MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances

In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wid...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 53; no. 5; pp. 1318 - 1343
Main Authors Dubois, Jessica, Alison, Marianne, Counsell, Serena J., Hertz‐Pannier, Lucie, Hüppi, Petra S., Benders, Manon J.N.L.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2021
Wiley Subscription Services, Inc
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft‐tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age‐specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large‐scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long‐term disabilities in children. Evidence Level 2 Technical Efficacy Stage 1
AbstractList In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft‐tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age‐specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large‐scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long‐term disabilities in children.Evidence Level2Technical Efficacy Stage1
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft‐tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age‐specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large‐scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long‐term disabilities in children. Evidence Level 2 Technical Efficacy Stage 1
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Author Hüppi, Petra S.
Counsell, Serena J.
Dubois, Jessica
Alison, Marianne
Hertz‐Pannier, Lucie
Benders, Manon J.N.L.
AuthorAffiliation 3 Department of Pediatric Radiology APHP, Robert‐Debré Hospital Paris France
5 Division of Development and Growth, Department of Woman, Child and Adolescent University Hospitals of Geneva Geneva Switzerland
1 University of Paris NeuroDiderot, INSERM,Paris France
6 Department of Neonatology University Medical Center Utrecht, Utrecht University Utrecht the Netherlands
2 UNIACT, NeuroSpin, CEA; Paris‐Saclay University Gif‐sur‐Yvette France
4 Centre for the Developing Brain School of Biomedical Engineering & Imaging Sciences, King's College London London UK
AuthorAffiliation_xml – name: 6 Department of Neonatology University Medical Center Utrecht, Utrecht University Utrecht the Netherlands
– name: 5 Division of Development and Growth, Department of Woman, Child and Adolescent University Hospitals of Geneva Geneva Switzerland
– name: 2 UNIACT, NeuroSpin, CEA; Paris‐Saclay University Gif‐sur‐Yvette France
– name: 1 University of Paris NeuroDiderot, INSERM,Paris France
– name: 4 Centre for the Developing Brain School of Biomedical Engineering & Imaging Sciences, King's College London London UK
– name: 3 Department of Pediatric Radiology APHP, Robert‐Debré Hospital Paris France
Author_xml – sequence: 1
  givenname: Jessica
  orcidid: 0000-0003-4865-8111
  surname: Dubois
  fullname: Dubois, Jessica
  email: jessica.dubois@centraliens.net
  organization: UNIACT, NeuroSpin, CEA; Paris‐Saclay University
– sequence: 2
  givenname: Marianne
  surname: Alison
  fullname: Alison, Marianne
  organization: APHP, Robert‐Debré Hospital
– sequence: 3
  givenname: Serena J.
  surname: Counsell
  fullname: Counsell, Serena J.
  organization: School of Biomedical Engineering & Imaging Sciences, King's College London
– sequence: 4
  givenname: Lucie
  surname: Hertz‐Pannier
  fullname: Hertz‐Pannier, Lucie
  organization: UNIACT, NeuroSpin, CEA; Paris‐Saclay University
– sequence: 5
  givenname: Petra S.
  surname: Hüppi
  fullname: Hüppi, Petra S.
  organization: University Hospitals of Geneva
– sequence: 6
  givenname: Manon J.N.L.
  surname: Benders
  fullname: Benders, Manon J.N.L.
  organization: University Medical Center Utrecht, Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32420684$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-04307240$$DView record in HAL
BookMark eNp9kltv1DAQhS1URC_wwg9AkXhBFSm-JbF5QNqugBZtQargEVmOM9l45bVLnGzVf49DSgUrxJMtzXeOZ8bnGB344AGh5wSfEYzpm822t2e0IpI-QkekoDSnhSgP0h0XLCcCV4foOMYNxlhKXjxBh4xyikvBj9D3q-vLLLTZ0EH2GYLXg3bZea-tf5stsmvYWbid6lcwdKEJLqytScSy086BX0PMtG-ScuxDNBb8YFtrskWz095AfIoet9pFeHZ_nqBvH95_XV7kqy8fL5eLVW6KgtCc1bqUvJGlZFhAzTSueG1MzZkpoW2BYta2pCwFAUl4IUktKa2MLmvQNeOCnaB3s-_NWG-hMamPXjt109ut7u9U0Fb9XfG2U-uwU4LyipU0GbyeDbo92cVipayP0G8V5gxXlOMdSfir-_f68GOEOKitjQac0x7CGFWiOBNUlFVCX-6hmzD2Pm1D0TQ7YYLIyfDFnwM8tPD7oxJwOgMmLTr20D4gBKspBWpKgfqVggTjPdjYQQ82TMNb928JmSW31sHdf8zVp5SYWfMTmnzDjA
CitedBy_id crossref_primary_10_53730_ijhs_v6nS10_15227
crossref_primary_10_1126_sciadv_abq2022
crossref_primary_10_1016_j_jradnu_2022_04_004
crossref_primary_10_1155_2022_3111585
crossref_primary_10_1002_jmri_27638
crossref_primary_10_3389_fped_2023_1112121
crossref_primary_10_1038_s41467_022_28326_4
crossref_primary_10_1002_hbm_70112
crossref_primary_10_1088_1361_6560_ad80f7
crossref_primary_10_3389_fnins_2021_636268
crossref_primary_10_1177_08830738231188561
crossref_primary_10_1039_D4SM01194E
crossref_primary_10_1007_s42058_024_00179_4
crossref_primary_10_3390_biomedicines12081874
crossref_primary_10_1016_j_japh_2025_102345
crossref_primary_10_3390_bioengineering11070681
crossref_primary_10_1002_jia2_25863
crossref_primary_10_3389_fnins_2023_1122829
crossref_primary_10_1016_j_dcn_2024_101355
crossref_primary_10_1039_D4NR01195C
crossref_primary_10_1016_j_dcn_2021_101055
crossref_primary_10_1162_imag_a_00017
crossref_primary_10_1002_hbm_70186
crossref_primary_10_1177_19714009241303149
crossref_primary_10_1016_j_copsyc_2021_10_010
crossref_primary_10_1002_jmri_28907
crossref_primary_10_1016_j_bspc_2024_107085
crossref_primary_10_1016_j_neuroimage_2023_120410
crossref_primary_10_1002_hbm_26784
crossref_primary_10_3174_ajnr_A6759
crossref_primary_10_3390_nu14142923
crossref_primary_10_1007_s00330_022_09267_4
crossref_primary_10_1007_s00404_023_07064_y
crossref_primary_10_1038_s41598_024_69995_z
crossref_primary_10_1016_j_media_2022_102393
crossref_primary_10_1148_rg_230239
crossref_primary_10_1016_j_dcn_2022_101083
crossref_primary_10_1162_imag_a_00180
crossref_primary_10_3390_jcm10040861
crossref_primary_10_1002_neo2_70011
crossref_primary_10_3390_children9030356
crossref_primary_10_1007_s12035_020_02011_3
crossref_primary_10_3389_fped_2021_708396
crossref_primary_10_5005_newborn_2_2_iv
crossref_primary_10_3389_fninf_2024_1496143
crossref_primary_10_1073_pnas_2303491120
crossref_primary_10_1016_j_neuroimage_2022_119815
crossref_primary_10_1016_j_eclinm_2023_102253
crossref_primary_10_1016_j_cmpb_2024_108479
crossref_primary_10_15622_ia_23_4_4
crossref_primary_10_1093_cercor_bhad462
crossref_primary_10_3390_children10111759
crossref_primary_10_1007_s00429_022_02565_z
crossref_primary_10_1002_ajmg_b_32987
crossref_primary_10_1109_TCI_2021_3128745
crossref_primary_10_3174_ajnr_A7710
crossref_primary_10_1038_s41372_022_01401_w
crossref_primary_10_1007_s00429_022_02605_8
crossref_primary_10_1016_j_nicl_2022_103286
crossref_primary_10_1371_journal_pone_0313192
crossref_primary_10_1038_s41467_024_55178_x
crossref_primary_10_1162_imag_a_00165
crossref_primary_10_1016_j_bandl_2021_105047
crossref_primary_10_1016_j_siny_2024_101556
crossref_primary_10_1162_imag_a_00337
crossref_primary_10_1007_s00429_024_02853_w
crossref_primary_10_1038_s41390_024_03294_1
crossref_primary_10_1002_mrm_30339
crossref_primary_10_1007_s00112_022_01542_4
crossref_primary_10_1016_j_dcn_2024_101397
crossref_primary_10_1186_s44158_024_00216_9
crossref_primary_10_1097_ANC_0000000000001243
crossref_primary_10_5114_pjr_2021_108165
crossref_primary_10_1016_j_dcn_2025_101539
crossref_primary_10_3390_app14041339
crossref_primary_10_1016_j_clp_2024_04_005
crossref_primary_10_1016_j_neuroimage_2025_121066
crossref_primary_10_1162_imag_a_00426
crossref_primary_10_1016_j_compbiomed_2022_105522
crossref_primary_10_1002_mrm_29537
crossref_primary_10_1155_jcpt_6597033
crossref_primary_10_1016_j_xcrm_2022_100864
crossref_primary_10_1016_j_dcn_2024_101488
crossref_primary_10_21833_ijaas_2023_08_006
crossref_primary_10_1016_j_dcn_2023_101249
crossref_primary_10_1016_j_jacr_2023_04_013
crossref_primary_10_3390_jcm11113135
crossref_primary_10_1007_s11571_023_09993_5
crossref_primary_10_1038_s41562_025_02116_6
crossref_primary_10_1016_j_neuroimage_2022_119178
crossref_primary_10_1097_RLI_0000000000001120
crossref_primary_10_1016_j_biopsych_2022_10_014
crossref_primary_10_1017_cri_2024_3
crossref_primary_10_1038_s41598_021_02722_0
crossref_primary_10_3390_children9020239
crossref_primary_10_1109_JBHI_2024_3411620
crossref_primary_10_1523_JNEUROSCI_1780_24_2025
crossref_primary_10_3389_fped_2021_634092
crossref_primary_10_1093_cercor_bhac444
Cites_doi 10.1002/hbm.23435
10.1371/journal.pone.0131552
10.1016/j.neuroimage.2016.05.047
10.3174/ajnr.A3128
10.1523/JNEUROSCI.3479-08.2008
10.1523/JNEUROSCI.5145-07.2008
10.1007/s00429-014-0887-5
10.3389/fphys.2019.00065
10.1002/mrm.26462
10.1016/j.neuroimage.2012.09.032
10.1093/cercor/bhu097
10.1073/pnas.1817536116
10.1073/pnas.0606302103
10.1016/j.nicl.2019.101820
10.1073/pnas.1007921107
10.1002/nbm.1543
10.1016/j.nicl.2017.05.023
10.1002/jmri.24716
10.1007/s00429-017-1600-2
10.1371/journal.pone.0160990
10.1016/j.neuroimage.2018.05.064
10.1016/j.neuroimage.2014.12.009
10.1002/nbm.3785
10.1016/j.neuroscience.2013.12.044
10.1016/j.neuroimage.2012.06.054
10.1371/journal.pone.0163143
10.1203/PDR.0b013e3182176aab
10.1002/mrm.26765
10.1002/jmri.24678
10.3174/ajnr.A4510
10.1016/j.neuroimage.2018.07.023
10.1038/s41598-017-02307-w
10.1016/j.ejrad.2012.10.013
10.1016/j.neuroimage.2018.12.043
10.3389/fped.2017.00159
10.1371/journal.pone.0024678
10.1016/j.neuroimage.2018.10.031
10.1109/ISBI.2015.7163837
10.1016/j.mri.2019.06.009
10.1016/j.tins.2017.06.003
10.1016/j.neuroimage.2018.01.054
10.1016/j.neuroimage.2010.06.017
10.3174/ajnr.A3728
10.1073/pnas.1715451115
10.1016/j.neuroimage.2018.11.006
10.1016/j.neuroimage.2018.04.044
10.1073/pnas.1212785110
10.1093/cercor/bhu178
10.1007/s00429-014-0881-y
10.1002/brb3.17
10.1093/cercor/bhs043
10.1016/j.neuroimage.2018.11.038
10.1016/j.siny.2006.07.007
10.1007/s10334-006-0036-0
10.1152/physrev.2001.81.2.871
10.1093/cercor/bhu027
10.1093/cercor/bhz126
10.1016/j.mri.2019.03.016
10.1002/mrm.27742
10.1016/j.neuroimage.2010.07.025
10.1038/s41598-017-09915-6
10.1111/desc.12151
10.1016/j.neuroimage.2015.02.010
10.1016/j.neuroimage.2017.01.047
10.1203/PDR.0b013e3181b1bd84
10.1016/j.nicl.2018.03.020
10.1016/j.nicl.2016.12.029
10.1073/pnas.1604658114
10.1016/j.neuroimage.2012.03.057
10.1016/B978-0-12-397025-1.00360-2
10.1016/j.neurad.2012.03.006
10.1016/j.neuroimage.2017.01.065
10.1371/journal.pone.0108904
10.1016/j.neuroimage.2018.03.020
10.1016/j.dcn.2019.100752
10.1016/j.neuroimage.2018.03.049
10.12688/f1000research.15073.1
10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
10.1016/j.neuroimage.2019.116391
10.1148/radiol.2019182564
10.1007/s00429-018-1735-9
10.1093/cercor/bhu331
10.1016/j.neuroimage.2017.08.013
10.1016/j.neuron.2015.09.026
10.1093/cercor/bhv123
10.3174/ajnr.A2723
10.1016/j.neuroimage.2014.03.057
10.1016/j.jpeds.2017.09.083
10.1016/j.neuroimage.2018.03.042
10.1002/mrm.26796
10.1016/0006-8993(96)00062-5
10.1073/pnas.1422638112
10.1109/ISBI.2019.8759421
10.1016/j.neuroimage.2018.10.060
10.1016/j.neuroimage.2004.02.035
10.1038/nn.3045
10.1016/j.neuroimage.2015.02.051
10.1093/cercor/bhu095
10.1016/j.braindev.2017.07.011
10.1016/j.siny.2006.07.006
10.1007/s00234-014-1380-9
10.1016/j.neuroimage.2018.04.032
10.1016/j.mri.2014.05.007
10.1016/j.neuroimage.2018.06.034
10.1016/j.neuroimage.2012.07.037
10.1016/j.neuroimage.2014.09.039
10.1007/978-1-4615-3824-0_1
10.1007/s10548-018-0661-8
10.3233/BPL-160031
10.1016/j.mri.2007.01.119
10.1523/ENEURO.0380-17.2017
10.1523/JNEUROSCI.2891-18.2019
10.1016/j.media.2019.101540
10.1371/journal.pone.0169392
10.1007/s11065-010-9148-4
10.1016/j.neuroimage.2018.04.017
10.1016/j.nicl.2017.11.023
10.1016/j.tics.2018.01.005
10.1007/s00247-009-1450-z
10.3174/ajnr.A1256
10.1016/j.neuroimage.2012.08.086
10.1002/jmri.25570
10.1016/j.neuroimage.2018.06.069
10.1016/j.neuroimage.2018.03.005
10.1038/s41583-018-0112-2
10.1002/mrm.25299
10.1093/cercor/bhx167
10.1002/hbm.20363
10.1016/j.earlhumdev.2008.09.004
10.1203/PDR.0b013e318232a963
10.1016/j.neuroimage.2016.05.034
10.1002/hbm.22488
10.1016/j.neuroimage.2018.06.018
10.1007/s00330-005-2796-8
10.1002/mrm.26455
10.1007/s00429-018-1787-x
10.1016/j.neuroimage.2015.10.010
10.1523/JNEUROSCI.4141-10.2011
10.1038/ncomms13995
10.1016/j.neuroimage.2015.10.047
10.1016/j.neuroimage.2011.02.073
10.1016/j.neuroimage.2019.05.075
10.1073/pnas.1812156116
10.1016/j.neuroimage.2019.05.051
10.1542/peds.2016-1640
10.1016/j.neuroimage.2018.07.004
10.1016/B978-0-12-397025-1.00194-9
10.1093/cercor/bhs330
10.1016/j.ejpn.2019.06.003
10.1002/ana.410010109
10.1073/pnas.1324118111
10.1016/j.neuroimage.2019.02.060
10.1016/j.neuroimage.2013.08.038
10.1093/cercor/bhy028
10.1016/j.neuroimage.2005.11.022
10.1016/j.neuroimage.2016.05.029
10.1016/j.neuroimage.2017.06.074
10.1016/j.dcn.2017.10.004
10.1093/cercor/bhq071
10.1371/journal.pbio.1002260
10.1073/pnas.0909074107
10.1016/j.jaac.2011.11.009
10.1016/j.neuroimage.2016.07.010
10.1093/cercor/bhu251
10.1016/j.neuroimage.2018.05.046
10.1016/j.neuroimage.2015.08.055
10.1073/pnas.1301652110
10.1016/j.neuroimage.2015.11.001
10.1016/j.neuroimage.2018.04.003
10.1002/mrm.22961
10.1093/cercor/bhv203
10.1093/cercor/bhv201
10.1007/s00234-011-0872-0
10.1038/pr.2016.146
10.1016/j.neuroimage.2016.12.034
10.1093/cercor/bhv082
10.1002/jmri.26163
10.3174/ajnr.A2555
10.1002/jmri.26579
10.1016/j.neuroimage.2016.02.040
10.1073/pnas.0811221106
10.1093/cercor/bhz069
10.1016/j.neuroimage.2012.03.072
10.1007/s00247-014-3204-9
10.1093/cercor/bht312
10.1093/cercor/bhy050
10.1038/s41562-017-0249-4
10.1016/j.neuroimage.2018.07.022
10.1523/JNEUROSCI.10-07-02156.1990
10.1136/archdischild-2016-311403
10.1126/science.1077066
10.1038/s41598-017-08195-4
10.1002/hbm.23188
10.1002/nbm.3944
10.1016/j.jpeds.2016.05.014
10.1007/s00247-014-3270-z
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
1XC
VOOES
5PM
DOI 10.1002/jmri.27192
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate MRI of the Neonatal Brain
EISSN 1522-2586
EndPage 1343
ExternalDocumentID PMC8247362
oai_HAL_inserm_04307240v1
32420684
10_1002_jmri_27192
JMRI27192
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Fondation Médisite
  funderid: Prize for Clinical Research in Neurosciences 2018
– fundername: Seventh Framework Programme
  funderid: Human Brain Project 2013
– fundername: Fondation de France
  funderid: Call Neurodevelopment 2012
– fundername: IdEx University of Paris
  funderid: ANR‐18‐IDEX‐0001
– fundername: Fondation Fyssen
  funderid: Research grant 2009
– fundername: ;
  grantid: Human Brain Project 2013
– fundername: ;
  grantid: Research grant 2009
– fundername: IdEx University of Paris
  grantid: ANR‐18‐IDEX‐0001
– fundername: Fondation Médisite
  grantid: Prize for Clinical Research in Neurosciences 2018
– fundername: ;
  grantid: Call Neurodevelopment 2012
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5512-3ba694d969308eb3a074bccb43c6effe203ff16681e914591b9227ca6beab3483
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 17:36:40 EDT 2025
Fri May 09 12:21:46 EDT 2025
Fri Jul 11 13:03:40 EDT 2025
Fri Jul 25 12:23:06 EDT 2025
Thu Apr 03 06:57:58 EDT 2025
Tue Jul 01 03:56:45 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:29:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords brain development
functional MRI
infants
diffusion MRI
quantitative MRI
anatomical MRI
newborns
Language English
License Attribution
2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5512-3ba694d969308eb3a074bccb43c6effe203ff16681e914591b9227ca6beab3483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMCID: PMC8247362
Review article for the Journal of Magnetic Resonance Imaging (JMRI) April 24th 2020
Contract grant sponsor: Fondation de France (to J.D., call Neurodevelopment 2012); Contract grant sponsor: Fyssen Foundation (to J.D., 2009); Contract grant sponsor: Médisite Foundation (to J.D., 2018); Contract grant sponsor: European Union's Horizon 2020 Research and Innovation Programme (to J.D., HBP 2013). This study contributed to the IdEx Université de Paris (J.D., ANR‐18‐IDEX‐0001). Some data were provided by the developing Human Connectome Project, KCL‐Imperial‐Oxford Consortium funded by the European Research Council under the European Union Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement no. 319456. We thank the families who supported this trial.
ORCID 0000-0003-4865-8111
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27192
PMID 32420684
PQID 2512138191
PQPubID 1006400
PageCount 26
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8247362
hal_primary_oai_HAL_inserm_04307240v1
proquest_miscellaneous_2404382867
proquest_journals_2512138191
pubmed_primary_32420684
crossref_primary_10_1002_jmri_27192
crossref_citationtrail_10_1002_jmri_27192
wiley_primary_10_1002_jmri_27192_JMRI27192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Wiley-Blackwell
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley-Blackwell
References 2004; 22
2006; 30
2010; 107
2013; 65
2015; 73
2019; 10
2013; 64
2011; 53
2011; 54
2018; 40
2011; 56
2012; 15
2016; 37
2016; 142
2018; 48
2010; 23
2018; 7
2010; 20
2018; 170
2018; 2
2018; 173
2018; 5
2019; 20
2018; 179
2008; 29
2019; 23
2011; 70
2015; 88
2008; 28
1997; 387
2017; 78
1987
2011; 66
2017; 160
2019; 29
2017; 162
2013; 110
2011; 69
2014; 17
2014; 96
2018; 31
2016; 46
2009; 66
2018; 28
2019; 192
2011; 1
2020; 42
2015; 125
2019; 32
2018; 223
2019; 35
2018; 103
2019; 39
2019; 224
2019; 185
2014; 276
2018; 22
2011; 6
2012; 33
2019; 188
2016; 14
2010; 40
2019; 186
2016; 11
2018; 18
2018; 193
2016; 2
2020; 30
2015; 111
2015; 112
2018; 115
1920
2019; 49
2013; 82
2014; 35
2019; 292
2016; 26
2017; 147
2016; 175
2017; 149
2014; 32
2006; 103
2009; 106
2012; 61
2017; 40
2017; 5
2017; 7
1990; 10
2010; 53
2017; 8
2013; 23
2017; 46
2015; 220
2019; 59
2019; 58
2015; 107
2017; 114
2012; 51
2019; 64
2017; 38
2015; 41
1990; 8B
2019; 116
2011; 21
2016; 80
2014; 9
2019; 199
2014; 56
2007; 25
2012; 63
2018; 79
2015; 2
2015; 13
2017; 27
2006; 11
2006; 16
2013; 40
2002; 298
2015; 10
2011; 31
2016; 124
2006; 19
2011; 32
2016; 125
2002
1996; 720
2014; 111
2014; 84
2001; 81
2015; 25
2019; 82
2017; 15
2017; 17
2013; 35
2013; 34
2020
2017; 12
2019
1977; 1
2016; 132
2016; 138
2015
2014
2016; 136
2008; 84
2014; 103
1967
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
Dubois J. (e_1_2_8_6_1) 2015; 2
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_206_1
Flechsig P (e_1_2_8_16_1) 1920
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
Andescavage NN (e_1_2_8_7_1) 2017; 27
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
Wang F (e_1_2_8_45_1) 2019; 116
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
Dubois J. (e_1_2_8_5_1) 2015; 2
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
Walhovd KB (e_1_2_8_48_1) 2017; 27
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
Lordier L (e_1_2_8_188_1) 2019; 116
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
Melbourne A (e_1_2_8_161_1) 2014; 17
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
Yakovlev PI (e_1_2_8_20_1) 1967
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_141_1
e_1_2_8_164_1
Feess‐Higgins A (e_1_2_8_12_1) 1987
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 46
  start-page: 941
  issue: 7
  year: 2016
  end-page: 951
  article-title: Key concepts in MR spectroscopy and practical approaches to gaining biochemical information in children
  publication-title: Pediatr Radiol
– volume: 26
  start-page: 3023
  issue: 7
  year: 2016
  end-page: 3035
  article-title: Are developmental trajectories of cortical folding comparable between cross‐sectional datasets of fetuses and preterm newborns?
  publication-title: Cereb Cortex
– volume: 110
  start-page: 9541
  issue: 23
  year: 2013
  end-page: 9546
  article-title: Development of cortical microstructure in the preterm human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 41
  start-page: 1353
  issue: 5
  year: 2015
  end-page: 1364
  article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction
  publication-title: J Magn Reson Imaging
– volume: 88
  start-page: 93
  issue: 1
  year: 2015
  end-page: 109
  article-title: The infancy of the human brain
  publication-title: Neuron
– volume: 32
  start-page: 981
  issue: 8
  year: 2014
  end-page: 992
  article-title: Correction strategy for diffusion‐weighted images corrupted with motion: Application to the DTI evaluation of infants' white matter
  publication-title: Magn Reson Imaging
– volume: 9
  issue: 10
  year: 2014
  article-title: Different patterns of punctate white matter lesions in serially scanned preterm infants
  publication-title: PLoS One
– volume: 5
  start-page: 159
  year: 2017
  article-title: Resting‐state functional connectivity in the infant brain: Methods, pitfalls, and potentiality
  publication-title: Front Pediatr
– volume: 40
  start-page: 494
  year: 2017
  end-page: 506
  article-title: Developmental connectomics from infancy through early childhood
  publication-title: Trends Neurosci
– volume: 15
  start-page: 401
  year: 2017
  end-page: 407
  article-title: Prematurity and brain perfusion: Arterial spin labeling MRI
  publication-title: Neuroimage Clin
– volume: 25
  start-page: 1176
  issue: 5
  year: 2015
  end-page: 1187
  article-title: Consistent anterior‐posterior segregation of the insula during the first 2 years of life
  publication-title: Cereb Cortex
– volume: 20
  start-page: 327
  issue: 4
  year: 2010
  end-page: 348
  article-title: The basics of brain development
  publication-title: Neuropsychol Rev
– volume: 6
  issue: 9
  year: 2011
  article-title: Development trends of white matter connectivity in the first years of life
  publication-title: PLoS One
– volume: 51
  start-page: 181
  issue: 2
  year: 2012
  end-page: 191
  article-title: Regional cerebral development at term relates to school‐age social‐emotional development in very preterm children
  publication-title: J Am Acad Child Adolesc Psychiatry
– volume: 84
  start-page: 777
  issue: 12
  year: 2008
  end-page: 782
  article-title: Connecting the developing preterm brain
  publication-title: Early Hum Dev
– volume: 54
  start-page: 1862
  issue: 3
  year: 2011
  end-page: 1871
  article-title: Brain anatomical networks in early human brain development
  publication-title: Neuroimage
– volume: 26
  start-page: 2283
  issue: 5
  year: 2016
  end-page: 2298
  article-title: Exploring the early organization and maturation of linguistic pathways in the human infant brain
  publication-title: Cereb Cortex
– volume: 185
  start-page: 891
  year: 2019
  end-page: 905
  article-title: The UNC/UMN baby connectome project (BCP): An overview of the study design and protocol development
  publication-title: Neuroimage
– volume: 22
  start-page: 375
  issue: 5
  year: 2018
  end-page: 387
  article-title: Infant fMRI: A model system for cognitive neuroscience
  publication-title: Trends Cogn Sci
– volume: 110
  start-page: 4380
  issue: 11
  year: 2013
  end-page: 4385
  article-title: Resolving the transition from negative to positive blood oxygen level‐dependent responses in the developing brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 103
  start-page: 214
  year: 2014
  end-page: 224
  article-title: Microstructural brain development between 30 and 40 week corrected age in a longitudinal cohort of extremely preterm infants
  publication-title: Neuroimage
– volume: 1
  start-page: 95
  issue: 2
  year: 2011
  end-page: 108
  article-title: White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study
  publication-title: Brain Behav
– volume: 73
  year: 2015
  article-title: T2* relaxometry of fetal brain at 1.5 Tesla using a motion tolerant method
  publication-title: Magn Reson Med
– year: 2014
  article-title: Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: Neuroanatomic insights
  publication-title: Cereb Cortex
– volume: 31
  start-page: 1500
  issue: 4
  year: 2011
  end-page: 1506
  article-title: Early maturation of the linguistic dorsal pathway in human infants
  publication-title: J Neurosci
– year: 1920
– year: 2019
– volume: 220
  start-page: 3733
  issue: 6
  year: 2015
  end-page: 3751
  article-title: Maturation of preterm newborn brains: A fMRI‐DTI study of auditory processing of linguistic stimuli and white matter development
  publication-title: Brain Struct Funct
– volume: 34
  start-page: 1124
  issue: 6
  year: 2013
  end-page: 1136
  article-title: Motion‐compensation techniques in neonatal and fetal MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 25
  start-page: 3000
  issue: 9
  year: 2015
  end-page: 3013
  article-title: The neonatal connectome during preterm brain development
  publication-title: Cereb Cortex
– volume: 5
  start-page: ENEURO.0380
  issue: 1
  year: 2018
  end-page: ENEU17.2017
  article-title: Differential rates of perinatal maturation of human primary and nonprimary auditory cortex
  publication-title: eNeuro
– volume: 79
  start-page: 1365
  issue: 3
  year: 2018
  end-page: 1376
  article-title: Three‐dimensional motion corrected sensitivity encoding reconstruction for multi‐shot multi‐slice MRI: Application to neonatal brain imaging
  publication-title: Magn Reson Med
– volume: 26
  start-page: 4381
  issue: 11
  year: 2016
  end-page: 4391
  article-title: Structural development of human fetal and preterm brain cortical plate based on population‐averaged templates
  publication-title: Cereb Cortex
– volume: 185
  start-page: 836
  year: 2019
  end-page: 850
  article-title: Delineation of early brain development from fetuses to infants with diffusion MRI and beyond
  publication-title: Neuroimage
– volume: 185
  start-page: 664
  year: 2019
  end-page: 684
  article-title: Resting‐state functional MRI studies on infant brains: A decade of gap‐filling efforts
  publication-title: Neuroimage
– volume: 185
  start-page: 926
  year: 2019
  end-page: 933
  article-title: Assessment of cerebral blood flow in neonates and infants: A phase‐contrast MRI study
  publication-title: Neuroimage
– volume: 27
  start-page: 5274
  issue: 11
  year: 2017
  end-page: 5283
  article-title: Complex trajectories of brain development in the healthy human fetus
  publication-title: Cereb Cortex
– volume: 11
  start-page: 479
  issue: 6
  year: 2006
  end-page: 488
  article-title: Functional MRI of the newborn
  publication-title: Semin Fetal Neonatal Med
– volume: 70
  start-page: 626
  issue: 6
  year: 2011
  end-page: 632
  article-title: Fiber tracking at term displays gender differences regarding cognitive and motor outcome at 2 years of age in preterm infants
  publication-title: Pediatr Res
– volume: 27
  start-page: 1472
  issue: 2
  year: 2017
  end-page: 1481
  article-title: Through thick and thin: A need to reconcile contradictory results on trajectories in human cortical development
  publication-title: Cereb Cortex
– volume: 25
  start-page: 1162
  issue: 8
  year: 2007
  end-page: 1170
  article-title: Optimization of 3D MP‐RAGE for neonatal brain imaging at 3.0 T
  publication-title: Magn Reson Imaging
– volume: 40
  start-page: 85
  year: 2018
  end-page: 93
  article-title: Measuring in vivo cerebral maturation using age‐related T2 relaxation times at 3T
  publication-title: Brain Dev
– volume: 82
  start-page: 527
  issue: 2
  year: 2019
  end-page: 550
  article-title: Methodological consensus on clinical proton MRS of the brain: Review and recommendations
  publication-title: Magn Reson Med
– volume: 30
  year: 2020
  article-title: Cortical structure and cognition in infants and toddlers
  publication-title: Cereb Cortex
– volume: 25
  start-page: 4310
  year: 2015
  end-page: 4318
  article-title: Thalamocortical connectivity predicts cognition in children born preterm
  publication-title: Cereb Cortex
– volume: 8B
  start-page: 3
  year: 1990
  end-page: 136
– volume: 13
  issue: 9
  year: 2015
  article-title: BOLD response selective to flow‐motion in very young infants
  publication-title: PLoS Biol
– volume: 64
  start-page: 171
  year: 2019
  end-page: 189
  article-title: Role of deep learning in infant brain MRI analysis
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 14
  issue: 1
  year: 2008
  end-page: 27
  article-title: Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging
  publication-title: Hum Brain Mapp
– year: 2002
– volume: 185
  start-page: 764
  year: 2019
  end-page: 775
  article-title: Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo
  publication-title: Neuroimage
– volume: 79
  start-page: 1276
  issue: 3
  year: 2018
  end-page: 1292
  article-title: Time‐efficient and flexible design of optimized multishell HARDI diffusion
  publication-title: Magn Reson Med
– volume: 42
  year: 2020
  article-title: Anatomo‐functional correlates of auditory development in infancy
  publication-title: Dev Cogn Neurosci
– volume: 11
  start-page: 24
  issue: 10
  year: 2016
  article-title: A new strategy for fast MRI‐based quantification of the myelin water fraction: Application to brain imaging in infants
  publication-title: PLoS One
– volume: 7
  start-page: 8143
  issue: 1
  year: 2017
  article-title: Altered cerebellar biochemical profiles in infants born prematurely
  publication-title: Sci Rep
– volume: 2
  start-page: 11
  year: 2015
  end-page: 19
  article-title: Fetal and postnatal development of the cortex: Insights from MRI and genetics
  publication-title: Brain mapping: An encyclopedic reference
– year: 2020
  article-title: Multiscale structure‐function gradients in the neonatal connectome
  publication-title: Cereb Cortex
– volume: 193
  start-page: 54
  year: 2018
  end-page: 61
  article-title: Altered cerebral perfusion in infants born preterm compared with infants born full term
  publication-title: J Pediatr
– volume: 66
  start-page: 301
  issue: 3
  year: 2009
  end-page: 305
  article-title: Spontaneous brain activity in the newborn brain during natural sleep—An fMRI study in infants born at full term
  publication-title: Pediatr Res
– year: 2020
  article-title: Music enhances structural maturation of emotional processing neural pathways in very preterm infants
  publication-title: Neuroimage
– volume: 96
  start-page: 288
  year: 2014
  end-page: 299
  article-title: Assessing white matter microstructure of the newborn with multi‐shell diffusion MRI and biophysical compartment models
  publication-title: Neuroimage
– volume: 220
  start-page: 3657
  issue: 6
  year: 2015
  end-page: 3672
  article-title: Multi‐parametric evaluation of the white matter maturation
  publication-title: Brain Struct Funct
– volume: 37
  start-page: 2479
  issue: 7
  year: 2016
  end-page: 2492
  article-title: Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry
  publication-title: Hum Brain Mapp
– volume: 103
  start-page: 14240
  issue: 38
  year: 2006
  end-page: 14245
  article-title: Functional organization of perisylvian activation during presentation of sentences in preverbal infants
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 89
  issue: 1
  year: 2016
  end-page: 95
  article-title: Development of the cell population in the brain white matter of young children
  publication-title: Cereb Cortex
– volume: 223
  start-page: 4153
  issue: 9
  year: 2018
  end-page: 4168
  article-title: A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem
  publication-title: Brain Struct Funct
– volume: 41
  start-page: 1591
  issue: 6
  year: 2015
  end-page: 1600
  article-title: Cerebral blood flow measurements in infants using Look‐Locker arterial spin labeling
  publication-title: J Magn Reson Imaging
– volume: 78
  start-page: 794
  issue: 2
  year: 2017
  end-page: 804
  article-title: A dedicated neonatal brain imaging system
  publication-title: Magn Reson Med
– volume: 11
  start-page: 489
  issue: 6
  year: 2006
  end-page: 497
  article-title: Diffusion tensor imaging of brain development
  publication-title: Semin Fetal Neonatal Med
– volume: 103
  start-page: F238
  issue: 3
  year: 2018
  end-page: F244
  article-title: Magnetic resonance spectroscopy in preterm infants: Association with neurodevelopmental outcomes
  publication-title: Arch Dis Child Fetal Neonatal Ed
– volume: 17
  start-page: 766
  issue: 5
  year: 2014
  end-page: 774
  article-title: Neural specialization for speech in the first months of life
  publication-title: Dev Sci
– volume: 80
  start-page: 641
  issue: 5
  year: 2016
  end-page: 650
  article-title: Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates: A review
  publication-title: Pediatr Res
– volume: 107
  start-page: 20015
  issue: 46
  year: 2010
  end-page: 20020
  article-title: Emergence of resting state networks in the preterm human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 192
  start-page: 145
  year: 2019
  end-page: 155
  article-title: White matter connectomes at birth accurately predict cognitive abilities at age 2
  publication-title: Neuroimage
– volume: 147
  start-page: 233
  year: 2017
  end-page: 242
  article-title: Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo‐continuous arterial spin labeled perfusion MRI
  publication-title: Neuroimage
– volume: 7
  year: 2018
  article-title: Recent advances in diffusion neuroimaging: Applications in the developing preterm brain
  publication-title: F1000Res
– volume: 107
  start-page: 242
  year: 2015
  end-page: 256
  article-title: One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI?
  publication-title: Neuroimage
– volume: 49
  start-page: 1600
  issue: 6
  year: 2019
  end-page: 1609
  article-title: Spatiotemporal variations of magnetic susceptibility in the deep gray matter nuclei from 1 month to 6 years: A quantitative susceptibility mapping study
  publication-title: J Magn Reson Imaging
– volume: 25
  start-page: 2204
  issue: 8
  year: 2015
  end-page: 2212
  article-title: Dynamic development of regional cortical thickness and surface area in early childhood
  publication-title: Cereb Cortex
– volume: 188
  start-page: 743
  year: 2019
  end-page: 773
  article-title: Neural histology and neurogenesis of the human fetal and infant brain
  publication-title: Neuroimage
– volume: 720
  start-page: 17
  issue: 1–2
  year: 1996
  end-page: 24
  article-title: Human central nervous system myelin inhibits neurite outgrowth
  publication-title: Brain Res
– volume: 185
  start-page: 865
  year: 2019
  end-page: 880
  article-title: Baby brain atlases
  publication-title: Neuroimage
– volume: 292
  start-page: 179
  issue: 1
  year: 2019
  end-page: 187
  article-title: Diffusion tensor MRI of white matter of healthy full‐term newborns: Relationship to neurodevelopmental outcomes
  publication-title: Radiology
– volume: 17
  start-page: 667
  year: 2017
  end-page: 679
  article-title: Prediction of cognitive and motor development in preterm children using exhaustive feature selection and cross‐validation of near‐term white matter microstructure
  publication-title: Neuroimage Clin
– volume: 224
  start-page: 501
  issue: 1
  year: 2019
  end-page: 513
  article-title: Associations of age and sex with brain volumes and asymmetry in 2‐5‐week‐old infants
  publication-title: Brain Struct Funct
– volume: 28
  start-page: 1943
  issue: 8
  year: 2008
  end-page: 1948
  article-title: Microstructural correlates of infant functional development: Example of the visual pathways
  publication-title: J Neurosci
– volume: 32
  issue: 4
  year: 2019
  article-title: Diffusion MRI fiber tractography of the brain
  publication-title: NMR Biomed
– volume: 8
  year: 2017
  article-title: Organization of high‐level visual cortex in human infants
  publication-title: Nat Commun
– volume: 107
  start-page: 4758
  issue: 10
  year: 2010
  end-page: 4763
  article-title: Functional specializations for music processing in the human newborn brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 125
  start-page: 780
  year: 2015
  end-page: 790
  article-title: Comparison of cortical folding measures for evaluation of developing human brain
  publication-title: Neuroimage
– volume: 186
  start-page: 321
  year: 2019
  end-page: 337
  article-title: A framework for multi‐component analysis of diffusion MRI data over the neonatal period
  publication-title: Neuroimage
– year: 2020
– volume: 53
  start-page: 669
  issue: 9
  year: 2011
  end-page: 679
  article-title: Punctate white matter lesions in infants: New insights using susceptibility‐weighted imaging
  publication-title: Neuroradiology
– volume: 31
  issue: 8
  year: 2018
  article-title: Size‐adaptable 13‐channel receive array for brain MRI in human neonates at 3 T
  publication-title: NMR Biomed
– volume: 38
  start-page: 1009
  issue: 2
  year: 2017
  end-page: 1024
  article-title: Twin‐singleton developmental study of brain white matter anatomy
  publication-title: Hum Brain Mapp
– volume: 66
  start-page: 1777
  issue: 6
  year: 2011
  end-page: 1787
  article-title: Size‐optimized 32‐channel brain arrays for 3 T pediatric imaging
  publication-title: Magn Reson Med
– volume: 186
  start-page: 782
  year: 2019
  end-page: 793
  article-title: MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life
  publication-title: Neuroimage
– volume: 10
  issue: 7
  year: 2015
  article-title: Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants
  publication-title: PLoS One
– volume: 185
  start-page: 641
  year: 2019
  end-page: 653
  article-title: Mapping the asynchrony of cortical maturation in the infant brain: A MRI multi‐parametric clustering approach
  publication-title: Neuroimage
– volume: 1
  start-page: 86
  issue: 1
  year: 1977
  end-page: 93
  article-title: Gyral development of the human brain
  publication-title: Ann Neurol
– volume: 33
  start-page: 188
  issue: 1
  year: 2012
  end-page: 194
  article-title: Neonatal tract‐based spatial statistics findings and outcome in preterm infants
  publication-title: AJNR Am J Neuroradiol
– volume: 32
  start-page: 1
  issue: 1
  year: 2019
  end-page: 16
  article-title: Robust identification of rich‐club organization in weighted and dense structural connectomes
  publication-title: Brain Topogr
– volume: 26
  start-page: 402
  issue: 1
  year: 2016
  end-page: 413
  article-title: Maturation of sensori‐motor functional responses in the preterm brain
  publication-title: Cereb Cortex
– volume: 56
  start-page: 1437
  issue: 3
  year: 2011
  end-page: 1452
  article-title: Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain
  publication-title: Neuroimage
– volume: 199
  start-page: 387
  year: 2019
  end-page: 395
  article-title: Age‐specific optimization of T1‐weighted brain MRI throughout infancy
  publication-title: Neuroimage
– volume: 46
  start-page: 690
  issue: 3
  year: 2017
  end-page: 696
  article-title: Evaluation of neonatal brain myelination using the T1‐ and T2‐weighted MRI ratio
  publication-title: J Magn Reson Imaging
– volume: 7
  start-page: 2163
  issue: 1
  year: 2017
  article-title: Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
  publication-title: Sci Rep
– volume: 35
  start-page: 36
  year: 2019
  end-page: 41
  article-title: Neural correlates of gentle skin stroking in early infancy
  publication-title: Dev Cogn Neurosci
– volume: 26
  start-page: 322
  issue: 1
  year: 2016
  end-page: 333
  article-title: Resting‐state network complexity and magnitude are reduced in prematurely born infants
  publication-title: Cereb Cortex
– volume: 116
  start-page: 12103
  issue: 24
  year: 2019
  end-page: 12108
  article-title: Music in premature infants enhances high‐level cognitive brain networks
  publication-title: Proc Natl Acad Sci U S A
– volume: 78
  start-page: 625
  issue: 2
  year: 2017
  end-page: 631
  article-title: Optimal echo time for functional MRI of the infant brain identified in response to noxious stimulation
  publication-title: Magn Reson Med
– volume: 298
  start-page: 2013
  issue: 5600
  year: 2002
  end-page: 2015
  article-title: Functional neuroimaging of speech perception in infants
  publication-title: Science
– volume: 35
  start-page: 593
  issue: 3
  year: 2013
  end-page: 598
  article-title: Regional cerebral blood flow in children from 3 to 5 months of age
  publication-title: AJNR Am J Neuroradiol
– volume: 125
  start-page: 456
  year: 2016
  end-page: 478
  article-title: Regional growth and atlasing of the developing human brain
  publication-title: Neuroimage
– volume: 61
  start-page: 1000
  issue: 4
  year: 2012
  end-page: 1016
  article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
– volume: 30
  start-page: 1121
  issue: 4
  year: 2006
  end-page: 1132
  article-title: Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography
  publication-title: Neuroimage
– volume: 15
  start-page: 528
  issue: 4
  year: 2012
  end-page: 536
  article-title: Plasticity in gray and white: Neuroimaging changes in brain structure during learning
  publication-title: Nat Neurosci
– volume: 29
  start-page: 1218
  issue: 3
  year: 2019
  end-page: 1229
  article-title: System‐specific patterns of thalamocortical connectivity in early brain development as revealed by structural and functional MRI
  publication-title: Cereb Cortex
– volume: 2
  start-page: 67
  issue: 1
  year: 2018
  end-page: 79
  article-title: Right but not left hemispheric discrimination of faces in infancy
  publication-title: Nat Hum Behav
– volume: 185
  start-page: 624
  year: 2019
  end-page: 640
  article-title: Neurobiology, not artifacts: Challenges and guidelines for imaging the high risk infant
  publication-title: Neuroimage
– volume: 387
  start-page: 167
  issue: 2
  year: 1997
  end-page: 178
  article-title: Regional differences in synaptogenesis in human cerebral cortex
  publication-title: J Comp Neurol
– volume: 138
  start-page: 28
  year: 2016
  end-page: 42
  article-title: NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns
  publication-title: Neuroimage
– volume: 132
  start-page: 225
  year: 2016
  end-page: 237
  article-title: Mapping an index of the myelin g‐ratio in infants using magnetic resonance imaging
  publication-title: Neuroimage
– volume: 53
  start-page: 139
  issue: 1
  year: 2010
  end-page: 145
  article-title: Prospective motion correction of high‐resolution magnetic resonance imaging data in children
  publication-title: Neuroimage
– volume: 48
  start-page: 1199
  issue: 5
  year: 2018
  end-page: 1207
  article-title: Quantitative susceptibility map analysis in preterm neonates with germinal matrix‐intraventricular hemorrhage
  publication-title: J Magn Reson Imaging
– volume: 185
  start-page: 349
  year: 2019
  end-page: 360
  article-title: Neonate and infant brain development from birth to 2 years assessed using MRI‐based quantitative susceptibility mapping
  publication-title: Neuroimage
– volume: 28
  start-page: 2901
  issue: 8
  year: 2018
  end-page: 2907
  article-title: fMRI‐based neuronal response to new odorants in the newborn brain
  publication-title: Cereb Cortex
– volume: 142
  start-page: 291
  year: 2016
  end-page: 300
  article-title: Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants
  publication-title: Neuroimage
– volume: 12
  issue: 1
  year: 2017
  article-title: Functional laterality of task‐evoked activation in sensorimotor cortex of preterm infants: An optimized 3T fMRI study employing a customized neonatal head coil
  publication-title: PLoS One
– volume: 23
  start-page: 733
  issue: 5
  year: 2019
  end-page: 739
  article-title: Punctate white matter lesions of preterm infants: Risk factor analysis
  publication-title: Eur J Paediatr Neurol
– volume: 29
  start-page: 1883
  issue: 10
  year: 2008
  end-page: 1889
  article-title: Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain
  publication-title: AJNR Am J Neuroradiol
– year: 1987
– volume: 186
  start-page: 286
  year: 2019
  end-page: 300
  article-title: Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious‐evoked brain activity in infants
  publication-title: Neuroimage
– volume: 10
  start-page: 65
  year: 2019
  article-title: Measurement of neurovascular coupling in neonates
  publication-title: Front Physiol
– volume: 18
  start-page: 871
  year: 2018
  end-page: 880
  article-title: Regional microstructural organization of the cerebral cortex is affected by preterm birth
  publication-title: Neuroimage Clin
– volume: 19
  start-page: 134
  issue: 3
  year: 2006
  end-page: 143
  article-title: Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets
  publication-title: MAGMA
– volume: 61
  start-page: 542
  issue: 3
  year: 2012
  end-page: 557
  article-title: Quantitative tract‐based white matter development from birth to age 2years
  publication-title: Neuroimage
– start-page: 3
  year: 1967
  end-page: 69
– volume: 35
  start-page: 4475
  issue: 9
  year: 2014
  end-page: 4487
  article-title: White matter development and early cognition in babies and toddlers
  publication-title: Hum Brain Mapp
– volume: 199
  start-page: 1
  year: 2019
  end-page: 17
  article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain
  publication-title: Neuroimage
– volume: 21
  start-page: 145
  issue: 1
  year: 2011
  end-page: 154
  article-title: The functional architecture of the infant brain as revealed by resting‐state fMRI
  publication-title: Cereb Cortex
– volume: 106
  start-page: 6790
  issue: 16
  year: 2009
  end-page: 6795
  article-title: Evidence on the emergence of the brain's default network from 2‐week‐old to 2‐year‐old healthy pediatric subjects
  publication-title: Proc Natl Acad Sci U S A
– volume: 81
  start-page: 871
  issue: 2
  year: 2001
  end-page: 927
  article-title: Biology of oligodendrocyte and myelin in the mammalian central nervous system
  publication-title: Physiol Rev
– volume: 185
  start-page: 750
  year: 2019
  end-page: 763
  article-title: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project
  publication-title: Neuroimage
– volume: 160
  start-page: 2
  year: 2017
  end-page: 14
  article-title: The emergence of functional architecture during early brain development
  publication-title: Neuroimage
– volume: 185
  start-page: 934
  year: 2019
  end-page: 946
  article-title: The dynamics of cortical folding waves and prematurity‐related deviations revealed by spatial and spectral analysis of gyrification
  publication-title: Neuroimage
– volume: 7
  start-page: 9759
  issue: 1
  year: 2017
  article-title: Mapping white matter microstructure in the one month human brain
  publication-title: Sci Rep
– volume: 276
  start-page: 48
  year: 2014
  end-page: 71
  article-title: The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants
  publication-title: Neuroscience
– volume: 124
  start-page: 267
  issue: Pt A
  year: 2016
  end-page: 275
  article-title: Machine‐learning to characterise neonatal functional connectivity in the preterm brain
  publication-title: Neuroimage
– volume: 14
  start-page: 629
  year: 2016
  end-page: 640
  article-title: Tractography in the clinics: Implementing a pipeline to characterize early brain development
  publication-title: Neuroimage Clin
– volume: 20
  start-page: 161
  issue: 3
  year: 2019
  end-page: 176
  article-title: Deconstructing cortical folding: Genetic, cellular and mechanical determinants
  publication-title: Nat Rev Neurosci
– volume: 136
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Prediction of brain maturity in infants using machine‐learning algorithms
  publication-title: Neuroimage
– volume: 28
  start-page: 2507
  issue: 7
  year: 2018
  end-page: 2515
  article-title: Somatotopic mapping of the developing sensorimotor cortex in the preterm human brain
  publication-title: Cereb Cortex
– volume: 185
  start-page: 793
  year: 2019
  end-page: 801
  article-title: Challenges in pediatric neuroimaging
  publication-title: Neuroimage
– volume: 63
  start-page: 663
  issue: 2
  year: 2012
  end-page: 673
  article-title: Development of BOLD signal hemodynamic responses in the human brain
  publication-title: Neuroimage
– volume: 22
  start-page: 1134
  issue: 3
  year: 2004
  end-page: 1140
  article-title: Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants
  publication-title: Neuroimage
– volume: 111
  start-page: 580
  year: 2015
  end-page: 589
  article-title: Longitudinal measurement of the developing gray matter in preterm subjects using multi‐modal MRI
  publication-title: Neuroimage
– volume: 175
  start-page: 228
  year: 2016
  end-page: 230
  article-title: Does magnetic resonance brain scanning at 3.0 Tesla pose a hyperthermic challenge to term neonates?
  publication-title: J Pediatr
– volume: 37
  start-page: 155
  issue: 1
  year: 2016
  end-page: 162
  article-title: Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: A serial imaging study on preterm infants
  publication-title: AJNR Am J Neuroradiol
– volume: 40
  start-page: 3
  issue: 1
  year: 2010
  end-page: 30
  article-title: Magnetic resonance spectroscopy in pediatric neuroradiology: Clinical and research applications
  publication-title: Pediatr Radiol
– volume: 185
  start-page: 802
  year: 2019
  end-page: 812
  article-title: A review on neuroimaging studies of genetic and environmental influences on early brain development
  publication-title: Neuroimage
– start-page: 148
  year: 2015
  end-page: 151
– volume: 23
  start-page: 594
  issue: 3
  year: 2013
  end-page: 603
  article-title: The synchronization within and interaction between the default and dorsal attention networks in early infancy
  publication-title: Cereb Cortex
– volume: 2
  start-page: 49
  issue: 1
  year: 2016
  end-page: 69
  article-title: MRI and M/EEG studies of the white matter development in human fetuses and infants: Review and opinion
  publication-title: Brain Plast
– volume: 185
  start-page: 685
  year: 2019
  end-page: 698
  article-title: Age‐specific gray and white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks
  publication-title: Neuroimage
– volume: 58
  year: 2019
  article-title: Surface‐constrained volumetric registration for the early developing brain
  publication-title: Med Image Anal
– volume: 10
  start-page: 2156
  issue: 7
  year: 1990
  end-page: 2175
  article-title: Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey
  publication-title: J Neurosci
– volume: 162
  start-page: 65
  year: 2017
  end-page: 72
  article-title: Investigating the maturation of microstructure and radial orientation in the preterm human cortex with diffusion MRI
  publication-title: Neuroimage
– volume: 65
  start-page: 315
  year: 2013
  end-page: 323
  article-title: Morphology and microstructure of subcortical structures at birth: A large‐scale Asian neonatal neuroimaging study
  publication-title: Neuroimage
– volume: 185
  start-page: 728
  year: 2019
  end-page: 741
  article-title: Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome
  publication-title: Neuroimage
– volume: 17
  start-page: 268
  issue: Pt 2
  year: 2014
  end-page: 275
  article-title: Multi‐modal measurement of the myelin‐to‐axon diameter g‐ratio in preterm‐born neonates and adult controls
  publication-title: Med Image Comput Comput Assist Interv
– volume: 2
  start-page: 423
  year: 2015
  end-page: 437
  article-title: Development of structural and functional connectivity
  publication-title: Brain mapping: An encyclopedic reference
– volume: 16
  start-page: 215
  issue: 1
  year: 2006
  end-page: 220
  article-title: Magnetization transfer ratio in the brain of preterm subjects: Age‐related changes during the first 2 years of life
  publication-title: Eur Radiol
– volume: 56
  start-page: 771
  issue: 9
  year: 2014
  end-page: 779
  article-title: Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants
  publication-title: Neuroradiology
– volume: 46
  start-page: 963
  issue: 7
  year: 2016
  end-page: 982
  article-title: MR spectroscopy in children: Protocols and pitfalls in non‐tumorous brain pathology
  publication-title: Pediatr Radiol
– volume: 116
  year: 2019
  article-title: Developmental topography of cortical thickness during infancy
  publication-title: Proc Natl Acad Sci U S A
– volume: 23
  year: 2019
  article-title: Fixel‐based analysis of the preterm brain: Disentangling bundle‐specific white matter microstructural and macrostructural changes in relation to clinical risk factors
  publication-title: Neuroimage Clin
– volume: 173
  start-page: 88
  year: 2018
  end-page: 112
  article-title: The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction
  publication-title: Neuroimage
– volume: 142
  start-page: 150
  year: 2016
  end-page: 162
  article-title: Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics
  publication-title: Neuroimage
– volume: 223
  issue: 4
  year: 2018
  article-title: Investigation of brain structure in the 1‐month infant
  publication-title: Brain Struct Funct
– volume: 39
  start-page: 9716
  issue: 49
  year: 2019
  end-page: 9724
  article-title: Functional connectome of the fetal brain
  publication-title: J Neurosci
– volume: 25
  start-page: 3014
  issue: 9
  year: 2015
  end-page: 3024
  article-title: Early brain activity relates to subsequent brain growth in premature infants
  publication-title: Cereb Cortex
– volume: 11
  issue: 8
  year: 2016
  article-title: Creatine, glutamine plus glutamate, and macromolecules are decreased in the central white matter of premature neonates around term
  publication-title: PLoS One
– volume: 170
  start-page: 231
  year: 2018
  end-page: 248
  article-title: A review on automatic fetal and neonatal brain MRI segmentation
  publication-title: Neuroimage
– volume: 185
  start-page: 906
  year: 2019
  end-page: 925
  article-title: Computational neuroanatomy of baby brains: A review
  publication-title: Neuroimage
– volume: 179
  start-page: 11
  year: 2018
  end-page: 29
  article-title: Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project
  publication-title: Neuroimage
– volume: 112
  start-page: 6485
  issue: 20
  year: 2015
  end-page: 6490
  article-title: Specialization and integration of functional thalamocortical connectivity in the human infant
  publication-title: Proc Natl Acad Sci U S A
– volume: 138
  issue: 5
  year: 2016
  article-title: Third trimester brain growth in preterm infants compared with in utero healthy fetuses
  publication-title: Pediatrics
– volume: 63
  start-page: 1038
  issue: 3
  year: 2012
  end-page: 1053
  article-title: Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping
  publication-title: Neuroimage
– volume: 23
  start-page: 803
  issue: 7
  year: 2010
  end-page: 820
  article-title: Twenty‐five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed
– volume: 114
  start-page: 148
  issue: 1
  year: 2017
  end-page: 153
  article-title: Common and heritable components of white matter microstructure predict cognitive function at 1 and 2 y
  publication-title: Proc Natl Acad Sci U S A
– volume: 69
  start-page: 544
  issue: 6
  year: 2011
  end-page: 547
  article-title: Phase‐contrast magnetic resonance angiography measurements of global cerebral blood flow in the neonate
  publication-title: Pediatr Res
– volume: 115
  start-page: 3156
  issue: 12
  year: 2018
  end-page: 3161
  article-title: Dynamic patterns of cortical expansion during folding of the preterm human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 28
  start-page: 12176
  issue: 47
  year: 2008
  end-page: 12182
  article-title: A structural MRI study of human brain development from birth to 2 years
  publication-title: J Neurosci
– volume: 40
  start-page: 81
  issue: 2
  year: 2013
  end-page: 88
  article-title: Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: Comparison with brain MRI and susceptibility‐weighted imaging
  publication-title: J Neuroradiol
– volume: 84
  start-page: 169
  year: 2014
  end-page: 180
  article-title: Functional connectivity in the developing brain: A longitudinal study from 4 to 9 months of age
  publication-title: Neuroimage
– volume: 111
  start-page: 7456
  issue: 20
  year: 2014
  end-page: 7461
  article-title: Rich‐club organization of the newborn human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 32
  start-page: 1451
  issue: 8
  year: 2011
  end-page: 1458
  article-title: Is brain maturation comparable in fetuses and premature neonates at term equivalent age?
  publication-title: AJNR Am J Neuroradiol
– volume: 59
  start-page: 114
  year: 2019
  end-page: 120
  article-title: Arterial spin‐labeling magnetic resonance imaging of brain maturation in early childhood: Mathematical model fitting to assess age‐dependent change of cerebral blood flow
  publication-title: Magn Reson Imaging
– volume: 64
  start-page: 505
  year: 2013
  end-page: 516
  article-title: Quantitative MRI in the very preterm brain: Assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T(1) imaging
  publication-title: Neuroimage
– volume: 116
  start-page: 4681
  year: 2019
  end-page: 4688
  article-title: Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging
  publication-title: Proc Natl Acad Sci U S A
– volume: 112
  start-page: 30
  year: 2015
  end-page: 42
  article-title: Cerebral maturation in the early preterm period‐a magnetization transfer and diffusion tensor imaging study using voxel‐based analysis
  publication-title: Neuroimage
– volume: 125
  start-page: 267
  year: 2016
  end-page: 279
  article-title: Trajectories of cortical thickness maturation in normal brain development—The importance of quality control procedures
  publication-title: Neuroimage
– volume: 82
  start-page: 538
  issue: 3
  year: 2013
  end-page: 543
  article-title: Regional changes in brain perfusion during brain maturation measured non‐invasively with arterial spin labeling MRI in neonates
  publication-title: Eur J Radiol
– volume: 149
  start-page: 379
  year: 2017
  end-page: 392
  article-title: Early development of structural networks and the impact of prematurity on brain connectivity
  publication-title: Neuroimage
– ident: e_1_2_8_117_1
  doi: 10.1002/hbm.23435
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.pone.0131552
– ident: e_1_2_8_112_1
  doi: 10.1016/j.neuroimage.2016.05.047
– ident: e_1_2_8_28_1
  doi: 10.3174/ajnr.A3128
– ident: e_1_2_8_9_1
  doi: 10.1523/JNEUROSCI.3479-08.2008
– ident: e_1_2_8_205_1
  doi: 10.1523/JNEUROSCI.5145-07.2008
– ident: e_1_2_8_184_1
  doi: 10.1007/s00429-014-0887-5
– ident: e_1_2_8_171_1
  doi: 10.3389/fphys.2019.00065
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.26462
– ident: e_1_2_8_97_1
  doi: 10.1016/j.neuroimage.2012.09.032
– ident: e_1_2_8_204_1
  doi: 10.1093/cercor/bhu097
– volume: 116
  start-page: 12103
  issue: 24
  year: 2019
  ident: e_1_2_8_188_1
  article-title: Music in premature infants enhances high‐level cognitive brain networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1817536116
– ident: e_1_2_8_181_1
  doi: 10.1073/pnas.0606302103
– volume-title: Development of the human foetal brain: An anatomical atlas
  year: 1987
  ident: e_1_2_8_12_1
– ident: e_1_2_8_122_1
  doi: 10.1016/j.nicl.2019.101820
– ident: e_1_2_8_190_1
  doi: 10.1073/pnas.1007921107
– ident: e_1_2_8_78_1
  doi: 10.1002/nbm.1543
– ident: e_1_2_8_147_1
  doi: 10.1016/j.nicl.2017.05.023
– ident: e_1_2_8_143_1
  doi: 10.1002/jmri.24716
– ident: e_1_2_8_40_1
  doi: 10.1007/s00429-017-1600-2
– ident: e_1_2_8_154_1
  doi: 10.1371/journal.pone.0160990
– ident: e_1_2_8_76_1
  doi: 10.1016/j.neuroimage.2018.05.064
– ident: e_1_2_8_82_1
  doi: 10.1016/j.neuroimage.2014.12.009
– ident: e_1_2_8_100_1
  doi: 10.1002/nbm.3785
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuroscience.2013.12.044
– ident: e_1_2_8_169_1
  doi: 10.1016/j.neuroimage.2012.06.054
– ident: e_1_2_8_160_1
  doi: 10.1371/journal.pone.0163143
– ident: e_1_2_8_139_1
  doi: 10.1203/PDR.0b013e3182176aab
– ident: e_1_2_8_72_1
  doi: 10.1002/mrm.26765
– ident: e_1_2_8_33_1
  doi: 10.1002/jmri.24678
– ident: e_1_2_8_65_1
  doi: 10.3174/ajnr.A4510
– ident: e_1_2_8_165_1
  doi: 10.1016/j.neuroimage.2018.07.023
– volume-title: Anatomie des Menschlichen Gehirn und Rückenmarks, auf myelogenetischer grundlage
  year: 1920
  ident: e_1_2_8_16_1
– ident: e_1_2_8_60_1
  doi: 10.1038/s41598-017-02307-w
– ident: e_1_2_8_140_1
  doi: 10.1016/j.ejrad.2012.10.013
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuroimage.2018.12.043
– ident: e_1_2_8_186_1
  doi: 10.3389/fped.2017.00159
– ident: e_1_2_8_111_1
  doi: 10.1371/journal.pone.0024678
– ident: e_1_2_8_132_1
  doi: 10.1016/j.neuroimage.2018.10.031
– ident: e_1_2_8_70_1
  doi: 10.1109/ISBI.2015.7163837
– ident: e_1_2_8_41_1
  doi: 10.1016/j.mri.2019.06.009
– ident: e_1_2_8_106_1
  doi: 10.1016/j.tins.2017.06.003
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2018.01.054
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2010.06.017
– ident: e_1_2_8_144_1
  doi: 10.3174/ajnr.A3728
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.1715451115
– ident: e_1_2_8_168_1
  doi: 10.1016/j.neuroimage.2018.11.006
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuroimage.2018.04.044
– ident: e_1_2_8_172_1
  doi: 10.1073/pnas.1212785110
– ident: e_1_2_8_21_1
  doi: 10.1093/cercor/bhu178
– ident: e_1_2_8_68_1
  doi: 10.1007/s00429-014-0881-y
– ident: e_1_2_8_115_1
  doi: 10.1002/brb3.17
– ident: e_1_2_8_196_1
  doi: 10.1093/cercor/bhs043
– ident: e_1_2_8_71_1
  doi: 10.1016/j.neuroimage.2018.11.038
– ident: e_1_2_8_170_1
  doi: 10.1016/j.siny.2006.07.007
– ident: e_1_2_8_74_1
  doi: 10.1007/s10334-006-0036-0
– ident: e_1_2_8_19_1
  doi: 10.1152/physrev.2001.81.2.871
– ident: e_1_2_8_10_1
  doi: 10.1093/cercor/bhu027
– ident: e_1_2_8_46_1
  doi: 10.1093/cercor/bhz126
– ident: e_1_2_8_145_1
  doi: 10.1016/j.mri.2019.03.016
– ident: e_1_2_8_149_1
  doi: 10.1002/mrm.27742
– ident: e_1_2_8_110_1
  doi: 10.1016/j.neuroimage.2010.07.025
– ident: e_1_2_8_121_1
  doi: 10.1038/s41598-017-09915-6
– ident: e_1_2_8_182_1
  doi: 10.1111/desc.12151
– ident: e_1_2_8_89_1
  doi: 10.1016/j.neuroimage.2015.02.010
– ident: e_1_2_8_187_1
  doi: 10.1016/j.neuroimage.2017.01.047
– ident: e_1_2_8_193_1
  doi: 10.1203/PDR.0b013e3181b1bd84
– ident: e_1_2_8_96_1
  doi: 10.1016/j.nicl.2018.03.020
– ident: e_1_2_8_104_1
  doi: 10.1016/j.nicl.2016.12.029
– ident: e_1_2_8_118_1
  doi: 10.1073/pnas.1604658114
– ident: e_1_2_8_103_1
  doi: 10.1016/j.neuroimage.2012.03.057
– volume: 2
  start-page: 423
  year: 2015
  ident: e_1_2_8_5_1
  article-title: Development of structural and functional connectivity
  publication-title: Brain mapping: An encyclopedic reference
  doi: 10.1016/B978-0-12-397025-1.00360-2
– ident: e_1_2_8_137_1
  doi: 10.1016/j.neurad.2012.03.006
– ident: e_1_2_8_107_1
  doi: 10.1016/j.neuroimage.2017.01.065
– volume: 27
  start-page: 5274
  issue: 11
  year: 2017
  ident: e_1_2_8_7_1
  article-title: Complex trajectories of brain development in the healthy human fetus
  publication-title: Cereb Cortex
– ident: e_1_2_8_138_1
  doi: 10.1371/journal.pone.0108904
– ident: e_1_2_8_146_1
  doi: 10.1016/j.neuroimage.2018.03.020
– ident: e_1_2_8_94_1
  doi: 10.1016/j.dcn.2019.100752
– ident: e_1_2_8_73_1
  doi: 10.1016/j.neuroimage.2018.03.049
– ident: e_1_2_8_124_1
  doi: 10.12688/f1000research.15073.1
– ident: e_1_2_8_15_1
  doi: 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
– ident: e_1_2_8_120_1
  doi: 10.1016/j.neuroimage.2019.116391
– ident: e_1_2_8_123_1
  doi: 10.1148/radiol.2019182564
– ident: e_1_2_8_55_1
– ident: e_1_2_8_50_1
  doi: 10.1007/s00429-018-1735-9
– ident: e_1_2_8_129_1
  doi: 10.1093/cercor/bhu331
– ident: e_1_2_8_88_1
  doi: 10.1016/j.neuroimage.2017.08.013
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuron.2015.09.026
– ident: e_1_2_8_52_1
  doi: 10.1093/cercor/bhv123
– ident: e_1_2_8_128_1
  doi: 10.3174/ajnr.A2723
– ident: e_1_2_8_80_1
  doi: 10.1016/j.neuroimage.2014.03.057
– ident: e_1_2_8_148_1
  doi: 10.1016/j.jpeds.2017.09.083
– ident: e_1_2_8_39_1
  doi: 10.1016/j.neuroimage.2018.03.042
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.26796
– ident: e_1_2_8_22_1
  doi: 10.1016/0006-8993(96)00062-5
– ident: e_1_2_8_200_1
  doi: 10.1073/pnas.1422638112
– ident: e_1_2_8_95_1
  doi: 10.1109/ISBI.2019.8759421
– ident: e_1_2_8_83_1
  doi: 10.1016/j.neuroimage.2018.10.060
– ident: e_1_2_8_85_1
  doi: 10.1016/j.neuroimage.2004.02.035
– ident: e_1_2_8_119_1
  doi: 10.1038/nn.3045
– ident: e_1_2_8_86_1
  doi: 10.1016/j.neuroimage.2015.02.051
– ident: e_1_2_8_108_1
  doi: 10.1093/cercor/bhu095
– ident: e_1_2_8_67_1
  doi: 10.1016/j.braindev.2017.07.011
– ident: e_1_2_8_77_1
  doi: 10.1016/j.siny.2006.07.006
– ident: e_1_2_8_155_1
  doi: 10.1007/s00234-014-1380-9
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2018.04.032
– ident: e_1_2_8_75_1
  doi: 10.1016/j.mri.2014.05.007
– ident: e_1_2_8_61_1
  doi: 10.1016/j.neuroimage.2018.06.034
– ident: e_1_2_8_158_1
  doi: 10.1016/j.neuroimage.2012.07.037
– ident: e_1_2_8_91_1
  doi: 10.1016/j.neuroimage.2014.09.039
– ident: e_1_2_8_13_1
  doi: 10.1007/978-1-4615-3824-0_1
– ident: e_1_2_8_113_1
  doi: 10.1007/s10548-018-0661-8
– ident: e_1_2_8_99_1
  doi: 10.3233/BPL-160031
– ident: e_1_2_8_35_1
  doi: 10.1016/j.mri.2007.01.119
– ident: e_1_2_8_93_1
  doi: 10.1523/ENEURO.0380-17.2017
– ident: e_1_2_8_23_1
  doi: 10.1523/JNEUROSCI.2891-18.2019
– ident: e_1_2_8_54_1
  doi: 10.1016/j.media.2019.101540
– ident: e_1_2_8_166_1
  doi: 10.1371/journal.pone.0169392
– ident: e_1_2_8_3_1
  doi: 10.1007/s11065-010-9148-4
– ident: e_1_2_8_62_1
  doi: 10.1016/j.neuroimage.2018.04.017
– ident: e_1_2_8_126_1
  doi: 10.1016/j.nicl.2017.11.023
– ident: e_1_2_8_164_1
  doi: 10.1016/j.tics.2018.01.005
– ident: e_1_2_8_151_1
  doi: 10.1007/s00247-009-1450-z
– ident: e_1_2_8_191_1
  doi: 10.3174/ajnr.A1256
– ident: e_1_2_8_66_1
  doi: 10.1016/j.neuroimage.2012.08.086
– ident: e_1_2_8_64_1
  doi: 10.1002/jmri.25570
– ident: e_1_2_8_84_1
  doi: 10.1016/j.neuroimage.2018.06.069
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuroimage.2018.03.005
– ident: e_1_2_8_14_1
  doi: 10.1038/s41583-018-0112-2
– ident: e_1_2_8_27_1
  doi: 10.1002/mrm.25299
– ident: e_1_2_8_173_1
  doi: 10.1093/cercor/bhx167
– ident: e_1_2_8_114_1
  doi: 10.1002/hbm.20363
– ident: e_1_2_8_98_1
  doi: 10.1016/j.earlhumdev.2008.09.004
– ident: e_1_2_8_127_1
  doi: 10.1203/PDR.0b013e318232a963
– ident: e_1_2_8_58_1
  doi: 10.1016/j.neuroimage.2016.05.034
– ident: e_1_2_8_159_1
  doi: 10.1002/hbm.22488
– ident: e_1_2_8_56_1
  doi: 10.1016/j.neuroimage.2018.06.018
– ident: e_1_2_8_131_1
  doi: 10.1007/s00330-005-2796-8
– ident: e_1_2_8_167_1
  doi: 10.1002/mrm.26455
– ident: e_1_2_8_44_1
  doi: 10.1007/s00429-018-1787-x
– ident: e_1_2_8_47_1
  doi: 10.1016/j.neuroimage.2015.10.010
– ident: e_1_2_8_63_1
  doi: 10.1523/JNEUROSCI.4141-10.2011
– ident: e_1_2_8_180_1
  doi: 10.1038/ncomms13995
– ident: e_1_2_8_8_1
  doi: 10.1016/j.neuroimage.2015.10.047
– ident: e_1_2_8_174_1
– ident: e_1_2_8_198_1
  doi: 10.1016/j.neuroimage.2011.02.073
– ident: e_1_2_8_36_1
  doi: 10.1016/j.neuroimage.2019.05.075
– ident: e_1_2_8_90_1
  doi: 10.1073/pnas.1812156116
– ident: e_1_2_8_102_1
  doi: 10.1016/j.neuroimage.2019.05.051
– ident: e_1_2_8_59_1
  doi: 10.1542/peds.2016-1640
– ident: e_1_2_8_185_1
  doi: 10.1016/j.neuroimage.2018.07.004
– volume: 2
  start-page: 11
  year: 2015
  ident: e_1_2_8_6_1
  article-title: Fetal and postnatal development of the cortex: Insights from MRI and genetics
  publication-title: Brain mapping: An encyclopedic reference
  doi: 10.1016/B978-0-12-397025-1.00194-9
– ident: e_1_2_8_105_1
  doi: 10.1093/cercor/bhs330
– ident: e_1_2_8_136_1
  doi: 10.1016/j.ejpn.2019.06.003
– ident: e_1_2_8_11_1
  doi: 10.1002/ana.410010109
– ident: e_1_2_8_109_1
  doi: 10.1073/pnas.1324118111
– ident: e_1_2_8_130_1
  doi: 10.1016/j.neuroimage.2019.02.060
– ident: e_1_2_8_192_1
  doi: 10.1016/j.neuroimage.2013.08.038
– ident: e_1_2_8_199_1
  doi: 10.1093/cercor/bhy028
– volume: 116
  year: 2019
  ident: e_1_2_8_45_1
  article-title: Developmental topography of cortical thickness during infancy
  publication-title: Proc Natl Acad Sci U S A
– ident: e_1_2_8_101_1
  doi: 10.1016/j.neuroimage.2005.11.022
– ident: e_1_2_8_202_1
  doi: 10.1016/j.neuroimage.2016.05.029
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuroimage.2017.06.074
– ident: e_1_2_8_178_1
  doi: 10.1016/j.dcn.2017.10.004
– ident: e_1_2_8_194_1
  doi: 10.1093/cercor/bhq071
– ident: e_1_2_8_179_1
  doi: 10.1371/journal.pbio.1002260
– ident: e_1_2_8_183_1
  doi: 10.1073/pnas.0909074107
– ident: e_1_2_8_125_1
  doi: 10.1016/j.jaac.2011.11.009
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neuroimage.2016.07.010
– ident: e_1_2_8_203_1
  doi: 10.1093/cercor/bhu251
– ident: e_1_2_8_79_1
  doi: 10.1016/j.neuroimage.2018.05.046
– ident: e_1_2_8_201_1
  doi: 10.1016/j.neuroimage.2015.08.055
– ident: e_1_2_8_87_1
  doi: 10.1073/pnas.1301652110
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2015.11.001
– ident: e_1_2_8_57_1
  doi: 10.1016/j.neuroimage.2018.04.003
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.22961
– ident: e_1_2_8_176_1
  doi: 10.1093/cercor/bhv203
– ident: e_1_2_8_92_1
  doi: 10.1093/cercor/bhv201
– ident: e_1_2_8_135_1
  doi: 10.1007/s00234-011-0872-0
– ident: e_1_2_8_142_1
  doi: 10.1038/pr.2016.146
– ident: e_1_2_8_141_1
  doi: 10.1016/j.neuroimage.2016.12.034
– ident: e_1_2_8_116_1
  doi: 10.1093/cercor/bhv082
– ident: e_1_2_8_134_1
  doi: 10.1002/jmri.26163
– ident: e_1_2_8_153_1
  doi: 10.3174/ajnr.A2555
– ident: e_1_2_8_133_1
  doi: 10.1002/jmri.26579
– ident: e_1_2_8_162_1
  doi: 10.1016/j.neuroimage.2016.02.040
– ident: e_1_2_8_195_1
  doi: 10.1073/pnas.0811221106
– ident: e_1_2_8_189_1
  doi: 10.1093/cercor/bhz069
– ident: e_1_2_8_81_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_8_152_1
  doi: 10.1007/s00247-014-3204-9
– ident: e_1_2_8_197_1
  doi: 10.1093/cercor/bht312
– start-page: 3
  volume-title: Regional development of the brain in early life
  year: 1967
  ident: e_1_2_8_20_1
– volume: 27
  start-page: 1472
  issue: 2
  year: 2017
  ident: e_1_2_8_48_1
  article-title: Through thick and thin: A need to reconcile contradictory results on trajectories in human cortical development
  publication-title: Cereb Cortex
– ident: e_1_2_8_177_1
  doi: 10.1093/cercor/bhy050
– ident: e_1_2_8_206_1
  doi: 10.1038/s41562-017-0249-4
– ident: e_1_2_8_69_1
  doi: 10.1016/j.neuroimage.2018.07.022
– ident: e_1_2_8_18_1
  doi: 10.1523/JNEUROSCI.10-07-02156.1990
– ident: e_1_2_8_156_1
  doi: 10.1136/archdischild-2016-311403
– ident: e_1_2_8_175_1
  doi: 10.1126/science.1077066
– ident: e_1_2_8_157_1
  doi: 10.1038/s41598-017-08195-4
– ident: e_1_2_8_163_1
  doi: 10.1002/hbm.23188
– ident: e_1_2_8_30_1
  doi: 10.1002/nbm.3944
– volume: 17
  start-page: 268
  issue: 2
  year: 2014
  ident: e_1_2_8_161_1
  article-title: Multi‐modal measurement of the myelin‐to‐axon diameter g‐ratio in preterm‐born neonates and adult controls
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jpeds.2016.05.014
– ident: e_1_2_8_150_1
  doi: 10.1007/s00247-014-3270-z
SSID ssj0009945
Score 2.6157427
SecondaryResourceType review_article
Snippet In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1318
SubjectTerms anatomical MRI
Brain
brain development
Cellular structure
Children
Data acquisition
diffusion MRI
Disabilities
Functional magnetic resonance imaging
functional MRI
Image contrast
Infants
Life Sciences
Magnetic resonance imaging
Medical imaging
Morphology
Neonates
Neural networks
Neurodevelopmental disorders
Neuroimaging
Neurons and Cognition
Newborn babies
newborns
quantitative MRI
Review
Scanners
Sequences
Substantia alba
Title MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27192
https://www.ncbi.nlm.nih.gov/pubmed/32420684
https://www.proquest.com/docview/2512138191
https://www.proquest.com/docview/2404382867
https://inserm.hal.science/inserm-04307240
https://pubmed.ncbi.nlm.nih.gov/PMC8247362
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3a9oB44fsjMCYj4AGkdLHjOjHipUxMZaIVmpi0lymyHUcrsBStLQ_8eu51PkoZQoKXKpJvlTq-1znJPT0H4HnKjU-8VLES3MWywg-jnI7d0JMdJNeVpY7uZKrGJ_LodHi6BW-6_8I0-hD9CzeqjLBfU4Ebu9hfi4Z-vricDUSGCAU3YCJrESI6XmtHaR0cihE_pDHPk6zXJhX7669u3I22z4kLeRVoXuVL_opjw43o8CacdVNo-CdfBqulHbgfv6k7_u8cb8GNFqGyUZNSt2HL13fg2qTtwd-Fs8nxezavGCJHNvX08h2j35LTxGs2Yk2vgcYnwZu621vZQefasmCmLtm019EMZCU2argIi3twcvju08E4bk0acDmHJHhojdKy1GSpmOOTuUFMYp2zMnWKKCkiSauKK5Vzr7nE1bdaiMwZZb2xqczT-7BTz2v_EJhxVa6tdAmZ0HBVaue4L31ZIowZutJE8LJbrMK1CuZkpPG1aLSXRUHXqwjXK4Jnfey3Rrfjj1EvcPJ9AEltj0cfilmN5X9RkBxahojnO49gt8uKoq3xRUHIkIcH3gie9sNYndRyMbWfrzBGhk5rrrIIHjRJ1J-NoGyichlBtpFeGz9nc6SenQcF8FzIDJFHBK9C9vxlhsURJkU4evQvwY_huiDyTmB27sLO8nLlnyD6Wto92Bby416otZ98Ryyv
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL3ahgS88P0RGGAEewApXey4ToLEQ9mY2q3pw7RJe5lC4jhagaVobUHwn_gr_CbudT5KGULiYQ-8RJF81djxtX0cn54D8NznqfGMVK4SXLuywEuqdOTqriE7SB4VGZ3oxiPVP5S7R92jFfje_Bem0odoP7jRyLDzNQ1w-iC9uVANfX96Nu6IACFKzancM1-_4I5t-nqwjd27IcTO24OtvlubCuDjuyTQl6UqknlEFoAh7iRTXEMzrTPpa0UUCuH5RcGVCrmJuMTaZpEQgU5VZtLMl6GPv7sKl8hCnKT6t_cXalVRZD2REbH4Lg-9oFVDFZuLui6tf6snxL48D23PMzR_Rc526du5Dj-al1YxXj505rOso7_9pif537zVG3CtBuGsV42am7BiyltwOa5pBrfhON4fsEnBEByzkaHzBYx-Q2Yar1iPVccpVB5b--1m-WBbjTHNlKVlzkatVKjlY7FeRbeY3oHDC2ncXVgrJ6W5DyzVRRhlUnvks8NVHmnNTW7yHJFaV-epAy-a7Eh0LdJOXiEfk0peWiTUP4ntHweetbGfKmmSP0ZtYOPbAFIT7_eGybjEGe40IcW3AEHdZ-7AepOGST2NTRMCv9zu6R142hbjBESnSmlpJnOMkfYwOVSBA_eqrG2fRmjdU6F0IFjK56XqLJeU4xMrch4KGSC4cuClTde_tDDZxaSwdw_-JfgJXOkfxMNkOBjtPYSrgrhKlsi6Dmuzs7l5hGBzlj22Q5zBu4vO_p-SI4ml
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21Raq4IL4JFDCCHkAKjR2vkyBxWFpWu213VSEq9VIZx3HURTRbdVsQ_4kfyYzzsayKkDj0EkXyKHFsj_3smbwH8CrmxkVOqlAJbkNZ4sUom4W250gOkmdlThHd8UQND-XuUe9oBX61_8LU_BDdgRt5hp-vycHPinJrQRr69fR8-lYkiFCalMo99_MHbtjm70c72LubQgw-ft4eho2mAL69R_x8uVGZLDJSAExxI2lwCc2tzWVsFWVQiCguS65Uyl3GJVY2z4RIrFG5M3ks0xifuwo3KLpICWRCHiwofjMviYyAJQ55GiUdGarYWtR1aflbPaHky6vI9mqC5p_A2a98g9twq4GsrF-PsTuw4qq7sD5ugvL34Hj8acRmJUMoySaOTuPR-gNJT7xjfVYHH6h87MWq28mWbbcyLnNmqoJNOmJNn73E-nVywvw-HF5LCz-AtWpWuUfAjC3TLJc2IlUarorMWu4KVxSIa3q2MAG8bhtT24bSnJQ1vumajFloanjtGz6Al53tWU3k8VerTfz4zoC4t4f9fT2tcD441cSPliAE-s4D2Gh7TTdOP9cEFbnfAQfwoitGd6UYjKnc7BJtpA-9pioJ4GHdyd3bCNtGKpUBJEvdv1Sd5ZJqeuIpwVMhE4QiAbzxA-UfX6h3cVD4u8f_Y_wc1g92Bnp_NNl7AjcFJfb4rM8NWLs4v3RPEZld5M-8QzD4ct0e-BvYnkey
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+of+the+Neonatal+Brain%3A+A+Review+of+Methodological+Challenges+and+Neuroscientific+Advances&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Dubois%2C+Jessica&rft.au=Alison%2C+Marianne&rft.au=Counsell%2C+Serena+J.&rft.au=Hertz%E2%80%90Pannier%2C+Lucie&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=53&rft.issue=5&rft.spage=1318&rft.epage=1343&rft_id=info:doi/10.1002%2Fjmri.27192&rft.externalDBID=10.1002%252Fjmri.27192&rft.externalDocID=JMRI27192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon