T5NOIjTbIh_YsTJ0foltwQ89w_2t0cFyQvublypTvw4hn8APeSgCX45iOki9_CB7NYekYz05znjR5hZDH03Vdm422ULEXN0HNvxmT15Gsm4p698jdBkPSj7XRt8mGKe-TW4Nml_wB-Qm2p4uW5TaezGnDxqKHNfP88tfv6eTc0AOIwasx7bmaOzR8R5fmgmLmhNlEL6ksNa2w6NcZnVkKQJHC2-He_ZSe1R2X89WiekhOevvHe32_KavgK4BHka8CpvPYFlkgI2USE4VG5jAthQi-LMR7Kg-stABdAq54YS3WN-KRtQVLdMpU_IhslrPSPCE0KGLAP4CgcgkGljrXljGVyzSRYWgK6ZG3rXqFanKOY-mLqWhjD1CocJbwyKtOdF4n2rhJ6I2zUSchF-fITEuZ-DE8EOzb937v9CsXI4_stEYUjVMuRcgzwDcpXB552TWDO-EeiSzNbOVkEGGyJPHI49rm3cMglg6zAFvStdHQCWCq7vWWcjJ2KbsxBxBgVdCHGzf__kKxtz90N0__X_QFud0_HhyJo8Ph52fkDkA6VpPZdshmtViZXYBNVfHceccVLbET2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVqq4IMoz0IJBCHEgKC87iTih0nQLdFUEhVUvluNHd9Ulu9rNSj3yE_iN_BJmnAddUSRyiuSxkng89jeZzzOEPLeBjAF4577mJQcHJbR-BhuHH-cWzDwwWjsy5vGQD06T9yM22iBvurMwTX6I_ocbWoZbr9HA59peMXJlqtdhxDNYf7cw2Id8vig5-cPvaM9Kx3h0mvOkTSuENJ6-69pmtIXjenkd0vybMHkVyLqdqLhFbrYQkr5tdL5DNkx1m2wft0HyO-Q7qJ4uOpLbeDKnLRmLHjXE818_fk4nF4Yeggtej2nhSu7Q8BVdmkuKiRNmE72kstK0xppf53RmKeBECm-HofspPW86LuerRX2XnBYHX_YHfltVwVeAjiJfBUznsS2zQEbKJCYKjcxhVwoRe1lw91QeWGkBuQRc8dJaLG_EI2tLluiUqfge2axmlXlAaFDGAH8AQOUS9Ct1ri1jKpdpIsPQlNIjL7vhFapNOY6VL6aicz1gQIXThEee9aLzJs_GdUIvnI56Cbm4QGJaysS34aFgn78OirNPXIw8stspUbQ2uRQhzwDepHB55GnfDNaEIRJZmdnKySDAZEnikfuNzvuHgSsdZgG2pGuzoRfATN3rLdVk7DJ2YwoggKowHm7e_PsLxf7B0N08_H_RJ2T75F0hPh4NPzwiNwDQsYbKtks268XK7AFoqsvHzjh-A2i5EwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+relationship+between+Insulin-like+Growth+Factor+1%2C+sex+steroids+and+timing+of+the+pubertal+growth+spurt&rft.jtitle=Clinical+endocrinology+%28Oxford%29&rft.au=Cole%2C+T+J&rft.au=Ahmed%2C+M+L&rft.au=Preece%2C+M+A&rft.au=Hindmarsh%2C+P&rft.date=2015-06-01&rft.eissn=1365-2265&rft.volume=82&rft.issue=6&rft.spage=862&rft_id=info:doi/10.1111%2Fcen.12682&rft_id=info%3Apmid%2F25418044&rft.externalDocID=25418044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-0664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-0664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-0664&client=summon