Emerging Bioelectronics for Brain Organoid Electrophysiology
[Display omitted] •Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids.•Highlight of the need for characterizing electrophysiological pr...
Saved in:
Published in | Journal of molecular biology Vol. 434; no. 3; p. 167165 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids.•Highlight of the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner.•Introduction of recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement.•Introduction of the recently developed cyborg organoids platform as an emerging tool for the long-term stably 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution.•Perspectives of new technologies that could achieve the high-throughput, cell-type-specific and multimodal characterizations from the same brain organoids.
Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids. |
---|---|
AbstractList | Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids. Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids. [Display omitted] •Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids.•Highlight of the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner.•Introduction of recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement.•Introduction of the recently developed cyborg organoids platform as an emerging tool for the long-term stably 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution.•Perspectives of new technologies that could achieve the high-throughput, cell-type-specific and multimodal characterizations from the same brain organoids. Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids. |
ArticleNumber | 167165 |
Author | Tasnim, Kazi Liu, Jia |
AuthorAffiliation | 1 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA |
AuthorAffiliation_xml | – name: 1 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA |
Author_xml | – sequence: 1 givenname: Kazi surname: Tasnim fullname: Tasnim, Kazi – sequence: 2 givenname: Jia orcidid: 0000-0003-2217-6982 surname: Liu fullname: Liu, Jia email: jia_liu@seas.harvard.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34293341$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLctP4ALypFLlrETO45ASLRaoFKlXujZ8sck9SqxFztbaf89WaVUwKE9-TDv82rGzxk5CTEgIe8orClQ8XG73o5mzYDRNRUNFfwVWVGQbSlFJU_ICoCxkslKnJKznLcAwKtaviGnVc3aqqrpinzejJh6H_ri0kcc0E4pBm9z0cVUXCbtQ3Gbeh2id8VmGe_uD9nHIfaHC_K600PGt4_vObn7tvl59aO8uf1-ffX1prScw1Q67oxsGifBME3RYmcph453VmpmGqhb5qA1tNU1bakzxvC6cwapgAZxvuWcfFl6d3szorMYpqQHtUt-1Omgovbq30nw96qPD0o2QgjK5oIPjwUp_tpjntTos8Vh0AHjPismKsGhkQxejnLOKYVaHqPv_17raZ8_vzsH6BKwKeacsHuKUFBHg2qrZoPqaFAtBmem-Y-xftKTj8fL_PAs-WkhcVbx4DGpbD0Gi86nWZxy0T9D_waI4LYN |
CitedBy_id | crossref_primary_10_1002_advs_202301828 crossref_primary_10_1016_j_bioactmat_2024_08_034 crossref_primary_10_1016_j_bios_2023_115579 crossref_primary_10_3390_brainsci11111453 crossref_primary_10_1016_j_ecoenv_2024_116516 crossref_primary_10_1186_s40486_024_00216_y crossref_primary_10_1016_j_isci_2023_106715 crossref_primary_10_1016_j_xcrp_2022_100974 crossref_primary_10_1002_advs_202305555 crossref_primary_10_1016_j_addr_2023_114842 crossref_primary_10_1109_JMEMS_2024_3376238 crossref_primary_10_1039_D3LC00294B crossref_primary_10_3389_fncel_2024_1478572 crossref_primary_10_1016_j_biopsych_2022_07_006 crossref_primary_10_1002_anbr_202400052 crossref_primary_10_1016_j_bios_2023_115223 crossref_primary_10_1016_j_mattod_2025_02_002 crossref_primary_10_3390_mi13101692 crossref_primary_10_1016_j_bios_2022_114750 crossref_primary_10_1063_5_0116714 crossref_primary_10_1002_smll_202306451 crossref_primary_10_1016_j_heliyon_2023_e18482 crossref_primary_10_1016_j_bioactmat_2024_08_027 crossref_primary_10_1016_j_jmb_2021_167411 crossref_primary_10_1016_j_tiv_2023_105668 crossref_primary_10_3389_fnins_2023_1171115 crossref_primary_10_3389_fncel_2024_1435619 crossref_primary_10_5483_BMBRep_2024_0077 crossref_primary_10_1021_acsami_2c17467 crossref_primary_10_1016_j_expneurol_2024_115110 crossref_primary_10_1002_adhm_202302456 crossref_primary_10_1007_s00441_022_03589_x crossref_primary_10_4103_1673_5374_390972 crossref_primary_10_1038_s41467_022_32115_4 crossref_primary_10_1038_s41378_024_00685_6 crossref_primary_10_1039_D4NR01727G crossref_primary_10_1016_j_coelec_2023_101270 crossref_primary_10_1016_j_mtbio_2024_100992 crossref_primary_10_3390_pharmaceutics14112301 |
Cites_doi | 10.1021/acs.nanolett.9b02512 10.1016/j.stem.2017.07.007 10.1242/dev.143693 10.1196/annals.1308.002 10.1073/pnas.1515602112 10.1038/ncomms3181 10.1039/C9LC01148J 10.1038/nmat4427 10.1038/nmeth.4393 10.1038/nmeth.3415 10.1016/j.neuron.2017.02.014 10.1038/nrn2719 10.1016/j.neuron.2014.05.013 10.1126/science.1260960 10.1073/pnas.1202944109 10.1126/science.aau5729 10.3390/bios8010014 10.12688/mniopenres.12816.2 10.1016/j.stem.2019.08.002 10.1038/nature12517 10.1038/s41380-019-0448-7 10.1016/j.stem.2016.03.003 10.1002/advs.201700731 10.1038/nrn.2017.107 10.1016/j.ydbio.2016.06.037 10.1016/j.cell.2016.04.032 10.1073/pnas.1520760112 10.1016/j.cell.2015.09.004 10.1038/s41587-020-00763-w 10.1016/S0893-133X(01)00393-1 10.1038/nature13185 10.1038/nbt.4127 10.1039/C5LC00133A 10.1126/sciadv.abf9153 10.1038/nature10523 10.1016/j.tins.2007.05.003 10.1038/s41467-020-18620-4 10.1038/nature22047 10.1126/science.aat5691 10.1002/term.2786 10.1038/nnano.2015.115 10.1038/nmeth.3629 10.1038/s41583-019-0140-6 10.1016/j.jneumeth.2020.108627 10.1038/s41565-018-0222-z 10.1016/j.stemcr.2019.05.029 10.1073/pnas.2000207117 10.1016/j.stemcr.2020.08.017 10.1126/science.aaw7567 10.1242/dev.166074 10.1038/s41576-018-0051-9 10.3389/fnins.2020.622137 10.1038/srep36529 10.1093/cercor/12.1.37 10.1016/j.cobme.2020.05.004 10.1126/science.aan3456 10.1016/j.molmed.2018.09.005 10.1038/s41551-018-0335-6 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jmb.2021.167165 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
EndPage | 167165 |
ExternalDocumentID | PMC8766612 34293341 10_1016_j_jmb_2021_167165 S0022283621003958 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: RF1 MH123948 |
GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HLW HMG IH2 IHE J1W KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 186 29L 3O- AAEDT AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HX~ HZ~ H~9 K-O MVM NEJ R2- RIG SBG SEW SIN SSH UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-d5db877d80b2a1ecefc150f5fc8a2b70492d09b19a4191dbbb54fdbe1607ee863 |
IEDL.DBID | .~1 |
ISSN | 0022-2836 1089-8638 |
IngestDate | Thu Aug 21 18:38:08 EDT 2025 Thu Jul 10 18:29:12 EDT 2025 Tue Aug 05 11:18:10 EDT 2025 Mon Jul 21 06:05:56 EDT 2025 Tue Jul 01 03:50:35 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Fri Feb 23 02:41:34 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | flexible electronics brain organoids multielectrode array cyborg organoids bioelectronics |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-d5db877d80b2a1ecefc150f5fc8a2b70492d09b19a4191dbbb54fdbe1607ee863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2217-6982 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8766612 |
PMID | 34293341 |
PQID | 2555110480 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8766612 proquest_miscellaneous_2636507820 proquest_miscellaneous_2555110480 pubmed_primary_34293341 crossref_primary_10_1016_j_jmb_2021_167165 crossref_citationtrail_10_1016_j_jmb_2021_167165 elsevier_sciencedirect_doi_10_1016_j_jmb_2021_167165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rossi, Manfrin, Lutolf (b0130) 2018; 19 Spear (b0005) 2004; 1021 Camp (b0170) 2015; 112 Kang (b0175) 2011; 478 Di Lullo (b0020) 2017; 18 Sousa (b0120) 2017; 358 Lee (b0195) 2019; 13 Quadrato (b0030) 2017; 545 Fair (b0090) 2020; 1 AlFatah Mansour (b0025) 2018; 36 Sakaguchi (b0190) 2019; 13 Nasr (b0255) 2018; 8 Müller (b0295) 2015; 15 Kuijlaars (b0200) 2016; 6 Soscia (b0100) 2020; 20 Dahl-Jensen (b0250) 2017; 144 Li (b0110) 2019; 19 Bakkum (b0305) 2013; 4 Trujillo (b0075) 2018; 24 Xu (b0225) 2015; 347 Kalmykov (b0220) 2020 Liu (b0275) 2019; 3 Mariani (b0155) 2012; 109 van de Leemput (b0165) 2014; 83 Xiang (b0185) 2017; 21 Zhang (b0230) 2015; 112 Sharf (b0085) 2021 Liu (b0265) 2020; 117 Li (b0290) 2021 Xie (b0270) 2015; 14 Durens (b0065) 2020; 335 Rakic (b0115) 2009; 10 Lewis (b0010) 2002; 26 Jgamadze (b0320) 2020; 14 Takebe, Well (b0315) 2019; 364 Park (b0235) 2021; 7 Yuan (b0210) 2020; 11 Ryu (b0245) 2021 Lancaster (b0045) 2013; 501 Kelava, Lancaster (b0145) 2016; 420 Dipalo (b0300) 2018; 13 Close (b0060) 2017; 93 Cools (b0215) 2018; 5 Pollen (b0050) 2015; 163 Wang (b0285) 2018; 361 Thomsen (b0055) 2016; 13 Mohamed (b0095) 2021; 3 Smart (b0140) 1991; 12 Qian (b0160) 2016; 165 Qian, Song, Ming (b0035) 2019; 146 Mansour (b0070) 2018; 36 Trujillo (b0080) 2019; 25 Miura (b0325) 2020; 38 Pasca (b0040) 2019; 363 Fenno (b0240) 2011; 7 Shein-Idelson (b0310) 2017; 14 Koo (b0135) 2019; 42 Giridharan (b0015) 2020; 2 Otani (b0125) 2016; 18 Pasca (b0150) 2015; 12 Liu (b0260) 2015; 10 Passaro, Stice (b0105) 2021; 14 Miller (b0180) 2014; 508 Hong (b0330) 2019; 20 Mann (b0205) 2007; 30 Le Floch (b0280) 2021 Quadrato (10.1016/j.jmb.2021.167165_b0030) 2017; 545 Smart (10.1016/j.jmb.2021.167165_b0140) 1991; 12 Kelava (10.1016/j.jmb.2021.167165_b0145) 2016; 420 Hong (10.1016/j.jmb.2021.167165_b0330) 2019; 20 Sharf (10.1016/j.jmb.2021.167165_b0085) 2021 Kang (10.1016/j.jmb.2021.167165_b0175) 2011; 478 Mohamed (10.1016/j.jmb.2021.167165_b0095) 2021; 3 Mann (10.1016/j.jmb.2021.167165_b0205) 2007; 30 Pollen (10.1016/j.jmb.2021.167165_b0050) 2015; 163 Di Lullo (10.1016/j.jmb.2021.167165_b0020) 2017; 18 Park (10.1016/j.jmb.2021.167165_b0235) 2021; 7 Koo (10.1016/j.jmb.2021.167165_b0135) 2019; 42 Pasca (10.1016/j.jmb.2021.167165_b0150) 2015; 12 AlFatah Mansour (10.1016/j.jmb.2021.167165_b0025) 2018; 36 Soscia (10.1016/j.jmb.2021.167165_b0100) 2020; 20 Liu (10.1016/j.jmb.2021.167165_b0265) 2020; 117 Jgamadze (10.1016/j.jmb.2021.167165_b0320) 2020; 14 Miura (10.1016/j.jmb.2021.167165_b0325) 2020; 38 van de Leemput (10.1016/j.jmb.2021.167165_b0165) 2014; 83 Dahl-Jensen (10.1016/j.jmb.2021.167165_b0250) 2017; 144 Kuijlaars (10.1016/j.jmb.2021.167165_b0200) 2016; 6 Pasca (10.1016/j.jmb.2021.167165_b0040) 2019; 363 Li (10.1016/j.jmb.2021.167165_b0110) 2019; 19 Qian (10.1016/j.jmb.2021.167165_b0160) 2016; 165 Liu (10.1016/j.jmb.2021.167165_b0260) 2015; 10 Rakic (10.1016/j.jmb.2021.167165_b0115) 2009; 10 Xie (10.1016/j.jmb.2021.167165_b0270) 2015; 14 Lee (10.1016/j.jmb.2021.167165_b0195) 2019; 13 Müller (10.1016/j.jmb.2021.167165_b0295) 2015; 15 Thomsen (10.1016/j.jmb.2021.167165_b0055) 2016; 13 Le Floch (10.1016/j.jmb.2021.167165_b0280) 2021 Durens (10.1016/j.jmb.2021.167165_b0065) 2020; 335 Fair (10.1016/j.jmb.2021.167165_b0090) 2020; 1 Qian (10.1016/j.jmb.2021.167165_b0035) 2019; 146 Mariani (10.1016/j.jmb.2021.167165_b0155) 2012; 109 Xiang (10.1016/j.jmb.2021.167165_b0185) 2017; 21 Sousa (10.1016/j.jmb.2021.167165_b0120) 2017; 358 Takebe (10.1016/j.jmb.2021.167165_b0315) 2019; 364 Yuan (10.1016/j.jmb.2021.167165_b0210) 2020; 11 Lancaster (10.1016/j.jmb.2021.167165_b0045) 2013; 501 Close (10.1016/j.jmb.2021.167165_b0060) 2017; 93 Mansour (10.1016/j.jmb.2021.167165_b0070) 2018; 36 Li (10.1016/j.jmb.2021.167165_b0290) 2021 Trujillo (10.1016/j.jmb.2021.167165_b0080) 2019; 25 Dipalo (10.1016/j.jmb.2021.167165_b0300) 2018; 13 Sakaguchi (10.1016/j.jmb.2021.167165_b0190) 2019; 13 Spear (10.1016/j.jmb.2021.167165_b0005) 2004; 1021 Kalmykov (10.1016/j.jmb.2021.167165_b0220) 2020 Ryu (10.1016/j.jmb.2021.167165_b0245) 2021 Otani (10.1016/j.jmb.2021.167165_b0125) 2016; 18 Miller (10.1016/j.jmb.2021.167165_b0180) 2014; 508 Xu (10.1016/j.jmb.2021.167165_b0225) 2015; 347 Nasr (10.1016/j.jmb.2021.167165_b0255) 2018; 8 Bakkum (10.1016/j.jmb.2021.167165_b0305) 2013; 4 Fenno (10.1016/j.jmb.2021.167165_b0240) 2011; 7 Shein-Idelson (10.1016/j.jmb.2021.167165_b0310) 2017; 14 Giridharan (10.1016/j.jmb.2021.167165_b0015) 2020; 2 Camp (10.1016/j.jmb.2021.167165_b0170) 2015; 112 Lewis (10.1016/j.jmb.2021.167165_b0010) 2002; 26 Cools (10.1016/j.jmb.2021.167165_b0215) 2018; 5 Liu (10.1016/j.jmb.2021.167165_b0275) 2019; 3 Zhang (10.1016/j.jmb.2021.167165_b0230) 2015; 112 Wang (10.1016/j.jmb.2021.167165_b0285) 2018; 361 Passaro (10.1016/j.jmb.2021.167165_b0105) 2021; 14 Trujillo (10.1016/j.jmb.2021.167165_b0075) 2018; 24 Rossi (10.1016/j.jmb.2021.167165_b0130) 2018; 19 |
References_xml | – year: 2021 ident: b0245 article-title: Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids publication-title: Adv. Mater. – volume: 13 start-page: 369 year: 2019 end-page: 384 ident: b0195 article-title: Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters publication-title: J. Tissue. Eng. Regen. Med. – volume: 93 start-page: 1035 year: 2017 end-page: 1048 ident: b0060 article-title: Single-cell profiling of an publication-title: Neuron – volume: 117 start-page: 14769 year: 2020 end-page: 14778 ident: b0265 article-title: Intrinsically stretchable electrode array enabled publication-title: Proc. Natl. Acad. Sci. USA – volume: 144 start-page: 946 year: 2017 end-page: 951 ident: b0250 article-title: The physics of organoids: a biophysical approach to understanding organogenesis publication-title: Development – volume: 38 start-page: 1421 year: 2020 end-page: 1430 ident: b0325 article-title: Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells publication-title: Nature Biotechnol. – volume: 26 start-page: 143 year: 2002 end-page: 154 ident: b0010 article-title: The human brain revisited opportunities and challenges in postmortem studies of psychiatric disorders publication-title: Neuropsychopharmacology – volume: 6 start-page: 36529 year: 2016 ident: b0200 article-title: Sustained synchronized neuronal network activity in a human astrocyte co-culture system publication-title: Sci. Rep. – volume: 1 start-page: 855 year: 2020 end-page: 868 ident: b0090 article-title: Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development publication-title: Stem Cell Rep. – year: 2021 ident: b0085 article-title: Intrinsic network activity in human brain organoids publication-title: BioRxiv. [Preprint] – volume: 10 start-page: 629 year: 2015 end-page: 636 ident: b0260 article-title: Syringe-injectable electronics publication-title: Nature Nanotechnol. – volume: 36 start-page: 432 year: 2018 end-page: 441 ident: b0025 article-title: An publication-title: Nature Biotechnol. – volume: 1021 start-page: 23 year: 2004 end-page: 26 ident: b0005 article-title: Adolescent brain development and animal models publication-title: Ann. New York Acad. Sci. – volume: 358 start-page: 1027 year: 2017 end-page: 1032 ident: b0120 article-title: Molecular and cellular reorganization of neural circuits in the human lineage publication-title: Science – volume: 420 start-page: 199 year: 2016 end-page: 209 ident: b0145 article-title: Dishing out mini-brains: current progress and future prospects in brain organoid research publication-title: Dev. Biol. – volume: 11 start-page: 1 year: 2020 end-page: 14 ident: b0210 article-title: Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level publication-title: Nature Commun. – volume: 25 start-page: 558 year: 2019 end-page: 569 ident: b0080 article-title: Complex oscillatory waves emerging from cortical organoids model early human brain network development publication-title: Cell Stem Cell – year: 2021 ident: b0290 article-title: electro-sequencing in three-dimensional tissues publication-title: BioRxiv [Preprint] – volume: 361 start-page: 1 year: 2018 end-page: 9 ident: b0285 article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states publication-title: Science – volume: 19 start-page: 5781 year: 2019 end-page: 5789 ident: b0110 article-title: Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology publication-title: Nano Letters – volume: 13 start-page: 458 year: 2019 end-page: 473 ident: b0190 article-title: Self-organized synchronous calcium transients in a cultured human neural network derived from cerebral organoids publication-title: Stem Cell Rep. – volume: 12 start-page: 37 year: 1991 end-page: 53 ident: b0140 article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey publication-title: Cereb. – year: 2020 ident: b0220 article-title: Bioelectrical interfaces with cortical spheroids in three-dimensions publication-title: BioRxiv [Preprint] – volume: 109 start-page: 12770 year: 2012 end-page: 12775 ident: b0155 article-title: Modeling human cortical development publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 14 year: 2018 end-page: 18 ident: b0255 article-title: Self-organized nanostructure modified microelectrode for sensitive electrochemical glutamate detection in stem cells-derived brain organoids publication-title: Biosensors – volume: 19 start-page: 671 year: 2018 end-page: 687 ident: b0130 article-title: Progress and potential in organoid research publication-title: Nature Rev. Genet. – volume: 14 start-page: 1286 year: 2015 end-page: 1292 ident: b0270 article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes publication-title: Nature Mater. – volume: 3 start-page: 58 year: 2019 end-page: 68 ident: b0275 article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation publication-title: Nature Biomed. Eng. – volume: 83 start-page: 51 year: 2014 end-page: 68 ident: b0165 article-title: CORTECON: a temporal transcriptome analysis of publication-title: Neuron – volume: 7 start-page: 1 year: 2011 end-page: 9 ident: b0240 article-title: The development and application of optogenetics publication-title: Sci. Adv. – volume: 12 start-page: 671 year: 2015 end-page: 678 ident: b0150 article-title: “Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture publication-title: Nature Methods – volume: 7 start-page: 1 year: 2021 end-page: 11 ident: b0235 article-title: Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids publication-title: Sci. Adv. – volume: 112 start-page: 15672 year: 2015 end-page: 15677 ident: b0170 article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development publication-title: Proc. Natl. Acad. Sci. USA – volume: 165 start-page: 1238 year: 2016 end-page: 1254 ident: b0160 article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure publication-title: Cell – volume: 18 start-page: 573 year: 2017 end-page: 584 ident: b0020 article-title: The use of brain organoids to investigate neural development and disease publication-title: Nature Rev. Neurosci. – volume: 3 start-page: 1 year: 2021 ident: b0095 article-title: Generation of human midbrain organoids from induced pluripotent stem cells publication-title: MNI Open Res. – volume: 146 start-page: 1 year: 2019 end-page: 12 ident: b0035 article-title: Brain organoids: advances, applications and challenges publication-title: Development – volume: 545 start-page: 48 year: 2017 end-page: 53 ident: b0030 article-title: Cell diversity and network dynamics in photosensitive human brain organoids publication-title: Nature – volume: 14 start-page: 1 year: 2021 end-page: 13 ident: b0105 article-title: Electrophysiological analysis of brain organoids: current approaches and advancements publication-title: Front. Neurosci. – volume: 10 start-page: 724 year: 2009 end-page: 735 ident: b0115 article-title: Evolution of the neocortex: a perspective from developmental biology publication-title: Nature Rev. Neurosci. – volume: 508 start-page: 199 year: 2014 end-page: 206 ident: b0180 article-title: Transcriptional landscape of the prenatal human brain publication-title: Nature – volume: 4 start-page: 2181 year: 2013 ident: b0305 article-title: Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites publication-title: Nature Commun. – volume: 335 start-page: 108627 year: 2020 ident: b0065 article-title: High-throughput screening of human induced pluripotent stem cell-derived brain organoids publication-title: J. Neurosci. Methods – volume: 5 start-page: 1700731 year: 2018 ident: b0215 article-title: A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells publication-title: Adv. Sci. – volume: 2 start-page: 94 year: 2020 end-page: 113 ident: b0015 article-title: Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review publication-title: Mol. Psych. – volume: 13 start-page: 87 year: 2016 end-page: 93 ident: b0055 article-title: Fixed single-cell transcriptomic characterization of human radial glial diversity publication-title: Nature Methods – volume: 20 start-page: 901 year: 2020 end-page: 911 ident: b0100 article-title: A flexible 3-dimensional microelectrode array for publication-title: Lab Chip – volume: 21 start-page: 383 year: 2017 end-page: 398 ident: b0185 article-title: Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration publication-title: Cell Stem Cell – volume: 15 start-page: 2767 year: 2015 end-page: 2780 ident: b0295 article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels publication-title: Lab Chip – volume: 20 start-page: 330 year: 2019 end-page: 345 ident: b0330 article-title: Novel electrode technologies for neural recordings publication-title: Nature Rev. Neurosci. – volume: 14 start-page: 52 year: 2020 end-page: 58 ident: b0320 article-title: Modeling traumatic brain injury with human brain organoids publication-title: Curr. Opin. Biomed. – volume: 478 start-page: 483 year: 2011 end-page: 489 ident: b0175 article-title: Spatio-temporal transcriptome of the human brain publication-title: Nature – volume: 13 start-page: 965 year: 2018 end-page: 971 ident: b0300 article-title: Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays publication-title: Nature Nanotechnol. – volume: 42 start-page: 617 year: 2019 end-page: 627 ident: b0135 article-title: Past, present, and future of brain organoid technology publication-title: Mol. Cells – volume: 163 start-page: 55 year: 2015 end-page: 67 ident: b0050 article-title: Molecular identity of human outer radial glia during cortical development publication-title: Cell – volume: 112 start-page: 11757 year: 2015 end-page: 11764 ident: b0230 article-title: A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes publication-title: Proc. Natl. Acad. Sci. USA – volume: 501 start-page: 373 year: 2013 end-page: 379 ident: b0045 article-title: Cerebral organoids model human brain development and microcephaly publication-title: Nature – volume: 18 start-page: 467 year: 2016 end-page: 480 ident: b0125 article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size publication-title: Cell Stem Cell – volume: 347 start-page: 154 year: 2015 end-page: 159 ident: b0225 article-title: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling publication-title: Science – volume: 364 start-page: 956 year: 2019 end-page: 959 ident: b0315 article-title: Organoids by design publication-title: Science – volume: 14 start-page: 882 year: 2017 end-page: 890 ident: b0310 article-title: Large-scale mapping of cortical synaptic projections with extracellular electrode arrays publication-title: Nature Methods – volume: 24 start-page: 982 year: 2018 end-page: 990 ident: b0075 article-title: Brain organoids and the study of neurodevelopment publication-title: Trends. Mol. Med. – year: 2021 ident: b0280 article-title: A method for three-dimensional single-cell chronic electrophysiology from developing brain organoids publication-title: BioRxiv [Preprint] – volume: 36 start-page: 432 year: 2018 end-page: 441 ident: b0070 article-title: An publication-title: Nature Biotechnol. – volume: 363 start-page: 126 year: 2019 end-page: 127 ident: b0040 article-title: Assembling human brain organoids publication-title: Science – volume: 30 start-page: 343 year: 2007 end-page: 349 ident: b0205 article-title: Role of GABAergic inhibition in hippocampal network oscillations publication-title: Trends Neurosci. – volume: 19 start-page: 5781 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0110 article-title: Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology publication-title: Nano Letters doi: 10.1021/acs.nanolett.9b02512 – volume: 21 start-page: 383 year: 2017 ident: 10.1016/j.jmb.2021.167165_b0185 article-title: Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.07.007 – volume: 144 start-page: 946 year: 2017 ident: 10.1016/j.jmb.2021.167165_b0250 article-title: The physics of organoids: a biophysical approach to understanding organogenesis publication-title: Development doi: 10.1242/dev.143693 – volume: 1021 start-page: 23 year: 2004 ident: 10.1016/j.jmb.2021.167165_b0005 article-title: Adolescent brain development and animal models publication-title: Ann. New York Acad. Sci. doi: 10.1196/annals.1308.002 – volume: 112 start-page: 11757 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0230 article-title: A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1515602112 – volume: 4 start-page: 2181 year: 2013 ident: 10.1016/j.jmb.2021.167165_b0305 article-title: Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites publication-title: Nature Commun. doi: 10.1038/ncomms3181 – volume: 20 start-page: 901 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0100 article-title: A flexible 3-dimensional microelectrode array for in vitro brain models publication-title: Lab Chip doi: 10.1039/C9LC01148J – year: 2020 ident: 10.1016/j.jmb.2021.167165_b0220 article-title: Bioelectrical interfaces with cortical spheroids in three-dimensions publication-title: BioRxiv [Preprint] – volume: 14 start-page: 1286 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0270 article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes publication-title: Nature Mater. doi: 10.1038/nmat4427 – volume: 14 start-page: 882 year: 2017 ident: 10.1016/j.jmb.2021.167165_b0310 article-title: Large-scale mapping of cortical synaptic projections with extracellular electrode arrays publication-title: Nature Methods doi: 10.1038/nmeth.4393 – volume: 12 start-page: 671 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0150 article-title: “Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture publication-title: Nature Methods doi: 10.1038/nmeth.3415 – volume: 93 start-page: 1035 year: 2017 ident: 10.1016/j.jmb.2021.167165_b0060 article-title: Single-cell profiling of an in vitro model of human interneuron development reveals temporal dynamics of cell type production and maturation publication-title: Neuron doi: 10.1016/j.neuron.2017.02.014 – volume: 10 start-page: 724 year: 2009 ident: 10.1016/j.jmb.2021.167165_b0115 article-title: Evolution of the neocortex: a perspective from developmental biology publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn2719 – volume: 83 start-page: 51 year: 2014 ident: 10.1016/j.jmb.2021.167165_b0165 article-title: CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells publication-title: Neuron doi: 10.1016/j.neuron.2014.05.013 – volume: 347 start-page: 154 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0225 article-title: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling publication-title: Science doi: 10.1126/science.1260960 – volume: 109 start-page: 12770 year: 2012 ident: 10.1016/j.jmb.2021.167165_b0155 article-title: Modeling human cortical development in vitro using induced pluripotent stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1202944109 – volume: 363 start-page: 126 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0040 article-title: Assembling human brain organoids publication-title: Science doi: 10.1126/science.aau5729 – year: 2021 ident: 10.1016/j.jmb.2021.167165_b0245 article-title: Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids publication-title: Adv. Mater. – volume: 8 start-page: 14 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0255 article-title: Self-organized nanostructure modified microelectrode for sensitive electrochemical glutamate detection in stem cells-derived brain organoids publication-title: Biosensors doi: 10.3390/bios8010014 – volume: 3 start-page: 1 year: 2021 ident: 10.1016/j.jmb.2021.167165_b0095 article-title: Generation of human midbrain organoids from induced pluripotent stem cells publication-title: MNI Open Res. doi: 10.12688/mniopenres.12816.2 – volume: 25 start-page: 558 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0080 article-title: Complex oscillatory waves emerging from cortical organoids model early human brain network development publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.08.002 – volume: 7 start-page: 1 year: 2011 ident: 10.1016/j.jmb.2021.167165_b0240 article-title: The development and application of optogenetics publication-title: Sci. Adv. – volume: 501 start-page: 373 year: 2013 ident: 10.1016/j.jmb.2021.167165_b0045 article-title: Cerebral organoids model human brain development and microcephaly publication-title: Nature doi: 10.1038/nature12517 – volume: 2 start-page: 94 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0015 article-title: Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review publication-title: Mol. Psych. doi: 10.1038/s41380-019-0448-7 – volume: 18 start-page: 467 year: 2016 ident: 10.1016/j.jmb.2021.167165_b0125 article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.03.003 – volume: 5 start-page: 1700731 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0215 article-title: A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells publication-title: Adv. Sci. doi: 10.1002/advs.201700731 – volume: 18 start-page: 573 year: 2017 ident: 10.1016/j.jmb.2021.167165_b0020 article-title: The use of brain organoids to investigate neural development and disease publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn.2017.107 – volume: 420 start-page: 199 year: 2016 ident: 10.1016/j.jmb.2021.167165_b0145 article-title: Dishing out mini-brains: current progress and future prospects in brain organoid research publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2016.06.037 – volume: 165 start-page: 1238 year: 2016 ident: 10.1016/j.jmb.2021.167165_b0160 article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure publication-title: Cell doi: 10.1016/j.cell.2016.04.032 – volume: 112 start-page: 15672 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0170 article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1520760112 – volume: 163 start-page: 55 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0050 article-title: Molecular identity of human outer radial glia during cortical development publication-title: Cell doi: 10.1016/j.cell.2015.09.004 – volume: 38 start-page: 1421 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0325 article-title: Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells publication-title: Nature Biotechnol. doi: 10.1038/s41587-020-00763-w – volume: 26 start-page: 143 year: 2002 ident: 10.1016/j.jmb.2021.167165_b0010 article-title: The human brain revisited opportunities and challenges in postmortem studies of psychiatric disorders publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(01)00393-1 – volume: 508 start-page: 199 year: 2014 ident: 10.1016/j.jmb.2021.167165_b0180 article-title: Transcriptional landscape of the prenatal human brain publication-title: Nature doi: 10.1038/nature13185 – volume: 36 start-page: 432 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0025 article-title: An in vivo model of functional and vascularized human brain organoids publication-title: Nature Biotechnol. doi: 10.1038/nbt.4127 – volume: 15 start-page: 2767 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0295 article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels publication-title: Lab Chip doi: 10.1039/C5LC00133A – volume: 7 start-page: 1 year: 2021 ident: 10.1016/j.jmb.2021.167165_b0235 article-title: Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids publication-title: Sci. Adv. doi: 10.1126/sciadv.abf9153 – volume: 478 start-page: 483 year: 2011 ident: 10.1016/j.jmb.2021.167165_b0175 article-title: Spatio-temporal transcriptome of the human brain publication-title: Nature doi: 10.1038/nature10523 – volume: 30 start-page: 343 year: 2007 ident: 10.1016/j.jmb.2021.167165_b0205 article-title: Role of GABAergic inhibition in hippocampal network oscillations publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.05.003 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0210 article-title: Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level publication-title: Nature Commun. doi: 10.1038/s41467-020-18620-4 – volume: 545 start-page: 48 year: 2017 ident: 10.1016/j.jmb.2021.167165_b0030 article-title: Cell diversity and network dynamics in photosensitive human brain organoids publication-title: Nature doi: 10.1038/nature22047 – volume: 361 start-page: 1 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0285 article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states publication-title: Science doi: 10.1126/science.aat5691 – volume: 13 start-page: 369 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0195 article-title: Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters publication-title: J. Tissue. Eng. Regen. Med. doi: 10.1002/term.2786 – volume: 10 start-page: 629 year: 2015 ident: 10.1016/j.jmb.2021.167165_b0260 article-title: Syringe-injectable electronics publication-title: Nature Nanotechnol. doi: 10.1038/nnano.2015.115 – volume: 13 start-page: 87 year: 2016 ident: 10.1016/j.jmb.2021.167165_b0055 article-title: Fixed single-cell transcriptomic characterization of human radial glial diversity publication-title: Nature Methods doi: 10.1038/nmeth.3629 – year: 2021 ident: 10.1016/j.jmb.2021.167165_b0280 article-title: A method for three-dimensional single-cell chronic electrophysiology from developing brain organoids publication-title: BioRxiv [Preprint] – volume: 20 start-page: 330 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0330 article-title: Novel electrode technologies for neural recordings publication-title: Nature Rev. Neurosci. doi: 10.1038/s41583-019-0140-6 – year: 2021 ident: 10.1016/j.jmb.2021.167165_b0085 article-title: Intrinsic network activity in human brain organoids publication-title: BioRxiv. [Preprint] – volume: 335 start-page: 108627 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0065 article-title: High-throughput screening of human induced pluripotent stem cell-derived brain organoids publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108627 – volume: 36 start-page: 432 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0070 article-title: An in vivo model of functional and vascularized human brain organoids publication-title: Nature Biotechnol. doi: 10.1038/nbt.4127 – volume: 13 start-page: 965 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0300 article-title: Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays publication-title: Nature Nanotechnol. doi: 10.1038/s41565-018-0222-z – volume: 13 start-page: 458 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0190 article-title: Self-organized synchronous calcium transients in a cultured human neural network derived from cerebral organoids publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2019.05.029 – volume: 117 start-page: 14769 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0265 article-title: Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution” publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2000207117 – volume: 1 start-page: 855 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0090 article-title: Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.08.017 – volume: 364 start-page: 956 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0315 article-title: Organoids by design publication-title: Science doi: 10.1126/science.aaw7567 – volume: 146 start-page: 1 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0035 article-title: Brain organoids: advances, applications and challenges publication-title: Development doi: 10.1242/dev.166074 – volume: 19 start-page: 671 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0130 article-title: Progress and potential in organoid research publication-title: Nature Rev. Genet. doi: 10.1038/s41576-018-0051-9 – volume: 42 start-page: 617 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0135 article-title: Past, present, and future of brain organoid technology publication-title: Mol. Cells – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.jmb.2021.167165_b0105 article-title: Electrophysiological analysis of brain organoids: current approaches and advancements publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.622137 – volume: 6 start-page: 36529 year: 2016 ident: 10.1016/j.jmb.2021.167165_b0200 article-title: Sustained synchronized neuronal network activity in a human astrocyte co-culture system publication-title: Sci. Rep. doi: 10.1038/srep36529 – volume: 12 start-page: 37 year: 1991 ident: 10.1016/j.jmb.2021.167165_b0140 article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey publication-title: Cereb. doi: 10.1093/cercor/12.1.37 – year: 2021 ident: 10.1016/j.jmb.2021.167165_b0290 article-title: In situ electro-sequencing in three-dimensional tissues publication-title: BioRxiv [Preprint] – volume: 14 start-page: 52 year: 2020 ident: 10.1016/j.jmb.2021.167165_b0320 article-title: Modeling traumatic brain injury with human brain organoids publication-title: Curr. Opin. Biomed. doi: 10.1016/j.cobme.2020.05.004 – volume: 358 start-page: 1027 year: 2017 ident: 10.1016/j.jmb.2021.167165_b0120 article-title: Molecular and cellular reorganization of neural circuits in the human lineage publication-title: Science doi: 10.1126/science.aan3456 – volume: 24 start-page: 982 year: 2018 ident: 10.1016/j.jmb.2021.167165_b0075 article-title: Brain organoids and the study of neurodevelopment publication-title: Trends. Mol. Med. doi: 10.1016/j.molmed.2018.09.005 – volume: 3 start-page: 58 year: 2019 ident: 10.1016/j.jmb.2021.167165_b0275 article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation publication-title: Nature Biomed. Eng. doi: 10.1038/s41551-018-0335-6 |
SSID | ssj0005348 |
Score | 2.5593617 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for... Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167165 |
SubjectTerms | bioelectronics brain Brain - physiology brain organoids Cell Culture Techniques, Three Dimensional cyborg organoids Electrophysiological Phenomena Electrophysiology flexible electronics Humans Induced Pluripotent Stem Cells molecular biology multielectrode array organoids Organoids - physiology |
Title | Emerging Bioelectronics for Brain Organoid Electrophysiology |
URI | https://dx.doi.org/10.1016/j.jmb.2021.167165 https://www.ncbi.nlm.nih.gov/pubmed/34293341 https://www.proquest.com/docview/2555110480 https://www.proquest.com/docview/2636507820 https://pubmed.ncbi.nlm.nih.gov/PMC8766612 |
Volume | 434 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QjNGLUXzVB6mJJ5NCu90-SLwggaBGTpJw2-y2S4RoIQIHL_52Z_pA0MjBa3e3aWcn832zOw-Aax0ENtPStVQYS4u7XFkKYdIKfUR_ZAx-JOlG96nnd_v8YeANStAqcmEorDK3_ZlNT611_qSeS7M-HY0ox5dOL9AAO5Rg6lHCL-cBaXntcyXMw-VhUTGcZhc3m2mM1_hNoYvInJrjo9_g_YVNv7nnzxDKFUzq7MNeTibNZva9B1DSSQW2s_aSHxXYaRXd3A7hlk6fqCGRicPfvW9mJpJW8476RJhpWuZkFJvtbDg99EhfdQT9Tvu51bXyzglWhB7H3Iq9WIVBEIe2YtLRkR5GSPyGFK8lmQrQK2Cx3VBOQ3L012KllMeHsdJUbU7r0HePoZxMEn0KJvPRNLOh04gQzXnIlM014p5GaJdKOtwAu5CZiPKy4tTd4lUU8WNjgWIWJGaRidmAm-WSaVZTY9NkXmyEWFMMgTZ_07KrYtMESppuQWSiJ4uZQB8KSSal0m-Y47vIXKmUoAEn2UYvv9RFBHcR-w0I1lRgOYEKdq-PJKOXtHA3Ig_SIXb2v186h11GWkzdaLwLKM_fF_oSGdFcVVOVr8JW8_6x2_sCZSEKHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCJULgrKVNUhwQUqbOM5SCQ5sVQuFE0i9GTtxRRGkiBYhLvwUP8hMltKC6AGJa7woGTszb-yZeQC72vctpqVjqiCSJne4MhWaSTPw0PojYvBCSTe6l1de_Yaft9zWBHzkuTAUVpnp_lSnJ9o6e1LJpFl56nQox5dOL1AB25Rg6gZZZOWFfntFv6132DjFRd5jrHZ2fVI3M2oBM0RI3jcjN1KB70eBpZi0dajbISKjNgU0SaZ8hM0ssqrKrkqODk2klHJ5O1KayrFpHXgOzjsJ0xzVBdEmlN-H4kocHuQlyun18qvUJKjs_lGhT8rssu2ho-L-Zgx_gt3vMZtDRrA2D3MZejWOUgEtwISOizCT8lm-FaFwktPHLcIBHXcRA5KBzV9kOz0DUbJxTMQURpIH2u1ExlnanJyyJFMtwc2_yHMZpuJurFfBYB7aAta2qyHCBx4wZXGNhlYjlpBK2rwEVi4zEWZ1zIlO40HkAWv3AsUsSMwiFXMJ9gdDntIiHuM683whxMhOFGhkxg3byRdNoKTp2kXGuvvSE-i0Iaql3P0xfTwHoTLVLizBSrrQgzd1EDI4CDZK4I9sgUEHqhA-2hJ37pJK4WjqEH-xtb990jYU6teXTdFsXF2swyyjHU1UOO4GTPWfX_QmwrG-2kq2vwG3__2_fQI5N0dQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Bioelectronics+for+Brain+Organoid+Electrophysiology&rft.jtitle=Journal+of+molecular+biology&rft.au=Tasnim%2C+Kazi&rft.au=Liu%2C+Jia&rft.date=2022-02-15&rft.issn=0022-2836&rft.volume=434&rft.issue=3+p.167165-&rft_id=info:doi/10.1016%2Fj.jmb.2021.167165&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |