Evidence of Microporous Carbon Nanosheets Showing Fast Kinetics in both Gas Phase and Liquid Phase Environments
Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials a...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 38; pp. 5151 - 5156 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.10.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m−2 and 18.4 mmol cm−3 at 273 K and ambient pressure, and its calculated first‐order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher‐rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure.
Microporous carbon nanosheets and spheres with similar porous structures, specific surface areas, and amorphous features are prepared using the same precursors. Characterizations and application studies indicate that the microporous carbon nanosheets exhibit improve kinetics in gas phase separation, liquid phase enrichment, and energy storage devices, due to their shorter diffusion paths and larger exposed geometrical area derived from the nanosheet structure. |
---|---|
AbstractList | Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 µmol m-2 and 18.4 mmol cm-3 at 273 K and ambient pressure, and its calculated first-order rate constant is [asymptotically =]7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO 2 capture, MCN shows a high saturated CO 2 capacity of 8.52 μmol m −2 and 18.4 mmol cm −3 at 273 K and ambient pressure, and its calculated first‐order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher‐rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m−2 and 18.4 mmol cm−3 at 273 K and ambient pressure, and its calculated first‐order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher‐rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Microporous carbon nanosheets and spheres with similar porous structures, specific surface areas, and amorphous features are prepared using the same precursors. Characterizations and application studies indicate that the microporous carbon nanosheets exhibit improve kinetics in gas phase separation, liquid phase enrichment, and energy storage devices, due to their shorter diffusion paths and larger exposed geometrical area derived from the nanosheet structure. Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m(-2) and 18.4 mmol cm(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO sub(2) capture, MCN shows a high saturated CO sub(2) capacity of 8.52 mu mol m super(-2) and 18.4 mmol cm super(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is approximately 7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. Microporous carbon nanosheets and spheres with similar porous structures, specific surface areas, and amorphous features are prepared using the same precursors. Characterizations and application studies indicate that the microporous carbon nanosheets exhibit improve kinetics in gas phase separation, liquid phase enrichment, and energy storage devices, due to their shorter diffusion paths and larger exposed geometrical area derived from the nanosheet structure. Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m(-2) and 18.4 mmol cm(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure.Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct experiment data and theoretical calculations on the relevance of properties and structures are quite limited. Herein, two model carbon materials are designed and synthesized, i.e., microporous carbon nanosheets (MCN) and microporous carbon spheres (MCS). They both have nearly same composition, surface chemistry, and specific surface area, known morphology, but distinguishable diffusion paths. Based on these two types of materials, a reliable relationship between the morphology with different diffusion paths and adsorption kinetics in both gas phase and liquid phase environments is established. When used for CO2 capture, MCN shows a high saturated CO2 capacity of 8.52 μmol m(-2) and 18.4 mmol cm(-3) at 273 K and ambient pressure, and its calculated first-order rate constant is ≈7.4 times higher than that of MCS. Moreover, MCN shows a quick and high uptake of Cr (VI) and a higher-rate performance for supercapacitors than MCS does. These results strongly confirm that MCN exhibits improved kinetics in gas phase separation, liquid phase enrichment, and energy storage devices due to its shorter diffusion paths and larger exposed geometrical area resulting from the nanosheet structure. |
Author | Sun, Qiang Xu, Yuan-Yuan Jin, Zhen-Yu Lu, An-Hui |
Author_xml | – sequence: 1 givenname: Zhen-Yu surname: Jin fullname: Jin, Zhen-Yu organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China – sequence: 2 givenname: Yuan-Yuan surname: Xu fullname: Xu, Yuan-Yuan organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China – sequence: 3 givenname: Qiang surname: Sun fullname: Sun, Qiang organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China – sequence: 4 givenname: An-Hui surname: Lu fullname: Lu, An-Hui email: anhuilu@dlut.edu.cn organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26192395$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1v0zAUhi00xD7glktkiZvdpPgjseNLqLoykQ2kDrE7y0lOqEdqd7azsX-_VO0qNAnBlY-s53mlc95jdOC8A4TeUjKhhLAPcdX3E0ZoQahQ7AU6ooLyTJRMHexnSg7RcYw3hHDKcvkKHTJBFeOqOEJ-dmdbcA1g3-EL2wS_9sEPEU9NqL3Dl8b5uARIES-W_t66n_jMxIS_WAfJNhFbh2uflnhuIv62NBGwcS2u7O1g293HzN3Z4N0KXIqv0cvO9BHe7N4T9P1sdjX9nFVf5-fTj1XWFAVlGa9lQ6A1QtaqlAUvDdQ0lyZXRUNb1hlaStJ2ghoiWyEkdLJumajrhokOcsVP0Ok2dx387QAx6ZWNDfS9cTCup6kUjJS5LMr_QBnlhVJik_r-GXrjh-DGRTYUyRlnTI7Uux011Cto9TrYlQkP-unqI5BvgfHcMQbodGOTSda7FIztNSV6U67elKv35Y7a5Jn2lPxXQW2Fe9vDwz9ovbioqj_dbOvamOD33jXhlxaSy0L_uJxrMb_-dH21oLrij7Alxg0 |
CitedBy_id | crossref_primary_10_1039_D1MA00107H crossref_primary_10_1016_j_electacta_2020_136408 crossref_primary_10_1016_j_apcatb_2020_119650 crossref_primary_10_1016_S1872_5805_15_60203_7 crossref_primary_10_1002_asia_201600396 crossref_primary_10_1002_chem_201804747 crossref_primary_10_1016_j_colsurfa_2024_135440 crossref_primary_10_1016_j_envpol_2019_113229 crossref_primary_10_1016_j_micromeso_2017_06_011 crossref_primary_10_1039_C8TA09545K crossref_primary_10_1002_celc_201900552 crossref_primary_10_1002_cctc_201701897 crossref_primary_10_3390_nano9121776 crossref_primary_10_1016_j_carbon_2017_02_100 crossref_primary_10_1016_j_cjche_2021_11_005 crossref_primary_10_1039_C9TA07297G |
Cites_doi | 10.1002/adma.200801492 10.1039/c3ta12612a 10.1002/aenm.201100061 10.1039/c1ee01176f 10.1016/j.cej.2005.09.017 10.1002/adma.201201715 10.1039/c3ta10430c 10.1016/j.cej.2011.09.044 10.1002/anie.200702721 10.1016/S0008-6223(02)00191-4 10.1016/j.carbon.2012.12.082 10.1021/ja909169x 10.1002/aenm.201300383 10.1021/am400059t 10.1021/ja8036096 10.1002/adma.201306273 10.1126/science.1132195 10.1039/c0ee00784f 10.1039/c3ta90211k 10.1002/anie.201105486 10.1002/anie.200703864 10.1002/anie.201105966 10.1007/s10450-007-9057-x 10.1002/adma.201002647 10.1002/anie.200906445 10.1039/c3ta10701a 10.1002/adma.200903765 10.1021/ja206333w 10.1002/adfm.201100291 10.1002/smll.201300276 10.1021/ja01539a017 10.1039/c3ee41906a 10.1039/C1CC15599G 10.1002/adma.201301975 10.1021/nn501124h |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
DOI | 10.1002/smll.201501692 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 5156 |
ExternalDocumentID | 3831073391 26192395 10_1002_smll_201501692 SMLL201501692 ark_67375_WNG_6GXBXTS1_L |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAYCA AFWVQ ALVPJ AAYXX AGHNM AGQPQ AGYGG CITATION NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c5512-3b7c0eda67b987538aeb147a495c1d2fa1870df61a07d667ef7bd26bbc26fe493 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 16:48:09 EDT 2025 Fri Jul 11 02:48:32 EDT 2025 Fri Jul 25 12:05:11 EDT 2025 Thu Apr 03 07:02:51 EDT 2025 Tue Jul 01 02:10:19 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Jan 22 16:21:29 EST 2025 Tue Jan 07 16:33:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | Cr (VI) removal CO2 capture supercapacitors, microporous carbon kinetics microporous carbon nanosheets |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5512-3b7c0eda67b987538aeb147a495c1d2fa1870df61a07d667ef7bd26bbc26fe493 |
Notes | ArticleID:SMLL201501692 istex:4F0D7ED3ED0B597945EFAEE1C08FCD2CD480F0CB ark:/67375/WNG-6GXBXTS1-L ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26192395 |
PQID | 1720423227 |
PQPubID | 1046358 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1762084758 proquest_miscellaneous_1721359969 proquest_journals_1720423227 pubmed_primary_26192395 crossref_citationtrail_10_1002_smll_201501692 crossref_primary_10_1002_smll_201501692 wiley_primary_10_1002_smll_201501692_SMLL201501692 istex_primary_ark_67375_WNG_6GXBXTS1_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | L.-H. Zhang, Q. Sun, D.-H. Liu, A.-H. Lu, J. Mater. Chem. A 2013, 1, 9477. Z.-Y. Jin, A.-H. Lu, X.-X. Xu, J.-T. Zhang, W.-C. Li, Adv. Mater. 2014, 26, 3700. B. V. Babu, S. Gupta, Adsorption 2008, 14, 85. G.-P. Hao, W.-C. Li, D. Qian, A.-H. Lu, Adv. Mater. 2010, 22, 853. D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373. A. Stein, Z. Wang, M. A. Fierke, Adv. Mater. 2009, 21, 265. N. Q. Zhao, N. Wei, J. J. Li, Z. J. Qiao, J. Cui, F. He, Chem. Eng. J. 2005, 115, 133. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339. S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870. V. Presser, J. McDonough, S. H. Yeon, Y. Gogotsi, Energy Environ. Sci. 2011, 4, 3059. D.-H. Liu, Y. Guo, L.-H. Zhang, W.-C. Li, T. Sun, A.-H. Lu, Small 2013, 9, 3852. Y. Xia, R. Mokaya, G. S. Walker, Y. Zhu, Adv. Energy Mater. 2011, 1, 678. M. Sevilla, A. B. Fuertes, Energy Environ. Sci. 2011, 4, 1765. X. J. Wang, Y. Wang, X. Wang, M. Liu, S. Q. Xia, D. Q. Yin, Y. L. Zhang, J. F. Zhao, Chem. Eng. J. 2011, 174, 326. J.-T. Zhang, Z.-Y. Jin, W.-C. Li, W. Dong, A.-H. Lu, J. Mater. Chem. A 2013, 1, 13139. J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160. M. D. Hornbostel, J. Bao, G. Krishnan, A. Nagar, I. Jayaweera, T. Kobayashi, A. Sanjurjo, J. Sweeney, D. Carruthers, M. A. Petruska, L. Dubois, Carbon 2013, 56, 77. B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng, J. Li, Angew. Chem. Int. Ed. 2012, 51, 1412. H. Nishihara, T. Kyotani, Adv. Mater. 2012, 24, 4473. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006, 313, 1760. M. Y. Endo, J. Kim, H. Ohta, I. T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, M. S. Dresselhaus, Carbon 2002, 40, 2613. S. Wang, W.-C. Li, G.-P. Hao, Y. Hao, Q. Sun, X.-Q. Zhang, A.-H. Lu, J. Am. Chem. Soc. 2011, 133, 15304. V. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, K. S. Kim, Chem. Commun. 2012, 48, 735. L. Zhao, L. Z. Fan, M. Qi, Z. H. Guan, S. Qiao, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 5202. A.-H. Lu, T. Sun, W.-C. Li, Q. Sun, F. Han, D.-H. Liu, Y. Guo, Angew. Chem. Int. Ed. 2011, 50, 11765. G.-P. Hao, A.-H. Lu, W. Dong, Z.-Y. Jin, X.-Q. Zhang, J.-T. Zhang, W.-C. Li, Adv. Energy Mater. 2013, 3, 1421. T. P. Fellinger, A. Thomas, J. Yuan, M. Antonietti, Adv. Mater. 2013, 25, 5838. G.-P. Hao, Z.-Y. Jin, Q. Sun, X.-Q. Zhang, J.-T. Zhang, A.-H. Lu, Energy Environ Sci. 2013, 6, 3740. A.-H. Lu, W.-C. Li, G.-P. Hao, B. Spliethoff, H. J. Bongard, B. B. Schaack, F. Schüth, Angew. Chem. Int. Ed. 2010, 49, 1615. J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2010, 132, 38. M. Sevilla, A. B. Fuertes, ACS Nano 2014, 8, 5069. J. R. Morris, C. I. Contescu, M. F. Chisholm, V. R. Cooper, J. Guo, L. He, Y. Ihm, E. Mamontov, Y. B. Melnichenko, R. Olsen, S. J. Pennycook, M. B. Stone, H. Zhang, N. C. Gallego, J Mater. Chem. A 2013, 1, 9341. M. Sevilla, P. V. Vigón, A. B. Fuertes, Adv. Funct. Mater. 2011, 21, 2781. J. S. Huang, B. G. Sumpter, V. Meunier, Angew. Chem. Int. Ed. 2008, 47, 520. A.-H. Lu, S. Dai, J. Mater. Chem. A 2013, 1, 9326. 2013; 3 2013; 25 2009; 21 2013; 1 2011; 1 2005; 115 2008; 14 2014; 26 2011; 4 2011; 174 2006; 313 2013; 5 2013; 6 2011; 133 2013; 9 2012; 51 2010; 22 2010; 49 2013; 56 2002; 40 2011; 50 2008; 47 2010; 132 2011; 21 1958; 80 2012; 48 2012; 24 2014; 8 2008; 130 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: J. S. Huang, B. G. Sumpter, V. Meunier, Angew. Chem. Int. Ed. 2008, 47, 520. – reference: B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng, J. Li, Angew. Chem. Int. Ed. 2012, 51, 1412. – reference: V. Presser, J. McDonough, S. H. Yeon, Y. Gogotsi, Energy Environ. Sci. 2011, 4, 3059. – reference: D.-H. Liu, Y. Guo, L.-H. Zhang, W.-C. Li, T. Sun, A.-H. Lu, Small 2013, 9, 3852. – reference: Y. Xia, R. Mokaya, G. S. Walker, Y. Zhu, Adv. Energy Mater. 2011, 1, 678. – reference: J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 2006, 313, 1760. – reference: M. Sevilla, A. B. Fuertes, Energy Environ. Sci. 2011, 4, 1765. – reference: J. R. Morris, C. I. Contescu, M. F. Chisholm, V. R. Cooper, J. Guo, L. He, Y. Ihm, E. Mamontov, Y. B. Melnichenko, R. Olsen, S. J. Pennycook, M. B. Stone, H. Zhang, N. C. Gallego, J Mater. Chem. A 2013, 1, 9341. – reference: X. J. Wang, Y. Wang, X. Wang, M. Liu, S. Q. Xia, D. Q. Yin, Y. L. Zhang, J. F. Zhao, Chem. Eng. J. 2011, 174, 326. – reference: M. Sevilla, P. V. Vigón, A. B. Fuertes, Adv. Funct. Mater. 2011, 21, 2781. – reference: N. Q. Zhao, N. Wei, J. J. Li, Z. J. Qiao, J. Cui, F. He, Chem. Eng. J. 2005, 115, 133. – reference: A.-H. Lu, T. Sun, W.-C. Li, Q. Sun, F. Han, D.-H. Liu, Y. Guo, Angew. Chem. Int. Ed. 2011, 50, 11765. – reference: A.-H. Lu, S. Dai, J. Mater. Chem. A 2013, 1, 9326. – reference: J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2010, 132, 38. – reference: V. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, K. S. Kim, Chem. Commun. 2012, 48, 735. – reference: Z.-Y. Jin, A.-H. Lu, X.-X. Xu, J.-T. Zhang, W.-C. Li, Adv. Mater. 2014, 26, 3700. – reference: G.-P. Hao, A.-H. Lu, W. Dong, Z.-Y. Jin, X.-Q. Zhang, J.-T. Zhang, W.-C. Li, Adv. Energy Mater. 2013, 3, 1421. – reference: H. Nishihara, T. Kyotani, Adv. Mater. 2012, 24, 4473. – reference: L.-H. Zhang, Q. Sun, D.-H. Liu, A.-H. Lu, J. Mater. Chem. A 2013, 1, 9477. – reference: M. D. Hornbostel, J. Bao, G. Krishnan, A. Nagar, I. Jayaweera, T. Kobayashi, A. Sanjurjo, J. Sweeney, D. Carruthers, M. A. Petruska, L. Dubois, Carbon 2013, 56, 77. – reference: M. Sevilla, A. B. Fuertes, ACS Nano 2014, 8, 5069. – reference: G.-P. Hao, W.-C. Li, D. Qian, A.-H. Lu, Adv. Mater. 2010, 22, 853. – reference: S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870. – reference: W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339. – reference: S. Wang, W.-C. Li, G.-P. Hao, Y. Hao, Q. Sun, X.-Q. Zhang, A.-H. Lu, J. Am. Chem. Soc. 2011, 133, 15304. – reference: J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160. – reference: D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373. – reference: A. Stein, Z. Wang, M. A. Fierke, Adv. Mater. 2009, 21, 265. – reference: L. Zhao, L. Z. Fan, M. Qi, Z. H. Guan, S. Qiao, M. Antonietti, M. M. Titirici, Adv. Mater. 2010, 22, 5202. – reference: J.-T. Zhang, Z.-Y. Jin, W.-C. Li, W. Dong, A.-H. Lu, J. Mater. Chem. A 2013, 1, 13139. – reference: M. Y. Endo, J. Kim, H. Ohta, I. T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, M. S. Dresselhaus, Carbon 2002, 40, 2613. – reference: A.-H. Lu, W.-C. Li, G.-P. Hao, B. Spliethoff, H. J. Bongard, B. B. Schaack, F. Schüth, Angew. Chem. Int. Ed. 2010, 49, 1615. – reference: G.-P. Hao, Z.-Y. Jin, Q. Sun, X.-Q. Zhang, J.-T. Zhang, A.-H. Lu, Energy Environ Sci. 2013, 6, 3740. – reference: B. V. Babu, S. Gupta, Adsorption 2008, 14, 85. – reference: T. P. Fellinger, A. Thomas, J. Yuan, M. Antonietti, Adv. Mater. 2013, 25, 5838. – volume: 4 start-page: 3059 year: 2011 publication-title: Energy Environ. Sci. – volume: 47 start-page: 373 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 1412 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 115 start-page: 133 year: 2005 publication-title: Chem. Eng. J – volume: 47 start-page: 520 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 3852 year: 2013 publication-title: Small – volume: 5 start-page: 3160 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 2781 year: 2011 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 5202 year: 2010 publication-title: Adv. Mater. – volume: 49 start-page: 1615 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 174 start-page: 326 year: 2011 publication-title: Chem. Eng. J. – volume: 50 start-page: 11765 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 15304 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 4473 year: 2012 publication-title: Adv. Mater. – volume: 1 start-page: 9326 year: 2013 publication-title: J. Mater. Chem. A – volume: 8 start-page: 5069 year: 2014 publication-title: ACS Nano – volume: 1 start-page: 678 year: 2011 publication-title: Adv. Energy Mater. – volume: 56 start-page: 77 year: 2013 publication-title: Carbon – volume: 40 start-page: 2613 year: 2002 publication-title: Carbon – volume: 1 start-page: 9341 year: 2013 publication-title: J Mater. Chem. A – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1421 year: 2013 publication-title: Adv. Energy Mater. – volume: 26 start-page: 3700 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 5838 year: 2013 publication-title: Adv. Mater. – volume: 22 start-page: 853 year: 2010 publication-title: Adv. Mater. – volume: 1 start-page: 9477 year: 2013 publication-title: J. Mater. Chem. A – volume: 21 start-page: 265 year: 2009 publication-title: Adv. Mater. – volume: 130 start-page: 10870 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1765 year: 2011 publication-title: Energy Environ. Sci. – volume: 14 start-page: 85 year: 2008 publication-title: Adsorption – volume: 1 start-page: 13139 year: 2013 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3740 year: 2013 publication-title: Energy Environ Sci. – volume: 132 start-page: 38 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 735 year: 2012 publication-title: Chem. Commun. – volume: 313 start-page: 1760 year: 2006 publication-title: Science – ident: e_1_2_6_2_1 doi: 10.1002/adma.200801492 – ident: e_1_2_6_29_1 doi: 10.1039/c3ta12612a – ident: e_1_2_6_7_1 doi: 10.1002/aenm.201100061 – ident: e_1_2_6_8_1 doi: 10.1039/c1ee01176f – ident: e_1_2_6_10_1 doi: 10.1016/j.cej.2005.09.017 – ident: e_1_2_6_1_1 doi: 10.1002/adma.201201715 – ident: e_1_2_6_35_1 doi: 10.1039/c3ta10430c – ident: e_1_2_6_11_1 doi: 10.1016/j.cej.2011.09.044 – ident: e_1_2_6_19_1 doi: 10.1002/anie.200702721 – ident: e_1_2_6_20_1 doi: 10.1016/S0008-6223(02)00191-4 – ident: e_1_2_6_17_1 doi: 10.1016/j.carbon.2012.12.082 – ident: e_1_2_6_30_1 doi: 10.1021/ja909169x – ident: e_1_2_6_24_1 doi: 10.1002/aenm.201300383 – ident: e_1_2_6_6_1 doi: 10.1021/am400059t – ident: e_1_2_6_34_1 doi: 10.1021/ja8036096 – ident: e_1_2_6_32_1 doi: 10.1002/aenm.201100061 – ident: e_1_2_6_23_1 doi: 10.1002/adma.201306273 – ident: e_1_2_6_14_1 doi: 10.1126/science.1132195 – ident: e_1_2_6_15_1 doi: 10.1039/c0ee00784f – ident: e_1_2_6_4_1 doi: 10.1039/c3ta90211k – ident: e_1_2_6_27_1 doi: 10.1002/anie.201105486 – ident: e_1_2_6_12_1 doi: 10.1002/anie.200703864 – ident: e_1_2_6_33_1 doi: 10.1002/anie.201105966 – ident: e_1_2_6_18_1 doi: 10.1007/s10450-007-9057-x – ident: e_1_2_6_13_1 doi: 10.1002/adma.201002647 – ident: e_1_2_6_28_1 doi: 10.1002/anie.200906445 – ident: e_1_2_6_3_1 doi: 10.1039/c3ta10701a – ident: e_1_2_6_9_1 doi: 10.1002/adma.200903765 – ident: e_1_2_6_26_1 doi: 10.1021/ja206333w – ident: e_1_2_6_31_1 doi: 10.1002/adfm.201100291 – ident: e_1_2_6_16_1 doi: 10.1002/smll.201300276 – ident: e_1_2_6_36_1 doi: 10.1021/ja01539a017 – ident: e_1_2_6_22_1 doi: 10.1039/c3ee41906a – ident: e_1_2_6_25_1 doi: 10.1039/C1CC15599G – ident: e_1_2_6_5_1 doi: 10.1002/adma.201301975 – ident: e_1_2_6_21_1 doi: 10.1021/nn501124h |
SSID | ssj0031247 |
Score | 2.2630541 |
Snippet | Despite the great advantages of microporous carbons for applications in gas phase separation, liquid phase enrichment, and energy storage devices, direct... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5151 |
SubjectTerms | Carbon CO2 capture Cr (VI) removal Devices Diffusion Enrichment Gas phases kinetics Liquid phases microporous carbon microporous carbon nanosheets Nanostructure Nanotechnology Separation supercapacitors supercapacitors, microporous carbon |
Title | Evidence of Microporous Carbon Nanosheets Showing Fast Kinetics in both Gas Phase and Liquid Phase Environments |
URI | https://api.istex.fr/ark:/67375/WNG-6GXBXTS1-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201501692 https://www.ncbi.nlm.nih.gov/pubmed/26192395 https://www.proquest.com/docview/1720423227 https://www.proquest.com/docview/1721359969 https://www.proquest.com/docview/1762084758 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbQ8gIP3EdgQUZC8OTdxEns5hFW266gXSG6K_pmjRNHrXZJoEkF4tczk4sWcUjwlmMc-ZjxfI7H3zD2PMujUFqIRRy4VETKSmHRzwu0LT_XoGwq6TTy7FSdnEdvFvFi6xR_yw8x_HAjy2jmazJwsNXhD9LQ6uMlbR0goAlUQpMwBWwRKno_8EeF6Lya7CroswQRb_Wsjb483C2-45WuUgd__RXk3EWwjQsa32TQV76NPLk42NT2IP32E6_j_7TuFrvR4VP-qlWo2-yKK-6w61ushXdZ2Wci5WXOZxTQhxi-3FT8CNa2LDhO2GW1dK6u-HxZfsEyfAxVzd_iJ4gUmq8KblFB-AQq_m6JbpRDkfHp6vNmlXUPjrfO391j5-Pjs6MT0eVtECniLylCq1PfZaC0TWg5NAJ0CJEGXIulQSZzCHCSyHIVgK8zpbTLtc2ksqgXKndREt5ne0VZuIeMK6ktgIQAH0eh8q3zLYKMJHU-jKyfe0z042bSjtSccmtcmpaOWRrqSDN0pMdeDvKfWjqP30q-aNRgEIP1BQXB6dh8OJ0YNVm8XpzNAzP12H6vJ6az_8oElPsHwarUHns2vEbLpe0YKBwOCskEIbHjJH-SUdJHABGPPPag1cGhQu3aN4k9JhtN-kuDzHw2nQ53j_6l0GN2ja7bWMZ9tlevN-4JYrLaPm3s7jvh5C3G |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQ9gA8cL8EBhgJwVM2x0ns5hHG2sLSCtFO9M2yE0etNpKtSQXi13NObqyIiwSPcY6jxD6Xz_Hxdwh5kWaBz40O3dCziRsIw10Dcd4F22KZ1MIkHE8jT6ZifBK8X4RdNiGehWn4IfofbmgZtb9GA8cf0gc_WEPLz2e4dwCIxhMReOFdLOuN9PlvP_YMUj6Er7q-CkQtF6m3Ot5Gxg-2-2_FpV0c4q-_Ap3bGLYOQsObxHSv3-SenO5vKrOffPuJ2fG_vu8WudFCVPq60anb5IrN75Drl4gL75KiK0ZKi4xOMKcPYHyxKemhXpsip-Czi3JpbVXS2bL4An3oUJcVPYZHIC80XeXUgI7QkS7phyVEUqrzlMari80qbRuOLh3Bu0dOhkfzw7Hblm5wE4Bg3PWNTJhNtZAmwhXRQENMCKSG5VjipTzTHviJNBOeZjIVQtpMmpQLA6ohMhtE_n2ykxe5fUio4NJozbUHzYEvmLHMAM6IEsv0wLDMIW43cSppec2xvMaZahiZucKBVP1AOuRVL3_eMHr8VvJlrQe9mF6fYh6cDNWn6UiJ0eLNYj7zVOyQvU5RVOsCSuVh-R_Aq1w65Hl_G4wXd2R0bmFSUMbzkSAn-pOM4AwwRDhwyINGCfsXapa_UegQXqvSXz5IzSZx3F89-pdOz8jV8XwSq_jd9PgxuYbtTWrjHtmp1hv7BCBaZZ7WRvgdr5cx4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Cm4TggTsjMMBICJ6yOU5iN4-wrR0srSa6ib5ZduKo1UYymlQgfj3HudEiLhI8xjmOfDmXz7H9HYCXaRb4TKvQDT2TuAHXzNUY5120LZoJxXXC7G3k8YQfnwfvZ-Fs7RZ_ww_R_3CzllH7a2vgV2m2_4M0tPx0abcOENB4PEInvB1wGtnkDYcfegIpH6NXnV4Fg5Zrmbc62kbK9jfrb4SlbTvCX3-FOTchbB2DhrdBda1vjp5c7K0qvZd8-4nY8X-6dwdutQCVvGk06i5cM_k9uLlGW3gfii4VKSkyMrYn-hDEF6uSHKilLnKCHrso58ZUJZnOiy9YhwxVWZET_IRlhSaLnGjUEDJSJTmdYxwlKk9JvPi8WqRtwdHaBbwHcD48Ojs4dtvEDW6CAIy5vhYJNaniQkd2PTRQGBECoXAxlngpy5SHXiLNuKeoSDkXJhM6ZVyjYvDMBJH_ELbyIjePgHAmtFJMeVgc-JxqQzWijCgxVA00zRxwu3mTSctqbpNrXMqGj5lJO5CyH0gHXvfyVw2fx28lX9Vq0Iup5YU9BSdC-XEyknw0ezs7m3oydmC30xPZOoBSejb5D6JVJhx40b9G07X7MSo3OClWxvMtPU70JxnOKCKIcODATqODfYOaxW8UOsBqTfpLh-R0HMf90-N_qfQcrp8eDmX8bnLyBG7Y4uZc4y5sVcuVeYr4rNLPahP8DuszMJE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+Microporous+Carbon+Nanosheets+Showing+Fast+Kinetics+in+both+Gas+Phase+and+Liquid+Phase+Environments&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Zhen-Yu&rft.au=Xu%2C+Yuan-Yuan&rft.au=Sun%2C+Qiang&rft.au=Lu%2C+An-Hui&rft.date=2015-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=38&rft.spage=5151&rft_id=info:doi/10.1002%2Fsmll.201501692&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3831073391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |