Emerging Bioelectronics for Brain Organoid Electrophysiology

[Display omitted] •Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids.•Highlight of the need for characterizing electrophysiological pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 434; no. 3; p. 167165
Main Authors Tasnim, Kazi, Liu, Jia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids.•Highlight of the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner.•Introduction of recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement.•Introduction of the recently developed cyborg organoids platform as an emerging tool for the long-term stably 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution.•Perspectives of new technologies that could achieve the high-throughput, cell-type-specific and multimodal characterizations from the same brain organoids. Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.
AbstractList Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.
Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.
[Display omitted] •Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids.•Highlight of the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner.•Introduction of recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement.•Introduction of the recently developed cyborg organoids platform as an emerging tool for the long-term stably 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution.•Perspectives of new technologies that could achieve the high-throughput, cell-type-specific and multimodal characterizations from the same brain organoids. Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.
ArticleNumber 167165
Author Tasnim, Kazi
Liu, Jia
AuthorAffiliation 1 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
AuthorAffiliation_xml – name: 1 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Author_xml – sequence: 1
  givenname: Kazi
  surname: Tasnim
  fullname: Tasnim, Kazi
– sequence: 2
  givenname: Jia
  orcidid: 0000-0003-2217-6982
  surname: Liu
  fullname: Liu, Jia
  email: jia_liu@seas.harvard.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34293341$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLctP4ALypFLlrETO45ASLRaoFKlXujZ8sck9SqxFztbaf89WaVUwKE9-TDv82rGzxk5CTEgIe8orClQ8XG73o5mzYDRNRUNFfwVWVGQbSlFJU_ICoCxkslKnJKznLcAwKtaviGnVc3aqqrpinzejJh6H_ri0kcc0E4pBm9z0cVUXCbtQ3Gbeh2id8VmGe_uD9nHIfaHC_K600PGt4_vObn7tvl59aO8uf1-ffX1prScw1Q67oxsGifBME3RYmcph453VmpmGqhb5qA1tNU1bakzxvC6cwapgAZxvuWcfFl6d3szorMYpqQHtUt-1Omgovbq30nw96qPD0o2QgjK5oIPjwUp_tpjntTos8Vh0AHjPismKsGhkQxejnLOKYVaHqPv_17raZ8_vzsH6BKwKeacsHuKUFBHg2qrZoPqaFAtBmem-Y-xftKTj8fL_PAs-WkhcVbx4DGpbD0Gi86nWZxy0T9D_waI4LYN
CitedBy_id crossref_primary_10_1002_advs_202301828
crossref_primary_10_1016_j_bioactmat_2024_08_034
crossref_primary_10_1016_j_bios_2023_115579
crossref_primary_10_3390_brainsci11111453
crossref_primary_10_1016_j_ecoenv_2024_116516
crossref_primary_10_1186_s40486_024_00216_y
crossref_primary_10_1016_j_isci_2023_106715
crossref_primary_10_1016_j_xcrp_2022_100974
crossref_primary_10_1002_advs_202305555
crossref_primary_10_1016_j_addr_2023_114842
crossref_primary_10_1109_JMEMS_2024_3376238
crossref_primary_10_1039_D3LC00294B
crossref_primary_10_3389_fncel_2024_1478572
crossref_primary_10_1016_j_biopsych_2022_07_006
crossref_primary_10_1002_anbr_202400052
crossref_primary_10_1016_j_bios_2023_115223
crossref_primary_10_1016_j_mattod_2025_02_002
crossref_primary_10_3390_mi13101692
crossref_primary_10_1016_j_bios_2022_114750
crossref_primary_10_1063_5_0116714
crossref_primary_10_1002_smll_202306451
crossref_primary_10_1016_j_heliyon_2023_e18482
crossref_primary_10_1016_j_bioactmat_2024_08_027
crossref_primary_10_1016_j_jmb_2021_167411
crossref_primary_10_1016_j_tiv_2023_105668
crossref_primary_10_3389_fnins_2023_1171115
crossref_primary_10_3389_fncel_2024_1435619
crossref_primary_10_5483_BMBRep_2024_0077
crossref_primary_10_1021_acsami_2c17467
crossref_primary_10_1016_j_expneurol_2024_115110
crossref_primary_10_1002_adhm_202302456
crossref_primary_10_1007_s00441_022_03589_x
crossref_primary_10_4103_1673_5374_390972
crossref_primary_10_1038_s41467_022_32115_4
crossref_primary_10_1038_s41378_024_00685_6
crossref_primary_10_1039_D4NR01727G
crossref_primary_10_1016_j_coelec_2023_101270
crossref_primary_10_1016_j_mtbio_2024_100992
crossref_primary_10_3390_pharmaceutics14112301
Cites_doi 10.1021/acs.nanolett.9b02512
10.1016/j.stem.2017.07.007
10.1242/dev.143693
10.1196/annals.1308.002
10.1073/pnas.1515602112
10.1038/ncomms3181
10.1039/C9LC01148J
10.1038/nmat4427
10.1038/nmeth.4393
10.1038/nmeth.3415
10.1016/j.neuron.2017.02.014
10.1038/nrn2719
10.1016/j.neuron.2014.05.013
10.1126/science.1260960
10.1073/pnas.1202944109
10.1126/science.aau5729
10.3390/bios8010014
10.12688/mniopenres.12816.2
10.1016/j.stem.2019.08.002
10.1038/nature12517
10.1038/s41380-019-0448-7
10.1016/j.stem.2016.03.003
10.1002/advs.201700731
10.1038/nrn.2017.107
10.1016/j.ydbio.2016.06.037
10.1016/j.cell.2016.04.032
10.1073/pnas.1520760112
10.1016/j.cell.2015.09.004
10.1038/s41587-020-00763-w
10.1016/S0893-133X(01)00393-1
10.1038/nature13185
10.1038/nbt.4127
10.1039/C5LC00133A
10.1126/sciadv.abf9153
10.1038/nature10523
10.1016/j.tins.2007.05.003
10.1038/s41467-020-18620-4
10.1038/nature22047
10.1126/science.aat5691
10.1002/term.2786
10.1038/nnano.2015.115
10.1038/nmeth.3629
10.1038/s41583-019-0140-6
10.1016/j.jneumeth.2020.108627
10.1038/s41565-018-0222-z
10.1016/j.stemcr.2019.05.029
10.1073/pnas.2000207117
10.1016/j.stemcr.2020.08.017
10.1126/science.aaw7567
10.1242/dev.166074
10.1038/s41576-018-0051-9
10.3389/fnins.2020.622137
10.1038/srep36529
10.1093/cercor/12.1.37
10.1016/j.cobme.2020.05.004
10.1126/science.aan3456
10.1016/j.molmed.2018.09.005
10.1038/s41551-018-0335-6
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jmb.2021.167165
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 167165
ExternalDocumentID PMC8766612
34293341
10_1016_j_jmb_2021_167165
S0022283621003958
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: RF1 MH123948
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HLW
HMG
IH2
IHE
J1W
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSI
SSU
SSZ
T5K
TWZ
VQA
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
186
29L
3O-
AAEDT
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
K-O
MVM
NEJ
R2-
RIG
SBG
SEW
SIN
SSH
UQL
VH1
WUQ
X7M
XJT
XOL
Y6R
YYP
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-d5db877d80b2a1ecefc150f5fc8a2b70492d09b19a4191dbbb54fdbe1607ee863
IEDL.DBID .~1
ISSN 0022-2836
1089-8638
IngestDate Thu Aug 21 18:38:08 EDT 2025
Thu Jul 10 18:29:12 EDT 2025
Tue Aug 05 11:18:10 EDT 2025
Mon Jul 21 06:05:56 EDT 2025
Tue Jul 01 03:50:35 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Fri Feb 23 02:41:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords flexible electronics
brain organoids
multielectrode array
cyborg organoids
bioelectronics
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-d5db877d80b2a1ecefc150f5fc8a2b70492d09b19a4191dbbb54fdbe1607ee863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2217-6982
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8766612
PMID 34293341
PQID 2555110480
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8766612
proquest_miscellaneous_2636507820
proquest_miscellaneous_2555110480
pubmed_primary_34293341
crossref_primary_10_1016_j_jmb_2021_167165
crossref_citationtrail_10_1016_j_jmb_2021_167165
elsevier_sciencedirect_doi_10_1016_j_jmb_2021_167165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rossi, Manfrin, Lutolf (b0130) 2018; 19
Spear (b0005) 2004; 1021
Camp (b0170) 2015; 112
Kang (b0175) 2011; 478
Di Lullo (b0020) 2017; 18
Sousa (b0120) 2017; 358
Lee (b0195) 2019; 13
Quadrato (b0030) 2017; 545
Fair (b0090) 2020; 1
AlFatah Mansour (b0025) 2018; 36
Sakaguchi (b0190) 2019; 13
Nasr (b0255) 2018; 8
Müller (b0295) 2015; 15
Kuijlaars (b0200) 2016; 6
Soscia (b0100) 2020; 20
Dahl-Jensen (b0250) 2017; 144
Li (b0110) 2019; 19
Bakkum (b0305) 2013; 4
Trujillo (b0075) 2018; 24
Xu (b0225) 2015; 347
Kalmykov (b0220) 2020
Liu (b0275) 2019; 3
Mariani (b0155) 2012; 109
van de Leemput (b0165) 2014; 83
Xiang (b0185) 2017; 21
Zhang (b0230) 2015; 112
Sharf (b0085) 2021
Liu (b0265) 2020; 117
Li (b0290) 2021
Xie (b0270) 2015; 14
Durens (b0065) 2020; 335
Rakic (b0115) 2009; 10
Lewis (b0010) 2002; 26
Jgamadze (b0320) 2020; 14
Takebe, Well (b0315) 2019; 364
Park (b0235) 2021; 7
Yuan (b0210) 2020; 11
Ryu (b0245) 2021
Lancaster (b0045) 2013; 501
Kelava, Lancaster (b0145) 2016; 420
Dipalo (b0300) 2018; 13
Close (b0060) 2017; 93
Cools (b0215) 2018; 5
Pollen (b0050) 2015; 163
Wang (b0285) 2018; 361
Thomsen (b0055) 2016; 13
Mohamed (b0095) 2021; 3
Smart (b0140) 1991; 12
Qian (b0160) 2016; 165
Qian, Song, Ming (b0035) 2019; 146
Mansour (b0070) 2018; 36
Trujillo (b0080) 2019; 25
Miura (b0325) 2020; 38
Pasca (b0040) 2019; 363
Fenno (b0240) 2011; 7
Shein-Idelson (b0310) 2017; 14
Koo (b0135) 2019; 42
Giridharan (b0015) 2020; 2
Otani (b0125) 2016; 18
Pasca (b0150) 2015; 12
Liu (b0260) 2015; 10
Passaro, Stice (b0105) 2021; 14
Miller (b0180) 2014; 508
Hong (b0330) 2019; 20
Mann (b0205) 2007; 30
Le Floch (b0280) 2021
Quadrato (10.1016/j.jmb.2021.167165_b0030) 2017; 545
Smart (10.1016/j.jmb.2021.167165_b0140) 1991; 12
Kelava (10.1016/j.jmb.2021.167165_b0145) 2016; 420
Hong (10.1016/j.jmb.2021.167165_b0330) 2019; 20
Sharf (10.1016/j.jmb.2021.167165_b0085) 2021
Kang (10.1016/j.jmb.2021.167165_b0175) 2011; 478
Mohamed (10.1016/j.jmb.2021.167165_b0095) 2021; 3
Mann (10.1016/j.jmb.2021.167165_b0205) 2007; 30
Pollen (10.1016/j.jmb.2021.167165_b0050) 2015; 163
Di Lullo (10.1016/j.jmb.2021.167165_b0020) 2017; 18
Park (10.1016/j.jmb.2021.167165_b0235) 2021; 7
Koo (10.1016/j.jmb.2021.167165_b0135) 2019; 42
Pasca (10.1016/j.jmb.2021.167165_b0150) 2015; 12
AlFatah Mansour (10.1016/j.jmb.2021.167165_b0025) 2018; 36
Soscia (10.1016/j.jmb.2021.167165_b0100) 2020; 20
Liu (10.1016/j.jmb.2021.167165_b0265) 2020; 117
Jgamadze (10.1016/j.jmb.2021.167165_b0320) 2020; 14
Miura (10.1016/j.jmb.2021.167165_b0325) 2020; 38
van de Leemput (10.1016/j.jmb.2021.167165_b0165) 2014; 83
Dahl-Jensen (10.1016/j.jmb.2021.167165_b0250) 2017; 144
Kuijlaars (10.1016/j.jmb.2021.167165_b0200) 2016; 6
Pasca (10.1016/j.jmb.2021.167165_b0040) 2019; 363
Li (10.1016/j.jmb.2021.167165_b0110) 2019; 19
Qian (10.1016/j.jmb.2021.167165_b0160) 2016; 165
Liu (10.1016/j.jmb.2021.167165_b0260) 2015; 10
Rakic (10.1016/j.jmb.2021.167165_b0115) 2009; 10
Xie (10.1016/j.jmb.2021.167165_b0270) 2015; 14
Lee (10.1016/j.jmb.2021.167165_b0195) 2019; 13
Müller (10.1016/j.jmb.2021.167165_b0295) 2015; 15
Thomsen (10.1016/j.jmb.2021.167165_b0055) 2016; 13
Le Floch (10.1016/j.jmb.2021.167165_b0280) 2021
Durens (10.1016/j.jmb.2021.167165_b0065) 2020; 335
Fair (10.1016/j.jmb.2021.167165_b0090) 2020; 1
Qian (10.1016/j.jmb.2021.167165_b0035) 2019; 146
Mariani (10.1016/j.jmb.2021.167165_b0155) 2012; 109
Xiang (10.1016/j.jmb.2021.167165_b0185) 2017; 21
Sousa (10.1016/j.jmb.2021.167165_b0120) 2017; 358
Takebe (10.1016/j.jmb.2021.167165_b0315) 2019; 364
Yuan (10.1016/j.jmb.2021.167165_b0210) 2020; 11
Lancaster (10.1016/j.jmb.2021.167165_b0045) 2013; 501
Close (10.1016/j.jmb.2021.167165_b0060) 2017; 93
Mansour (10.1016/j.jmb.2021.167165_b0070) 2018; 36
Li (10.1016/j.jmb.2021.167165_b0290) 2021
Trujillo (10.1016/j.jmb.2021.167165_b0080) 2019; 25
Dipalo (10.1016/j.jmb.2021.167165_b0300) 2018; 13
Sakaguchi (10.1016/j.jmb.2021.167165_b0190) 2019; 13
Spear (10.1016/j.jmb.2021.167165_b0005) 2004; 1021
Kalmykov (10.1016/j.jmb.2021.167165_b0220) 2020
Ryu (10.1016/j.jmb.2021.167165_b0245) 2021
Otani (10.1016/j.jmb.2021.167165_b0125) 2016; 18
Miller (10.1016/j.jmb.2021.167165_b0180) 2014; 508
Xu (10.1016/j.jmb.2021.167165_b0225) 2015; 347
Nasr (10.1016/j.jmb.2021.167165_b0255) 2018; 8
Bakkum (10.1016/j.jmb.2021.167165_b0305) 2013; 4
Fenno (10.1016/j.jmb.2021.167165_b0240) 2011; 7
Shein-Idelson (10.1016/j.jmb.2021.167165_b0310) 2017; 14
Giridharan (10.1016/j.jmb.2021.167165_b0015) 2020; 2
Camp (10.1016/j.jmb.2021.167165_b0170) 2015; 112
Lewis (10.1016/j.jmb.2021.167165_b0010) 2002; 26
Cools (10.1016/j.jmb.2021.167165_b0215) 2018; 5
Liu (10.1016/j.jmb.2021.167165_b0275) 2019; 3
Zhang (10.1016/j.jmb.2021.167165_b0230) 2015; 112
Wang (10.1016/j.jmb.2021.167165_b0285) 2018; 361
Passaro (10.1016/j.jmb.2021.167165_b0105) 2021; 14
Trujillo (10.1016/j.jmb.2021.167165_b0075) 2018; 24
Rossi (10.1016/j.jmb.2021.167165_b0130) 2018; 19
References_xml – year: 2021
  ident: b0245
  article-title: Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids
  publication-title: Adv. Mater.
– volume: 13
  start-page: 369
  year: 2019
  end-page: 384
  ident: b0195
  article-title: Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters
  publication-title: J. Tissue. Eng. Regen. Med.
– volume: 93
  start-page: 1035
  year: 2017
  end-page: 1048
  ident: b0060
  article-title: Single-cell profiling of an
  publication-title: Neuron
– volume: 117
  start-page: 14769
  year: 2020
  end-page: 14778
  ident: b0265
  article-title: Intrinsically stretchable electrode array enabled
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 144
  start-page: 946
  year: 2017
  end-page: 951
  ident: b0250
  article-title: The physics of organoids: a biophysical approach to understanding organogenesis
  publication-title: Development
– volume: 38
  start-page: 1421
  year: 2020
  end-page: 1430
  ident: b0325
  article-title: Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells
  publication-title: Nature Biotechnol.
– volume: 26
  start-page: 143
  year: 2002
  end-page: 154
  ident: b0010
  article-title: The human brain revisited opportunities and challenges in postmortem studies of psychiatric disorders
  publication-title: Neuropsychopharmacology
– volume: 6
  start-page: 36529
  year: 2016
  ident: b0200
  article-title: Sustained synchronized neuronal network activity in a human astrocyte co-culture system
  publication-title: Sci. Rep.
– volume: 1
  start-page: 855
  year: 2020
  end-page: 868
  ident: b0090
  article-title: Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development
  publication-title: Stem Cell Rep.
– year: 2021
  ident: b0085
  article-title: Intrinsic network activity in human brain organoids
  publication-title: BioRxiv. [Preprint]
– volume: 10
  start-page: 629
  year: 2015
  end-page: 636
  ident: b0260
  article-title: Syringe-injectable electronics
  publication-title: Nature Nanotechnol.
– volume: 36
  start-page: 432
  year: 2018
  end-page: 441
  ident: b0025
  article-title: An
  publication-title: Nature Biotechnol.
– volume: 1021
  start-page: 23
  year: 2004
  end-page: 26
  ident: b0005
  article-title: Adolescent brain development and animal models
  publication-title: Ann. New York Acad. Sci.
– volume: 358
  start-page: 1027
  year: 2017
  end-page: 1032
  ident: b0120
  article-title: Molecular and cellular reorganization of neural circuits in the human lineage
  publication-title: Science
– volume: 420
  start-page: 199
  year: 2016
  end-page: 209
  ident: b0145
  article-title: Dishing out mini-brains: current progress and future prospects in brain organoid research
  publication-title: Dev. Biol.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 14
  ident: b0210
  article-title: Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level
  publication-title: Nature Commun.
– volume: 25
  start-page: 558
  year: 2019
  end-page: 569
  ident: b0080
  article-title: Complex oscillatory waves emerging from cortical organoids model early human brain network development
  publication-title: Cell Stem Cell
– year: 2021
  ident: b0290
  article-title: electro-sequencing in three-dimensional tissues
  publication-title: BioRxiv [Preprint]
– volume: 361
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0285
  article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states
  publication-title: Science
– volume: 19
  start-page: 5781
  year: 2019
  end-page: 5789
  ident: b0110
  article-title: Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology
  publication-title: Nano Letters
– volume: 13
  start-page: 458
  year: 2019
  end-page: 473
  ident: b0190
  article-title: Self-organized synchronous calcium transients in a cultured human neural network derived from cerebral organoids
  publication-title: Stem Cell Rep.
– volume: 12
  start-page: 37
  year: 1991
  end-page: 53
  ident: b0140
  article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
  publication-title: Cereb.
– year: 2020
  ident: b0220
  article-title: Bioelectrical interfaces with cortical spheroids in three-dimensions
  publication-title: BioRxiv [Preprint]
– volume: 109
  start-page: 12770
  year: 2012
  end-page: 12775
  ident: b0155
  article-title: Modeling human cortical development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 14
  year: 2018
  end-page: 18
  ident: b0255
  article-title: Self-organized nanostructure modified microelectrode for sensitive electrochemical glutamate detection in stem cells-derived brain organoids
  publication-title: Biosensors
– volume: 19
  start-page: 671
  year: 2018
  end-page: 687
  ident: b0130
  article-title: Progress and potential in organoid research
  publication-title: Nature Rev. Genet.
– volume: 14
  start-page: 1286
  year: 2015
  end-page: 1292
  ident: b0270
  article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes
  publication-title: Nature Mater.
– volume: 3
  start-page: 58
  year: 2019
  end-page: 68
  ident: b0275
  article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation
  publication-title: Nature Biomed. Eng.
– volume: 83
  start-page: 51
  year: 2014
  end-page: 68
  ident: b0165
  article-title: CORTECON: a temporal transcriptome analysis of
  publication-title: Neuron
– volume: 7
  start-page: 1
  year: 2011
  end-page: 9
  ident: b0240
  article-title: The development and application of optogenetics
  publication-title: Sci. Adv.
– volume: 12
  start-page: 671
  year: 2015
  end-page: 678
  ident: b0150
  article-title: “Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture
  publication-title: Nature Methods
– volume: 7
  start-page: 1
  year: 2021
  end-page: 11
  ident: b0235
  article-title: Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids
  publication-title: Sci. Adv.
– volume: 112
  start-page: 15672
  year: 2015
  end-page: 15677
  ident: b0170
  article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 165
  start-page: 1238
  year: 2016
  end-page: 1254
  ident: b0160
  article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
  publication-title: Cell
– volume: 18
  start-page: 573
  year: 2017
  end-page: 584
  ident: b0020
  article-title: The use of brain organoids to investigate neural development and disease
  publication-title: Nature Rev. Neurosci.
– volume: 3
  start-page: 1
  year: 2021
  ident: b0095
  article-title: Generation of human midbrain organoids from induced pluripotent stem cells
  publication-title: MNI Open Res.
– volume: 146
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0035
  article-title: Brain organoids: advances, applications and challenges
  publication-title: Development
– volume: 545
  start-page: 48
  year: 2017
  end-page: 53
  ident: b0030
  article-title: Cell diversity and network dynamics in photosensitive human brain organoids
  publication-title: Nature
– volume: 14
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0105
  article-title: Electrophysiological analysis of brain organoids: current approaches and advancements
  publication-title: Front. Neurosci.
– volume: 10
  start-page: 724
  year: 2009
  end-page: 735
  ident: b0115
  article-title: Evolution of the neocortex: a perspective from developmental biology
  publication-title: Nature Rev. Neurosci.
– volume: 508
  start-page: 199
  year: 2014
  end-page: 206
  ident: b0180
  article-title: Transcriptional landscape of the prenatal human brain
  publication-title: Nature
– volume: 4
  start-page: 2181
  year: 2013
  ident: b0305
  article-title: Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites
  publication-title: Nature Commun.
– volume: 335
  start-page: 108627
  year: 2020
  ident: b0065
  article-title: High-throughput screening of human induced pluripotent stem cell-derived brain organoids
  publication-title: J. Neurosci. Methods
– volume: 5
  start-page: 1700731
  year: 2018
  ident: b0215
  article-title: A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells
  publication-title: Adv. Sci.
– volume: 2
  start-page: 94
  year: 2020
  end-page: 113
  ident: b0015
  article-title: Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review
  publication-title: Mol. Psych.
– volume: 13
  start-page: 87
  year: 2016
  end-page: 93
  ident: b0055
  article-title: Fixed single-cell transcriptomic characterization of human radial glial diversity
  publication-title: Nature Methods
– volume: 20
  start-page: 901
  year: 2020
  end-page: 911
  ident: b0100
  article-title: A flexible 3-dimensional microelectrode array for
  publication-title: Lab Chip
– volume: 21
  start-page: 383
  year: 2017
  end-page: 398
  ident: b0185
  article-title: Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration
  publication-title: Cell Stem Cell
– volume: 15
  start-page: 2767
  year: 2015
  end-page: 2780
  ident: b0295
  article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels
  publication-title: Lab Chip
– volume: 20
  start-page: 330
  year: 2019
  end-page: 345
  ident: b0330
  article-title: Novel electrode technologies for neural recordings
  publication-title: Nature Rev. Neurosci.
– volume: 14
  start-page: 52
  year: 2020
  end-page: 58
  ident: b0320
  article-title: Modeling traumatic brain injury with human brain organoids
  publication-title: Curr. Opin. Biomed.
– volume: 478
  start-page: 483
  year: 2011
  end-page: 489
  ident: b0175
  article-title: Spatio-temporal transcriptome of the human brain
  publication-title: Nature
– volume: 13
  start-page: 965
  year: 2018
  end-page: 971
  ident: b0300
  article-title: Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays
  publication-title: Nature Nanotechnol.
– volume: 42
  start-page: 617
  year: 2019
  end-page: 627
  ident: b0135
  article-title: Past, present, and future of brain organoid technology
  publication-title: Mol. Cells
– volume: 163
  start-page: 55
  year: 2015
  end-page: 67
  ident: b0050
  article-title: Molecular identity of human outer radial glia during cortical development
  publication-title: Cell
– volume: 112
  start-page: 11757
  year: 2015
  end-page: 11764
  ident: b0230
  article-title: A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 501
  start-page: 373
  year: 2013
  end-page: 379
  ident: b0045
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
– volume: 18
  start-page: 467
  year: 2016
  end-page: 480
  ident: b0125
  article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size
  publication-title: Cell Stem Cell
– volume: 347
  start-page: 154
  year: 2015
  end-page: 159
  ident: b0225
  article-title: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling
  publication-title: Science
– volume: 364
  start-page: 956
  year: 2019
  end-page: 959
  ident: b0315
  article-title: Organoids by design
  publication-title: Science
– volume: 14
  start-page: 882
  year: 2017
  end-page: 890
  ident: b0310
  article-title: Large-scale mapping of cortical synaptic projections with extracellular electrode arrays
  publication-title: Nature Methods
– volume: 24
  start-page: 982
  year: 2018
  end-page: 990
  ident: b0075
  article-title: Brain organoids and the study of neurodevelopment
  publication-title: Trends. Mol. Med.
– year: 2021
  ident: b0280
  article-title: A method for three-dimensional single-cell chronic electrophysiology from developing brain organoids
  publication-title: BioRxiv [Preprint]
– volume: 36
  start-page: 432
  year: 2018
  end-page: 441
  ident: b0070
  article-title: An
  publication-title: Nature Biotechnol.
– volume: 363
  start-page: 126
  year: 2019
  end-page: 127
  ident: b0040
  article-title: Assembling human brain organoids
  publication-title: Science
– volume: 30
  start-page: 343
  year: 2007
  end-page: 349
  ident: b0205
  article-title: Role of GABAergic inhibition in hippocampal network oscillations
  publication-title: Trends Neurosci.
– volume: 19
  start-page: 5781
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0110
  article-title: Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.9b02512
– volume: 21
  start-page: 383
  year: 2017
  ident: 10.1016/j.jmb.2021.167165_b0185
  article-title: Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.07.007
– volume: 144
  start-page: 946
  year: 2017
  ident: 10.1016/j.jmb.2021.167165_b0250
  article-title: The physics of organoids: a biophysical approach to understanding organogenesis
  publication-title: Development
  doi: 10.1242/dev.143693
– volume: 1021
  start-page: 23
  year: 2004
  ident: 10.1016/j.jmb.2021.167165_b0005
  article-title: Adolescent brain development and animal models
  publication-title: Ann. New York Acad. Sci.
  doi: 10.1196/annals.1308.002
– volume: 112
  start-page: 11757
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0230
  article-title: A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1515602112
– volume: 4
  start-page: 2181
  year: 2013
  ident: 10.1016/j.jmb.2021.167165_b0305
  article-title: Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites
  publication-title: Nature Commun.
  doi: 10.1038/ncomms3181
– volume: 20
  start-page: 901
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0100
  article-title: A flexible 3-dimensional microelectrode array for in vitro brain models
  publication-title: Lab Chip
  doi: 10.1039/C9LC01148J
– year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0220
  article-title: Bioelectrical interfaces with cortical spheroids in three-dimensions
  publication-title: BioRxiv [Preprint]
– volume: 14
  start-page: 1286
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0270
  article-title: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes
  publication-title: Nature Mater.
  doi: 10.1038/nmat4427
– volume: 14
  start-page: 882
  year: 2017
  ident: 10.1016/j.jmb.2021.167165_b0310
  article-title: Large-scale mapping of cortical synaptic projections with extracellular electrode arrays
  publication-title: Nature Methods
  doi: 10.1038/nmeth.4393
– volume: 12
  start-page: 671
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0150
  article-title: “Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3415
– volume: 93
  start-page: 1035
  year: 2017
  ident: 10.1016/j.jmb.2021.167165_b0060
  article-title: Single-cell profiling of an in vitro model of human interneuron development reveals temporal dynamics of cell type production and maturation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.02.014
– volume: 10
  start-page: 724
  year: 2009
  ident: 10.1016/j.jmb.2021.167165_b0115
  article-title: Evolution of the neocortex: a perspective from developmental biology
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn2719
– volume: 83
  start-page: 51
  year: 2014
  ident: 10.1016/j.jmb.2021.167165_b0165
  article-title: CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.013
– volume: 347
  start-page: 154
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0225
  article-title: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling
  publication-title: Science
  doi: 10.1126/science.1260960
– volume: 109
  start-page: 12770
  year: 2012
  ident: 10.1016/j.jmb.2021.167165_b0155
  article-title: Modeling human cortical development in vitro using induced pluripotent stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1202944109
– volume: 363
  start-page: 126
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0040
  article-title: Assembling human brain organoids
  publication-title: Science
  doi: 10.1126/science.aau5729
– year: 2021
  ident: 10.1016/j.jmb.2021.167165_b0245
  article-title: Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids
  publication-title: Adv. Mater.
– volume: 8
  start-page: 14
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0255
  article-title: Self-organized nanostructure modified microelectrode for sensitive electrochemical glutamate detection in stem cells-derived brain organoids
  publication-title: Biosensors
  doi: 10.3390/bios8010014
– volume: 3
  start-page: 1
  year: 2021
  ident: 10.1016/j.jmb.2021.167165_b0095
  article-title: Generation of human midbrain organoids from induced pluripotent stem cells
  publication-title: MNI Open Res.
  doi: 10.12688/mniopenres.12816.2
– volume: 25
  start-page: 558
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0080
  article-title: Complex oscillatory waves emerging from cortical organoids model early human brain network development
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.08.002
– volume: 7
  start-page: 1
  year: 2011
  ident: 10.1016/j.jmb.2021.167165_b0240
  article-title: The development and application of optogenetics
  publication-title: Sci. Adv.
– volume: 501
  start-page: 373
  year: 2013
  ident: 10.1016/j.jmb.2021.167165_b0045
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
  doi: 10.1038/nature12517
– volume: 2
  start-page: 94
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0015
  article-title: Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review
  publication-title: Mol. Psych.
  doi: 10.1038/s41380-019-0448-7
– volume: 18
  start-page: 467
  year: 2016
  ident: 10.1016/j.jmb.2021.167165_b0125
  article-title: 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.03.003
– volume: 5
  start-page: 1700731
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0215
  article-title: A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700731
– volume: 18
  start-page: 573
  year: 2017
  ident: 10.1016/j.jmb.2021.167165_b0020
  article-title: The use of brain organoids to investigate neural development and disease
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn.2017.107
– volume: 420
  start-page: 199
  year: 2016
  ident: 10.1016/j.jmb.2021.167165_b0145
  article-title: Dishing out mini-brains: current progress and future prospects in brain organoid research
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2016.06.037
– volume: 165
  start-page: 1238
  year: 2016
  ident: 10.1016/j.jmb.2021.167165_b0160
  article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.032
– volume: 112
  start-page: 15672
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0170
  article-title: Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1520760112
– volume: 163
  start-page: 55
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0050
  article-title: Molecular identity of human outer radial glia during cortical development
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.004
– volume: 38
  start-page: 1421
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0325
  article-title: Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells
  publication-title: Nature Biotechnol.
  doi: 10.1038/s41587-020-00763-w
– volume: 26
  start-page: 143
  year: 2002
  ident: 10.1016/j.jmb.2021.167165_b0010
  article-title: The human brain revisited opportunities and challenges in postmortem studies of psychiatric disorders
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(01)00393-1
– volume: 508
  start-page: 199
  year: 2014
  ident: 10.1016/j.jmb.2021.167165_b0180
  article-title: Transcriptional landscape of the prenatal human brain
  publication-title: Nature
  doi: 10.1038/nature13185
– volume: 36
  start-page: 432
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0025
  article-title: An in vivo model of functional and vascularized human brain organoids
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt.4127
– volume: 15
  start-page: 2767
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0295
  article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels
  publication-title: Lab Chip
  doi: 10.1039/C5LC00133A
– volume: 7
  start-page: 1
  year: 2021
  ident: 10.1016/j.jmb.2021.167165_b0235
  article-title: Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf9153
– volume: 478
  start-page: 483
  year: 2011
  ident: 10.1016/j.jmb.2021.167165_b0175
  article-title: Spatio-temporal transcriptome of the human brain
  publication-title: Nature
  doi: 10.1038/nature10523
– volume: 30
  start-page: 343
  year: 2007
  ident: 10.1016/j.jmb.2021.167165_b0205
  article-title: Role of GABAergic inhibition in hippocampal network oscillations
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.05.003
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0210
  article-title: Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level
  publication-title: Nature Commun.
  doi: 10.1038/s41467-020-18620-4
– volume: 545
  start-page: 48
  year: 2017
  ident: 10.1016/j.jmb.2021.167165_b0030
  article-title: Cell diversity and network dynamics in photosensitive human brain organoids
  publication-title: Nature
  doi: 10.1038/nature22047
– volume: 361
  start-page: 1
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0285
  article-title: Three-dimensional intact-tissue sequencing of single-cell transcriptional states
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 13
  start-page: 369
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0195
  article-title: Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters
  publication-title: J. Tissue. Eng. Regen. Med.
  doi: 10.1002/term.2786
– volume: 10
  start-page: 629
  year: 2015
  ident: 10.1016/j.jmb.2021.167165_b0260
  article-title: Syringe-injectable electronics
  publication-title: Nature Nanotechnol.
  doi: 10.1038/nnano.2015.115
– volume: 13
  start-page: 87
  year: 2016
  ident: 10.1016/j.jmb.2021.167165_b0055
  article-title: Fixed single-cell transcriptomic characterization of human radial glial diversity
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3629
– year: 2021
  ident: 10.1016/j.jmb.2021.167165_b0280
  article-title: A method for three-dimensional single-cell chronic electrophysiology from developing brain organoids
  publication-title: BioRxiv [Preprint]
– volume: 20
  start-page: 330
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0330
  article-title: Novel electrode technologies for neural recordings
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/s41583-019-0140-6
– year: 2021
  ident: 10.1016/j.jmb.2021.167165_b0085
  article-title: Intrinsic network activity in human brain organoids
  publication-title: BioRxiv. [Preprint]
– volume: 335
  start-page: 108627
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0065
  article-title: High-throughput screening of human induced pluripotent stem cell-derived brain organoids
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108627
– volume: 36
  start-page: 432
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0070
  article-title: An in vivo model of functional and vascularized human brain organoids
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt.4127
– volume: 13
  start-page: 965
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0300
  article-title: Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays
  publication-title: Nature Nanotechnol.
  doi: 10.1038/s41565-018-0222-z
– volume: 13
  start-page: 458
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0190
  article-title: Self-organized synchronous calcium transients in a cultured human neural network derived from cerebral organoids
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2019.05.029
– volume: 117
  start-page: 14769
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0265
  article-title: Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution”
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2000207117
– volume: 1
  start-page: 855
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0090
  article-title: Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2020.08.017
– volume: 364
  start-page: 956
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0315
  article-title: Organoids by design
  publication-title: Science
  doi: 10.1126/science.aaw7567
– volume: 146
  start-page: 1
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0035
  article-title: Brain organoids: advances, applications and challenges
  publication-title: Development
  doi: 10.1242/dev.166074
– volume: 19
  start-page: 671
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0130
  article-title: Progress and potential in organoid research
  publication-title: Nature Rev. Genet.
  doi: 10.1038/s41576-018-0051-9
– volume: 42
  start-page: 617
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0135
  article-title: Past, present, and future of brain organoid technology
  publication-title: Mol. Cells
– volume: 14
  start-page: 1
  year: 2021
  ident: 10.1016/j.jmb.2021.167165_b0105
  article-title: Electrophysiological analysis of brain organoids: current approaches and advancements
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.622137
– volume: 6
  start-page: 36529
  year: 2016
  ident: 10.1016/j.jmb.2021.167165_b0200
  article-title: Sustained synchronized neuronal network activity in a human astrocyte co-culture system
  publication-title: Sci. Rep.
  doi: 10.1038/srep36529
– volume: 12
  start-page: 37
  year: 1991
  ident: 10.1016/j.jmb.2021.167165_b0140
  article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
  publication-title: Cereb.
  doi: 10.1093/cercor/12.1.37
– year: 2021
  ident: 10.1016/j.jmb.2021.167165_b0290
  article-title: In situ electro-sequencing in three-dimensional tissues
  publication-title: BioRxiv [Preprint]
– volume: 14
  start-page: 52
  year: 2020
  ident: 10.1016/j.jmb.2021.167165_b0320
  article-title: Modeling traumatic brain injury with human brain organoids
  publication-title: Curr. Opin. Biomed.
  doi: 10.1016/j.cobme.2020.05.004
– volume: 358
  start-page: 1027
  year: 2017
  ident: 10.1016/j.jmb.2021.167165_b0120
  article-title: Molecular and cellular reorganization of neural circuits in the human lineage
  publication-title: Science
  doi: 10.1126/science.aan3456
– volume: 24
  start-page: 982
  year: 2018
  ident: 10.1016/j.jmb.2021.167165_b0075
  article-title: Brain organoids and the study of neurodevelopment
  publication-title: Trends. Mol. Med.
  doi: 10.1016/j.molmed.2018.09.005
– volume: 3
  start-page: 58
  year: 2019
  ident: 10.1016/j.jmb.2021.167165_b0275
  article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation
  publication-title: Nature Biomed. Eng.
  doi: 10.1038/s41551-018-0335-6
SSID ssj0005348
Score 2.5593617
SecondaryResourceType review_article
Snippet [Display omitted] •Brief introduction of the development, generation, and applications of human brain organoids, and conventional methods used for...
Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 167165
SubjectTerms bioelectronics
brain
Brain - physiology
brain organoids
Cell Culture Techniques, Three Dimensional
cyborg organoids
Electrophysiological Phenomena
Electrophysiology
flexible electronics
Humans
Induced Pluripotent Stem Cells
molecular biology
multielectrode array
organoids
Organoids - physiology
Title Emerging Bioelectronics for Brain Organoid Electrophysiology
URI https://dx.doi.org/10.1016/j.jmb.2021.167165
https://www.ncbi.nlm.nih.gov/pubmed/34293341
https://www.proquest.com/docview/2555110480
https://www.proquest.com/docview/2636507820
https://pubmed.ncbi.nlm.nih.gov/PMC8766612
Volume 434
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QjNGLUXzVB6mJJ5NCu90-SLwggaBGTpJw2-y2S4RoIQIHL_52Z_pA0MjBa3e3aWcn832zOw-Aax0ENtPStVQYS4u7XFkKYdIKfUR_ZAx-JOlG96nnd_v8YeANStAqcmEorDK3_ZlNT611_qSeS7M-HY0ox5dOL9AAO5Rg6lHCL-cBaXntcyXMw-VhUTGcZhc3m2mM1_hNoYvInJrjo9_g_YVNv7nnzxDKFUzq7MNeTibNZva9B1DSSQW2s_aSHxXYaRXd3A7hlk6fqCGRicPfvW9mJpJW8476RJhpWuZkFJvtbDg99EhfdQT9Tvu51bXyzglWhB7H3Iq9WIVBEIe2YtLRkR5GSPyGFK8lmQrQK2Cx3VBOQ3L012KllMeHsdJUbU7r0HePoZxMEn0KJvPRNLOh04gQzXnIlM014p5GaJdKOtwAu5CZiPKy4tTd4lUU8WNjgWIWJGaRidmAm-WSaVZTY9NkXmyEWFMMgTZ_07KrYtMESppuQWSiJ4uZQB8KSSal0m-Y47vIXKmUoAEn2UYvv9RFBHcR-w0I1lRgOYEKdq-PJKOXtHA3Ig_SIXb2v186h11GWkzdaLwLKM_fF_oSGdFcVVOVr8JW8_6x2_sCZSEKHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCJULgrKVNUhwQUqbOM5SCQ5sVQuFE0i9GTtxRRGkiBYhLvwUP8hMltKC6AGJa7woGTszb-yZeQC72vctpqVjqiCSJne4MhWaSTPw0PojYvBCSTe6l1de_Yaft9zWBHzkuTAUVpnp_lSnJ9o6e1LJpFl56nQox5dOL1AB25Rg6gZZZOWFfntFv6132DjFRd5jrHZ2fVI3M2oBM0RI3jcjN1KB70eBpZi0dajbISKjNgU0SaZ8hM0ssqrKrkqODk2klHJ5O1KayrFpHXgOzjsJ0xzVBdEmlN-H4kocHuQlyun18qvUJKjs_lGhT8rssu2ho-L-Zgx_gt3vMZtDRrA2D3MZejWOUgEtwISOizCT8lm-FaFwktPHLcIBHXcRA5KBzV9kOz0DUbJxTMQURpIH2u1ExlnanJyyJFMtwc2_yHMZpuJurFfBYB7aAta2qyHCBx4wZXGNhlYjlpBK2rwEVi4zEWZ1zIlO40HkAWv3AsUsSMwiFXMJ9gdDntIiHuM683whxMhOFGhkxg3byRdNoKTp2kXGuvvSE-i0Iaql3P0xfTwHoTLVLizBSrrQgzd1EDI4CDZK4I9sgUEHqhA-2hJ37pJK4WjqEH-xtb990jYU6teXTdFsXF2swyyjHU1UOO4GTPWfX_QmwrG-2kq2vwG3__2_fQI5N0dQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Bioelectronics+for+Brain+Organoid+Electrophysiology&rft.jtitle=Journal+of+molecular+biology&rft.au=Tasnim%2C+Kazi&rft.au=Liu%2C+Jia&rft.date=2022-02-15&rft.issn=0022-2836&rft.volume=434&rft.issue=3+p.167165-&rft_id=info:doi/10.1016%2Fj.jmb.2021.167165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon