MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wid...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 53; no. 5; pp. 1318 - 1343 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2021
Wiley Subscription Services, Inc Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft‐tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age‐specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large‐scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long‐term disabilities in children.
Evidence Level
2
Technical Efficacy Stage
1 |
---|---|
AbstractList | In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft‐tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age‐specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large‐scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long‐term disabilities in children.Evidence Level2Technical Efficacy Stage1 In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft‐tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age‐specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large‐scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long‐term disabilities in children. Evidence Level 2 Technical Efficacy Stage 1 In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1. In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1. |
Author | Hüppi, Petra S. Counsell, Serena J. Dubois, Jessica Alison, Marianne Hertz‐Pannier, Lucie Benders, Manon J.N.L. |
AuthorAffiliation | 3 Department of Pediatric Radiology APHP, Robert‐Debré Hospital Paris France 5 Division of Development and Growth, Department of Woman, Child and Adolescent University Hospitals of Geneva Geneva Switzerland 1 University of Paris NeuroDiderot, INSERM,Paris France 6 Department of Neonatology University Medical Center Utrecht, Utrecht University Utrecht the Netherlands 2 UNIACT, NeuroSpin, CEA; Paris‐Saclay University Gif‐sur‐Yvette France 4 Centre for the Developing Brain School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
AuthorAffiliation_xml | – name: 6 Department of Neonatology University Medical Center Utrecht, Utrecht University Utrecht the Netherlands – name: 5 Division of Development and Growth, Department of Woman, Child and Adolescent University Hospitals of Geneva Geneva Switzerland – name: 2 UNIACT, NeuroSpin, CEA; Paris‐Saclay University Gif‐sur‐Yvette France – name: 1 University of Paris NeuroDiderot, INSERM,Paris France – name: 4 Centre for the Developing Brain School of Biomedical Engineering & Imaging Sciences, King's College London London UK – name: 3 Department of Pediatric Radiology APHP, Robert‐Debré Hospital Paris France |
Author_xml | – sequence: 1 givenname: Jessica orcidid: 0000-0003-4865-8111 surname: Dubois fullname: Dubois, Jessica email: jessica.dubois@centraliens.net organization: UNIACT, NeuroSpin, CEA; Paris‐Saclay University – sequence: 2 givenname: Marianne surname: Alison fullname: Alison, Marianne organization: APHP, Robert‐Debré Hospital – sequence: 3 givenname: Serena J. surname: Counsell fullname: Counsell, Serena J. organization: School of Biomedical Engineering & Imaging Sciences, King's College London – sequence: 4 givenname: Lucie surname: Hertz‐Pannier fullname: Hertz‐Pannier, Lucie organization: UNIACT, NeuroSpin, CEA; Paris‐Saclay University – sequence: 5 givenname: Petra S. surname: Hüppi fullname: Hüppi, Petra S. organization: University Hospitals of Geneva – sequence: 6 givenname: Manon J.N.L. surname: Benders fullname: Benders, Manon J.N.L. organization: University Medical Center Utrecht, Utrecht University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32420684$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-04307240$$DView record in HAL |
BookMark | eNp9kltv1DAQhS1URC_wwg9AkXhBFSm-JbF5QNqugBZtQargEVmOM9l45bVLnGzVf49DSgUrxJMtzXeOZ8bnGB344AGh5wSfEYzpm822t2e0IpI-QkekoDSnhSgP0h0XLCcCV4foOMYNxlhKXjxBh4xyikvBj9D3q-vLLLTZ0EH2GYLXg3bZea-tf5stsmvYWbid6lcwdKEJLqytScSy086BX0PMtG-ScuxDNBb8YFtrskWz095AfIoet9pFeHZ_nqBvH95_XV7kqy8fL5eLVW6KgtCc1bqUvJGlZFhAzTSueG1MzZkpoW2BYta2pCwFAUl4IUktKa2MLmvQNeOCnaB3s-_NWG-hMamPXjt109ut7u9U0Fb9XfG2U-uwU4LyipU0GbyeDbo92cVipayP0G8V5gxXlOMdSfir-_f68GOEOKitjQac0x7CGFWiOBNUlFVCX-6hmzD2Pm1D0TQ7YYLIyfDFnwM8tPD7oxJwOgMmLTr20D4gBKspBWpKgfqVggTjPdjYQQ82TMNb928JmSW31sHdf8zVp5SYWfMTmnzDjA |
CitedBy_id | crossref_primary_10_53730_ijhs_v6nS10_15227 crossref_primary_10_1126_sciadv_abq2022 crossref_primary_10_1016_j_jradnu_2022_04_004 crossref_primary_10_1155_2022_3111585 crossref_primary_10_1002_jmri_27638 crossref_primary_10_3389_fped_2023_1112121 crossref_primary_10_1038_s41467_022_28326_4 crossref_primary_10_1002_hbm_70112 crossref_primary_10_1088_1361_6560_ad80f7 crossref_primary_10_3389_fnins_2021_636268 crossref_primary_10_1177_08830738231188561 crossref_primary_10_1039_D4SM01194E crossref_primary_10_1007_s42058_024_00179_4 crossref_primary_10_3390_biomedicines12081874 crossref_primary_10_1016_j_japh_2025_102345 crossref_primary_10_3390_bioengineering11070681 crossref_primary_10_1002_jia2_25863 crossref_primary_10_3389_fnins_2023_1122829 crossref_primary_10_1016_j_dcn_2024_101355 crossref_primary_10_1039_D4NR01195C crossref_primary_10_1016_j_dcn_2021_101055 crossref_primary_10_1162_imag_a_00017 crossref_primary_10_1002_hbm_70186 crossref_primary_10_1177_19714009241303149 crossref_primary_10_1016_j_copsyc_2021_10_010 crossref_primary_10_1002_jmri_28907 crossref_primary_10_1016_j_bspc_2024_107085 crossref_primary_10_1016_j_neuroimage_2023_120410 crossref_primary_10_1002_hbm_26784 crossref_primary_10_3174_ajnr_A6759 crossref_primary_10_3390_nu14142923 crossref_primary_10_1007_s00330_022_09267_4 crossref_primary_10_1007_s00404_023_07064_y crossref_primary_10_1038_s41598_024_69995_z crossref_primary_10_1016_j_media_2022_102393 crossref_primary_10_1148_rg_230239 crossref_primary_10_1016_j_dcn_2022_101083 crossref_primary_10_1162_imag_a_00180 crossref_primary_10_3390_jcm10040861 crossref_primary_10_1002_neo2_70011 crossref_primary_10_3390_children9030356 crossref_primary_10_1007_s12035_020_02011_3 crossref_primary_10_3389_fped_2021_708396 crossref_primary_10_5005_newborn_2_2_iv crossref_primary_10_3389_fninf_2024_1496143 crossref_primary_10_1073_pnas_2303491120 crossref_primary_10_1016_j_neuroimage_2022_119815 crossref_primary_10_1016_j_eclinm_2023_102253 crossref_primary_10_1016_j_cmpb_2024_108479 crossref_primary_10_15622_ia_23_4_4 crossref_primary_10_1093_cercor_bhad462 crossref_primary_10_3390_children10111759 crossref_primary_10_1007_s00429_022_02565_z crossref_primary_10_1002_ajmg_b_32987 crossref_primary_10_1109_TCI_2021_3128745 crossref_primary_10_3174_ajnr_A7710 crossref_primary_10_1038_s41372_022_01401_w crossref_primary_10_1007_s00429_022_02605_8 crossref_primary_10_1016_j_nicl_2022_103286 crossref_primary_10_1371_journal_pone_0313192 crossref_primary_10_1038_s41467_024_55178_x crossref_primary_10_1162_imag_a_00165 crossref_primary_10_1016_j_bandl_2021_105047 crossref_primary_10_1016_j_siny_2024_101556 crossref_primary_10_1162_imag_a_00337 crossref_primary_10_1007_s00429_024_02853_w crossref_primary_10_1038_s41390_024_03294_1 crossref_primary_10_1002_mrm_30339 crossref_primary_10_1007_s00112_022_01542_4 crossref_primary_10_1016_j_dcn_2024_101397 crossref_primary_10_1186_s44158_024_00216_9 crossref_primary_10_1097_ANC_0000000000001243 crossref_primary_10_5114_pjr_2021_108165 crossref_primary_10_1016_j_dcn_2025_101539 crossref_primary_10_3390_app14041339 crossref_primary_10_1016_j_clp_2024_04_005 crossref_primary_10_1016_j_neuroimage_2025_121066 crossref_primary_10_1162_imag_a_00426 crossref_primary_10_1016_j_compbiomed_2022_105522 crossref_primary_10_1002_mrm_29537 crossref_primary_10_1155_jcpt_6597033 crossref_primary_10_1016_j_xcrm_2022_100864 crossref_primary_10_1016_j_dcn_2024_101488 crossref_primary_10_21833_ijaas_2023_08_006 crossref_primary_10_1016_j_dcn_2023_101249 crossref_primary_10_1016_j_jacr_2023_04_013 crossref_primary_10_3390_jcm11113135 crossref_primary_10_1007_s11571_023_09993_5 crossref_primary_10_1038_s41562_025_02116_6 crossref_primary_10_1016_j_neuroimage_2022_119178 crossref_primary_10_1097_RLI_0000000000001120 crossref_primary_10_1016_j_biopsych_2022_10_014 crossref_primary_10_1017_cri_2024_3 crossref_primary_10_1038_s41598_021_02722_0 crossref_primary_10_3390_children9020239 crossref_primary_10_1109_JBHI_2024_3411620 crossref_primary_10_1523_JNEUROSCI_1780_24_2025 crossref_primary_10_3389_fped_2021_634092 crossref_primary_10_1093_cercor_bhac444 |
Cites_doi | 10.1002/hbm.23435 10.1371/journal.pone.0131552 10.1016/j.neuroimage.2016.05.047 10.3174/ajnr.A3128 10.1523/JNEUROSCI.3479-08.2008 10.1523/JNEUROSCI.5145-07.2008 10.1007/s00429-014-0887-5 10.3389/fphys.2019.00065 10.1002/mrm.26462 10.1016/j.neuroimage.2012.09.032 10.1093/cercor/bhu097 10.1073/pnas.1817536116 10.1073/pnas.0606302103 10.1016/j.nicl.2019.101820 10.1073/pnas.1007921107 10.1002/nbm.1543 10.1016/j.nicl.2017.05.023 10.1002/jmri.24716 10.1007/s00429-017-1600-2 10.1371/journal.pone.0160990 10.1016/j.neuroimage.2018.05.064 10.1016/j.neuroimage.2014.12.009 10.1002/nbm.3785 10.1016/j.neuroscience.2013.12.044 10.1016/j.neuroimage.2012.06.054 10.1371/journal.pone.0163143 10.1203/PDR.0b013e3182176aab 10.1002/mrm.26765 10.1002/jmri.24678 10.3174/ajnr.A4510 10.1016/j.neuroimage.2018.07.023 10.1038/s41598-017-02307-w 10.1016/j.ejrad.2012.10.013 10.1016/j.neuroimage.2018.12.043 10.3389/fped.2017.00159 10.1371/journal.pone.0024678 10.1016/j.neuroimage.2018.10.031 10.1109/ISBI.2015.7163837 10.1016/j.mri.2019.06.009 10.1016/j.tins.2017.06.003 10.1016/j.neuroimage.2018.01.054 10.1016/j.neuroimage.2010.06.017 10.3174/ajnr.A3728 10.1073/pnas.1715451115 10.1016/j.neuroimage.2018.11.006 10.1016/j.neuroimage.2018.04.044 10.1073/pnas.1212785110 10.1093/cercor/bhu178 10.1007/s00429-014-0881-y 10.1002/brb3.17 10.1093/cercor/bhs043 10.1016/j.neuroimage.2018.11.038 10.1016/j.siny.2006.07.007 10.1007/s10334-006-0036-0 10.1152/physrev.2001.81.2.871 10.1093/cercor/bhu027 10.1093/cercor/bhz126 10.1016/j.mri.2019.03.016 10.1002/mrm.27742 10.1016/j.neuroimage.2010.07.025 10.1038/s41598-017-09915-6 10.1111/desc.12151 10.1016/j.neuroimage.2015.02.010 10.1016/j.neuroimage.2017.01.047 10.1203/PDR.0b013e3181b1bd84 10.1016/j.nicl.2018.03.020 10.1016/j.nicl.2016.12.029 10.1073/pnas.1604658114 10.1016/j.neuroimage.2012.03.057 10.1016/B978-0-12-397025-1.00360-2 10.1016/j.neurad.2012.03.006 10.1016/j.neuroimage.2017.01.065 10.1371/journal.pone.0108904 10.1016/j.neuroimage.2018.03.020 10.1016/j.dcn.2019.100752 10.1016/j.neuroimage.2018.03.049 10.12688/f1000research.15073.1 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z 10.1016/j.neuroimage.2019.116391 10.1148/radiol.2019182564 10.1007/s00429-018-1735-9 10.1093/cercor/bhu331 10.1016/j.neuroimage.2017.08.013 10.1016/j.neuron.2015.09.026 10.1093/cercor/bhv123 10.3174/ajnr.A2723 10.1016/j.neuroimage.2014.03.057 10.1016/j.jpeds.2017.09.083 10.1016/j.neuroimage.2018.03.042 10.1002/mrm.26796 10.1016/0006-8993(96)00062-5 10.1073/pnas.1422638112 10.1109/ISBI.2019.8759421 10.1016/j.neuroimage.2018.10.060 10.1016/j.neuroimage.2004.02.035 10.1038/nn.3045 10.1016/j.neuroimage.2015.02.051 10.1093/cercor/bhu095 10.1016/j.braindev.2017.07.011 10.1016/j.siny.2006.07.006 10.1007/s00234-014-1380-9 10.1016/j.neuroimage.2018.04.032 10.1016/j.mri.2014.05.007 10.1016/j.neuroimage.2018.06.034 10.1016/j.neuroimage.2012.07.037 10.1016/j.neuroimage.2014.09.039 10.1007/978-1-4615-3824-0_1 10.1007/s10548-018-0661-8 10.3233/BPL-160031 10.1016/j.mri.2007.01.119 10.1523/ENEURO.0380-17.2017 10.1523/JNEUROSCI.2891-18.2019 10.1016/j.media.2019.101540 10.1371/journal.pone.0169392 10.1007/s11065-010-9148-4 10.1016/j.neuroimage.2018.04.017 10.1016/j.nicl.2017.11.023 10.1016/j.tics.2018.01.005 10.1007/s00247-009-1450-z 10.3174/ajnr.A1256 10.1016/j.neuroimage.2012.08.086 10.1002/jmri.25570 10.1016/j.neuroimage.2018.06.069 10.1016/j.neuroimage.2018.03.005 10.1038/s41583-018-0112-2 10.1002/mrm.25299 10.1093/cercor/bhx167 10.1002/hbm.20363 10.1016/j.earlhumdev.2008.09.004 10.1203/PDR.0b013e318232a963 10.1016/j.neuroimage.2016.05.034 10.1002/hbm.22488 10.1016/j.neuroimage.2018.06.018 10.1007/s00330-005-2796-8 10.1002/mrm.26455 10.1007/s00429-018-1787-x 10.1016/j.neuroimage.2015.10.010 10.1523/JNEUROSCI.4141-10.2011 10.1038/ncomms13995 10.1016/j.neuroimage.2015.10.047 10.1016/j.neuroimage.2011.02.073 10.1016/j.neuroimage.2019.05.075 10.1073/pnas.1812156116 10.1016/j.neuroimage.2019.05.051 10.1542/peds.2016-1640 10.1016/j.neuroimage.2018.07.004 10.1016/B978-0-12-397025-1.00194-9 10.1093/cercor/bhs330 10.1016/j.ejpn.2019.06.003 10.1002/ana.410010109 10.1073/pnas.1324118111 10.1016/j.neuroimage.2019.02.060 10.1016/j.neuroimage.2013.08.038 10.1093/cercor/bhy028 10.1016/j.neuroimage.2005.11.022 10.1016/j.neuroimage.2016.05.029 10.1016/j.neuroimage.2017.06.074 10.1016/j.dcn.2017.10.004 10.1093/cercor/bhq071 10.1371/journal.pbio.1002260 10.1073/pnas.0909074107 10.1016/j.jaac.2011.11.009 10.1016/j.neuroimage.2016.07.010 10.1093/cercor/bhu251 10.1016/j.neuroimage.2018.05.046 10.1016/j.neuroimage.2015.08.055 10.1073/pnas.1301652110 10.1016/j.neuroimage.2015.11.001 10.1016/j.neuroimage.2018.04.003 10.1002/mrm.22961 10.1093/cercor/bhv203 10.1093/cercor/bhv201 10.1007/s00234-011-0872-0 10.1038/pr.2016.146 10.1016/j.neuroimage.2016.12.034 10.1093/cercor/bhv082 10.1002/jmri.26163 10.3174/ajnr.A2555 10.1002/jmri.26579 10.1016/j.neuroimage.2016.02.040 10.1073/pnas.0811221106 10.1093/cercor/bhz069 10.1016/j.neuroimage.2012.03.072 10.1007/s00247-014-3204-9 10.1093/cercor/bht312 10.1093/cercor/bhy050 10.1038/s41562-017-0249-4 10.1016/j.neuroimage.2018.07.022 10.1523/JNEUROSCI.10-07-02156.1990 10.1136/archdischild-2016-311403 10.1126/science.1077066 10.1038/s41598-017-08195-4 10.1002/hbm.23188 10.1002/nbm.3944 10.1016/j.jpeds.2016.05.014 10.1007/s00247-014-3270-z |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P AAYXX CITATION NPM 7QO 7TK 8FD FR3 K9. P64 7X8 1XC VOOES 5PM |
DOI | 10.1002/jmri.27192 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | MRI of the Neonatal Brain |
EISSN | 1522-2586 |
EndPage | 1343 |
ExternalDocumentID | PMC8247362 oai_HAL_inserm_04307240v1 32420684 10_1002_jmri_27192 JMRI27192 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Fondation Médisite funderid: Prize for Clinical Research in Neurosciences 2018 – fundername: Seventh Framework Programme funderid: Human Brain Project 2013 – fundername: Fondation de France funderid: Call Neurodevelopment 2012 – fundername: IdEx University of Paris funderid: ANR‐18‐IDEX‐0001 – fundername: Fondation Fyssen funderid: Research grant 2009 – fundername: ; grantid: Human Brain Project 2013 – fundername: ; grantid: Research grant 2009 – fundername: IdEx University of Paris grantid: ANR‐18‐IDEX‐0001 – fundername: Fondation Médisite grantid: Prize for Clinical Research in Neurosciences 2018 – fundername: ; grantid: Call Neurodevelopment 2012 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5512-3ba694d969308eb3a074bccb43c6effe203ff16681e914591b9227ca6beab3483 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Aug 21 17:36:40 EDT 2025 Fri May 09 12:21:46 EDT 2025 Fri Jul 11 13:03:40 EDT 2025 Fri Jul 25 12:23:06 EDT 2025 Thu Apr 03 06:57:58 EDT 2025 Tue Jul 01 03:56:45 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:29:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | brain development functional MRI infants diffusion MRI quantitative MRI anatomical MRI newborns |
Language | English |
License | Attribution 2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5512-3ba694d969308eb3a074bccb43c6effe203ff16681e914591b9227ca6beab3483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 PMCID: PMC8247362 Review article for the Journal of Magnetic Resonance Imaging (JMRI) April 24th 2020 Contract grant sponsor: Fondation de France (to J.D., call Neurodevelopment 2012); Contract grant sponsor: Fyssen Foundation (to J.D., 2009); Contract grant sponsor: Médisite Foundation (to J.D., 2018); Contract grant sponsor: European Union's Horizon 2020 Research and Innovation Programme (to J.D., HBP 2013). This study contributed to the IdEx Université de Paris (J.D., ANR‐18‐IDEX‐0001). Some data were provided by the developing Human Connectome Project, KCL‐Imperial‐Oxford Consortium funded by the European Research Council under the European Union Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement no. 319456. We thank the families who supported this trial. |
ORCID | 0000-0003-4865-8111 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27192 |
PMID | 32420684 |
PQID | 2512138191 |
PQPubID | 1006400 |
PageCount | 26 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8247362 hal_primary_oai_HAL_inserm_04307240v1 proquest_miscellaneous_2404382867 proquest_journals_2512138191 pubmed_primary_32420684 crossref_primary_10_1002_jmri_27192 crossref_citationtrail_10_1002_jmri_27192 wiley_primary_10_1002_jmri_27192_JMRI27192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc Wiley-Blackwell |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc – name: Wiley-Blackwell |
References | 2004; 22 2006; 30 2010; 107 2013; 65 2015; 73 2019; 10 2013; 64 2011; 53 2011; 54 2018; 40 2011; 56 2012; 15 2016; 37 2016; 142 2018; 48 2010; 23 2018; 7 2010; 20 2018; 170 2018; 2 2018; 173 2018; 5 2019; 20 2018; 179 2008; 29 2019; 23 2011; 70 2015; 88 2008; 28 1997; 387 2017; 78 1987 2011; 66 2017; 160 2019; 29 2017; 162 2013; 110 2011; 69 2014; 17 2014; 96 2018; 31 2016; 46 2009; 66 2018; 28 2019; 192 2011; 1 2020; 42 2015; 125 2019; 32 2018; 223 2019; 35 2018; 103 2019; 39 2019; 224 2019; 185 2014; 276 2018; 22 2011; 6 2012; 33 2019; 188 2016; 14 2010; 40 2019; 186 2016; 11 2018; 18 2018; 193 2016; 2 2020; 30 2015; 111 2015; 112 2018; 115 1920 2019; 49 2013; 82 2014; 35 2019; 292 2016; 26 2017; 147 2016; 175 2017; 149 2014; 32 2006; 103 2009; 106 2012; 61 2017; 40 2017; 5 2017; 7 1990; 10 2010; 53 2017; 8 2013; 23 2017; 46 2015; 220 2019; 59 2019; 58 2015; 107 2017; 114 2012; 51 2019; 64 2017; 38 2015; 41 1990; 8B 2019; 116 2011; 21 2016; 80 2014; 9 2019; 199 2014; 56 2007; 25 2012; 63 2018; 79 2015; 2 2015; 13 2017; 27 2006; 11 2006; 16 2013; 40 2002; 298 2015; 10 2011; 31 2016; 124 2006; 19 2011; 32 2016; 125 2002 1996; 720 2014; 111 2014; 84 2001; 81 2015; 25 2019; 82 2017; 15 2017; 17 2013; 35 2013; 34 2020 2017; 12 2019 1977; 1 2016; 132 2016; 138 2015 2014 2016; 136 2008; 84 2014; 103 1967 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 Dubois J. (e_1_2_8_6_1) 2015; 2 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_206_1 Flechsig P (e_1_2_8_16_1) 1920 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 Andescavage NN (e_1_2_8_7_1) 2017; 27 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 Wang F (e_1_2_8_45_1) 2019; 116 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 Dubois J. (e_1_2_8_5_1) 2015; 2 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 Walhovd KB (e_1_2_8_48_1) 2017; 27 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 Lordier L (e_1_2_8_188_1) 2019; 116 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 Melbourne A (e_1_2_8_161_1) 2014; 17 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 Yakovlev PI (e_1_2_8_20_1) 1967 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_141_1 e_1_2_8_164_1 Feess‐Higgins A (e_1_2_8_12_1) 1987 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 46 start-page: 941 issue: 7 year: 2016 end-page: 951 article-title: Key concepts in MR spectroscopy and practical approaches to gaining biochemical information in children publication-title: Pediatr Radiol – volume: 26 start-page: 3023 issue: 7 year: 2016 end-page: 3035 article-title: Are developmental trajectories of cortical folding comparable between cross‐sectional datasets of fetuses and preterm newborns? publication-title: Cereb Cortex – volume: 110 start-page: 9541 issue: 23 year: 2013 end-page: 9546 article-title: Development of cortical microstructure in the preterm human brain publication-title: Proc Natl Acad Sci U S A – volume: 41 start-page: 1353 issue: 5 year: 2015 end-page: 1364 article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction publication-title: J Magn Reson Imaging – volume: 88 start-page: 93 issue: 1 year: 2015 end-page: 109 article-title: The infancy of the human brain publication-title: Neuron – volume: 32 start-page: 981 issue: 8 year: 2014 end-page: 992 article-title: Correction strategy for diffusion‐weighted images corrupted with motion: Application to the DTI evaluation of infants' white matter publication-title: Magn Reson Imaging – volume: 9 issue: 10 year: 2014 article-title: Different patterns of punctate white matter lesions in serially scanned preterm infants publication-title: PLoS One – volume: 5 start-page: 159 year: 2017 article-title: Resting‐state functional connectivity in the infant brain: Methods, pitfalls, and potentiality publication-title: Front Pediatr – volume: 40 start-page: 494 year: 2017 end-page: 506 article-title: Developmental connectomics from infancy through early childhood publication-title: Trends Neurosci – volume: 15 start-page: 401 year: 2017 end-page: 407 article-title: Prematurity and brain perfusion: Arterial spin labeling MRI publication-title: Neuroimage Clin – volume: 25 start-page: 1176 issue: 5 year: 2015 end-page: 1187 article-title: Consistent anterior‐posterior segregation of the insula during the first 2 years of life publication-title: Cereb Cortex – volume: 20 start-page: 327 issue: 4 year: 2010 end-page: 348 article-title: The basics of brain development publication-title: Neuropsychol Rev – volume: 6 issue: 9 year: 2011 article-title: Development trends of white matter connectivity in the first years of life publication-title: PLoS One – volume: 51 start-page: 181 issue: 2 year: 2012 end-page: 191 article-title: Regional cerebral development at term relates to school‐age social‐emotional development in very preterm children publication-title: J Am Acad Child Adolesc Psychiatry – volume: 84 start-page: 777 issue: 12 year: 2008 end-page: 782 article-title: Connecting the developing preterm brain publication-title: Early Hum Dev – volume: 54 start-page: 1862 issue: 3 year: 2011 end-page: 1871 article-title: Brain anatomical networks in early human brain development publication-title: Neuroimage – volume: 26 start-page: 2283 issue: 5 year: 2016 end-page: 2298 article-title: Exploring the early organization and maturation of linguistic pathways in the human infant brain publication-title: Cereb Cortex – volume: 185 start-page: 891 year: 2019 end-page: 905 article-title: The UNC/UMN baby connectome project (BCP): An overview of the study design and protocol development publication-title: Neuroimage – volume: 22 start-page: 375 issue: 5 year: 2018 end-page: 387 article-title: Infant fMRI: A model system for cognitive neuroscience publication-title: Trends Cogn Sci – volume: 110 start-page: 4380 issue: 11 year: 2013 end-page: 4385 article-title: Resolving the transition from negative to positive blood oxygen level‐dependent responses in the developing brain publication-title: Proc Natl Acad Sci U S A – volume: 103 start-page: 214 year: 2014 end-page: 224 article-title: Microstructural brain development between 30 and 40 week corrected age in a longitudinal cohort of extremely preterm infants publication-title: Neuroimage – volume: 1 start-page: 95 issue: 2 year: 2011 end-page: 108 article-title: White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study publication-title: Brain Behav – volume: 73 year: 2015 article-title: T2* relaxometry of fetal brain at 1.5 Tesla using a motion tolerant method publication-title: Magn Reson Med – year: 2014 article-title: Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: Neuroanatomic insights publication-title: Cereb Cortex – volume: 31 start-page: 1500 issue: 4 year: 2011 end-page: 1506 article-title: Early maturation of the linguistic dorsal pathway in human infants publication-title: J Neurosci – year: 1920 – year: 2019 – volume: 220 start-page: 3733 issue: 6 year: 2015 end-page: 3751 article-title: Maturation of preterm newborn brains: A fMRI‐DTI study of auditory processing of linguistic stimuli and white matter development publication-title: Brain Struct Funct – volume: 34 start-page: 1124 issue: 6 year: 2013 end-page: 1136 article-title: Motion‐compensation techniques in neonatal and fetal MR imaging publication-title: AJNR Am J Neuroradiol – volume: 25 start-page: 3000 issue: 9 year: 2015 end-page: 3013 article-title: The neonatal connectome during preterm brain development publication-title: Cereb Cortex – volume: 5 start-page: ENEURO.0380 issue: 1 year: 2018 end-page: ENEU17.2017 article-title: Differential rates of perinatal maturation of human primary and nonprimary auditory cortex publication-title: eNeuro – volume: 79 start-page: 1365 issue: 3 year: 2018 end-page: 1376 article-title: Three‐dimensional motion corrected sensitivity encoding reconstruction for multi‐shot multi‐slice MRI: Application to neonatal brain imaging publication-title: Magn Reson Med – volume: 26 start-page: 4381 issue: 11 year: 2016 end-page: 4391 article-title: Structural development of human fetal and preterm brain cortical plate based on population‐averaged templates publication-title: Cereb Cortex – volume: 185 start-page: 836 year: 2019 end-page: 850 article-title: Delineation of early brain development from fetuses to infants with diffusion MRI and beyond publication-title: Neuroimage – volume: 185 start-page: 664 year: 2019 end-page: 684 article-title: Resting‐state functional MRI studies on infant brains: A decade of gap‐filling efforts publication-title: Neuroimage – volume: 185 start-page: 926 year: 2019 end-page: 933 article-title: Assessment of cerebral blood flow in neonates and infants: A phase‐contrast MRI study publication-title: Neuroimage – volume: 27 start-page: 5274 issue: 11 year: 2017 end-page: 5283 article-title: Complex trajectories of brain development in the healthy human fetus publication-title: Cereb Cortex – volume: 11 start-page: 479 issue: 6 year: 2006 end-page: 488 article-title: Functional MRI of the newborn publication-title: Semin Fetal Neonatal Med – volume: 70 start-page: 626 issue: 6 year: 2011 end-page: 632 article-title: Fiber tracking at term displays gender differences regarding cognitive and motor outcome at 2 years of age in preterm infants publication-title: Pediatr Res – volume: 27 start-page: 1472 issue: 2 year: 2017 end-page: 1481 article-title: Through thick and thin: A need to reconcile contradictory results on trajectories in human cortical development publication-title: Cereb Cortex – volume: 25 start-page: 1162 issue: 8 year: 2007 end-page: 1170 article-title: Optimization of 3D MP‐RAGE for neonatal brain imaging at 3.0 T publication-title: Magn Reson Imaging – volume: 40 start-page: 85 year: 2018 end-page: 93 article-title: Measuring in vivo cerebral maturation using age‐related T2 relaxation times at 3T publication-title: Brain Dev – volume: 82 start-page: 527 issue: 2 year: 2019 end-page: 550 article-title: Methodological consensus on clinical proton MRS of the brain: Review and recommendations publication-title: Magn Reson Med – volume: 30 year: 2020 article-title: Cortical structure and cognition in infants and toddlers publication-title: Cereb Cortex – volume: 25 start-page: 4310 year: 2015 end-page: 4318 article-title: Thalamocortical connectivity predicts cognition in children born preterm publication-title: Cereb Cortex – volume: 8B start-page: 3 year: 1990 end-page: 136 – volume: 13 issue: 9 year: 2015 article-title: BOLD response selective to flow‐motion in very young infants publication-title: PLoS Biol – volume: 64 start-page: 171 year: 2019 end-page: 189 article-title: Role of deep learning in infant brain MRI analysis publication-title: Magn Reson Imaging – volume: 29 start-page: 14 issue: 1 year: 2008 end-page: 27 article-title: Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging publication-title: Hum Brain Mapp – year: 2002 – volume: 185 start-page: 764 year: 2019 end-page: 775 article-title: Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo publication-title: Neuroimage – volume: 79 start-page: 1276 issue: 3 year: 2018 end-page: 1292 article-title: Time‐efficient and flexible design of optimized multishell HARDI diffusion publication-title: Magn Reson Med – volume: 42 year: 2020 article-title: Anatomo‐functional correlates of auditory development in infancy publication-title: Dev Cogn Neurosci – volume: 11 start-page: 24 issue: 10 year: 2016 article-title: A new strategy for fast MRI‐based quantification of the myelin water fraction: Application to brain imaging in infants publication-title: PLoS One – volume: 7 start-page: 8143 issue: 1 year: 2017 article-title: Altered cerebellar biochemical profiles in infants born prematurely publication-title: Sci Rep – volume: 2 start-page: 11 year: 2015 end-page: 19 article-title: Fetal and postnatal development of the cortex: Insights from MRI and genetics publication-title: Brain mapping: An encyclopedic reference – year: 2020 article-title: Multiscale structure‐function gradients in the neonatal connectome publication-title: Cereb Cortex – volume: 193 start-page: 54 year: 2018 end-page: 61 article-title: Altered cerebral perfusion in infants born preterm compared with infants born full term publication-title: J Pediatr – volume: 66 start-page: 301 issue: 3 year: 2009 end-page: 305 article-title: Spontaneous brain activity in the newborn brain during natural sleep—An fMRI study in infants born at full term publication-title: Pediatr Res – year: 2020 article-title: Music enhances structural maturation of emotional processing neural pathways in very preterm infants publication-title: Neuroimage – volume: 96 start-page: 288 year: 2014 end-page: 299 article-title: Assessing white matter microstructure of the newborn with multi‐shell diffusion MRI and biophysical compartment models publication-title: Neuroimage – volume: 220 start-page: 3657 issue: 6 year: 2015 end-page: 3672 article-title: Multi‐parametric evaluation of the white matter maturation publication-title: Brain Struct Funct – volume: 37 start-page: 2479 issue: 7 year: 2016 end-page: 2492 article-title: Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry publication-title: Hum Brain Mapp – volume: 103 start-page: 14240 issue: 38 year: 2006 end-page: 14245 article-title: Functional organization of perisylvian activation during presentation of sentences in preverbal infants publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 89 issue: 1 year: 2016 end-page: 95 article-title: Development of the cell population in the brain white matter of young children publication-title: Cereb Cortex – volume: 223 start-page: 4153 issue: 9 year: 2018 end-page: 4168 article-title: A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem publication-title: Brain Struct Funct – volume: 41 start-page: 1591 issue: 6 year: 2015 end-page: 1600 article-title: Cerebral blood flow measurements in infants using Look‐Locker arterial spin labeling publication-title: J Magn Reson Imaging – volume: 78 start-page: 794 issue: 2 year: 2017 end-page: 804 article-title: A dedicated neonatal brain imaging system publication-title: Magn Reson Med – volume: 11 start-page: 489 issue: 6 year: 2006 end-page: 497 article-title: Diffusion tensor imaging of brain development publication-title: Semin Fetal Neonatal Med – volume: 103 start-page: F238 issue: 3 year: 2018 end-page: F244 article-title: Magnetic resonance spectroscopy in preterm infants: Association with neurodevelopmental outcomes publication-title: Arch Dis Child Fetal Neonatal Ed – volume: 17 start-page: 766 issue: 5 year: 2014 end-page: 774 article-title: Neural specialization for speech in the first months of life publication-title: Dev Sci – volume: 80 start-page: 641 issue: 5 year: 2016 end-page: 650 article-title: Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates: A review publication-title: Pediatr Res – volume: 107 start-page: 20015 issue: 46 year: 2010 end-page: 20020 article-title: Emergence of resting state networks in the preterm human brain publication-title: Proc Natl Acad Sci U S A – volume: 192 start-page: 145 year: 2019 end-page: 155 article-title: White matter connectomes at birth accurately predict cognitive abilities at age 2 publication-title: Neuroimage – volume: 147 start-page: 233 year: 2017 end-page: 242 article-title: Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo‐continuous arterial spin labeled perfusion MRI publication-title: Neuroimage – volume: 7 year: 2018 article-title: Recent advances in diffusion neuroimaging: Applications in the developing preterm brain publication-title: F1000Res – volume: 107 start-page: 242 year: 2015 end-page: 256 article-title: One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI? publication-title: Neuroimage – volume: 49 start-page: 1600 issue: 6 year: 2019 end-page: 1609 article-title: Spatiotemporal variations of magnetic susceptibility in the deep gray matter nuclei from 1 month to 6 years: A quantitative susceptibility mapping study publication-title: J Magn Reson Imaging – volume: 25 start-page: 2204 issue: 8 year: 2015 end-page: 2212 article-title: Dynamic development of regional cortical thickness and surface area in early childhood publication-title: Cereb Cortex – volume: 188 start-page: 743 year: 2019 end-page: 773 article-title: Neural histology and neurogenesis of the human fetal and infant brain publication-title: Neuroimage – volume: 720 start-page: 17 issue: 1–2 year: 1996 end-page: 24 article-title: Human central nervous system myelin inhibits neurite outgrowth publication-title: Brain Res – volume: 185 start-page: 865 year: 2019 end-page: 880 article-title: Baby brain atlases publication-title: Neuroimage – volume: 292 start-page: 179 issue: 1 year: 2019 end-page: 187 article-title: Diffusion tensor MRI of white matter of healthy full‐term newborns: Relationship to neurodevelopmental outcomes publication-title: Radiology – volume: 17 start-page: 667 year: 2017 end-page: 679 article-title: Prediction of cognitive and motor development in preterm children using exhaustive feature selection and cross‐validation of near‐term white matter microstructure publication-title: Neuroimage Clin – volume: 224 start-page: 501 issue: 1 year: 2019 end-page: 513 article-title: Associations of age and sex with brain volumes and asymmetry in 2‐5‐week‐old infants publication-title: Brain Struct Funct – volume: 28 start-page: 1943 issue: 8 year: 2008 end-page: 1948 article-title: Microstructural correlates of infant functional development: Example of the visual pathways publication-title: J Neurosci – volume: 32 issue: 4 year: 2019 article-title: Diffusion MRI fiber tractography of the brain publication-title: NMR Biomed – volume: 8 year: 2017 article-title: Organization of high‐level visual cortex in human infants publication-title: Nat Commun – volume: 107 start-page: 4758 issue: 10 year: 2010 end-page: 4763 article-title: Functional specializations for music processing in the human newborn brain publication-title: Proc Natl Acad Sci U S A – volume: 125 start-page: 780 year: 2015 end-page: 790 article-title: Comparison of cortical folding measures for evaluation of developing human brain publication-title: Neuroimage – volume: 186 start-page: 321 year: 2019 end-page: 337 article-title: A framework for multi‐component analysis of diffusion MRI data over the neonatal period publication-title: Neuroimage – year: 2020 – volume: 53 start-page: 669 issue: 9 year: 2011 end-page: 679 article-title: Punctate white matter lesions in infants: New insights using susceptibility‐weighted imaging publication-title: Neuroradiology – volume: 31 issue: 8 year: 2018 article-title: Size‐adaptable 13‐channel receive array for brain MRI in human neonates at 3 T publication-title: NMR Biomed – volume: 38 start-page: 1009 issue: 2 year: 2017 end-page: 1024 article-title: Twin‐singleton developmental study of brain white matter anatomy publication-title: Hum Brain Mapp – volume: 66 start-page: 1777 issue: 6 year: 2011 end-page: 1787 article-title: Size‐optimized 32‐channel brain arrays for 3 T pediatric imaging publication-title: Magn Reson Med – volume: 186 start-page: 782 year: 2019 end-page: 793 article-title: MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life publication-title: Neuroimage – volume: 10 issue: 7 year: 2015 article-title: Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants publication-title: PLoS One – volume: 185 start-page: 641 year: 2019 end-page: 653 article-title: Mapping the asynchrony of cortical maturation in the infant brain: A MRI multi‐parametric clustering approach publication-title: Neuroimage – volume: 1 start-page: 86 issue: 1 year: 1977 end-page: 93 article-title: Gyral development of the human brain publication-title: Ann Neurol – volume: 33 start-page: 188 issue: 1 year: 2012 end-page: 194 article-title: Neonatal tract‐based spatial statistics findings and outcome in preterm infants publication-title: AJNR Am J Neuroradiol – volume: 32 start-page: 1 issue: 1 year: 2019 end-page: 16 article-title: Robust identification of rich‐club organization in weighted and dense structural connectomes publication-title: Brain Topogr – volume: 26 start-page: 402 issue: 1 year: 2016 end-page: 413 article-title: Maturation of sensori‐motor functional responses in the preterm brain publication-title: Cereb Cortex – volume: 56 start-page: 1437 issue: 3 year: 2011 end-page: 1452 article-title: Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain publication-title: Neuroimage – volume: 199 start-page: 387 year: 2019 end-page: 395 article-title: Age‐specific optimization of T1‐weighted brain MRI throughout infancy publication-title: Neuroimage – volume: 46 start-page: 690 issue: 3 year: 2017 end-page: 696 article-title: Evaluation of neonatal brain myelination using the T1‐ and T2‐weighted MRI ratio publication-title: J Magn Reson Imaging – volume: 7 start-page: 2163 issue: 1 year: 2017 article-title: Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images publication-title: Sci Rep – volume: 35 start-page: 36 year: 2019 end-page: 41 article-title: Neural correlates of gentle skin stroking in early infancy publication-title: Dev Cogn Neurosci – volume: 26 start-page: 322 issue: 1 year: 2016 end-page: 333 article-title: Resting‐state network complexity and magnitude are reduced in prematurely born infants publication-title: Cereb Cortex – volume: 116 start-page: 12103 issue: 24 year: 2019 end-page: 12108 article-title: Music in premature infants enhances high‐level cognitive brain networks publication-title: Proc Natl Acad Sci U S A – volume: 78 start-page: 625 issue: 2 year: 2017 end-page: 631 article-title: Optimal echo time for functional MRI of the infant brain identified in response to noxious stimulation publication-title: Magn Reson Med – volume: 298 start-page: 2013 issue: 5600 year: 2002 end-page: 2015 article-title: Functional neuroimaging of speech perception in infants publication-title: Science – volume: 35 start-page: 593 issue: 3 year: 2013 end-page: 598 article-title: Regional cerebral blood flow in children from 3 to 5 months of age publication-title: AJNR Am J Neuroradiol – volume: 125 start-page: 456 year: 2016 end-page: 478 article-title: Regional growth and atlasing of the developing human brain publication-title: Neuroimage – volume: 61 start-page: 1000 issue: 4 year: 2012 end-page: 1016 article-title: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage – volume: 30 start-page: 1121 issue: 4 year: 2006 end-page: 1132 article-title: Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography publication-title: Neuroimage – volume: 15 start-page: 528 issue: 4 year: 2012 end-page: 536 article-title: Plasticity in gray and white: Neuroimaging changes in brain structure during learning publication-title: Nat Neurosci – volume: 29 start-page: 1218 issue: 3 year: 2019 end-page: 1229 article-title: System‐specific patterns of thalamocortical connectivity in early brain development as revealed by structural and functional MRI publication-title: Cereb Cortex – volume: 2 start-page: 67 issue: 1 year: 2018 end-page: 79 article-title: Right but not left hemispheric discrimination of faces in infancy publication-title: Nat Hum Behav – volume: 185 start-page: 624 year: 2019 end-page: 640 article-title: Neurobiology, not artifacts: Challenges and guidelines for imaging the high risk infant publication-title: Neuroimage – volume: 387 start-page: 167 issue: 2 year: 1997 end-page: 178 article-title: Regional differences in synaptogenesis in human cerebral cortex publication-title: J Comp Neurol – volume: 138 start-page: 28 year: 2016 end-page: 42 article-title: NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns publication-title: Neuroimage – volume: 132 start-page: 225 year: 2016 end-page: 237 article-title: Mapping an index of the myelin g‐ratio in infants using magnetic resonance imaging publication-title: Neuroimage – volume: 53 start-page: 139 issue: 1 year: 2010 end-page: 145 article-title: Prospective motion correction of high‐resolution magnetic resonance imaging data in children publication-title: Neuroimage – volume: 48 start-page: 1199 issue: 5 year: 2018 end-page: 1207 article-title: Quantitative susceptibility map analysis in preterm neonates with germinal matrix‐intraventricular hemorrhage publication-title: J Magn Reson Imaging – volume: 185 start-page: 349 year: 2019 end-page: 360 article-title: Neonate and infant brain development from birth to 2 years assessed using MRI‐based quantitative susceptibility mapping publication-title: Neuroimage – volume: 28 start-page: 2901 issue: 8 year: 2018 end-page: 2907 article-title: fMRI‐based neuronal response to new odorants in the newborn brain publication-title: Cereb Cortex – volume: 142 start-page: 291 year: 2016 end-page: 300 article-title: Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants publication-title: Neuroimage – volume: 12 issue: 1 year: 2017 article-title: Functional laterality of task‐evoked activation in sensorimotor cortex of preterm infants: An optimized 3T fMRI study employing a customized neonatal head coil publication-title: PLoS One – volume: 23 start-page: 733 issue: 5 year: 2019 end-page: 739 article-title: Punctate white matter lesions of preterm infants: Risk factor analysis publication-title: Eur J Paediatr Neurol – volume: 29 start-page: 1883 issue: 10 year: 2008 end-page: 1889 article-title: Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain publication-title: AJNR Am J Neuroradiol – year: 1987 – volume: 186 start-page: 286 year: 2019 end-page: 300 article-title: Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious‐evoked brain activity in infants publication-title: Neuroimage – volume: 10 start-page: 65 year: 2019 article-title: Measurement of neurovascular coupling in neonates publication-title: Front Physiol – volume: 18 start-page: 871 year: 2018 end-page: 880 article-title: Regional microstructural organization of the cerebral cortex is affected by preterm birth publication-title: Neuroimage Clin – volume: 19 start-page: 134 issue: 3 year: 2006 end-page: 143 article-title: Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets publication-title: MAGMA – volume: 61 start-page: 542 issue: 3 year: 2012 end-page: 557 article-title: Quantitative tract‐based white matter development from birth to age 2years publication-title: Neuroimage – start-page: 3 year: 1967 end-page: 69 – volume: 35 start-page: 4475 issue: 9 year: 2014 end-page: 4487 article-title: White matter development and early cognition in babies and toddlers publication-title: Hum Brain Mapp – volume: 199 start-page: 1 year: 2019 end-page: 17 article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain publication-title: Neuroimage – volume: 21 start-page: 145 issue: 1 year: 2011 end-page: 154 article-title: The functional architecture of the infant brain as revealed by resting‐state fMRI publication-title: Cereb Cortex – volume: 106 start-page: 6790 issue: 16 year: 2009 end-page: 6795 article-title: Evidence on the emergence of the brain's default network from 2‐week‐old to 2‐year‐old healthy pediatric subjects publication-title: Proc Natl Acad Sci U S A – volume: 81 start-page: 871 issue: 2 year: 2001 end-page: 927 article-title: Biology of oligodendrocyte and myelin in the mammalian central nervous system publication-title: Physiol Rev – volume: 185 start-page: 750 year: 2019 end-page: 763 article-title: Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project publication-title: Neuroimage – volume: 160 start-page: 2 year: 2017 end-page: 14 article-title: The emergence of functional architecture during early brain development publication-title: Neuroimage – volume: 185 start-page: 934 year: 2019 end-page: 946 article-title: The dynamics of cortical folding waves and prematurity‐related deviations revealed by spatial and spectral analysis of gyrification publication-title: Neuroimage – volume: 7 start-page: 9759 issue: 1 year: 2017 article-title: Mapping white matter microstructure in the one month human brain publication-title: Sci Rep – volume: 276 start-page: 48 year: 2014 end-page: 71 article-title: The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants publication-title: Neuroscience – volume: 124 start-page: 267 issue: Pt A year: 2016 end-page: 275 article-title: Machine‐learning to characterise neonatal functional connectivity in the preterm brain publication-title: Neuroimage – volume: 14 start-page: 629 year: 2016 end-page: 640 article-title: Tractography in the clinics: Implementing a pipeline to characterize early brain development publication-title: Neuroimage Clin – volume: 20 start-page: 161 issue: 3 year: 2019 end-page: 176 article-title: Deconstructing cortical folding: Genetic, cellular and mechanical determinants publication-title: Nat Rev Neurosci – volume: 136 start-page: 1 year: 2016 end-page: 9 article-title: Prediction of brain maturity in infants using machine‐learning algorithms publication-title: Neuroimage – volume: 28 start-page: 2507 issue: 7 year: 2018 end-page: 2515 article-title: Somatotopic mapping of the developing sensorimotor cortex in the preterm human brain publication-title: Cereb Cortex – volume: 185 start-page: 793 year: 2019 end-page: 801 article-title: Challenges in pediatric neuroimaging publication-title: Neuroimage – volume: 63 start-page: 663 issue: 2 year: 2012 end-page: 673 article-title: Development of BOLD signal hemodynamic responses in the human brain publication-title: Neuroimage – volume: 22 start-page: 1134 issue: 3 year: 2004 end-page: 1140 article-title: Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants publication-title: Neuroimage – volume: 111 start-page: 580 year: 2015 end-page: 589 article-title: Longitudinal measurement of the developing gray matter in preterm subjects using multi‐modal MRI publication-title: Neuroimage – volume: 175 start-page: 228 year: 2016 end-page: 230 article-title: Does magnetic resonance brain scanning at 3.0 Tesla pose a hyperthermic challenge to term neonates? publication-title: J Pediatr – volume: 37 start-page: 155 issue: 1 year: 2016 end-page: 162 article-title: Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: A serial imaging study on preterm infants publication-title: AJNR Am J Neuroradiol – volume: 40 start-page: 3 issue: 1 year: 2010 end-page: 30 article-title: Magnetic resonance spectroscopy in pediatric neuroradiology: Clinical and research applications publication-title: Pediatr Radiol – volume: 185 start-page: 802 year: 2019 end-page: 812 article-title: A review on neuroimaging studies of genetic and environmental influences on early brain development publication-title: Neuroimage – start-page: 148 year: 2015 end-page: 151 – volume: 23 start-page: 594 issue: 3 year: 2013 end-page: 603 article-title: The synchronization within and interaction between the default and dorsal attention networks in early infancy publication-title: Cereb Cortex – volume: 2 start-page: 49 issue: 1 year: 2016 end-page: 69 article-title: MRI and M/EEG studies of the white matter development in human fetuses and infants: Review and opinion publication-title: Brain Plast – volume: 185 start-page: 685 year: 2019 end-page: 698 article-title: Age‐specific gray and white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks publication-title: Neuroimage – volume: 58 year: 2019 article-title: Surface‐constrained volumetric registration for the early developing brain publication-title: Med Image Anal – volume: 10 start-page: 2156 issue: 7 year: 1990 end-page: 2175 article-title: Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey publication-title: J Neurosci – volume: 162 start-page: 65 year: 2017 end-page: 72 article-title: Investigating the maturation of microstructure and radial orientation in the preterm human cortex with diffusion MRI publication-title: Neuroimage – volume: 65 start-page: 315 year: 2013 end-page: 323 article-title: Morphology and microstructure of subcortical structures at birth: A large‐scale Asian neonatal neuroimaging study publication-title: Neuroimage – volume: 185 start-page: 728 year: 2019 end-page: 741 article-title: Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome publication-title: Neuroimage – volume: 17 start-page: 268 issue: Pt 2 year: 2014 end-page: 275 article-title: Multi‐modal measurement of the myelin‐to‐axon diameter g‐ratio in preterm‐born neonates and adult controls publication-title: Med Image Comput Comput Assist Interv – volume: 2 start-page: 423 year: 2015 end-page: 437 article-title: Development of structural and functional connectivity publication-title: Brain mapping: An encyclopedic reference – volume: 16 start-page: 215 issue: 1 year: 2006 end-page: 220 article-title: Magnetization transfer ratio in the brain of preterm subjects: Age‐related changes during the first 2 years of life publication-title: Eur Radiol – volume: 56 start-page: 771 issue: 9 year: 2014 end-page: 779 article-title: Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants publication-title: Neuroradiology – volume: 46 start-page: 963 issue: 7 year: 2016 end-page: 982 article-title: MR spectroscopy in children: Protocols and pitfalls in non‐tumorous brain pathology publication-title: Pediatr Radiol – volume: 116 year: 2019 article-title: Developmental topography of cortical thickness during infancy publication-title: Proc Natl Acad Sci U S A – volume: 23 year: 2019 article-title: Fixel‐based analysis of the preterm brain: Disentangling bundle‐specific white matter microstructural and macrostructural changes in relation to clinical risk factors publication-title: Neuroimage Clin – volume: 173 start-page: 88 year: 2018 end-page: 112 article-title: The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction publication-title: Neuroimage – volume: 142 start-page: 150 year: 2016 end-page: 162 article-title: Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics publication-title: Neuroimage – volume: 223 issue: 4 year: 2018 article-title: Investigation of brain structure in the 1‐month infant publication-title: Brain Struct Funct – volume: 39 start-page: 9716 issue: 49 year: 2019 end-page: 9724 article-title: Functional connectome of the fetal brain publication-title: J Neurosci – volume: 25 start-page: 3014 issue: 9 year: 2015 end-page: 3024 article-title: Early brain activity relates to subsequent brain growth in premature infants publication-title: Cereb Cortex – volume: 11 issue: 8 year: 2016 article-title: Creatine, glutamine plus glutamate, and macromolecules are decreased in the central white matter of premature neonates around term publication-title: PLoS One – volume: 170 start-page: 231 year: 2018 end-page: 248 article-title: A review on automatic fetal and neonatal brain MRI segmentation publication-title: Neuroimage – volume: 185 start-page: 906 year: 2019 end-page: 925 article-title: Computational neuroanatomy of baby brains: A review publication-title: Neuroimage – volume: 179 start-page: 11 year: 2018 end-page: 29 article-title: Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project publication-title: Neuroimage – volume: 112 start-page: 6485 issue: 20 year: 2015 end-page: 6490 article-title: Specialization and integration of functional thalamocortical connectivity in the human infant publication-title: Proc Natl Acad Sci U S A – volume: 138 issue: 5 year: 2016 article-title: Third trimester brain growth in preterm infants compared with in utero healthy fetuses publication-title: Pediatrics – volume: 63 start-page: 1038 issue: 3 year: 2012 end-page: 1053 article-title: Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping publication-title: Neuroimage – volume: 23 start-page: 803 issue: 7 year: 2010 end-page: 820 article-title: Twenty‐five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed – volume: 114 start-page: 148 issue: 1 year: 2017 end-page: 153 article-title: Common and heritable components of white matter microstructure predict cognitive function at 1 and 2 y publication-title: Proc Natl Acad Sci U S A – volume: 69 start-page: 544 issue: 6 year: 2011 end-page: 547 article-title: Phase‐contrast magnetic resonance angiography measurements of global cerebral blood flow in the neonate publication-title: Pediatr Res – volume: 115 start-page: 3156 issue: 12 year: 2018 end-page: 3161 article-title: Dynamic patterns of cortical expansion during folding of the preterm human brain publication-title: Proc Natl Acad Sci U S A – volume: 28 start-page: 12176 issue: 47 year: 2008 end-page: 12182 article-title: A structural MRI study of human brain development from birth to 2 years publication-title: J Neurosci – volume: 40 start-page: 81 issue: 2 year: 2013 end-page: 88 article-title: Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: Comparison with brain MRI and susceptibility‐weighted imaging publication-title: J Neuroradiol – volume: 84 start-page: 169 year: 2014 end-page: 180 article-title: Functional connectivity in the developing brain: A longitudinal study from 4 to 9 months of age publication-title: Neuroimage – volume: 111 start-page: 7456 issue: 20 year: 2014 end-page: 7461 article-title: Rich‐club organization of the newborn human brain publication-title: Proc Natl Acad Sci U S A – volume: 32 start-page: 1451 issue: 8 year: 2011 end-page: 1458 article-title: Is brain maturation comparable in fetuses and premature neonates at term equivalent age? publication-title: AJNR Am J Neuroradiol – volume: 59 start-page: 114 year: 2019 end-page: 120 article-title: Arterial spin‐labeling magnetic resonance imaging of brain maturation in early childhood: Mathematical model fitting to assess age‐dependent change of cerebral blood flow publication-title: Magn Reson Imaging – volume: 64 start-page: 505 year: 2013 end-page: 516 article-title: Quantitative MRI in the very preterm brain: Assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T(1) imaging publication-title: Neuroimage – volume: 116 start-page: 4681 year: 2019 end-page: 4688 article-title: Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging publication-title: Proc Natl Acad Sci U S A – volume: 112 start-page: 30 year: 2015 end-page: 42 article-title: Cerebral maturation in the early preterm period‐a magnetization transfer and diffusion tensor imaging study using voxel‐based analysis publication-title: Neuroimage – volume: 125 start-page: 267 year: 2016 end-page: 279 article-title: Trajectories of cortical thickness maturation in normal brain development—The importance of quality control procedures publication-title: Neuroimage – volume: 82 start-page: 538 issue: 3 year: 2013 end-page: 543 article-title: Regional changes in brain perfusion during brain maturation measured non‐invasively with arterial spin labeling MRI in neonates publication-title: Eur J Radiol – volume: 149 start-page: 379 year: 2017 end-page: 392 article-title: Early development of structural networks and the impact of prematurity on brain connectivity publication-title: Neuroimage – ident: e_1_2_8_117_1 doi: 10.1002/hbm.23435 – ident: e_1_2_8_43_1 doi: 10.1371/journal.pone.0131552 – ident: e_1_2_8_112_1 doi: 10.1016/j.neuroimage.2016.05.047 – ident: e_1_2_8_28_1 doi: 10.3174/ajnr.A3128 – ident: e_1_2_8_9_1 doi: 10.1523/JNEUROSCI.3479-08.2008 – ident: e_1_2_8_205_1 doi: 10.1523/JNEUROSCI.5145-07.2008 – ident: e_1_2_8_184_1 doi: 10.1007/s00429-014-0887-5 – ident: e_1_2_8_171_1 doi: 10.3389/fphys.2019.00065 – ident: e_1_2_8_29_1 doi: 10.1002/mrm.26462 – ident: e_1_2_8_97_1 doi: 10.1016/j.neuroimage.2012.09.032 – ident: e_1_2_8_204_1 doi: 10.1093/cercor/bhu097 – volume: 116 start-page: 12103 issue: 24 year: 2019 ident: e_1_2_8_188_1 article-title: Music in premature infants enhances high‐level cognitive brain networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1817536116 – ident: e_1_2_8_181_1 doi: 10.1073/pnas.0606302103 – volume-title: Development of the human foetal brain: An anatomical atlas year: 1987 ident: e_1_2_8_12_1 – ident: e_1_2_8_122_1 doi: 10.1016/j.nicl.2019.101820 – ident: e_1_2_8_190_1 doi: 10.1073/pnas.1007921107 – ident: e_1_2_8_78_1 doi: 10.1002/nbm.1543 – ident: e_1_2_8_147_1 doi: 10.1016/j.nicl.2017.05.023 – ident: e_1_2_8_143_1 doi: 10.1002/jmri.24716 – ident: e_1_2_8_40_1 doi: 10.1007/s00429-017-1600-2 – ident: e_1_2_8_154_1 doi: 10.1371/journal.pone.0160990 – ident: e_1_2_8_76_1 doi: 10.1016/j.neuroimage.2018.05.064 – ident: e_1_2_8_82_1 doi: 10.1016/j.neuroimage.2014.12.009 – ident: e_1_2_8_100_1 doi: 10.1002/nbm.3785 – ident: e_1_2_8_17_1 doi: 10.1016/j.neuroscience.2013.12.044 – ident: e_1_2_8_169_1 doi: 10.1016/j.neuroimage.2012.06.054 – ident: e_1_2_8_160_1 doi: 10.1371/journal.pone.0163143 – ident: e_1_2_8_139_1 doi: 10.1203/PDR.0b013e3182176aab – ident: e_1_2_8_72_1 doi: 10.1002/mrm.26765 – ident: e_1_2_8_33_1 doi: 10.1002/jmri.24678 – ident: e_1_2_8_65_1 doi: 10.3174/ajnr.A4510 – ident: e_1_2_8_165_1 doi: 10.1016/j.neuroimage.2018.07.023 – volume-title: Anatomie des Menschlichen Gehirn und Rückenmarks, auf myelogenetischer grundlage year: 1920 ident: e_1_2_8_16_1 – ident: e_1_2_8_60_1 doi: 10.1038/s41598-017-02307-w – ident: e_1_2_8_140_1 doi: 10.1016/j.ejrad.2012.10.013 – ident: e_1_2_8_2_1 doi: 10.1016/j.neuroimage.2018.12.043 – ident: e_1_2_8_186_1 doi: 10.3389/fped.2017.00159 – ident: e_1_2_8_111_1 doi: 10.1371/journal.pone.0024678 – ident: e_1_2_8_132_1 doi: 10.1016/j.neuroimage.2018.10.031 – ident: e_1_2_8_70_1 doi: 10.1109/ISBI.2015.7163837 – ident: e_1_2_8_41_1 doi: 10.1016/j.mri.2019.06.009 – ident: e_1_2_8_106_1 doi: 10.1016/j.tins.2017.06.003 – ident: e_1_2_8_37_1 doi: 10.1016/j.neuroimage.2018.01.054 – ident: e_1_2_8_34_1 doi: 10.1016/j.neuroimage.2010.06.017 – ident: e_1_2_8_144_1 doi: 10.3174/ajnr.A3728 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.1715451115 – ident: e_1_2_8_168_1 doi: 10.1016/j.neuroimage.2018.11.006 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuroimage.2018.04.044 – ident: e_1_2_8_172_1 doi: 10.1073/pnas.1212785110 – ident: e_1_2_8_21_1 doi: 10.1093/cercor/bhu178 – ident: e_1_2_8_68_1 doi: 10.1007/s00429-014-0881-y – ident: e_1_2_8_115_1 doi: 10.1002/brb3.17 – ident: e_1_2_8_196_1 doi: 10.1093/cercor/bhs043 – ident: e_1_2_8_71_1 doi: 10.1016/j.neuroimage.2018.11.038 – ident: e_1_2_8_170_1 doi: 10.1016/j.siny.2006.07.007 – ident: e_1_2_8_74_1 doi: 10.1007/s10334-006-0036-0 – ident: e_1_2_8_19_1 doi: 10.1152/physrev.2001.81.2.871 – ident: e_1_2_8_10_1 doi: 10.1093/cercor/bhu027 – ident: e_1_2_8_46_1 doi: 10.1093/cercor/bhz126 – ident: e_1_2_8_145_1 doi: 10.1016/j.mri.2019.03.016 – ident: e_1_2_8_149_1 doi: 10.1002/mrm.27742 – ident: e_1_2_8_110_1 doi: 10.1016/j.neuroimage.2010.07.025 – ident: e_1_2_8_121_1 doi: 10.1038/s41598-017-09915-6 – ident: e_1_2_8_182_1 doi: 10.1111/desc.12151 – ident: e_1_2_8_89_1 doi: 10.1016/j.neuroimage.2015.02.010 – ident: e_1_2_8_187_1 doi: 10.1016/j.neuroimage.2017.01.047 – ident: e_1_2_8_193_1 doi: 10.1203/PDR.0b013e3181b1bd84 – ident: e_1_2_8_96_1 doi: 10.1016/j.nicl.2018.03.020 – ident: e_1_2_8_104_1 doi: 10.1016/j.nicl.2016.12.029 – ident: e_1_2_8_118_1 doi: 10.1073/pnas.1604658114 – ident: e_1_2_8_103_1 doi: 10.1016/j.neuroimage.2012.03.057 – volume: 2 start-page: 423 year: 2015 ident: e_1_2_8_5_1 article-title: Development of structural and functional connectivity publication-title: Brain mapping: An encyclopedic reference doi: 10.1016/B978-0-12-397025-1.00360-2 – ident: e_1_2_8_137_1 doi: 10.1016/j.neurad.2012.03.006 – ident: e_1_2_8_107_1 doi: 10.1016/j.neuroimage.2017.01.065 – volume: 27 start-page: 5274 issue: 11 year: 2017 ident: e_1_2_8_7_1 article-title: Complex trajectories of brain development in the healthy human fetus publication-title: Cereb Cortex – ident: e_1_2_8_138_1 doi: 10.1371/journal.pone.0108904 – ident: e_1_2_8_146_1 doi: 10.1016/j.neuroimage.2018.03.020 – ident: e_1_2_8_94_1 doi: 10.1016/j.dcn.2019.100752 – ident: e_1_2_8_73_1 doi: 10.1016/j.neuroimage.2018.03.049 – ident: e_1_2_8_124_1 doi: 10.12688/f1000research.15073.1 – ident: e_1_2_8_15_1 doi: 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z – ident: e_1_2_8_120_1 doi: 10.1016/j.neuroimage.2019.116391 – ident: e_1_2_8_123_1 doi: 10.1148/radiol.2019182564 – ident: e_1_2_8_55_1 – ident: e_1_2_8_50_1 doi: 10.1007/s00429-018-1735-9 – ident: e_1_2_8_129_1 doi: 10.1093/cercor/bhu331 – ident: e_1_2_8_88_1 doi: 10.1016/j.neuroimage.2017.08.013 – ident: e_1_2_8_24_1 doi: 10.1016/j.neuron.2015.09.026 – ident: e_1_2_8_52_1 doi: 10.1093/cercor/bhv123 – ident: e_1_2_8_128_1 doi: 10.3174/ajnr.A2723 – ident: e_1_2_8_80_1 doi: 10.1016/j.neuroimage.2014.03.057 – ident: e_1_2_8_148_1 doi: 10.1016/j.jpeds.2017.09.083 – ident: e_1_2_8_39_1 doi: 10.1016/j.neuroimage.2018.03.042 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.26796 – ident: e_1_2_8_22_1 doi: 10.1016/0006-8993(96)00062-5 – ident: e_1_2_8_200_1 doi: 10.1073/pnas.1422638112 – ident: e_1_2_8_95_1 doi: 10.1109/ISBI.2019.8759421 – ident: e_1_2_8_83_1 doi: 10.1016/j.neuroimage.2018.10.060 – ident: e_1_2_8_85_1 doi: 10.1016/j.neuroimage.2004.02.035 – ident: e_1_2_8_119_1 doi: 10.1038/nn.3045 – ident: e_1_2_8_86_1 doi: 10.1016/j.neuroimage.2015.02.051 – ident: e_1_2_8_108_1 doi: 10.1093/cercor/bhu095 – ident: e_1_2_8_67_1 doi: 10.1016/j.braindev.2017.07.011 – ident: e_1_2_8_77_1 doi: 10.1016/j.siny.2006.07.006 – ident: e_1_2_8_155_1 doi: 10.1007/s00234-014-1380-9 – ident: e_1_2_8_4_1 doi: 10.1016/j.neuroimage.2018.04.032 – ident: e_1_2_8_75_1 doi: 10.1016/j.mri.2014.05.007 – ident: e_1_2_8_61_1 doi: 10.1016/j.neuroimage.2018.06.034 – ident: e_1_2_8_158_1 doi: 10.1016/j.neuroimage.2012.07.037 – ident: e_1_2_8_91_1 doi: 10.1016/j.neuroimage.2014.09.039 – ident: e_1_2_8_13_1 doi: 10.1007/978-1-4615-3824-0_1 – ident: e_1_2_8_113_1 doi: 10.1007/s10548-018-0661-8 – ident: e_1_2_8_99_1 doi: 10.3233/BPL-160031 – ident: e_1_2_8_35_1 doi: 10.1016/j.mri.2007.01.119 – ident: e_1_2_8_93_1 doi: 10.1523/ENEURO.0380-17.2017 – ident: e_1_2_8_23_1 doi: 10.1523/JNEUROSCI.2891-18.2019 – ident: e_1_2_8_54_1 doi: 10.1016/j.media.2019.101540 – ident: e_1_2_8_166_1 doi: 10.1371/journal.pone.0169392 – ident: e_1_2_8_3_1 doi: 10.1007/s11065-010-9148-4 – ident: e_1_2_8_62_1 doi: 10.1016/j.neuroimage.2018.04.017 – ident: e_1_2_8_126_1 doi: 10.1016/j.nicl.2017.11.023 – ident: e_1_2_8_164_1 doi: 10.1016/j.tics.2018.01.005 – ident: e_1_2_8_151_1 doi: 10.1007/s00247-009-1450-z – ident: e_1_2_8_191_1 doi: 10.3174/ajnr.A1256 – ident: e_1_2_8_66_1 doi: 10.1016/j.neuroimage.2012.08.086 – ident: e_1_2_8_64_1 doi: 10.1002/jmri.25570 – ident: e_1_2_8_84_1 doi: 10.1016/j.neuroimage.2018.06.069 – ident: e_1_2_8_38_1 doi: 10.1016/j.neuroimage.2018.03.005 – ident: e_1_2_8_14_1 doi: 10.1038/s41583-018-0112-2 – ident: e_1_2_8_27_1 doi: 10.1002/mrm.25299 – ident: e_1_2_8_173_1 doi: 10.1093/cercor/bhx167 – ident: e_1_2_8_114_1 doi: 10.1002/hbm.20363 – ident: e_1_2_8_98_1 doi: 10.1016/j.earlhumdev.2008.09.004 – ident: e_1_2_8_127_1 doi: 10.1203/PDR.0b013e318232a963 – ident: e_1_2_8_58_1 doi: 10.1016/j.neuroimage.2016.05.034 – ident: e_1_2_8_159_1 doi: 10.1002/hbm.22488 – ident: e_1_2_8_56_1 doi: 10.1016/j.neuroimage.2018.06.018 – ident: e_1_2_8_131_1 doi: 10.1007/s00330-005-2796-8 – ident: e_1_2_8_167_1 doi: 10.1002/mrm.26455 – ident: e_1_2_8_44_1 doi: 10.1007/s00429-018-1787-x – ident: e_1_2_8_47_1 doi: 10.1016/j.neuroimage.2015.10.010 – ident: e_1_2_8_63_1 doi: 10.1523/JNEUROSCI.4141-10.2011 – ident: e_1_2_8_180_1 doi: 10.1038/ncomms13995 – ident: e_1_2_8_8_1 doi: 10.1016/j.neuroimage.2015.10.047 – ident: e_1_2_8_174_1 – ident: e_1_2_8_198_1 doi: 10.1016/j.neuroimage.2011.02.073 – ident: e_1_2_8_36_1 doi: 10.1016/j.neuroimage.2019.05.075 – ident: e_1_2_8_90_1 doi: 10.1073/pnas.1812156116 – ident: e_1_2_8_102_1 doi: 10.1016/j.neuroimage.2019.05.051 – ident: e_1_2_8_59_1 doi: 10.1542/peds.2016-1640 – ident: e_1_2_8_185_1 doi: 10.1016/j.neuroimage.2018.07.004 – volume: 2 start-page: 11 year: 2015 ident: e_1_2_8_6_1 article-title: Fetal and postnatal development of the cortex: Insights from MRI and genetics publication-title: Brain mapping: An encyclopedic reference doi: 10.1016/B978-0-12-397025-1.00194-9 – ident: e_1_2_8_105_1 doi: 10.1093/cercor/bhs330 – ident: e_1_2_8_136_1 doi: 10.1016/j.ejpn.2019.06.003 – ident: e_1_2_8_11_1 doi: 10.1002/ana.410010109 – ident: e_1_2_8_109_1 doi: 10.1073/pnas.1324118111 – ident: e_1_2_8_130_1 doi: 10.1016/j.neuroimage.2019.02.060 – ident: e_1_2_8_192_1 doi: 10.1016/j.neuroimage.2013.08.038 – ident: e_1_2_8_199_1 doi: 10.1093/cercor/bhy028 – volume: 116 year: 2019 ident: e_1_2_8_45_1 article-title: Developmental topography of cortical thickness during infancy publication-title: Proc Natl Acad Sci U S A – ident: e_1_2_8_101_1 doi: 10.1016/j.neuroimage.2005.11.022 – ident: e_1_2_8_202_1 doi: 10.1016/j.neuroimage.2016.05.029 – ident: e_1_2_8_42_1 doi: 10.1016/j.neuroimage.2017.06.074 – ident: e_1_2_8_178_1 doi: 10.1016/j.dcn.2017.10.004 – ident: e_1_2_8_194_1 doi: 10.1093/cercor/bhq071 – ident: e_1_2_8_179_1 doi: 10.1371/journal.pbio.1002260 – ident: e_1_2_8_183_1 doi: 10.1073/pnas.0909074107 – ident: e_1_2_8_125_1 doi: 10.1016/j.jaac.2011.11.009 – ident: e_1_2_8_49_1 doi: 10.1016/j.neuroimage.2016.07.010 – ident: e_1_2_8_203_1 doi: 10.1093/cercor/bhu251 – ident: e_1_2_8_79_1 doi: 10.1016/j.neuroimage.2018.05.046 – ident: e_1_2_8_201_1 doi: 10.1016/j.neuroimage.2015.08.055 – ident: e_1_2_8_87_1 doi: 10.1073/pnas.1301652110 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2015.11.001 – ident: e_1_2_8_57_1 doi: 10.1016/j.neuroimage.2018.04.003 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.22961 – ident: e_1_2_8_176_1 doi: 10.1093/cercor/bhv203 – ident: e_1_2_8_92_1 doi: 10.1093/cercor/bhv201 – ident: e_1_2_8_135_1 doi: 10.1007/s00234-011-0872-0 – ident: e_1_2_8_142_1 doi: 10.1038/pr.2016.146 – ident: e_1_2_8_141_1 doi: 10.1016/j.neuroimage.2016.12.034 – ident: e_1_2_8_116_1 doi: 10.1093/cercor/bhv082 – ident: e_1_2_8_134_1 doi: 10.1002/jmri.26163 – ident: e_1_2_8_153_1 doi: 10.3174/ajnr.A2555 – ident: e_1_2_8_133_1 doi: 10.1002/jmri.26579 – ident: e_1_2_8_162_1 doi: 10.1016/j.neuroimage.2016.02.040 – ident: e_1_2_8_195_1 doi: 10.1073/pnas.0811221106 – ident: e_1_2_8_189_1 doi: 10.1093/cercor/bhz069 – ident: e_1_2_8_81_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_8_152_1 doi: 10.1007/s00247-014-3204-9 – ident: e_1_2_8_197_1 doi: 10.1093/cercor/bht312 – start-page: 3 volume-title: Regional development of the brain in early life year: 1967 ident: e_1_2_8_20_1 – volume: 27 start-page: 1472 issue: 2 year: 2017 ident: e_1_2_8_48_1 article-title: Through thick and thin: A need to reconcile contradictory results on trajectories in human cortical development publication-title: Cereb Cortex – ident: e_1_2_8_177_1 doi: 10.1093/cercor/bhy050 – ident: e_1_2_8_206_1 doi: 10.1038/s41562-017-0249-4 – ident: e_1_2_8_69_1 doi: 10.1016/j.neuroimage.2018.07.022 – ident: e_1_2_8_18_1 doi: 10.1523/JNEUROSCI.10-07-02156.1990 – ident: e_1_2_8_156_1 doi: 10.1136/archdischild-2016-311403 – ident: e_1_2_8_175_1 doi: 10.1126/science.1077066 – ident: e_1_2_8_157_1 doi: 10.1038/s41598-017-08195-4 – ident: e_1_2_8_163_1 doi: 10.1002/hbm.23188 – ident: e_1_2_8_30_1 doi: 10.1002/nbm.3944 – volume: 17 start-page: 268 issue: 2 year: 2014 ident: e_1_2_8_161_1 article-title: Multi‐modal measurement of the myelin‐to‐axon diameter g‐ratio in preterm‐born neonates and adult controls publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_8_25_1 doi: 10.1016/j.jpeds.2016.05.014 – ident: e_1_2_8_150_1 doi: 10.1007/s00247-014-3270-z |
SSID | ssj0009945 |
Score | 2.6157427 |
SecondaryResourceType | review_article |
Snippet | In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1318 |
SubjectTerms | anatomical MRI Brain brain development Cellular structure Children Data acquisition diffusion MRI Disabilities Functional magnetic resonance imaging functional MRI Image contrast Infants Life Sciences Magnetic resonance imaging Medical imaging Morphology Neonates Neural networks Neurodevelopmental disorders Neuroimaging Neurons and Cognition Newborn babies newborns quantitative MRI Review Scanners Sequences Substantia alba |
Title | MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27192 https://www.ncbi.nlm.nih.gov/pubmed/32420684 https://www.proquest.com/docview/2512138191 https://www.proquest.com/docview/2404382867 https://inserm.hal.science/inserm-04307240 https://pubmed.ncbi.nlm.nih.gov/PMC8247362 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3a9oB44fsjMCYj4AGkdLHjOjHipUxMZaIVmpi0lymyHUcrsBStLQ_8eu51PkoZQoKXKpJvlTq-1znJPT0H4HnKjU-8VLES3MWywg-jnI7d0JMdJNeVpY7uZKrGJ_LodHi6BW-6_8I0-hD9CzeqjLBfU4Ebu9hfi4Z-vricDUSGCAU3YCJrESI6XmtHaR0cihE_pDHPk6zXJhX7669u3I22z4kLeRVoXuVL_opjw43o8CacdVNo-CdfBqulHbgfv6k7_u8cb8GNFqGyUZNSt2HL13fg2qTtwd-Fs8nxezavGCJHNvX08h2j35LTxGs2Yk2vgcYnwZu621vZQefasmCmLtm019EMZCU2argIi3twcvju08E4bk0acDmHJHhojdKy1GSpmOOTuUFMYp2zMnWKKCkiSauKK5Vzr7nE1bdaiMwZZb2xqczT-7BTz2v_EJhxVa6tdAmZ0HBVaue4L31ZIowZutJE8LJbrMK1CuZkpPG1aLSXRUHXqwjXK4Jnfey3Rrfjj1EvcPJ9AEltj0cfilmN5X9RkBxahojnO49gt8uKoq3xRUHIkIcH3gie9sNYndRyMbWfrzBGhk5rrrIIHjRJ1J-NoGyichlBtpFeGz9nc6SenQcF8FzIDJFHBK9C9vxlhsURJkU4evQvwY_huiDyTmB27sLO8nLlnyD6Wto92Bby416otZ98Ryyv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL3ahgS88P0RGGAEewApXey4ToLEQ9mY2q3pw7RJe5lC4jhagaVobUHwn_gr_CbudT5KGULiYQ-8RJF81djxtX0cn54D8NznqfGMVK4SXLuywEuqdOTqriE7SB4VGZ3oxiPVP5S7R92jFfje_Bem0odoP7jRyLDzNQ1w-iC9uVANfX96Nu6IACFKzancM1-_4I5t-nqwjd27IcTO24OtvlubCuDjuyTQl6UqknlEFoAh7iRTXEMzrTPpa0UUCuH5RcGVCrmJuMTaZpEQgU5VZtLMl6GPv7sKl8hCnKT6t_cXalVRZD2REbH4Lg-9oFVDFZuLui6tf6snxL48D23PMzR_Rc526du5Dj-al1YxXj505rOso7_9pif537zVG3CtBuGsV42am7BiyltwOa5pBrfhON4fsEnBEByzkaHzBYx-Q2Yar1iPVccpVB5b--1m-WBbjTHNlKVlzkatVKjlY7FeRbeY3oHDC2ncXVgrJ6W5DyzVRRhlUnvks8NVHmnNTW7yHJFaV-epAy-a7Eh0LdJOXiEfk0peWiTUP4ntHweetbGfKmmSP0ZtYOPbAFIT7_eGybjEGe40IcW3AEHdZ-7AepOGST2NTRMCv9zu6R142hbjBESnSmlpJnOMkfYwOVSBA_eqrG2fRmjdU6F0IFjK56XqLJeU4xMrch4KGSC4cuClTde_tDDZxaSwdw_-JfgJXOkfxMNkOBjtPYSrgrhKlsi6Dmuzs7l5hGBzlj22Q5zBu4vO_p-SI4ml |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21Raq4IL4JFDCCHkAKjR2vkyBxWFpWu213VSEq9VIZx3HURTRbdVsQ_4kfyYzzsayKkDj0EkXyKHFsj_3smbwH8CrmxkVOqlAJbkNZ4sUom4W250gOkmdlThHd8UQND-XuUe9oBX61_8LU_BDdgRt5hp-vycHPinJrQRr69fR8-lYkiFCalMo99_MHbtjm70c72LubQgw-ft4eho2mAL69R_x8uVGZLDJSAExxI2lwCc2tzWVsFWVQiCguS65Uyl3GJVY2z4RIrFG5M3ks0xifuwo3KLpICWRCHiwofjMviYyAJQ55GiUdGarYWtR1aflbPaHky6vI9mqC5p_A2a98g9twq4GsrF-PsTuw4qq7sD5ugvL34Hj8acRmJUMoySaOTuPR-gNJT7xjfVYHH6h87MWq28mWbbcyLnNmqoJNOmJNn73E-nVywvw-HF5LCz-AtWpWuUfAjC3TLJc2IlUarorMWu4KVxSIa3q2MAG8bhtT24bSnJQ1vumajFloanjtGz6Al53tWU3k8VerTfz4zoC4t4f9fT2tcD441cSPliAE-s4D2Gh7TTdOP9cEFbnfAQfwoitGd6UYjKnc7BJtpA-9pioJ4GHdyd3bCNtGKpUBJEvdv1Sd5ZJqeuIpwVMhE4QiAbzxA-UfX6h3cVD4u8f_Y_wc1g92Bnp_NNl7AjcFJfb4rM8NWLs4v3RPEZld5M-8QzD4ct0e-BvYnkey |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+of+the+Neonatal+Brain%3A+A+Review+of+Methodological+Challenges+and+Neuroscientific+Advances&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Dubois%2C+Jessica&rft.au=Alison%2C+Marianne&rft.au=Counsell%2C+Serena+J.&rft.au=Hertz%E2%80%90Pannier%2C+Lucie&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=53&rft.issue=5&rft.spage=1318&rft.epage=1343&rft_id=info:doi/10.1002%2Fjmri.27192&rft.externalDBID=10.1002%252Fjmri.27192&rft.externalDocID=JMRI27192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |