Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia

Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 59; pp. 101 - 108
Main Authors Nazemi, S. Majid, Kalajahi, S. Mehrdad Hosseini, Cooper, David M.L., Kontulainen, Saija A., Holdsworth, David W., Masri, Bassam A., Wilson, David R., Johnston, James D.
Format Journal Article Web Resource
LanguageEnglish
Published United States Elsevier Ltd 05.07.2017
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%. The uniform anisotropic FE model explained 53–74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76–79% of the variance in stiffness with RMSE% being 11.2–11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.
AbstractList Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.INTRODUCTIONPreviously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.METHODSLocal stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%.RESULTSThe uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%.Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.CONCLUSIONSOf the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.
Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%. The uniform anisotropic FE model explained 53–74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76–79% of the variance in stiffness with RMSE% being 11.2–11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.
Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2=0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Methods Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments usingin situmacro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms ofR2and RMSE%. Results The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%. Conclusions Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.
Abstract Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2 =0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Methods Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%. Results The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4-245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5% Conclusions Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.
Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R =0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R and RMSE%. The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.
Author Wilson, David R.
Cooper, David M.L.
Holdsworth, David W.
Kalajahi, S. Mehrdad Hosseini
Nazemi, S. Majid
Kontulainen, Saija A.
Masri, Bassam A.
Johnston, James D.
Author_xml – sequence: 1
  givenname: S. Majid
  surname: Nazemi
  fullname: Nazemi, S. Majid
  email: majid.nazemi@gmail.com
  organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
– sequence: 2
  givenname: S. Mehrdad Hosseini
  surname: Kalajahi
  fullname: Kalajahi, S. Mehrdad Hosseini
  organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
– sequence: 3
  givenname: David M.L.
  surname: Cooper
  fullname: Cooper, David M.L.
  organization: Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
– sequence: 4
  givenname: Saija A.
  surname: Kontulainen
  fullname: Kontulainen, Saija A.
  organization: College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
– sequence: 5
  givenname: David W.
  surname: Holdsworth
  fullname: Holdsworth, David W.
  organization: Robarts Research Institute, Western University, London, Canada
– sequence: 6
  givenname: Bassam A.
  surname: Masri
  fullname: Masri, Bassam A.
  organization: Department of Orthopedics and Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
– sequence: 7
  givenname: David R.
  surname: Wilson
  fullname: Wilson, David R.
  organization: Department of Orthopedics and Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
– sequence: 8
  givenname: James D.
  surname: Johnston
  fullname: Johnston, James D.
  email: jd.johnston@usask.ca
  organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28601243$$D View this record in MEDLINE/PubMed
BookMark eNqNktuKFDEQhhtZcQ_6CkvAG29mTNKHdIOIy-IJFrxQr0OSrszU2J2MSXrWeTzfzLSzqzAXrgQ6Bf3_fyWp77w4cd5BUVwyumSUNS83y41GP4JZLzllYknrJWXto-KMtaJc8LKlJ8UZpZwtOt7R0-I8xg2lVFSie1Kc8rahjFflWfHzyhg_uYRuRawPJG5VQjWQnQqYK--ItyQFpcFMgwpEOYw-Bb_dk1tMaxInvQGTFnELBi0aYtFhAgIDjOASGX0Pwxw-F0ElGPYEx23wO4hkG6BHM3eJc5vBm9w5J5q1d33Itc6XJjGhtQ5iJCqRtIZs8z9wzL8TalRPi8dWDRGe3e0Xxdd3b79cf1jcfHr_8frqZmHqmqYFANONVWVp-9K0Xat6KvLSJaiuFsxUPbc1MBBMgzV1pbgtGytUw3XTV7orL4rykDsgrED6oFHuuPQKD_U0rKQyUoPkvGnzR9C2zK4XB1c-9PcJYpIjRgPDoBz4KUrW0VZ0FRUiS58fSTd-Ci7fKatY1Qre8ll1eaea9Ai93Ib8FGEv70eaBc1BYIKPMYD9I2FUzuzIjbxnR87sSFrLzE42vjoyGky_Gcjzx-Fh-5uDHfIQdghBRoPgTB5xyITI3uPDEa-PIkxmBzMV32AP8e9zyMgllZ9nvme8mSgpF1X374D_OcEvz08UHg
CitedBy_id crossref_primary_10_1186_s41747_020_00180_3
crossref_primary_10_1002_adfm_202004323
crossref_primary_10_3389_fbioe_2020_00093
crossref_primary_10_1080_10255842_2019_1661386
crossref_primary_10_1007_s00276_021_02826_2
crossref_primary_10_1016_j_medengphy_2020_12_006
crossref_primary_10_1134_S0036029520040369
crossref_primary_10_1002_advs_202105254
crossref_primary_10_1002_jor_24633
crossref_primary_10_1016_j_medengphy_2019_10_013
crossref_primary_10_1016_j_medengphy_2019_02_005
Cites_doi 10.1016/j.jmbbm.2016.01.015
10.1016/j.joca.2009.04.013
10.1115/1.3138589
10.1016/j.jbiomech.2013.04.016
10.1016/j.jbiomech.2013.07.047
10.1007/BF00705371
10.1016/S0736-0266(01)00012-2
10.1016/0021-9290(90)90003-L
10.1016/1350-4533(95)97314-F
10.1016/0167-6636(85)90012-2
10.1016/S0021-9290(98)00136-5
10.1016/0883-5403(94)90070-1
10.1016/j.jbiomech.2014.08.020
10.1016/0021-9290(92)90255-Y
10.1002/jbm.820281111
10.1016/j.bone.2006.10.022
10.1016/j.medengphy.2011.09.006
10.1302/0301-620X.85B6.12595
10.1007/s10237-012-0443-2
10.1115/1.2913335
10.1016/j.clinbiomech.2015.05.002
10.1016/0021-9290(94)90056-6
10.1016/0021-9290(89)90073-0
10.2106/00004623-197759070-00021
10.2106/00004623-198769080-00015
10.2106/00004623-199274050-00014
10.1359/jbmr.1997.12.4.641
10.1016/j.medengphy.2010.01.004
10.1016/S8756-3282(99)00190-8
10.1016/S0041-624X(96)00078-9
10.1007/s10439-014-0983-y
10.1016/j.medengphy.2016.06.011
10.1088/0031-9155/57/23/8099
10.1016/j.medengphy.2012.03.003
10.1093/comjnl/7.4.308
10.1016/j.clinbiomech.2007.08.024
10.1016/j.medengphy.2011.10.008
10.1016/j.joca.2005.09.008
10.1016/j.mcna.2008.09.006
10.1016/S0021-9290(03)00125-8
10.1002/jbmr.2437
10.1016/j.jbiomech.2015.10.012
10.1016/S0021-9290(03)00071-X
10.1002/jor.1100090315
10.1016/0021-9290(94)90014-0
10.1016/j.clinbiomech.2011.06.009
10.1115/1.4025179
10.1007/s00256-010-1001-6
10.1016/0167-6636(95)00018-6
ContentType Journal Article
Web Resource
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
Q33
DOI 10.1016/j.jbiomech.2017.05.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Research Library Prep

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 108
ExternalDocumentID oai_orbi_ulg_ac_be_2268_227083
28601243
10_1016_j_jbiomech_2017_05_018
S0021929017302749
1_s2_0_S0021929017302749
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: 20R92053
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
Q33
ID FETCH-LOGICAL-c550t-ee1b6fa33fd3c898ad07070b3ea9571c4d2f5e1e71befc54a2f36f7a62b6d4b93
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 25 15:29:10 EDT 2025
Fri Jul 11 01:35:32 EDT 2025
Wed Aug 13 05:47:52 EDT 2025
Wed Feb 19 02:43:31 EST 2025
Tue Jul 01 00:44:09 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Fri Feb 23 02:28:47 EST 2024
Tue Feb 25 20:12:56 EST 2025
Tue Aug 26 17:09:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Proximal tibia
Finite element modeling
Anisotropy
Quantitative Computed Tomography
Subchondral bone stiffness
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-ee1b6fa33fd3c898ad07070b3ea9571c4d2f5e1e71befc54a2f36f7a62b6d4b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-85020482026
PMID 28601243
PQID 1914872827
PQPubID 1226346
PageCount 8
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_227083
proquest_miscellaneous_1908794077
proquest_journals_1914872827
pubmed_primary_28601243
crossref_primary_10_1016_j_jbiomech_2017_05_018
crossref_citationtrail_10_1016_j_jbiomech_2017_05_018
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_05_018
elsevier_clinicalkeyesjournals_1_s2_0_S0021929017302749
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_05_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-05
PublicationDateYYYYMMDD 2017-07-05
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier
References Gray, Taddei, Zavatsky, Cristofolini, Gill (b0075) 2008; 130
Amirreza, Normand, Jeffrey, Asmaa, Cari (b0005) 2012; 57
Edwards, Schnitzer, Troy (b0055) 2013; 46
Herzog, Diet, Suter, Mayzus, Leonard, Muller, Wu, Epstein (b0095) 1998; 31
Tabor (b0235) 2012; 34
Rho (b0205) 1996; 34
Synek, Chevalier, Baumbach, Pahr (b0230) 2015; 48
Day, Ding, van der Linden, Hvid, Sumner, Weinans (b0040) 2001; 19
Nazemi, Cooper, Johnston (b0195) 2016; 38
Tabor, Petryniak, Latała, Konopka (b0240) 2013; 35
Cowin (b0035) 1985; 4
Choi, Kuhn, Ciarelli, Goldstein (b0030) 1990; 23
Ding, M., Odgaard, A., Hvid, I., 2003. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. Bone Joint Surg. 85-B, 906–912.
Gross, Pahr, Zysset (b0080) 2013; 12
Goldring (b0065) 2009; 93
Larsson, Luisier, Kersh, Dall’Ara, Zysset, Pandy, Pahr (b0150) 2014; 42
Helgason, Perilli, Schileo, Taddei, Brynjolfsson, Viceconti (b0085) 2008; 23
Homminga, McCreadie, Weinans, Huiskes (b0105) 2003; 36
Li, Aspden (b0160) 1997; 12
Nelder, Mead (b0200) 1965; 7
Linde, Hvid, Madsen (b0165) 1992; 25
Robinson, Kersh, Walsh, Ackland, de Steiger, Pandy (b0215) 2016; 61
Johnston, Kontulainen, Masri, Wilson (b0115) 2011; 26
San Antonio, Ciaccia, Müller-Karger, Casanova (b0220) 2012; 34
Little, Wevers, Siu, Cooke (b0170) 1986; 108
Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (b0070) 1994; 27
Johnston, McLennan, Hunter, Wilson (b0110) 2011; 40
Nazemi, Amini, Kontulainen, Milner, Holdsworth, Masri, Wilson, Johnston (b0190) 2015; 30
Maquer, Musy, Wandel, Gross, Zysset (b0175) 2015; 30
Yang, Ma, Guo (b0255) 2010; 32
Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (b0090) 2008; 23
Zysset, Curnier (b0260) 1995; 21
Chappard, Peyrin, Bonnassie, Lemineur, Brunet-Imbault, Lespessailles, Benhamou (b0025) 2006; 14
Rho, Hobatho, Ashman (b0210) 1995; 17
Kabel, van Rietbergen, Odgaard, Huiskes (b0125) 1999; 25
Ashman, Rho, Turner (b0015) 1989; 22
Anderson, Keyak, Skinner (b0010) 1992; 74
Larsson, Luisier, Kersh, Dall'ara, Zysset, Pandy, Pahr (b0155) 2014; 42
Johnston, Masri, Wilson (b0120) 2009; 17
Duncan, Jundt, Riddle, Pitchford, Christopherson (b0050) 1987; 69
Hodgskinson, Currey (b0100) 1992; 3
Kersh, Zysset, Pahr, Wolfram, Larsson, Pandy (b0135) 2013; 46
Enns-Bray, Owoc, Nishiyama, Boyd (b0060) 2014; 47
Snyder, Schneider (b0225) 1991; 9
Morgan, Bayraktar, Keaveny (b0185) 2003; 36
Zysset, Sonny, Hayes (b0265) 1994; 9
Carter, Hayes (b0020) 1977; 59
Keyak, Lee, Skinner (b0145) 1994; 28
Tabor, Rokita (b0245) 2007; 40
Milz, Putz (b0180) 1994; 185
Unnikrishnan, Barest, Berry, Hussein, Morgan (b0250) 2013; 135
Keller (b0130) 1994; 27
Kersh, Zysset, Pahr, Wolfram, Larsson, Pandy (b0140) 2013; 46
Larsson (10.1016/j.jbiomech.2017.05.018_b0155) 2014; 42
Little (10.1016/j.jbiomech.2017.05.018_b0170) 1986; 108
Yang (10.1016/j.jbiomech.2017.05.018_b0255) 2010; 32
Ashman (10.1016/j.jbiomech.2017.05.018_b0015) 1989; 22
10.1016/j.jbiomech.2017.05.018_b0045
Linde (10.1016/j.jbiomech.2017.05.018_b0165) 1992; 25
Nazemi (10.1016/j.jbiomech.2017.05.018_b0190) 2015; 30
Johnston (10.1016/j.jbiomech.2017.05.018_b0120) 2009; 17
Carter (10.1016/j.jbiomech.2017.05.018_b0020) 1977; 59
Johnston (10.1016/j.jbiomech.2017.05.018_b0115) 2011; 26
Tabor (10.1016/j.jbiomech.2017.05.018_b0240) 2013; 35
Johnston (10.1016/j.jbiomech.2017.05.018_b0110) 2011; 40
Li (10.1016/j.jbiomech.2017.05.018_b0160) 1997; 12
Gray (10.1016/j.jbiomech.2017.05.018_b0075) 2008; 130
Chappard (10.1016/j.jbiomech.2017.05.018_b0025) 2006; 14
Zysset (10.1016/j.jbiomech.2017.05.018_b0265) 1994; 9
Keyak (10.1016/j.jbiomech.2017.05.018_b0145) 1994; 28
Day (10.1016/j.jbiomech.2017.05.018_b0040) 2001; 19
Snyder (10.1016/j.jbiomech.2017.05.018_b0225) 1991; 9
Nelder (10.1016/j.jbiomech.2017.05.018_b0200) 1965; 7
Kersh (10.1016/j.jbiomech.2017.05.018_b0135) 2013; 46
Edwards (10.1016/j.jbiomech.2017.05.018_b0055) 2013; 46
Kabel (10.1016/j.jbiomech.2017.05.018_b0125) 1999; 25
Herzog (10.1016/j.jbiomech.2017.05.018_b0095) 1998; 31
Hodgskinson (10.1016/j.jbiomech.2017.05.018_b0100) 1992; 3
Anderson (10.1016/j.jbiomech.2017.05.018_b0010) 1992; 74
Milz (10.1016/j.jbiomech.2017.05.018_b0180) 1994; 185
Goulet (10.1016/j.jbiomech.2017.05.018_b0070) 1994; 27
Rho (10.1016/j.jbiomech.2017.05.018_b0205) 1996; 34
Homminga (10.1016/j.jbiomech.2017.05.018_b0105) 2003; 36
San Antonio (10.1016/j.jbiomech.2017.05.018_b0220) 2012; 34
Rho (10.1016/j.jbiomech.2017.05.018_b0210) 1995; 17
Maquer (10.1016/j.jbiomech.2017.05.018_b0175) 2015; 30
Enns-Bray (10.1016/j.jbiomech.2017.05.018_b0060) 2014; 47
Tabor (10.1016/j.jbiomech.2017.05.018_b0245) 2007; 40
Morgan (10.1016/j.jbiomech.2017.05.018_b0185) 2003; 36
Nazemi (10.1016/j.jbiomech.2017.05.018_b0195) 2016; 38
Kersh (10.1016/j.jbiomech.2017.05.018_b0140) 2013; 46
Synek (10.1016/j.jbiomech.2017.05.018_b0230) 2015; 48
Larsson (10.1016/j.jbiomech.2017.05.018_b0150) 2014; 42
Duncan (10.1016/j.jbiomech.2017.05.018_b0050) 1987; 69
Helgason (10.1016/j.jbiomech.2017.05.018_b0090) 2008; 23
Zysset (10.1016/j.jbiomech.2017.05.018_b0260) 1995; 21
Helgason (10.1016/j.jbiomech.2017.05.018_b0085) 2008; 23
Keller (10.1016/j.jbiomech.2017.05.018_b0130) 1994; 27
Tabor (10.1016/j.jbiomech.2017.05.018_b0235) 2012; 34
Cowin (10.1016/j.jbiomech.2017.05.018_b0035) 1985; 4
Amirreza (10.1016/j.jbiomech.2017.05.018_b0005) 2012; 57
Unnikrishnan (10.1016/j.jbiomech.2017.05.018_b0250) 2013; 135
Robinson (10.1016/j.jbiomech.2017.05.018_b0215) 2016; 61
Choi (10.1016/j.jbiomech.2017.05.018_b0030) 1990; 23
Goldring (10.1016/j.jbiomech.2017.05.018_b0065) 2009; 93
Gross (10.1016/j.jbiomech.2017.05.018_b0080) 2013; 12
References_xml – volume: 74
  start-page: 747
  year: 1992
  end-page: 752
  ident: b0010
  article-title: Compressive mechanical properties of human cancellous bone after gamma irradiation
  publication-title: J. Bone Joint Surg. Am.
– volume: 48
  start-page: 4116
  year: 2015
  end-page: 4123
  ident: b0230
  article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments
  publication-title: J. Biomech.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b0200
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 34
  start-page: 914
  year: 2012
  end-page: 919
  ident: b0220
  article-title: Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions
  publication-title: Med. Eng. Phys.
– volume: 17
  start-page: 1319
  year: 2009
  end-page: 1326
  ident: b0120
  article-title: Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings
  publication-title: Osteoarth. Cartil.
– volume: 14
  start-page: 215
  year: 2006
  end-page: 223
  ident: b0025
  article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study
  publication-title: Osteoarth. Cartil.
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: b0090
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech.
– volume: 31
  start-page: 1137
  year: 1998
  end-page: 1145
  ident: b0095
  article-title: Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis
  publication-title: J. Biomech.
– volume: 47
  start-page: 3272
  year: 2014
  end-page: 3278
  ident: b0060
  article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis
  publication-title: J. Biomech.
– volume: 9
  start-page: 422
  year: 1991
  end-page: 431
  ident: b0225
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: J. Orthop. Res.
– volume: 3
  start-page: 377
  year: 1992
  end-page: 381
  ident: b0100
  article-title: Young's modulus, density and material properties in cancellous bone over a large density range
  publication-title: J. Mater. Sci. - Mater. Med.
– volume: 46
  start-page: 2659
  year: 2013
  end-page: 2666
  ident: b0140
  article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images
  publication-title: J. Biomech.
– volume: 36
  start-page: 1461
  year: 2003
  end-page: 1467
  ident: b0105
  article-title: The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric
  publication-title: J. Biomech.
– volume: 108
  start-page: 111
  year: 1986
  end-page: 119
  ident: b0170
  article-title: A three-dimensional finite element analysis of the upper tibia
  publication-title: J. Biomech. Eng.
– volume: 57
  start-page: 8099
  year: 2012
  ident: b0005
  article-title: Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images
  publication-title: Phys. Med. Biol.
– volume: 61
  start-page: 96
  year: 2016
  end-page: 109
  ident: b0215
  article-title: Mechanical properties of normal and osteoarthritic human articular cartilage
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 22
  start-page: 895
  year: 1989
  end-page: 900
  ident: b0015
  article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia
  publication-title: J. Biomech.
– volume: 19
  start-page: 914
  year: 2001
  end-page: 918
  ident: b0040
  article-title: A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage
  publication-title: J. Orthop. Res.
– volume: 40
  start-page: 1057
  year: 2011
  end-page: 1064
  ident: b0110
  article-title: In vivo precision of a depth-specific topographic mapping technique in the CT analysis of osteoarthritic and normal proximal tibial subchondral bone density
  publication-title: Skeletal Radiol.
– volume: 93
  start-page: 25
  year: 2009
  end-page: 35
  ident: b0065
  article-title: Role of bone in osteoarthritis pathogenesis
  publication-title: Med. Clin. North Am.
– volume: 21
  start-page: 243
  year: 1995
  end-page: 250
  ident: b0260
  article-title: An alternative model for anisotropic elasticity based on fabric tensors
  publication-title: Mech. Mater.
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: b0085
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech. (Bristol, Avon)
– volume: 25
  start-page: 481
  year: 1999
  end-page: 486
  ident: b0125
  article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture
  publication-title: Bone
– volume: 26
  start-page: 1012
  year: 2011
  end-page: 1018
  ident: b0115
  article-title: Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae
  publication-title: Clin. Biomech.
– volume: 59
  start-page: 954
  year: 1977
  end-page: 962
  ident: b0020
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: J. Bone Joint Surg.
– volume: 30
  start-page: 1000
  year: 2015
  end-page: 1008
  ident: b0175
  article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables
  publication-title: J. Bone Miner. Res.
– volume: 42
  start-page: 950
  year: 2014
  end-page: 959
  ident: b0150
  article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor
  publication-title: Ann. Biomed. Eng.
– volume: 27
  start-page: 375
  year: 1994
  end-page: 389
  ident: b0070
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J. Biomech.
– volume: 27
  start-page: 1159
  year: 1994
  end-page: 1168
  ident: b0130
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J. Biomech.
– volume: 12
  start-page: 641
  year: 1997
  end-page: 651
  ident: b0160
  article-title: Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis
  publication-title: J. Bone Miner. Res.
– volume: 30
  start-page: 703
  year: 2015
  end-page: 712
  ident: b0190
  article-title: Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: effect of selected density–modulus relationship
  publication-title: Clin. Biomech.
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: b0185
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J. Biomech.
– volume: 42
  start-page: 950
  year: 2014
  end-page: 959
  ident: b0155
  article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor
  publication-title: Ann. Biomed. Eng.
– volume: 130
  start-page: 2913335
  year: 2008
  ident: b0075
  article-title: Experimental validation of a finite element model of a human cadaveric tibia
  publication-title: J. Biomech. Eng.
– volume: 28
  start-page: 1329
  year: 1994
  end-page: 1336
  ident: b0145
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: J. Biomed. Mater. Res.
– volume: 40
  start-page: 966
  year: 2007
  end-page: 972
  ident: b0245
  article-title: Quantifying anisotropy of trabecular bone from gray-level images
  publication-title: Bone
– volume: 34
  start-page: 777
  year: 1996
  end-page: 783
  ident: b0205
  article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone
  publication-title: Ultrasonics
– volume: 185
  start-page: 103
  year: 1994
  end-page: 110
  ident: b0180
  article-title: Quantitative morphology of the subchondral plate of the tibial plateau
  publication-title: J. Anat.
– reference: Ding, M., Odgaard, A., Hvid, I., 2003. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. Bone Joint Surg. 85-B, 906–912.
– volume: 23
  start-page: 1103
  year: 1990
  end-page: 1113
  ident: b0030
  article-title: The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus
  publication-title: J. Biomech.
– volume: 35
  start-page: 7
  year: 2013
  end-page: 15
  ident: b0240
  article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone
  publication-title: Med. Eng. Phys.
– volume: 32
  start-page: 553
  year: 2010
  end-page: 560
  ident: b0255
  article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur
  publication-title: Med. Eng. Phys.
– volume: 4
  start-page: 137
  year: 1985
  end-page: 147
  ident: b0035
  article-title: The relationship between the elasticity tensor and the fabric tensor
  publication-title: Mech. Mater.
– volume: 17
  start-page: 347
  year: 1995
  end-page: 355
  ident: b0210
  article-title: Relations of mechanical properties to density and CT numbers in human bone
  publication-title: Med. Eng. Phys.
– volume: 25
  start-page: 359
  year: 1992
  end-page: 368
  ident: b0165
  article-title: The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens
  publication-title: J. Biomech.
– volume: 9
  start-page: 203
  year: 1994
  end-page: 216
  ident: b0265
  article-title: Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia
  publication-title: J. Arthroplast.
– volume: 135
  start-page: 101007
  year: 2013
  ident: b0250
  article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra
  publication-title: J. Biomech. Eng.
– volume: 46
  start-page: 1655
  year: 2013
  end-page: 1662
  ident: b0055
  article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT
  publication-title: J. Biomech.
– volume: 34
  start-page: 598
  year: 2012
  end-page: 604
  ident: b0235
  article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study
  publication-title: Med. Eng. Phys.
– volume: 46
  start-page: 2659
  year: 2013
  end-page: 2666
  ident: b0135
  article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images
  publication-title: J. Biomech.
– volume: 38
  start-page: 978
  year: 2016
  end-page: 987
  ident: b0195
  article-title: Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: a feasibility study
  publication-title: Med. Eng. Phys.
– volume: 12
  start-page: 793
  year: 2013
  end-page: 800
  ident: b0080
  article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations
  publication-title: Biomech. Model. Mechanobiol.
– volume: 69
  start-page: 1212
  year: 1987
  end-page: 1220
  ident: b0050
  article-title: The tibial subchondral plate. A scanning electron microscopic study
  publication-title: J. Bone Joint Surg.
– volume: 61
  start-page: 96
  year: 2016
  ident: 10.1016/j.jbiomech.2017.05.018_b0215
  article-title: Mechanical properties of normal and osteoarthritic human articular cartilage
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.01.015
– volume: 17
  start-page: 1319
  year: 2009
  ident: 10.1016/j.jbiomech.2017.05.018_b0120
  article-title: Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings
  publication-title: Osteoarth. Cartil.
  doi: 10.1016/j.joca.2009.04.013
– volume: 108
  start-page: 111
  year: 1986
  ident: 10.1016/j.jbiomech.2017.05.018_b0170
  article-title: A three-dimensional finite element analysis of the upper tibia
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138589
– volume: 46
  start-page: 1655
  year: 2013
  ident: 10.1016/j.jbiomech.2017.05.018_b0055
  article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.04.016
– volume: 46
  start-page: 2659
  year: 2013
  ident: 10.1016/j.jbiomech.2017.05.018_b0135
  article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.07.047
– volume: 3
  start-page: 377
  year: 1992
  ident: 10.1016/j.jbiomech.2017.05.018_b0100
  article-title: Young's modulus, density and material properties in cancellous bone over a large density range
  publication-title: J. Mater. Sci. - Mater. Med.
  doi: 10.1007/BF00705371
– volume: 19
  start-page: 914
  year: 2001
  ident: 10.1016/j.jbiomech.2017.05.018_b0040
  article-title: A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(01)00012-2
– volume: 23
  start-page: 1103
  year: 1990
  ident: 10.1016/j.jbiomech.2017.05.018_b0030
  article-title: The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90003-L
– volume: 17
  start-page: 347
  year: 1995
  ident: 10.1016/j.jbiomech.2017.05.018_b0210
  article-title: Relations of mechanical properties to density and CT numbers in human bone
  publication-title: Med. Eng. Phys.
  doi: 10.1016/1350-4533(95)97314-F
– volume: 4
  start-page: 137
  year: 1985
  ident: 10.1016/j.jbiomech.2017.05.018_b0035
  article-title: The relationship between the elasticity tensor and the fabric tensor
  publication-title: Mech. Mater.
  doi: 10.1016/0167-6636(85)90012-2
– volume: 31
  start-page: 1137
  year: 1998
  ident: 10.1016/j.jbiomech.2017.05.018_b0095
  article-title: Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00136-5
– volume: 9
  start-page: 203
  year: 1994
  ident: 10.1016/j.jbiomech.2017.05.018_b0265
  article-title: Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia
  publication-title: J. Arthroplast.
  doi: 10.1016/0883-5403(94)90070-1
– volume: 47
  start-page: 3272
  year: 2014
  ident: 10.1016/j.jbiomech.2017.05.018_b0060
  article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.08.020
– volume: 25
  start-page: 359
  year: 1992
  ident: 10.1016/j.jbiomech.2017.05.018_b0165
  article-title: The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90255-Y
– volume: 28
  start-page: 1329
  year: 1994
  ident: 10.1016/j.jbiomech.2017.05.018_b0145
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820281111
– volume: 40
  start-page: 966
  year: 2007
  ident: 10.1016/j.jbiomech.2017.05.018_b0245
  article-title: Quantifying anisotropy of trabecular bone from gray-level images
  publication-title: Bone
  doi: 10.1016/j.bone.2006.10.022
– volume: 46
  start-page: 2659
  year: 2013
  ident: 10.1016/j.jbiomech.2017.05.018_b0140
  article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.07.047
– volume: 34
  start-page: 598
  year: 2012
  ident: 10.1016/j.jbiomech.2017.05.018_b0235
  article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.09.006
– ident: 10.1016/j.jbiomech.2017.05.018_b0045
  doi: 10.1302/0301-620X.85B6.12595
– volume: 12
  start-page: 793
  year: 2013
  ident: 10.1016/j.jbiomech.2017.05.018_b0080
  article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-012-0443-2
– volume: 130
  start-page: 2913335
  year: 2008
  ident: 10.1016/j.jbiomech.2017.05.018_b0075
  article-title: Experimental validation of a finite element model of a human cadaveric tibia
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2913335
– volume: 30
  start-page: 703
  year: 2015
  ident: 10.1016/j.jbiomech.2017.05.018_b0190
  article-title: Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: effect of selected density–modulus relationship
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2015.05.002
– volume: 27
  start-page: 1159
  year: 1994
  ident: 10.1016/j.jbiomech.2017.05.018_b0130
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90056-6
– volume: 22
  start-page: 895
  year: 1989
  ident: 10.1016/j.jbiomech.2017.05.018_b0015
  article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(89)90073-0
– volume: 59
  start-page: 954
  year: 1977
  ident: 10.1016/j.jbiomech.2017.05.018_b0020
  article-title: The compressive behavior of bone as a two-phase porous structure
  publication-title: J. Bone Joint Surg.
  doi: 10.2106/00004623-197759070-00021
– volume: 69
  start-page: 1212
  year: 1987
  ident: 10.1016/j.jbiomech.2017.05.018_b0050
  article-title: The tibial subchondral plate. A scanning electron microscopic study
  publication-title: J. Bone Joint Surg.
  doi: 10.2106/00004623-198769080-00015
– volume: 74
  start-page: 747
  year: 1992
  ident: 10.1016/j.jbiomech.2017.05.018_b0010
  article-title: Compressive mechanical properties of human cancellous bone after gamma irradiation
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-199274050-00014
– volume: 12
  start-page: 641
  year: 1997
  ident: 10.1016/j.jbiomech.2017.05.018_b0160
  article-title: Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1997.12.4.641
– volume: 32
  start-page: 553
  year: 2010
  ident: 10.1016/j.jbiomech.2017.05.018_b0255
  article-title: Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.01.004
– volume: 25
  start-page: 481
  year: 1999
  ident: 10.1016/j.jbiomech.2017.05.018_b0125
  article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture
  publication-title: Bone
  doi: 10.1016/S8756-3282(99)00190-8
– volume: 34
  start-page: 777
  year: 1996
  ident: 10.1016/j.jbiomech.2017.05.018_b0205
  article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(96)00078-9
– volume: 42
  start-page: 950
  year: 2014
  ident: 10.1016/j.jbiomech.2017.05.018_b0155
  article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-0983-y
– volume: 38
  start-page: 978
  issue: 9
  year: 2016
  ident: 10.1016/j.jbiomech.2017.05.018_b0195
  article-title: Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: a feasibility study
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.06.011
– volume: 57
  start-page: 8099
  year: 2012
  ident: 10.1016/j.jbiomech.2017.05.018_b0005
  article-title: Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/23/8099
– volume: 35
  start-page: 7
  year: 2013
  ident: 10.1016/j.jbiomech.2017.05.018_b0240
  article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2012.03.003
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.jbiomech.2017.05.018_b0200
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 23
  start-page: 135
  year: 2008
  ident: 10.1016/j.jbiomech.2017.05.018_b0085
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech. (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 34
  start-page: 914
  year: 2012
  ident: 10.1016/j.jbiomech.2017.05.018_b0220
  article-title: Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.10.008
– volume: 14
  start-page: 215
  year: 2006
  ident: 10.1016/j.jbiomech.2017.05.018_b0025
  article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study
  publication-title: Osteoarth. Cartil.
  doi: 10.1016/j.joca.2005.09.008
– volume: 93
  start-page: 25
  year: 2009
  ident: 10.1016/j.jbiomech.2017.05.018_b0065
  article-title: Role of bone in osteoarthritis pathogenesis
  publication-title: Med. Clin. North Am.
  doi: 10.1016/j.mcna.2008.09.006
– volume: 36
  start-page: 1461
  year: 2003
  ident: 10.1016/j.jbiomech.2017.05.018_b0105
  article-title: The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00125-8
– volume: 30
  start-page: 1000
  year: 2015
  ident: 10.1016/j.jbiomech.2017.05.018_b0175
  article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2437
– volume: 48
  start-page: 4116
  issue: 15
  year: 2015
  ident: 10.1016/j.jbiomech.2017.05.018_b0230
  article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.10.012
– volume: 36
  start-page: 897
  year: 2003
  ident: 10.1016/j.jbiomech.2017.05.018_b0185
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 42
  start-page: 950
  year: 2014
  ident: 10.1016/j.jbiomech.2017.05.018_b0150
  article-title: Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-0983-y
– volume: 9
  start-page: 422
  year: 1991
  ident: 10.1016/j.jbiomech.2017.05.018_b0225
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100090315
– volume: 23
  start-page: 135
  year: 2008
  ident: 10.1016/j.jbiomech.2017.05.018_b0090
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 27
  start-page: 375
  year: 1994
  ident: 10.1016/j.jbiomech.2017.05.018_b0070
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90014-0
– volume: 26
  start-page: 1012
  year: 2011
  ident: 10.1016/j.jbiomech.2017.05.018_b0115
  article-title: Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2011.06.009
– volume: 185
  start-page: 103
  year: 1994
  ident: 10.1016/j.jbiomech.2017.05.018_b0180
  article-title: Quantitative morphology of the subchondral plate of the tibial plateau
  publication-title: J. Anat.
– volume: 135
  start-page: 101007
  year: 2013
  ident: 10.1016/j.jbiomech.2017.05.018_b0250
  article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4025179
– volume: 40
  start-page: 1057
  year: 2011
  ident: 10.1016/j.jbiomech.2017.05.018_b0110
  article-title: In vivo precision of a depth-specific topographic mapping technique in the CT analysis of osteoarthritic and normal proximal tibial subchondral bone density
  publication-title: Skeletal Radiol.
  doi: 10.1007/s00256-010-1001-6
– volume: 21
  start-page: 243
  year: 1995
  ident: 10.1016/j.jbiomech.2017.05.018_b0260
  article-title: An alternative model for anisotropic elasticity based on fabric tensors
  publication-title: Mech. Mater.
  doi: 10.1016/0167-6636(95)00018-6
RestrictionsOnAccess restricted access
SSID ssj0007479
Score 2.3013113
Snippet Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This...
Abstract Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local...
Introduction Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral...
SourceID liege
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101
SubjectTerms Accounting
Aged
Aged, 80 and over
Anisotropy
Bone density
Cancellous bone
Cancellous Bone - physiology
Compartments
Computed tomography
Cortical bone
Cortical Bone - physiology
Elasticity
Engineering, computing & technology
Feasibility studies
Female
Finite Element Analysis
Finite element method
Finite element modeling
Humans
Indentation
Ingénierie, informatique & technologie
Male
Mathematical analysis
Mathematical models
Measurement methods
Mechanical properties
Medical imaging
Modelling
Models, Biological
Physical Medicine and Rehabilitation
Predictions
Proximal tibia
Quantitative Computed Tomography
Stiffness
Subchondral bone
Subchondral bone stiffness
Tibia
Tibia - physiology
Tomography
Variance
Vertebrae
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRA9INhCCRRkJMSJ0LztnFCFqCqkcqLS3iw7tlFW22RJspX25_WfMeM4aS8FxCWylPiheDzzzcMzhLzXhunKVDosQJqEGXoPQY7zUBaaS6CHpHLR7hffi_PL7NsyX3qDW-_DKiee6Bi1biu0kZ9gHjLOQEFgnze_Qqwahd5VX0LjIdnH1GUY0sWWs8KFueF9iEccAgyI7twQXn1aufvtziER--yd_D7htL9GD_b9INQJo7On5IlHkfR03PZn5IFpFuTwtAEN-mpHP1AX1-kM5gtycCfl4II8uvDO9ENyc1spggJ0pT0GV8Oo16A-u_2iraVDJ9VYP5fKpu7boWs3O4rWW9pvFRpxQrysiQFH1NYIYKkZI9KpK7KDg2MDM1Ksd7R2NgzT002H63BEj9M4kYojAjdudAdt1TaGAv-xFpkxlQMFqEox6qa-gtfuqstzcnn29ceX89BXdAgr0ISG0JhYFVamqdVpxUsuNWYbilRqZJmzuMp0YnMTGxYrY6s8k4lNC8tkkahCZ6pMX5C9BqZ_SWisJEDttIgs55nJjJQ2AW3ecGkAYyZRQPJpK0Xl051j1Y21mOLaVmIiAYEkIKJcAAkE5GTutxkTfvy1B5soRUzXWYEBC5BJ_9fT9J6P9CIWfSIigS71GCk4ZuhnzsqAlHNPD5VGCPRPs3505CzaTtXiOhGYYdy1t-ufQlZCGQGgnMODAUAPyPFE9eJ2XfNpDMi7-TVwJnQ3yca0W_wm4sDtIwbfHI2nZf6jCS8AGWXpqz8P_po8xoW78Oj8mOwN3da8ARA4qLfupP8GLQ9gsw
  priority: 102
  providerName: ProQuest
Title Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017302749
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929017302749
https://dx.doi.org/10.1016/j.jbiomech.2017.05.018
https://www.ncbi.nlm.nih.gov/pubmed/28601243
https://www.proquest.com/docview/1914872827
https://www.proquest.com/docview/1908794077
http://orbi.ulg.ac.be/handle/2268/227083
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamTULwgKDjUhiTkRBPZM3Fid3HMm0qoFUIMalvlp3YKFWXVEk6qS_7b_tnnOMk7RCaQPCSuo1vTY7P-Y7PxYS8ywzPUpNmXgLSxGNoPQQ5LjyVZEIBPYSp83a_mCXTS_Z5Hs_3yGkfC4NulR3vb3m649bdL6PuaY5WeY4xvrDa0AzI0fbGMIiPMY5UfnKzc_MAuNy5eQQe1r4TJbw4WbgYd2eUCLoMnuI-AXWwRCv2_UDUCaTzJ-RxhyTppJ3sU7JnigE5nBSgRV9t6HvqfDvdpvmAPLqTdnBAHlx0BvVDcrs7LYICfKU1OlhDr9egQrt3RktLm0rp9gxdqoq8LpuqXG0o7uDSeq1xI8fDgE10OqI2RxBLTeuVTt1BO9g5FjArxXJDc7ePYWq6qnAejvBxGCdWsUfgyEVWQVmXhaHAg6xFhkxVQwGuUvS8ya_gtgt3eUYuz8--n0697lQHLwVtqPGMCXRiVRTZLErFWKgMMw75OjJqHPMgZVloYxMYHmhj05ip0EaJ5SoJdZIxPY6ek_0Chn9JaKAVwO0o8a0QzDCjlA1BozdCGcCZoT8kcf8qZdqlPMeTN5ay921byJ4EJJKA9GMJJDAko227VZv0448teE8psg9pBSYsQS79W0tTd7ykloGsQ-nL3-h9SMbblr8smb8a9YMjZ1lWOpfXocQs4668Xv6QKpXaSADmAi4cQPqQHPVUL3fzGoMqzUFl50PydnsbuBOanFRhyjXW8QVwfJ9DnRftatk-0VAkgI5Y9Oo__sdr8hC_Of_p-IjsN9XavAGU2Ohjxwbgyuf8mBxMPn2ZzuDz49ns67efugVvKw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamVuLygKDjUhhgJOCJsMS5uQ8IDdjUsbVCaJP25tmJjVp1SUnSof4p_gP_jHOcy_YyQEh7iSwltpP4-Jzv-NwIeZnqOE10kjoRSBMnQOshyHHuyCjlEuiBJdbbfTKNxsfB55PwZIP8bGNh0K2y5YmWUad5gmfk25iHjMegIMTvl98drBqF1tW2hEZNFgd6_QNUtvLd_idY31eM7e0efRw7TVUBJwE0Xjlaeyoy0vdN6id8xGWKGW9c5Ws5CmMvCVJmQu3p2FPaJGEgmfEjE8uIqSgNFCZfApbfD3xQZXqk_2F3-uVrx_sBnDdOJZ4DwMO9FJM8fzu3EfXWBOI1-UL5VeKwv0Cb-dWw14q_vbvkToNb6U5NaPfIhs4GZHMnA539bE1fU-tJao_oB-T2pSSHA3Jj0pjvN8mvi9oUFMAyLdGdG0Y9B4XdUgjNDa0KqeqKvVRmszKviny5pnheTMuVwmMjB8ND0cWJmhlCZqprH3hqy_rg4NjAHBiLNZ3ZUxNd0mWB72G3GU5jhTiOCPw_SwtoqzzTFDieMcj-qawogGOKfj6zM7htg2vuk-NrWe0HpJfB9I8I9ZQEcA_LbjgPdKClNIxzrrnUgGqZOyRhu5QiaRKsY52PhWg96eaiJQGBJCDcUAAJDMl2129Zpxj5a4-4pRTRBtACyxcgBf-vpy4bzlUKT5RMuAKN-B5SsBejZTsYDcmo69mAsxp0_dOsbyw5i7xQM3HOBOY0t-3V4puQiVBagBrA4RKDSjAkWy3Vi4v36vb_kLzobgMvRAOXzHS-wmdcDvLFjeGZh_Vu6f4o47BfWeA__vPgz8nN8dHkUBzuTw-ekFv4EdY5O9wivapY6acAQSv1rNn3lJxeN6v5DeLPoJI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqrggGALdKGAkYATYRPnYe8BoYqyaimtOFBpb8ZObLSrbbIk2aL9a9z4Z8w4j_ZSQEi9RJYS20k8nvnG8yLkRWZ4lpo08xKQJl6E1kOQ48JTSSYU0ANLnbf7yWlyeBZ9nMbTDfKzi4VBt8qOJzpGnRUpnpGPMA-Z4KAg8JFt3SI-H0zeLb97WEEKLa1dOY2GRI7N-geob9XbowNY65eMTT58eX_otRUGvBSQee0ZE-jEqjC0WZiKsVAZZr_xdWjUOOZBGmXMxiYwPNDGpnGkmA0Ty1XCdJJFGhMxAfvf4mEc4B7j017Zw7z0rXtJ4AEE8a9EJ8_fzF1svTOGBG3mUHGdYNxaoPX8egDsBOHkLrnTIli635DcPbJh8gHZ2c9Bez9f01fU-ZS6w_oBuX0l3eGAbJ-0hvwd8uuySgUF2EwrdOyGUS9AdXe0QgtL61LppnYvVfmsKuqyWK4pnhzTaqXxAMnDQFF0dqJ2huCZmsYbnroCPzg4NjAbxmJNZ-78xFR0WeJ7uA2H0zhxjiOCJMizEtq6yA0F3mctCgKqagowmaLHz-wcbrswm_vk7EbW-gHZzGH6XUIDrQDmh4lvhYhMZJSyTAhhhDKAb5k_JHG3lDJtU61jxY-F7Hzq5rIjAYkkIP1YAgkMyajvt2ySjfy1B-8oRXahtMD8JcjD_-tpqpaHVTKQFZO-RHN-gBQccLRxR-MhGfc9W5jWwK9_mvW1I2dZlHomL5jE7OauvVp8kyqV2khQCARcOCgHQ7LXUb28fK-eEwzJ8_42cEU0dancFCt8xhcgaXwOzzxsdkv_R5lIAJVF4aM_D_6MbAODkZ-OTo8fk1v4Dc5LO94jm3W5Mk8Ai9b6qdv0lHy9aS7zGyooo2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+spatial+variation+of+trabecular+anisotropy+with+subject-specific+finite+element+modeling+moderately+improves+predictions+of+local+subchondral+bone+stiffness+at+the+proximal+tibia&rft.jtitle=Journal+of+biomechanics&rft.au=Nazemi%2C+S.+Majid&rft.au=Kalajahi%2C+S.+Mehrdad+Hosseini&rft.au=Cooper%2C+David+M.L.&rft.au=Kontulainen%2C+Saija+A.&rft.date=2017-07-05&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=59&rft.spage=101&rft.epage=108&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.05.018&rft.externalDocID=S0021929017302749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon