Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia
Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled...
Saved in:
Published in | Journal of biomechanics Vol. 59; pp. 101 - 108 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
United States
Elsevier Ltd
05.07.2017
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.
Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.
The uniform anisotropic FE model explained 53–74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76–79% of the variance in stiffness with RMSE% being 11.2–11.5%.
Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. |
---|---|
AbstractList | Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.INTRODUCTIONPreviously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.METHODSLocal stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%.RESULTSThe uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%.Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.CONCLUSIONSOf the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%. The uniform anisotropic FE model explained 53–74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76–79% of the variance in stiffness with RMSE% being 11.2–11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Methods Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments usingin situmacro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms ofR2and RMSE%. Results The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%. Conclusions Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. Abstract Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2 =0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Methods Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%. Results The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4-245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5% Conclusions Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R =0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R and RMSE%. The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. |
Author | Wilson, David R. Cooper, David M.L. Holdsworth, David W. Kalajahi, S. Mehrdad Hosseini Nazemi, S. Majid Kontulainen, Saija A. Masri, Bassam A. Johnston, James D. |
Author_xml | – sequence: 1 givenname: S. Majid surname: Nazemi fullname: Nazemi, S. Majid email: majid.nazemi@gmail.com organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada – sequence: 2 givenname: S. Mehrdad Hosseini surname: Kalajahi fullname: Kalajahi, S. Mehrdad Hosseini organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada – sequence: 3 givenname: David M.L. surname: Cooper fullname: Cooper, David M.L. organization: Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada – sequence: 4 givenname: Saija A. surname: Kontulainen fullname: Kontulainen, Saija A. organization: College of Kinesiology, University of Saskatchewan, Saskatoon, Canada – sequence: 5 givenname: David W. surname: Holdsworth fullname: Holdsworth, David W. organization: Robarts Research Institute, Western University, London, Canada – sequence: 6 givenname: Bassam A. surname: Masri fullname: Masri, Bassam A. organization: Department of Orthopedics and Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada – sequence: 7 givenname: David R. surname: Wilson fullname: Wilson, David R. organization: Department of Orthopedics and Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada – sequence: 8 givenname: James D. surname: Johnston fullname: Johnston, James D. email: jd.johnston@usask.ca organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28601243$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktuKFDEQhhtZcQ_6CkvAG29mTNKHdIOIy-IJFrxQr0OSrszU2J2MSXrWeTzfzLSzqzAXrgQ6Bf3_fyWp77w4cd5BUVwyumSUNS83y41GP4JZLzllYknrJWXto-KMtaJc8LKlJ8UZpZwtOt7R0-I8xg2lVFSie1Kc8rahjFflWfHzyhg_uYRuRawPJG5VQjWQnQqYK--ItyQFpcFMgwpEOYw-Bb_dk1tMaxInvQGTFnELBi0aYtFhAgIDjOASGX0Pwxw-F0ElGPYEx23wO4hkG6BHM3eJc5vBm9w5J5q1d33Itc6XJjGhtQ5iJCqRtIZs8z9wzL8TalRPi8dWDRGe3e0Xxdd3b79cf1jcfHr_8frqZmHqmqYFANONVWVp-9K0Xat6KvLSJaiuFsxUPbc1MBBMgzV1pbgtGytUw3XTV7orL4rykDsgrED6oFHuuPQKD_U0rKQyUoPkvGnzR9C2zK4XB1c-9PcJYpIjRgPDoBz4KUrW0VZ0FRUiS58fSTd-Ci7fKatY1Qre8ll1eaea9Ai93Ib8FGEv70eaBc1BYIKPMYD9I2FUzuzIjbxnR87sSFrLzE42vjoyGky_Gcjzx-Fh-5uDHfIQdghBRoPgTB5xyITI3uPDEa-PIkxmBzMV32AP8e9zyMgllZ9nvme8mSgpF1X374D_OcEvz08UHg |
CitedBy_id | crossref_primary_10_1186_s41747_020_00180_3 crossref_primary_10_1002_adfm_202004323 crossref_primary_10_3389_fbioe_2020_00093 crossref_primary_10_1080_10255842_2019_1661386 crossref_primary_10_1007_s00276_021_02826_2 crossref_primary_10_1016_j_medengphy_2020_12_006 crossref_primary_10_1134_S0036029520040369 crossref_primary_10_1002_advs_202105254 crossref_primary_10_1002_jor_24633 crossref_primary_10_1016_j_medengphy_2019_10_013 crossref_primary_10_1016_j_medengphy_2019_02_005 |
Cites_doi | 10.1016/j.jmbbm.2016.01.015 10.1016/j.joca.2009.04.013 10.1115/1.3138589 10.1016/j.jbiomech.2013.04.016 10.1016/j.jbiomech.2013.07.047 10.1007/BF00705371 10.1016/S0736-0266(01)00012-2 10.1016/0021-9290(90)90003-L 10.1016/1350-4533(95)97314-F 10.1016/0167-6636(85)90012-2 10.1016/S0021-9290(98)00136-5 10.1016/0883-5403(94)90070-1 10.1016/j.jbiomech.2014.08.020 10.1016/0021-9290(92)90255-Y 10.1002/jbm.820281111 10.1016/j.bone.2006.10.022 10.1016/j.medengphy.2011.09.006 10.1302/0301-620X.85B6.12595 10.1007/s10237-012-0443-2 10.1115/1.2913335 10.1016/j.clinbiomech.2015.05.002 10.1016/0021-9290(94)90056-6 10.1016/0021-9290(89)90073-0 10.2106/00004623-197759070-00021 10.2106/00004623-198769080-00015 10.2106/00004623-199274050-00014 10.1359/jbmr.1997.12.4.641 10.1016/j.medengphy.2010.01.004 10.1016/S8756-3282(99)00190-8 10.1016/S0041-624X(96)00078-9 10.1007/s10439-014-0983-y 10.1016/j.medengphy.2016.06.011 10.1088/0031-9155/57/23/8099 10.1016/j.medengphy.2012.03.003 10.1093/comjnl/7.4.308 10.1016/j.clinbiomech.2007.08.024 10.1016/j.medengphy.2011.10.008 10.1016/j.joca.2005.09.008 10.1016/j.mcna.2008.09.006 10.1016/S0021-9290(03)00125-8 10.1002/jbmr.2437 10.1016/j.jbiomech.2015.10.012 10.1016/S0021-9290(03)00071-X 10.1002/jor.1100090315 10.1016/0021-9290(94)90014-0 10.1016/j.clinbiomech.2011.06.009 10.1115/1.4025179 10.1007/s00256-010-1001-6 10.1016/0167-6636(95)00018-6 |
ContentType | Journal Article Web Resource |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 Q33 |
DOI | 10.1016/j.jbiomech.2017.05.018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 108 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_227083 28601243 10_1016_j_jbiomech_2017_05_018 S0021929017302749 1_s2_0_S0021929017302749 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: 20R92053 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 Q33 |
ID | FETCH-LOGICAL-c550t-ee1b6fa33fd3c898ad07070b3ea9571c4d2f5e1e71befc54a2f36f7a62b6d4b93 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 25 15:29:10 EDT 2025 Fri Jul 11 01:35:32 EDT 2025 Wed Aug 13 05:47:52 EDT 2025 Wed Feb 19 02:43:31 EST 2025 Tue Jul 01 00:44:09 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Fri Feb 23 02:28:47 EST 2024 Tue Feb 25 20:12:56 EST 2025 Tue Aug 26 17:09:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Proximal tibia Finite element modeling Anisotropy Quantitative Computed Tomography Subchondral bone stiffness |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-ee1b6fa33fd3c898ad07070b3ea9571c4d2f5e1e71befc54a2f36f7a62b6d4b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85020482026 |
PMID | 28601243 |
PQID | 1914872827 |
PQPubID | 1226346 |
PageCount | 8 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_227083 proquest_miscellaneous_1908794077 proquest_journals_1914872827 pubmed_primary_28601243 crossref_primary_10_1016_j_jbiomech_2017_05_018 crossref_citationtrail_10_1016_j_jbiomech_2017_05_018 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_05_018 elsevier_clinicalkeyesjournals_1_s2_0_S0021929017302749 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_05_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-05 |
PublicationDateYYYYMMDD | 2017-07-05 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
References | Gray, Taddei, Zavatsky, Cristofolini, Gill (b0075) 2008; 130 Amirreza, Normand, Jeffrey, Asmaa, Cari (b0005) 2012; 57 Edwards, Schnitzer, Troy (b0055) 2013; 46 Herzog, Diet, Suter, Mayzus, Leonard, Muller, Wu, Epstein (b0095) 1998; 31 Tabor (b0235) 2012; 34 Rho (b0205) 1996; 34 Synek, Chevalier, Baumbach, Pahr (b0230) 2015; 48 Day, Ding, van der Linden, Hvid, Sumner, Weinans (b0040) 2001; 19 Nazemi, Cooper, Johnston (b0195) 2016; 38 Tabor, Petryniak, Latała, Konopka (b0240) 2013; 35 Cowin (b0035) 1985; 4 Choi, Kuhn, Ciarelli, Goldstein (b0030) 1990; 23 Ding, M., Odgaard, A., Hvid, I., 2003. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. Bone Joint Surg. 85-B, 906–912. Gross, Pahr, Zysset (b0080) 2013; 12 Goldring (b0065) 2009; 93 Larsson, Luisier, Kersh, Dall’Ara, Zysset, Pandy, Pahr (b0150) 2014; 42 Helgason, Perilli, Schileo, Taddei, Brynjolfsson, Viceconti (b0085) 2008; 23 Homminga, McCreadie, Weinans, Huiskes (b0105) 2003; 36 Li, Aspden (b0160) 1997; 12 Nelder, Mead (b0200) 1965; 7 Linde, Hvid, Madsen (b0165) 1992; 25 Robinson, Kersh, Walsh, Ackland, de Steiger, Pandy (b0215) 2016; 61 Johnston, Kontulainen, Masri, Wilson (b0115) 2011; 26 San Antonio, Ciaccia, Müller-Karger, Casanova (b0220) 2012; 34 Little, Wevers, Siu, Cooke (b0170) 1986; 108 Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (b0070) 1994; 27 Johnston, McLennan, Hunter, Wilson (b0110) 2011; 40 Nazemi, Amini, Kontulainen, Milner, Holdsworth, Masri, Wilson, Johnston (b0190) 2015; 30 Maquer, Musy, Wandel, Gross, Zysset (b0175) 2015; 30 Yang, Ma, Guo (b0255) 2010; 32 Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (b0090) 2008; 23 Zysset, Curnier (b0260) 1995; 21 Chappard, Peyrin, Bonnassie, Lemineur, Brunet-Imbault, Lespessailles, Benhamou (b0025) 2006; 14 Rho, Hobatho, Ashman (b0210) 1995; 17 Kabel, van Rietbergen, Odgaard, Huiskes (b0125) 1999; 25 Ashman, Rho, Turner (b0015) 1989; 22 Anderson, Keyak, Skinner (b0010) 1992; 74 Larsson, Luisier, Kersh, Dall'ara, Zysset, Pandy, Pahr (b0155) 2014; 42 Johnston, Masri, Wilson (b0120) 2009; 17 Duncan, Jundt, Riddle, Pitchford, Christopherson (b0050) 1987; 69 Hodgskinson, Currey (b0100) 1992; 3 Kersh, Zysset, Pahr, Wolfram, Larsson, Pandy (b0135) 2013; 46 Enns-Bray, Owoc, Nishiyama, Boyd (b0060) 2014; 47 Snyder, Schneider (b0225) 1991; 9 Morgan, Bayraktar, Keaveny (b0185) 2003; 36 Zysset, Sonny, Hayes (b0265) 1994; 9 Carter, Hayes (b0020) 1977; 59 Keyak, Lee, Skinner (b0145) 1994; 28 Tabor, Rokita (b0245) 2007; 40 Milz, Putz (b0180) 1994; 185 Unnikrishnan, Barest, Berry, Hussein, Morgan (b0250) 2013; 135 Keller (b0130) 1994; 27 Kersh, Zysset, Pahr, Wolfram, Larsson, Pandy (b0140) 2013; 46 Larsson (10.1016/j.jbiomech.2017.05.018_b0155) 2014; 42 Little (10.1016/j.jbiomech.2017.05.018_b0170) 1986; 108 Yang (10.1016/j.jbiomech.2017.05.018_b0255) 2010; 32 Ashman (10.1016/j.jbiomech.2017.05.018_b0015) 1989; 22 10.1016/j.jbiomech.2017.05.018_b0045 Linde (10.1016/j.jbiomech.2017.05.018_b0165) 1992; 25 Nazemi (10.1016/j.jbiomech.2017.05.018_b0190) 2015; 30 Johnston (10.1016/j.jbiomech.2017.05.018_b0120) 2009; 17 Carter (10.1016/j.jbiomech.2017.05.018_b0020) 1977; 59 Johnston (10.1016/j.jbiomech.2017.05.018_b0115) 2011; 26 Tabor (10.1016/j.jbiomech.2017.05.018_b0240) 2013; 35 Johnston (10.1016/j.jbiomech.2017.05.018_b0110) 2011; 40 Li (10.1016/j.jbiomech.2017.05.018_b0160) 1997; 12 Gray (10.1016/j.jbiomech.2017.05.018_b0075) 2008; 130 Chappard (10.1016/j.jbiomech.2017.05.018_b0025) 2006; 14 Zysset (10.1016/j.jbiomech.2017.05.018_b0265) 1994; 9 Keyak (10.1016/j.jbiomech.2017.05.018_b0145) 1994; 28 Day (10.1016/j.jbiomech.2017.05.018_b0040) 2001; 19 Snyder (10.1016/j.jbiomech.2017.05.018_b0225) 1991; 9 Nelder (10.1016/j.jbiomech.2017.05.018_b0200) 1965; 7 Kersh (10.1016/j.jbiomech.2017.05.018_b0135) 2013; 46 Edwards (10.1016/j.jbiomech.2017.05.018_b0055) 2013; 46 Kabel (10.1016/j.jbiomech.2017.05.018_b0125) 1999; 25 Herzog (10.1016/j.jbiomech.2017.05.018_b0095) 1998; 31 Hodgskinson (10.1016/j.jbiomech.2017.05.018_b0100) 1992; 3 Anderson (10.1016/j.jbiomech.2017.05.018_b0010) 1992; 74 Milz (10.1016/j.jbiomech.2017.05.018_b0180) 1994; 185 Goulet (10.1016/j.jbiomech.2017.05.018_b0070) 1994; 27 Rho (10.1016/j.jbiomech.2017.05.018_b0205) 1996; 34 Homminga (10.1016/j.jbiomech.2017.05.018_b0105) 2003; 36 San Antonio (10.1016/j.jbiomech.2017.05.018_b0220) 2012; 34 Rho (10.1016/j.jbiomech.2017.05.018_b0210) 1995; 17 Maquer (10.1016/j.jbiomech.2017.05.018_b0175) 2015; 30 Enns-Bray (10.1016/j.jbiomech.2017.05.018_b0060) 2014; 47 Tabor (10.1016/j.jbiomech.2017.05.018_b0245) 2007; 40 Morgan (10.1016/j.jbiomech.2017.05.018_b0185) 2003; 36 Nazemi (10.1016/j.jbiomech.2017.05.018_b0195) 2016; 38 Kersh (10.1016/j.jbiomech.2017.05.018_b0140) 2013; 46 Synek (10.1016/j.jbiomech.2017.05.018_b0230) 2015; 48 Larsson (10.1016/j.jbiomech.2017.05.018_b0150) 2014; 42 Duncan (10.1016/j.jbiomech.2017.05.018_b0050) 1987; 69 Helgason (10.1016/j.jbiomech.2017.05.018_b0090) 2008; 23 Zysset (10.1016/j.jbiomech.2017.05.018_b0260) 1995; 21 Helgason (10.1016/j.jbiomech.2017.05.018_b0085) 2008; 23 Keller (10.1016/j.jbiomech.2017.05.018_b0130) 1994; 27 Tabor (10.1016/j.jbiomech.2017.05.018_b0235) 2012; 34 Cowin (10.1016/j.jbiomech.2017.05.018_b0035) 1985; 4 Amirreza (10.1016/j.jbiomech.2017.05.018_b0005) 2012; 57 Unnikrishnan (10.1016/j.jbiomech.2017.05.018_b0250) 2013; 135 Robinson (10.1016/j.jbiomech.2017.05.018_b0215) 2016; 61 Choi (10.1016/j.jbiomech.2017.05.018_b0030) 1990; 23 Goldring (10.1016/j.jbiomech.2017.05.018_b0065) 2009; 93 Gross (10.1016/j.jbiomech.2017.05.018_b0080) 2013; 12 |
References_xml | – volume: 74 start-page: 747 year: 1992 end-page: 752 ident: b0010 article-title: Compressive mechanical properties of human cancellous bone after gamma irradiation publication-title: J. Bone Joint Surg. Am. – volume: 48 start-page: 4116 year: 2015 end-page: 4123 ident: b0230 article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments publication-title: J. Biomech. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: b0200 article-title: A simplex method for function minimization publication-title: Comput. J. – volume: 34 start-page: 914 year: 2012 end-page: 919 ident: b0220 article-title: Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions publication-title: Med. Eng. Phys. – volume: 17 start-page: 1319 year: 2009 end-page: 1326 ident: b0120 article-title: Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings publication-title: Osteoarth. Cartil. – volume: 14 start-page: 215 year: 2006 end-page: 223 ident: b0025 article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study publication-title: Osteoarth. Cartil. – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: b0090 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. – volume: 31 start-page: 1137 year: 1998 end-page: 1145 ident: b0095 article-title: Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis publication-title: J. Biomech. – volume: 47 start-page: 3272 year: 2014 end-page: 3278 ident: b0060 article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis publication-title: J. Biomech. – volume: 9 start-page: 422 year: 1991 end-page: 431 ident: b0225 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: J. Orthop. Res. – volume: 3 start-page: 377 year: 1992 end-page: 381 ident: b0100 article-title: Young's modulus, density and material properties in cancellous bone over a large density range publication-title: J. Mater. Sci. - Mater. Med. – volume: 46 start-page: 2659 year: 2013 end-page: 2666 ident: b0140 article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images publication-title: J. Biomech. – volume: 36 start-page: 1461 year: 2003 end-page: 1467 ident: b0105 article-title: The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric publication-title: J. Biomech. – volume: 108 start-page: 111 year: 1986 end-page: 119 ident: b0170 article-title: A three-dimensional finite element analysis of the upper tibia publication-title: J. Biomech. Eng. – volume: 57 start-page: 8099 year: 2012 ident: b0005 article-title: Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images publication-title: Phys. Med. Biol. – volume: 61 start-page: 96 year: 2016 end-page: 109 ident: b0215 article-title: Mechanical properties of normal and osteoarthritic human articular cartilage publication-title: J. Mech. Behav. Biomed. Mater. – volume: 22 start-page: 895 year: 1989 end-page: 900 ident: b0015 article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia publication-title: J. Biomech. – volume: 19 start-page: 914 year: 2001 end-page: 918 ident: b0040 article-title: A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage publication-title: J. Orthop. Res. – volume: 40 start-page: 1057 year: 2011 end-page: 1064 ident: b0110 article-title: In vivo precision of a depth-specific topographic mapping technique in the CT analysis of osteoarthritic and normal proximal tibial subchondral bone density publication-title: Skeletal Radiol. – volume: 93 start-page: 25 year: 2009 end-page: 35 ident: b0065 article-title: Role of bone in osteoarthritis pathogenesis publication-title: Med. Clin. North Am. – volume: 21 start-page: 243 year: 1995 end-page: 250 ident: b0260 article-title: An alternative model for anisotropic elasticity based on fabric tensors publication-title: Mech. Mater. – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: b0085 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. (Bristol, Avon) – volume: 25 start-page: 481 year: 1999 end-page: 486 ident: b0125 article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture publication-title: Bone – volume: 26 start-page: 1012 year: 2011 end-page: 1018 ident: b0115 article-title: Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae publication-title: Clin. Biomech. – volume: 59 start-page: 954 year: 1977 end-page: 962 ident: b0020 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: J. Bone Joint Surg. – volume: 30 start-page: 1000 year: 2015 end-page: 1008 ident: b0175 article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables publication-title: J. Bone Miner. Res. – volume: 42 start-page: 950 year: 2014 end-page: 959 ident: b0150 article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor publication-title: Ann. Biomed. Eng. – volume: 27 start-page: 375 year: 1994 end-page: 389 ident: b0070 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J. Biomech. – volume: 27 start-page: 1159 year: 1994 end-page: 1168 ident: b0130 article-title: Predicting the compressive mechanical behavior of bone publication-title: J. Biomech. – volume: 12 start-page: 641 year: 1997 end-page: 651 ident: b0160 article-title: Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis publication-title: J. Bone Miner. Res. – volume: 30 start-page: 703 year: 2015 end-page: 712 ident: b0190 article-title: Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: effect of selected density–modulus relationship publication-title: Clin. Biomech. – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: b0185 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J. Biomech. – volume: 42 start-page: 950 year: 2014 end-page: 959 ident: b0155 article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor publication-title: Ann. Biomed. Eng. – volume: 130 start-page: 2913335 year: 2008 ident: b0075 article-title: Experimental validation of a finite element model of a human cadaveric tibia publication-title: J. Biomech. Eng. – volume: 28 start-page: 1329 year: 1994 end-page: 1336 ident: b0145 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: J. Biomed. Mater. Res. – volume: 40 start-page: 966 year: 2007 end-page: 972 ident: b0245 article-title: Quantifying anisotropy of trabecular bone from gray-level images publication-title: Bone – volume: 34 start-page: 777 year: 1996 end-page: 783 ident: b0205 article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone publication-title: Ultrasonics – volume: 185 start-page: 103 year: 1994 end-page: 110 ident: b0180 article-title: Quantitative morphology of the subchondral plate of the tibial plateau publication-title: J. Anat. – reference: Ding, M., Odgaard, A., Hvid, I., 2003. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. Bone Joint Surg. 85-B, 906–912. – volume: 23 start-page: 1103 year: 1990 end-page: 1113 ident: b0030 article-title: The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus publication-title: J. Biomech. – volume: 35 start-page: 7 year: 2013 end-page: 15 ident: b0240 article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone publication-title: Med. Eng. Phys. – volume: 32 start-page: 553 year: 2010 end-page: 560 ident: b0255 article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur publication-title: Med. Eng. Phys. – volume: 4 start-page: 137 year: 1985 end-page: 147 ident: b0035 article-title: The relationship between the elasticity tensor and the fabric tensor publication-title: Mech. Mater. – volume: 17 start-page: 347 year: 1995 end-page: 355 ident: b0210 article-title: Relations of mechanical properties to density and CT numbers in human bone publication-title: Med. Eng. Phys. – volume: 25 start-page: 359 year: 1992 end-page: 368 ident: b0165 article-title: The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens publication-title: J. Biomech. – volume: 9 start-page: 203 year: 1994 end-page: 216 ident: b0265 article-title: Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia publication-title: J. Arthroplast. – volume: 135 start-page: 101007 year: 2013 ident: b0250 article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra publication-title: J. Biomech. Eng. – volume: 46 start-page: 1655 year: 2013 end-page: 1662 ident: b0055 article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT publication-title: J. Biomech. – volume: 34 start-page: 598 year: 2012 end-page: 604 ident: b0235 article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study publication-title: Med. Eng. Phys. – volume: 46 start-page: 2659 year: 2013 end-page: 2666 ident: b0135 article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images publication-title: J. Biomech. – volume: 38 start-page: 978 year: 2016 end-page: 987 ident: b0195 article-title: Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: a feasibility study publication-title: Med. Eng. Phys. – volume: 12 start-page: 793 year: 2013 end-page: 800 ident: b0080 article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations publication-title: Biomech. Model. Mechanobiol. – volume: 69 start-page: 1212 year: 1987 end-page: 1220 ident: b0050 article-title: The tibial subchondral plate. A scanning electron microscopic study publication-title: J. Bone Joint Surg. – volume: 61 start-page: 96 year: 2016 ident: 10.1016/j.jbiomech.2017.05.018_b0215 article-title: Mechanical properties of normal and osteoarthritic human articular cartilage publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.01.015 – volume: 17 start-page: 1319 year: 2009 ident: 10.1016/j.jbiomech.2017.05.018_b0120 article-title: Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings publication-title: Osteoarth. Cartil. doi: 10.1016/j.joca.2009.04.013 – volume: 108 start-page: 111 year: 1986 ident: 10.1016/j.jbiomech.2017.05.018_b0170 article-title: A three-dimensional finite element analysis of the upper tibia publication-title: J. Biomech. Eng. doi: 10.1115/1.3138589 – volume: 46 start-page: 1655 year: 2013 ident: 10.1016/j.jbiomech.2017.05.018_b0055 article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.04.016 – volume: 46 start-page: 2659 year: 2013 ident: 10.1016/j.jbiomech.2017.05.018_b0135 article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.07.047 – volume: 3 start-page: 377 year: 1992 ident: 10.1016/j.jbiomech.2017.05.018_b0100 article-title: Young's modulus, density and material properties in cancellous bone over a large density range publication-title: J. Mater. Sci. - Mater. Med. doi: 10.1007/BF00705371 – volume: 19 start-page: 914 year: 2001 ident: 10.1016/j.jbiomech.2017.05.018_b0040 article-title: A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(01)00012-2 – volume: 23 start-page: 1103 year: 1990 ident: 10.1016/j.jbiomech.2017.05.018_b0030 article-title: The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90003-L – volume: 17 start-page: 347 year: 1995 ident: 10.1016/j.jbiomech.2017.05.018_b0210 article-title: Relations of mechanical properties to density and CT numbers in human bone publication-title: Med. Eng. Phys. doi: 10.1016/1350-4533(95)97314-F – volume: 4 start-page: 137 year: 1985 ident: 10.1016/j.jbiomech.2017.05.018_b0035 article-title: The relationship between the elasticity tensor and the fabric tensor publication-title: Mech. Mater. doi: 10.1016/0167-6636(85)90012-2 – volume: 31 start-page: 1137 year: 1998 ident: 10.1016/j.jbiomech.2017.05.018_b0095 article-title: Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00136-5 – volume: 9 start-page: 203 year: 1994 ident: 10.1016/j.jbiomech.2017.05.018_b0265 article-title: Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia publication-title: J. Arthroplast. doi: 10.1016/0883-5403(94)90070-1 – volume: 47 start-page: 3272 year: 2014 ident: 10.1016/j.jbiomech.2017.05.018_b0060 article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.08.020 – volume: 25 start-page: 359 year: 1992 ident: 10.1016/j.jbiomech.2017.05.018_b0165 article-title: The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens publication-title: J. Biomech. doi: 10.1016/0021-9290(92)90255-Y – volume: 28 start-page: 1329 year: 1994 ident: 10.1016/j.jbiomech.2017.05.018_b0145 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820281111 – volume: 40 start-page: 966 year: 2007 ident: 10.1016/j.jbiomech.2017.05.018_b0245 article-title: Quantifying anisotropy of trabecular bone from gray-level images publication-title: Bone doi: 10.1016/j.bone.2006.10.022 – volume: 46 start-page: 2659 year: 2013 ident: 10.1016/j.jbiomech.2017.05.018_b0140 article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.07.047 – volume: 34 start-page: 598 year: 2012 ident: 10.1016/j.jbiomech.2017.05.018_b0235 article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.09.006 – ident: 10.1016/j.jbiomech.2017.05.018_b0045 doi: 10.1302/0301-620X.85B6.12595 – volume: 12 start-page: 793 year: 2013 ident: 10.1016/j.jbiomech.2017.05.018_b0080 article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-012-0443-2 – volume: 130 start-page: 2913335 year: 2008 ident: 10.1016/j.jbiomech.2017.05.018_b0075 article-title: Experimental validation of a finite element model of a human cadaveric tibia publication-title: J. Biomech. Eng. doi: 10.1115/1.2913335 – volume: 30 start-page: 703 year: 2015 ident: 10.1016/j.jbiomech.2017.05.018_b0190 article-title: Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: effect of selected density–modulus relationship publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2015.05.002 – volume: 27 start-page: 1159 year: 1994 ident: 10.1016/j.jbiomech.2017.05.018_b0130 article-title: Predicting the compressive mechanical behavior of bone publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90056-6 – volume: 22 start-page: 895 year: 1989 ident: 10.1016/j.jbiomech.2017.05.018_b0015 article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia publication-title: J. Biomech. doi: 10.1016/0021-9290(89)90073-0 – volume: 59 start-page: 954 year: 1977 ident: 10.1016/j.jbiomech.2017.05.018_b0020 article-title: The compressive behavior of bone as a two-phase porous structure publication-title: J. Bone Joint Surg. doi: 10.2106/00004623-197759070-00021 – volume: 69 start-page: 1212 year: 1987 ident: 10.1016/j.jbiomech.2017.05.018_b0050 article-title: The tibial subchondral plate. A scanning electron microscopic study publication-title: J. Bone Joint Surg. doi: 10.2106/00004623-198769080-00015 – volume: 74 start-page: 747 year: 1992 ident: 10.1016/j.jbiomech.2017.05.018_b0010 article-title: Compressive mechanical properties of human cancellous bone after gamma irradiation publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-199274050-00014 – volume: 12 start-page: 641 year: 1997 ident: 10.1016/j.jbiomech.2017.05.018_b0160 article-title: Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.1997.12.4.641 – volume: 32 start-page: 553 year: 2010 ident: 10.1016/j.jbiomech.2017.05.018_b0255 article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.01.004 – volume: 25 start-page: 481 year: 1999 ident: 10.1016/j.jbiomech.2017.05.018_b0125 article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture publication-title: Bone doi: 10.1016/S8756-3282(99)00190-8 – volume: 34 start-page: 777 year: 1996 ident: 10.1016/j.jbiomech.2017.05.018_b0205 article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone publication-title: Ultrasonics doi: 10.1016/S0041-624X(96)00078-9 – volume: 42 start-page: 950 year: 2014 ident: 10.1016/j.jbiomech.2017.05.018_b0155 article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-0983-y – volume: 38 start-page: 978 issue: 9 year: 2016 ident: 10.1016/j.jbiomech.2017.05.018_b0195 article-title: Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: a feasibility study publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.06.011 – volume: 57 start-page: 8099 year: 2012 ident: 10.1016/j.jbiomech.2017.05.018_b0005 article-title: Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/23/8099 – volume: 35 start-page: 7 year: 2013 ident: 10.1016/j.jbiomech.2017.05.018_b0240 article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2012.03.003 – volume: 7 start-page: 308 year: 1965 ident: 10.1016/j.jbiomech.2017.05.018_b0200 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 23 start-page: 135 year: 2008 ident: 10.1016/j.jbiomech.2017.05.018_b0085 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 34 start-page: 914 year: 2012 ident: 10.1016/j.jbiomech.2017.05.018_b0220 article-title: Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.10.008 – volume: 14 start-page: 215 year: 2006 ident: 10.1016/j.jbiomech.2017.05.018_b0025 article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study publication-title: Osteoarth. Cartil. doi: 10.1016/j.joca.2005.09.008 – volume: 93 start-page: 25 year: 2009 ident: 10.1016/j.jbiomech.2017.05.018_b0065 article-title: Role of bone in osteoarthritis pathogenesis publication-title: Med. Clin. North Am. doi: 10.1016/j.mcna.2008.09.006 – volume: 36 start-page: 1461 year: 2003 ident: 10.1016/j.jbiomech.2017.05.018_b0105 article-title: The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00125-8 – volume: 30 start-page: 1000 year: 2015 ident: 10.1016/j.jbiomech.2017.05.018_b0175 article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2437 – volume: 48 start-page: 4116 issue: 15 year: 2015 ident: 10.1016/j.jbiomech.2017.05.018_b0230 article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.10.012 – volume: 36 start-page: 897 year: 2003 ident: 10.1016/j.jbiomech.2017.05.018_b0185 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00071-X – volume: 42 start-page: 950 year: 2014 ident: 10.1016/j.jbiomech.2017.05.018_b0150 article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-0983-y – volume: 9 start-page: 422 year: 1991 ident: 10.1016/j.jbiomech.2017.05.018_b0225 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: J. Orthop. Res. doi: 10.1002/jor.1100090315 – volume: 23 start-page: 135 year: 2008 ident: 10.1016/j.jbiomech.2017.05.018_b0090 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 27 start-page: 375 year: 1994 ident: 10.1016/j.jbiomech.2017.05.018_b0070 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90014-0 – volume: 26 start-page: 1012 year: 2011 ident: 10.1016/j.jbiomech.2017.05.018_b0115 article-title: Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2011.06.009 – volume: 185 start-page: 103 year: 1994 ident: 10.1016/j.jbiomech.2017.05.018_b0180 article-title: Quantitative morphology of the subchondral plate of the tibial plateau publication-title: J. Anat. – volume: 135 start-page: 101007 year: 2013 ident: 10.1016/j.jbiomech.2017.05.018_b0250 article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra publication-title: J. Biomech. Eng. doi: 10.1115/1.4025179 – volume: 40 start-page: 1057 year: 2011 ident: 10.1016/j.jbiomech.2017.05.018_b0110 article-title: In vivo precision of a depth-specific topographic mapping technique in the CT analysis of osteoarthritic and normal proximal tibial subchondral bone density publication-title: Skeletal Radiol. doi: 10.1007/s00256-010-1001-6 – volume: 21 start-page: 243 year: 1995 ident: 10.1016/j.jbiomech.2017.05.018_b0260 article-title: An alternative model for anisotropic elasticity based on fabric tensors publication-title: Mech. Mater. doi: 10.1016/0167-6636(95)00018-6 |
RestrictionsOnAccess | restricted access |
SSID | ssj0007479 |
Score | 2.3013113 |
Snippet | Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This... Abstract Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local... Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral... |
SourceID | liege proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101 |
SubjectTerms | Accounting Aged Aged, 80 and over Anisotropy Bone density Cancellous bone Cancellous Bone - physiology Compartments Computed tomography Cortical bone Cortical Bone - physiology Elasticity Engineering, computing & technology Feasibility studies Female Finite Element Analysis Finite element method Finite element modeling Humans Indentation Ingénierie, informatique & technologie Male Mathematical analysis Mathematical models Measurement methods Mechanical properties Medical imaging Modelling Models, Biological Physical Medicine and Rehabilitation Predictions Proximal tibia Quantitative Computed Tomography Stiffness Subchondral bone Subchondral bone stiffness Tibia Tibia - physiology Tomography Variance Vertebrae |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRA9INhCCRRkJMSJ0LztnFCFqCqkcqLS3iw7tlFW22RJspX25_WfMeM4aS8FxCWylPiheDzzzcMzhLzXhunKVDosQJqEGXoPQY7zUBaaS6CHpHLR7hffi_PL7NsyX3qDW-_DKiee6Bi1biu0kZ9gHjLOQEFgnze_Qqwahd5VX0LjIdnH1GUY0sWWs8KFueF9iEccAgyI7twQXn1aufvtziER--yd_D7htL9GD_b9INQJo7On5IlHkfR03PZn5IFpFuTwtAEN-mpHP1AX1-kM5gtycCfl4II8uvDO9ENyc1spggJ0pT0GV8Oo16A-u_2iraVDJ9VYP5fKpu7boWs3O4rWW9pvFRpxQrysiQFH1NYIYKkZI9KpK7KDg2MDM1Ksd7R2NgzT002H63BEj9M4kYojAjdudAdt1TaGAv-xFpkxlQMFqEox6qa-gtfuqstzcnn29ceX89BXdAgr0ISG0JhYFVamqdVpxUsuNWYbilRqZJmzuMp0YnMTGxYrY6s8k4lNC8tkkahCZ6pMX5C9BqZ_SWisJEDttIgs55nJjJQ2AW3ecGkAYyZRQPJpK0Xl051j1Y21mOLaVmIiAYEkIKJcAAkE5GTutxkTfvy1B5soRUzXWYEBC5BJ_9fT9J6P9CIWfSIigS71GCk4ZuhnzsqAlHNPD5VGCPRPs3505CzaTtXiOhGYYdy1t-ufQlZCGQGgnMODAUAPyPFE9eJ2XfNpDMi7-TVwJnQ3yca0W_wm4sDtIwbfHI2nZf6jCS8AGWXpqz8P_po8xoW78Oj8mOwN3da8ARA4qLfupP8GLQ9gsw priority: 102 providerName: ProQuest |
Title | Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017302749 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929017302749 https://dx.doi.org/10.1016/j.jbiomech.2017.05.018 https://www.ncbi.nlm.nih.gov/pubmed/28601243 https://www.proquest.com/docview/1914872827 https://www.proquest.com/docview/1908794077 http://orbi.ulg.ac.be/handle/2268/227083 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamTULwgKDjUhiTkRBPZM3Fid3HMm0qoFUIMalvlp3YKFWXVEk6qS_7b_tnnOMk7RCaQPCSuo1vTY7P-Y7PxYS8ywzPUpNmXgLSxGNoPQQ5LjyVZEIBPYSp83a_mCXTS_Z5Hs_3yGkfC4NulR3vb3m649bdL6PuaY5WeY4xvrDa0AzI0fbGMIiPMY5UfnKzc_MAuNy5eQQe1r4TJbw4WbgYd2eUCLoMnuI-AXWwRCv2_UDUCaTzJ-RxhyTppJ3sU7JnigE5nBSgRV9t6HvqfDvdpvmAPLqTdnBAHlx0BvVDcrs7LYICfKU1OlhDr9egQrt3RktLm0rp9gxdqoq8LpuqXG0o7uDSeq1xI8fDgE10OqI2RxBLTeuVTt1BO9g5FjArxXJDc7ePYWq6qnAejvBxGCdWsUfgyEVWQVmXhaHAg6xFhkxVQwGuUvS8ya_gtgt3eUYuz8--n0697lQHLwVtqPGMCXRiVRTZLErFWKgMMw75OjJqHPMgZVloYxMYHmhj05ip0EaJ5SoJdZIxPY6ek_0Chn9JaKAVwO0o8a0QzDCjlA1BozdCGcCZoT8kcf8qZdqlPMeTN5ay921byJ4EJJKA9GMJJDAko227VZv0448teE8psg9pBSYsQS79W0tTd7ykloGsQ-nL3-h9SMbblr8smb8a9YMjZ1lWOpfXocQs4668Xv6QKpXaSADmAi4cQPqQHPVUL3fzGoMqzUFl50PydnsbuBOanFRhyjXW8QVwfJ9DnRftatk-0VAkgI5Y9Oo__sdr8hC_Of_p-IjsN9XavAGU2Ohjxwbgyuf8mBxMPn2ZzuDz49ns67efugVvKw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamVuLygKDjUhhgJOCJsMS5uQ8IDdjUsbVCaJP25tmJjVp1SUnSof4p_gP_jHOcy_YyQEh7iSwltpP4-Jzv-NwIeZnqOE10kjoRSBMnQOshyHHuyCjlEuiBJdbbfTKNxsfB55PwZIP8bGNh0K2y5YmWUad5gmfk25iHjMegIMTvl98drBqF1tW2hEZNFgd6_QNUtvLd_idY31eM7e0efRw7TVUBJwE0Xjlaeyoy0vdN6id8xGWKGW9c5Ws5CmMvCVJmQu3p2FPaJGEgmfEjE8uIqSgNFCZfApbfD3xQZXqk_2F3-uVrx_sBnDdOJZ4DwMO9FJM8fzu3EfXWBOI1-UL5VeKwv0Cb-dWw14q_vbvkToNb6U5NaPfIhs4GZHMnA539bE1fU-tJao_oB-T2pSSHA3Jj0pjvN8mvi9oUFMAyLdGdG0Y9B4XdUgjNDa0KqeqKvVRmszKviny5pnheTMuVwmMjB8ND0cWJmhlCZqprH3hqy_rg4NjAHBiLNZ3ZUxNd0mWB72G3GU5jhTiOCPw_SwtoqzzTFDieMcj-qawogGOKfj6zM7htg2vuk-NrWe0HpJfB9I8I9ZQEcA_LbjgPdKClNIxzrrnUgGqZOyRhu5QiaRKsY52PhWg96eaiJQGBJCDcUAAJDMl2129Zpxj5a4-4pRTRBtACyxcgBf-vpy4bzlUKT5RMuAKN-B5SsBejZTsYDcmo69mAsxp0_dOsbyw5i7xQM3HOBOY0t-3V4puQiVBagBrA4RKDSjAkWy3Vi4v36vb_kLzobgMvRAOXzHS-wmdcDvLFjeGZh_Vu6f4o47BfWeA__vPgz8nN8dHkUBzuTw-ekFv4EdY5O9wivapY6acAQSv1rNn3lJxeN6v5DeLPoJI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqrggGALdKGAkYATYRPnYe8BoYqyaimtOFBpb8ZObLSrbbIk2aL9a9z4Z8w4j_ZSQEi9RJYS20k8nvnG8yLkRWZ4lpo08xKQJl6E1kOQ48JTSSYU0ANLnbf7yWlyeBZ9nMbTDfKzi4VBt8qOJzpGnRUpnpGPMA-Z4KAg8JFt3SI-H0zeLb97WEEKLa1dOY2GRI7N-geob9XbowNY65eMTT58eX_otRUGvBSQee0ZE-jEqjC0WZiKsVAZZr_xdWjUOOZBGmXMxiYwPNDGpnGkmA0Ty1XCdJJFGhMxAfvf4mEc4B7j017Zw7z0rXtJ4AEE8a9EJ8_fzF1svTOGBG3mUHGdYNxaoPX8egDsBOHkLrnTIli635DcPbJh8gHZ2c9Bez9f01fU-ZS6w_oBuX0l3eGAbJ-0hvwd8uuySgUF2EwrdOyGUS9AdXe0QgtL61LppnYvVfmsKuqyWK4pnhzTaqXxAMnDQFF0dqJ2huCZmsYbnroCPzg4NjAbxmJNZ-78xFR0WeJ7uA2H0zhxjiOCJMizEtq6yA0F3mctCgKqagowmaLHz-wcbrswm_vk7EbW-gHZzGH6XUIDrQDmh4lvhYhMZJSyTAhhhDKAb5k_JHG3lDJtU61jxY-F7Hzq5rIjAYkkIP1YAgkMyajvt2ySjfy1B-8oRXahtMD8JcjD_-tpqpaHVTKQFZO-RHN-gBQccLRxR-MhGfc9W5jWwK9_mvW1I2dZlHomL5jE7OauvVp8kyqV2khQCARcOCgHQ7LXUb28fK-eEwzJ8_42cEU0dancFCt8xhcgaXwOzzxsdkv_R5lIAJVF4aM_D_6MbAODkZ-OTo8fk1v4Dc5LO94jm3W5Mk8Ai9b6qdv0lHy9aS7zGyooo2I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+spatial+variation+of+trabecular+anisotropy+with+subject-specific+finite+element+modeling+moderately+improves+predictions+of+local+subchondral+bone+stiffness+at+the+proximal+tibia&rft.jtitle=Journal+of+biomechanics&rft.au=Nazemi%2C+S.+Majid&rft.au=Kalajahi%2C+S.+Mehrdad+Hosseini&rft.au=Cooper%2C+David+M.L.&rft.au=Kontulainen%2C+Saija+A.&rft.date=2017-07-05&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=59&rft.spage=101&rft.epage=108&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.05.018&rft.externalDocID=S0021929017302749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |