Evidence of Microporous Carbon Nanosheets Showing Fast Kinetics in both Gas Phase and Liquid Phase Environments

Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials a...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 38; pp. 5151 - 5156
Main Authors Jin, Zhen-Yu, Xu, Yuan-Yuan, Sun, Qiang, Lu, An-Hui
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.10.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m−2 and 18.4 mmol cm−3 at 273 K and ambient pressure, and its calculated first‐order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher‐rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Microporous carbon nanosheets and spheres with similar porous structures, specific surface areas, and amorphous features are prepared using the same precursors. Characterizations and application studies indicate that the microporous carbon nanosheets exhibit improve kinetics in gas phase separation, liquid phase enrichment, and energy storage devices, due to their shorter diffusion paths and larger exposed geometrical area derived from the nanosheet structure.
AbstractList Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 µmol m-2 and 18.4 mmol cm-3 at 273 K and ambient pressure, and its calculated first-order rate constant is [asymptotically =]7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure.
Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO 2 capture, MCN shows a high saturated CO 2 capacity of 8.52 μmol m −2 and 18.4 mmol cm −3 at 273 K and ambient pressure, and its calculated first‐order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher‐rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure.
Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m−2 and 18.4 mmol cm−3 at 273 K and ambient pressure, and its calculated first‐order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher‐rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Microporous carbon nanosheets and spheres with similar porous structures, specific surface areas, and amorphous features are prepared using the same precursors. Characterizations and application studies indicate that the microporous carbon nanosheets exhibit improve kinetics in gas phase separation, liquid phase enrichment, and energy storage devices, due to their shorter diffusion paths and larger exposed geometrical area derived from the nanosheet structure.
Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m(-2) and 18.4 mmol cm(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure.
Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO sub(2) capture, MCN shows a high saturated CO sub(2) capacity of 8.52 mu mol m super(-2) and 18.4 mmol cm super(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is approximately 7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Microporous carbon nanosheets and spheres with similar porous structures, specific surface areas, and amorphous features are prepared using the same precursors. Characterizations and application studies indicate that the microporous carbon nanosheets exhibit improve kinetics in gas phase separation, liquid phase enrichment, and energy storage devices, due to their shorter diffusion paths and larger exposed geometrical area derived from the nanosheet structure.
Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m(-2) and 18.4 mmol cm(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure.Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m(-2) and 18.4 mmol cm(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure.
Author Sun, Qiang
Xu, Yuan-Yuan
Jin, Zhen-Yu
Lu, An-Hui
Author_xml – sequence: 1
  givenname: Zhen-Yu
  surname: Jin
  fullname: Jin, Zhen-Yu
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
– sequence: 2
  givenname: Yuan-Yuan
  surname: Xu
  fullname: Xu, Yuan-Yuan
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
– sequence: 3
  givenname: Qiang
  surname: Sun
  fullname: Sun, Qiang
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
– sequence: 4
  givenname: An-Hui
  surname: Lu
  fullname: Lu, An-Hui
  email: anhuilu@dlut.edu.cn
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26192395$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1v0zAUhi00xD7glktkiZvdpPgjseNLqLoykQ2kDrE7y0lOqEdqd7azsX-_VO0qNAnBlY-s53mlc95jdOC8A4TeUjKhhLAPcdX3E0ZoQahQ7AU6ooLyTJRMHexnSg7RcYw3hHDKcvkKHTJBFeOqOEJ-dmdbcA1g3-EL2wS_9sEPEU9NqL3Dl8b5uARIES-W_t66n_jMxIS_WAfJNhFbh2uflnhuIv62NBGwcS2u7O1g293HzN3Z4N0KXIqv0cvO9BHe7N4T9P1sdjX9nFVf5-fTj1XWFAVlGa9lQ6A1QtaqlAUvDdQ0lyZXRUNb1hlaStJ2ghoiWyEkdLJumajrhokOcsVP0Ok2dx387QAx6ZWNDfS9cTCup6kUjJS5LMr_QBnlhVJik_r-GXrjh-DGRTYUyRlnTI7Uux011Cto9TrYlQkP-unqI5BvgfHcMQbodGOTSda7FIztNSV6U67elKv35Y7a5Jn2lPxXQW2Fe9vDwz9ovbioqj_dbOvamOD33jXhlxaSy0L_uJxrMb_-dH21oLrij7Alxg0
CitedBy_id crossref_primary_10_1039_D1MA00107H
crossref_primary_10_1016_j_electacta_2020_136408
crossref_primary_10_1016_j_apcatb_2020_119650
crossref_primary_10_1016_S1872_5805_15_60203_7
crossref_primary_10_1002_asia_201600396
crossref_primary_10_1002_chem_201804747
crossref_primary_10_1016_j_colsurfa_2024_135440
crossref_primary_10_1016_j_envpol_2019_113229
crossref_primary_10_1016_j_micromeso_2017_06_011
crossref_primary_10_1039_C8TA09545K
crossref_primary_10_1002_celc_201900552
crossref_primary_10_1002_cctc_201701897
crossref_primary_10_3390_nano9121776
crossref_primary_10_1016_j_carbon_2017_02_100
crossref_primary_10_1016_j_cjche_2021_11_005
crossref_primary_10_1039_C9TA07297G
Cites_doi 10.1002/adma.200801492
10.1039/c3ta12612a
10.1002/aenm.201100061
10.1039/c1ee01176f
10.1016/j.cej.2005.09.017
10.1002/adma.201201715
10.1039/c3ta10430c
10.1016/j.cej.2011.09.044
10.1002/anie.200702721
10.1016/S0008-6223(02)00191-4
10.1016/j.carbon.2012.12.082
10.1021/ja909169x
10.1002/aenm.201300383
10.1021/am400059t
10.1021/ja8036096
10.1002/adma.201306273
10.1126/science.1132195
10.1039/c0ee00784f
10.1039/c3ta90211k
10.1002/anie.201105486
10.1002/anie.200703864
10.1002/anie.201105966
10.1007/s10450-007-9057-x
10.1002/adma.201002647
10.1002/anie.200906445
10.1039/c3ta10701a
10.1002/adma.200903765
10.1021/ja206333w
10.1002/adfm.201100291
10.1002/smll.201300276
10.1021/ja01539a017
10.1039/c3ee41906a
10.1039/C1CC15599G
10.1002/adma.201301975
10.1021/nn501124h
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
DOI 10.1002/smll.201501692
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database
CrossRef

PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 5156
ExternalDocumentID 3831073391
26192395
10_1002_smll_201501692
SMLL201501692
ark_67375_WNG_6GXBXTS1_L
Genre article
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAYCA
AFWVQ
ALVPJ
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
F28
FR3
ID FETCH-LOGICAL-c5512-3b7c0eda67b987538aeb147a495c1d2fa1870df61a07d667ef7bd26bbc26fe493
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 16:48:09 EDT 2025
Fri Jul 11 02:48:32 EDT 2025
Fri Jul 25 12:05:11 EDT 2025
Thu Apr 03 07:02:51 EDT 2025
Tue Jul 01 02:10:19 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Jan 22 16:21:29 EST 2025
Tue Jan 07 16:33:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Cr (VI) removal
CO2 capture
supercapacitors, microporous carbon
kinetics
microporous carbon nanosheets
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5512-3b7c0eda67b987538aeb147a495c1d2fa1870df61a07d667ef7bd26bbc26fe493
Notes ArticleID:SMLL201501692
istex:4F0D7ED3ED0B597945EFAEE1C08FCD2CD480F0CB
ark:/67375/WNG-6GXBXTS1-L
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26192395
PQID 1720423227
PQPubID 1046358
PageCount 6
ParticipantIDs proquest_miscellaneous_1762084758
proquest_miscellaneous_1721359969
proquest_journals_1720423227
pubmed_primary_26192395
crossref_citationtrail_10_1002_smll_201501692
crossref_primary_10_1002_smll_201501692
wiley_primary_10_1002_smll_201501692_SMLL201501692
istex_primary_ark_67375_WNG_6GXBXTS1_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References L.-H. Zhang, Q. Sun, D.-H. Liu, A.-H. Lu, J. Mater. Chem. A 2013, 1, 9477.
Z.-Y. Jin, A.-H. Lu, X.-X. Xu, J.-T. Zhang, W.-C. Li, Adv. Mater. 2014, 26, 3700.
B. V. Babu, S. Gupta, Adsorption 2008, 14, 85.
G.-P. Hao, W.-C. Li, D. Qian, A.-H. Lu, Adv. Mater. 2010, 22, 853.
D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373.
A. Stein, Z. Wang, M. A. Fierke, Adv. Mater. 2009, 21, 265.
N. Q. Zhao, N. Wei, J. J. Li, Z. J. Qiao, J. Cui, F. He, Chem. Eng. J. 2005, 115, 133.
W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870.
V. Presser, J. McDonough, S. H. Yeon, Y. Gogotsi, Energy Environ. Sci. 2011, 4, 3059.
D.-H. Liu, Y. Guo, L.-H. Zhang, W.-C. Li, T. Sun, A.-H. Lu, Small 2013, 9, 3852.
Y. Xia, R. Mokaya, G. S. Walker, Y. Zhu, Adv. Energy Mater. 2011, 1, 678.
M. Sevilla, A. B. Fuertes, Energy Environ. Sci. 2011, 4, 1765.
X. J. Wang, Y. Wang, X. Wang, M. Liu, S. Q. Xia, D. Q. Yin, Y. L. Zhang, J. F. Zhao, Chem. Eng. J. 2011, 174, 326.
J.-T. Zhang, Z.-Y. Jin, W.-C. Li, W. Dong, A.-H. Lu, J. Mater. Chem. A 2013, 1, 13139.
J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160.
M. D. Hornbostel, J. Bao, G. Krishnan, A. Nagar, I. Jayaweera, T. Kobayashi, A. Sanjurjo, J. Sweeney, D. Carruthers, M. A. Petruska, L. Dubois, Carbon 2013, 56, 77.
B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng, J. Li, Angew. Chem. Int. Ed. 2012, 51, 1412.
H. Nishihara, T. Kyotani, Adv. Mater. 2012, 24, 4473.
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006, 313, 1760.
M. Y. Endo, J. Kim, H. Ohta, I. T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, M. S. Dresselhaus, Carbon 2002, 40, 2613.
S. Wang, W.-C. Li, G.-P. Hao, Y. Hao, Q. Sun, X.-Q. Zhang, A.-H. Lu, J. Am. Chem. Soc. 2011, 133, 15304.
V. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, K. S. Kim, Chem. Commun. 2012, 48, 735.
L. Zhao, L. Z. Fan, M. Qi, Z. H. Guan, S. Qiao, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 5202.
A.-H. Lu, T. Sun, W.-C. Li, Q. Sun, F. Han, D.-H. Liu, Y. Guo, Angew. Chem. Int. Ed. 2011, 50, 11765.
G.-P. Hao, A.-H. Lu, W. Dong, Z.-Y. Jin, X.-Q. Zhang, J.-T. Zhang, W.-C. Li, Adv. Energy Mater. 2013, 3, 1421.
T. P. Fellinger, A. Thomas, J. Yuan, M. Antonietti, Adv. Mater. 2013, 25, 5838.
G.-P. Hao, Z.-Y. Jin, Q. Sun, X.-Q. Zhang, J.-T. Zhang, A.-H. Lu, Energy Environ Sci. 2013, 6, 3740.
A.-H. Lu, W.-C. Li, G.-P. Hao, B. Spliethoff, H. J. Bongard, B. B. Schaack, F. Schüth, Angew. Chem. Int. Ed. 2010, 49, 1615.
J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2010, 132, 38.
M. Sevilla, A. B. Fuertes, ACS Nano 2014, 8, 5069.
J. R. Morris, C. I. Contescu, M. F. Chisholm, V. R. Cooper, J. Guo, L. He, Y. Ihm, E. Mamontov, Y. B. Melnichenko, R. Olsen, S. J. Pennycook, M. B. Stone, H. Zhang, N. C. Gallego, J Mater. Chem. A 2013, 1, 9341.
M. Sevilla, P. V. Vigón, A. B. Fuertes, Adv. Funct. Mater. 2011, 21, 2781.
J. S. Huang, B. G. Sumpter, V. Meunier, Angew. Chem. Int. Ed. 2008, 47, 520.
A.-H. Lu, S. Dai, J. Mater. Chem. A 2013, 1, 9326.
2013; 3
2013; 25
2009; 21
2013; 1
2011; 1
2005; 115
2008; 14
2014; 26
2011; 4
2011; 174
2006; 313
2013; 5
2013; 6
2011; 133
2013; 9
2012; 51
2010; 22
2010; 49
2013; 56
2002; 40
2011; 50
2008; 47
2010; 132
2011; 21
1958; 80
2012; 48
2012; 24
2014; 8
2008; 130
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: J. S. Huang, B. G. Sumpter, V. Meunier, Angew. Chem. Int. Ed. 2008, 47, 520.
– reference: B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng, J. Li, Angew. Chem. Int. Ed. 2012, 51, 1412.
– reference: V. Presser, J. McDonough, S. H. Yeon, Y. Gogotsi, Energy Environ. Sci. 2011, 4, 3059.
– reference: D.-H. Liu, Y. Guo, L.-H. Zhang, W.-C. Li, T. Sun, A.-H. Lu, Small 2013, 9, 3852.
– reference: Y. Xia, R. Mokaya, G. S. Walker, Y. Zhu, Adv. Energy Mater. 2011, 1, 678.
– reference: J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006, 313, 1760.
– reference: M. Sevilla, A. B. Fuertes, Energy Environ. Sci. 2011, 4, 1765.
– reference: J. R. Morris, C. I. Contescu, M. F. Chisholm, V. R. Cooper, J. Guo, L. He, Y. Ihm, E. Mamontov, Y. B. Melnichenko, R. Olsen, S. J. Pennycook, M. B. Stone, H. Zhang, N. C. Gallego, J Mater. Chem. A 2013, 1, 9341.
– reference: X. J. Wang, Y. Wang, X. Wang, M. Liu, S. Q. Xia, D. Q. Yin, Y. L. Zhang, J. F. Zhao, Chem. Eng. J. 2011, 174, 326.
– reference: M. Sevilla, P. V. Vigón, A. B. Fuertes, Adv. Funct. Mater. 2011, 21, 2781.
– reference: N. Q. Zhao, N. Wei, J. J. Li, Z. J. Qiao, J. Cui, F. He, Chem. Eng. J. 2005, 115, 133.
– reference: A.-H. Lu, T. Sun, W.-C. Li, Q. Sun, F. Han, D.-H. Liu, Y. Guo, Angew. Chem. Int. Ed. 2011, 50, 11765.
– reference: A.-H. Lu, S. Dai, J. Mater. Chem. A 2013, 1, 9326.
– reference: J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2010, 132, 38.
– reference: V. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, K. S. Kim, Chem. Commun. 2012, 48, 735.
– reference: Z.-Y. Jin, A.-H. Lu, X.-X. Xu, J.-T. Zhang, W.-C. Li, Adv. Mater. 2014, 26, 3700.
– reference: G.-P. Hao, A.-H. Lu, W. Dong, Z.-Y. Jin, X.-Q. Zhang, J.-T. Zhang, W.-C. Li, Adv. Energy Mater. 2013, 3, 1421.
– reference: H. Nishihara, T. Kyotani, Adv. Mater. 2012, 24, 4473.
– reference: L.-H. Zhang, Q. Sun, D.-H. Liu, A.-H. Lu, J. Mater. Chem. A 2013, 1, 9477.
– reference: M. D. Hornbostel, J. Bao, G. Krishnan, A. Nagar, I. Jayaweera, T. Kobayashi, A. Sanjurjo, J. Sweeney, D. Carruthers, M. A. Petruska, L. Dubois, Carbon 2013, 56, 77.
– reference: M. Sevilla, A. B. Fuertes, ACS Nano 2014, 8, 5069.
– reference: G.-P. Hao, W.-C. Li, D. Qian, A.-H. Lu, Adv. Mater. 2010, 22, 853.
– reference: S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870.
– reference: W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
– reference: S. Wang, W.-C. Li, G.-P. Hao, Y. Hao, Q. Sun, X.-Q. Zhang, A.-H. Lu, J. Am. Chem. Soc. 2011, 133, 15304.
– reference: J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160.
– reference: D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373.
– reference: A. Stein, Z. Wang, M. A. Fierke, Adv. Mater. 2009, 21, 265.
– reference: L. Zhao, L. Z. Fan, M. Qi, Z. H. Guan, S. Qiao, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 5202.
– reference: J.-T. Zhang, Z.-Y. Jin, W.-C. Li, W. Dong, A.-H. Lu, J. Mater. Chem. A 2013, 1, 13139.
– reference: M. Y. Endo, J. Kim, H. Ohta, I. T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, M. S. Dresselhaus, Carbon 2002, 40, 2613.
– reference: A.-H. Lu, W.-C. Li, G.-P. Hao, B. Spliethoff, H. J. Bongard, B. B. Schaack, F. Schüth, Angew. Chem. Int. Ed. 2010, 49, 1615.
– reference: G.-P. Hao, Z.-Y. Jin, Q. Sun, X.-Q. Zhang, J.-T. Zhang, A.-H. Lu, Energy Environ Sci. 2013, 6, 3740.
– reference: B. V. Babu, S. Gupta, Adsorption 2008, 14, 85.
– reference: T. P. Fellinger, A. Thomas, J. Yuan, M. Antonietti, Adv. Mater. 2013, 25, 5838.
– volume: 4
  start-page: 3059
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 373
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 51
  start-page: 1412
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 115
  start-page: 133
  year: 2005
  publication-title: Chem. Eng. J
– volume: 47
  start-page: 520
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 3852
  year: 2013
  publication-title: Small
– volume: 5
  start-page: 3160
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 2781
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 5202
  year: 2010
  publication-title: Adv. Mater.
– volume: 49
  start-page: 1615
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 174
  start-page: 326
  year: 2011
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 11765
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 15304
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 4473
  year: 2012
  publication-title: Adv. Mater.
– volume: 1
  start-page: 9326
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 5069
  year: 2014
  publication-title: ACS Nano
– volume: 1
  start-page: 678
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 77
  year: 2013
  publication-title: Carbon
– volume: 40
  start-page: 2613
  year: 2002
  publication-title: Carbon
– volume: 1
  start-page: 9341
  year: 2013
  publication-title: J Mater. Chem. A
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1421
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 3700
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5838
  year: 2013
  publication-title: Adv. Mater.
– volume: 22
  start-page: 853
  year: 2010
  publication-title: Adv. Mater.
– volume: 1
  start-page: 9477
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 265
  year: 2009
  publication-title: Adv. Mater.
– volume: 130
  start-page: 10870
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1765
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 85
  year: 2008
  publication-title: Adsorption
– volume: 1
  start-page: 13139
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3740
  year: 2013
  publication-title: Energy Environ Sci.
– volume: 132
  start-page: 38
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 735
  year: 2012
  publication-title: Chem. Commun.
– volume: 313
  start-page: 1760
  year: 2006
  publication-title: Science
– ident: e_1_2_6_2_1
  doi: 10.1002/adma.200801492
– ident: e_1_2_6_29_1
  doi: 10.1039/c3ta12612a
– ident: e_1_2_6_7_1
  doi: 10.1002/aenm.201100061
– ident: e_1_2_6_8_1
  doi: 10.1039/c1ee01176f
– ident: e_1_2_6_10_1
  doi: 10.1016/j.cej.2005.09.017
– ident: e_1_2_6_1_1
  doi: 10.1002/adma.201201715
– ident: e_1_2_6_35_1
  doi: 10.1039/c3ta10430c
– ident: e_1_2_6_11_1
  doi: 10.1016/j.cej.2011.09.044
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.200702721
– ident: e_1_2_6_20_1
  doi: 10.1016/S0008-6223(02)00191-4
– ident: e_1_2_6_17_1
  doi: 10.1016/j.carbon.2012.12.082
– ident: e_1_2_6_30_1
  doi: 10.1021/ja909169x
– ident: e_1_2_6_24_1
  doi: 10.1002/aenm.201300383
– ident: e_1_2_6_6_1
  doi: 10.1021/am400059t
– ident: e_1_2_6_34_1
  doi: 10.1021/ja8036096
– ident: e_1_2_6_32_1
  doi: 10.1002/aenm.201100061
– ident: e_1_2_6_23_1
  doi: 10.1002/adma.201306273
– ident: e_1_2_6_14_1
  doi: 10.1126/science.1132195
– ident: e_1_2_6_15_1
  doi: 10.1039/c0ee00784f
– ident: e_1_2_6_4_1
  doi: 10.1039/c3ta90211k
– ident: e_1_2_6_27_1
  doi: 10.1002/anie.201105486
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.200703864
– ident: e_1_2_6_33_1
  doi: 10.1002/anie.201105966
– ident: e_1_2_6_18_1
  doi: 10.1007/s10450-007-9057-x
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201002647
– ident: e_1_2_6_28_1
  doi: 10.1002/anie.200906445
– ident: e_1_2_6_3_1
  doi: 10.1039/c3ta10701a
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.200903765
– ident: e_1_2_6_26_1
  doi: 10.1021/ja206333w
– ident: e_1_2_6_31_1
  doi: 10.1002/adfm.201100291
– ident: e_1_2_6_16_1
  doi: 10.1002/smll.201300276
– ident: e_1_2_6_36_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_6_22_1
  doi: 10.1039/c3ee41906a
– ident: e_1_2_6_25_1
  doi: 10.1039/C1CC15599G
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201301975
– ident: e_1_2_6_21_1
  doi: 10.1021/nn501124h
SSID ssj0031247
Score 2.2630541
Snippet Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5151
SubjectTerms Carbon
CO2 capture
Cr (VI) removal
Devices
Diffusion
Enrichment
Gas phases
kinetics
Liquid phases
microporous carbon
microporous carbon nanosheets
Nanostructure
Nanotechnology
Separation
supercapacitors
supercapacitors, microporous carbon
Title Evidence of Microporous Carbon Nanosheets Showing Fast Kinetics in both Gas Phase and Liquid Phase Environments
URI https://api.istex.fr/ark:/67375/WNG-6GXBXTS1-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201501692
https://www.ncbi.nlm.nih.gov/pubmed/26192395
https://www.proquest.com/docview/1720423227
https://www.proquest.com/docview/1721359969
https://www.proquest.com/docview/1762084758
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbQ8gIP3EdgQUZC8OTdxEns5hFW266gXSG6K_pmjRNHrXZJoEkF4tczk4sWcUjwlmMc-ZjxfI7H3zD2PMujUFqIRRy4VETKSmHRzwu0LT_XoGwq6TTy7FSdnEdvFvFi6xR_yw8x_HAjy2jmazJwsNXhD9LQ6uMlbR0goAlUQpMwBWwRKno_8EeF6Lya7CroswQRb_Wsjb483C2-45WuUgd__RXk3EWwjQsa32TQV76NPLk42NT2IP32E6_j_7TuFrvR4VP-qlWo2-yKK-6w61ushXdZ2Wci5WXOZxTQhxi-3FT8CNa2LDhO2GW1dK6u-HxZfsEyfAxVzd_iJ4gUmq8KblFB-AQq_m6JbpRDkfHp6vNmlXUPjrfO391j5-Pjs6MT0eVtECniLylCq1PfZaC0TWg5NAJ0CJEGXIulQSZzCHCSyHIVgK8zpbTLtc2ksqgXKndREt5ne0VZuIeMK6ktgIQAH0eh8q3zLYKMJHU-jKyfe0z042bSjtSccmtcmpaOWRrqSDN0pMdeDvKfWjqP30q-aNRgEIP1BQXB6dh8OJ0YNVm8XpzNAzP12H6vJ6az_8oElPsHwarUHns2vEbLpe0YKBwOCskEIbHjJH-SUdJHABGPPPag1cGhQu3aN4k9JhtN-kuDzHw2nQ53j_6l0GN2ja7bWMZ9tlevN-4JYrLaPm3s7jvh5C3G
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQ9gA8cL8EBhgJwVM2x0ns5hHG2sLSCtFO9M2yE0etNpKtSQXi13NObqyIiwSPcY6jxD6Xz_Hxdwh5kWaBz40O3dCziRsIw10Dcd4F22KZ1MIkHE8jT6ZifBK8X4RdNiGehWn4IfofbmgZtb9GA8cf0gc_WEPLz2e4dwCIxhMReOFdLOuN9PlvP_YMUj6Er7q-CkQtF6m3Ot5Gxg-2-2_FpV0c4q-_Ap3bGLYOQsObxHSv3-SenO5vKrOffPuJ2fG_vu8WudFCVPq60anb5IrN75Drl4gL75KiK0ZKi4xOMKcPYHyxKemhXpsip-Czi3JpbVXS2bL4An3oUJcVPYZHIC80XeXUgI7QkS7phyVEUqrzlMari80qbRuOLh3Bu0dOhkfzw7Hblm5wE4Bg3PWNTJhNtZAmwhXRQENMCKSG5VjipTzTHviJNBOeZjIVQtpMmpQLA6ohMhtE_n2ykxe5fUio4NJozbUHzYEvmLHMAM6IEsv0wLDMIW43cSppec2xvMaZahiZucKBVP1AOuRVL3_eMHr8VvJlrQe9mF6fYh6cDNWn6UiJ0eLNYj7zVOyQvU5RVOsCSuVh-R_Aq1w65Hl_G4wXd2R0bmFSUMbzkSAn-pOM4AwwRDhwyINGCfsXapa_UegQXqvSXz5IzSZx3F89-pdOz8jV8XwSq_jd9PgxuYbtTWrjHtmp1hv7BCBaZZ7WRvgdr5cx4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Cm4TggTsjMMBICJ6yOU5iN4-wrR0srSa6ib5ZduKo1UYymlQgfj3HudEiLhI8xjmOfDmXz7H9HYCXaRb4TKvQDT2TuAHXzNUY5120LZoJxXXC7G3k8YQfnwfvZ-Fs7RZ_ww_R_3CzllH7a2vgV2m2_4M0tPx0abcOENB4PEInvB1wGtnkDYcfegIpH6NXnV4Fg5Zrmbc62kbK9jfrb4SlbTvCX3-FOTchbB2DhrdBda1vjp5c7K0qvZd8-4nY8X-6dwdutQCVvGk06i5cM_k9uLlGW3gfii4VKSkyMrYn-hDEF6uSHKilLnKCHrso58ZUJZnOiy9YhwxVWZET_IRlhSaLnGjUEDJSJTmdYxwlKk9JvPi8WqRtwdHaBbwHcD48Ojs4dtvEDW6CAIy5vhYJNaniQkd2PTRQGBECoXAxlngpy5SHXiLNuKeoSDkXJhM6ZVyjYvDMBJH_ELbyIjePgHAmtFJMeVgc-JxqQzWijCgxVA00zRxwu3mTSctqbpNrXMqGj5lJO5CyH0gHXvfyVw2fx28lX9Vq0Iup5YU9BSdC-XEyknw0ezs7m3oydmC30xPZOoBSejb5D6JVJhx40b9G07X7MSo3OClWxvMtPU70JxnOKCKIcODATqODfYOaxW8UOsBqTfpLh-R0HMf90-N_qfQcrp8eDmX8bnLyBG7Y4uZc4y5sVcuVeYr4rNLPahP8DuszMJE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+Microporous+Carbon+Nanosheets+Showing+Fast+Kinetics+in+both+Gas+Phase+and+Liquid+Phase+Environments&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Zhen-Yu&rft.au=Xu%2C+Yuan-Yuan&rft.au=Sun%2C+Qiang&rft.au=Lu%2C+An-Hui&rft.date=2015-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=38&rft.spage=5151&rft_id=info:doi/10.1002%2Fsmll.201501692&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3831073391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon