Longitudinal multiple sclerosis lesion segmentation data resource
The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple scl...
Saved in:
Published in | Data in brief Vol. 12; no. C; pp. 346 - 350 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.06.2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-3409 2352-3409 |
DOI | 10.1016/j.dib.2017.04.004 |
Cover
Abstract | The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download.11The data and evaluation website is: http://smart-stats-tools.org/lesion-challenge-2015. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data. |
---|---|
AbstractList | The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge" (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data. The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download.¹1The data and evaluation website is: http://smart-stats-tools.org/lesion-challenge-2015. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data. The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1] . In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. 1 In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data. The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download.11The data and evaluation website is: http://smart-stats-tools.org/lesion-challenge-2015. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data. The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge" (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge" (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data. |
Author | Reich, Daniel S. Cuzzocreo, Jennifer L. Carass, Aaron Roy, Snehashis Magrath, Elizabeth Pham, Dzung L. Bazin, Pierre-Louis Jog, Amod Button, Julia Crainiceanu, Ciprian M. Nguyen, James Ellingsen, Lotta M. Prince, Jerry L. Gherman, Adrian Calabresi, Peter A. |
AuthorAffiliation | a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA g Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland h Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA f Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany e Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA d Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA b Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA c CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA |
AuthorAffiliation_xml | – name: b Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA – name: g Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland – name: e Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA – name: d Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – name: a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – name: h Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA – name: c CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA – name: f Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany |
Author_xml | – sequence: 1 givenname: Aaron surname: Carass fullname: Carass, Aaron email: aaron_carass@jhu.edu organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 2 givenname: Snehashis surname: Roy fullname: Roy, Snehashis organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA – sequence: 3 givenname: Amod surname: Jog fullname: Jog, Amod organization: Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 4 givenname: Jennifer L. surname: Cuzzocreo fullname: Cuzzocreo, Jennifer L. organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – sequence: 5 givenname: Elizabeth surname: Magrath fullname: Magrath, Elizabeth organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA – sequence: 6 givenname: Adrian surname: Gherman fullname: Gherman, Adrian organization: Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 7 givenname: Julia surname: Button fullname: Button, Julia organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – sequence: 8 givenname: James surname: Nguyen fullname: Nguyen, James organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – sequence: 9 givenname: Pierre-Louis surname: Bazin fullname: Bazin, Pierre-Louis organization: Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany – sequence: 10 givenname: Peter A. surname: Calabresi fullname: Calabresi, Peter A. organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – sequence: 11 givenname: Ciprian M. surname: Crainiceanu fullname: Crainiceanu, Ciprian M. organization: Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 12 givenname: Lotta M. surname: Ellingsen fullname: Ellingsen, Lotta M. organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 13 givenname: Daniel S. surname: Reich fullname: Reich, Daniel S. organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA – sequence: 14 givenname: Jerry L. surname: Prince fullname: Prince, Jerry L. organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 15 givenname: Dzung L. surname: Pham fullname: Pham, Dzung L. organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28491937$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFv1DAQhS1UREvpD-CCcuSyYezYcSIkpKqipdJKXOBsOZPJ4pUTL3ZSiX-Pl7So5VBOtsdvPj37zWt2MoWJGHvLoeTA6w_7snddKYDrEmQJIF-wM1EpsakktCeP9qfsIqU9AHAlc1G9YqeikS1vK33GLrdh2rl56d1kfTEufnYHT0VCTzEklwpPyYWpSLQbaZrtfDz0drZFpBSWiPSGvRysT3Rxv56z79efv1192Wy_3txeXW43qBTMGySlheaDHCQfhOxEB7qrB2U1oK0Vip4j1whtp7UGbYWo6wo11lJCbdFW5-x25fbB7s0hutHGXyZYZ_4UQtwZG2eXjZuqbVoprO21Jak5NsgH5KQAB6GAeGZ9WlmHpRupx_yyaP0T6NObyf0wu3BnlOQif3UGvL8HxPBzoTSb0SUk7-1EYUkmm88hNS20_5VmlW5AV82R-u6xrb9-HuLKAr0KMIeTIg0G3ZpJdum84WCOs2H2Js-GOc6GAWlWw_yfzgf4cz0f1x7Ksd45iiahowmpd5Fwzv_unun-Dbta0SU |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2018_08_003 crossref_primary_10_3389_fnimg_2022_948235 crossref_primary_10_1016_j_compbiomed_2024_109530 crossref_primary_10_1016_j_media_2020_101747 crossref_primary_10_1016_j_mri_2018_06_009 crossref_primary_10_1007_s11517_021_02414_x crossref_primary_10_3389_fnins_2023_1177540 crossref_primary_10_3389_fnins_2024_1326108 crossref_primary_10_1038_s42256_022_00515_2 crossref_primary_10_1016_j_procs_2024_09_210 crossref_primary_10_1016_j_compbiomed_2021_104697 crossref_primary_10_1016_j_compmedimag_2022_102157 crossref_primary_10_1117_1_JMI_10_6_064001 crossref_primary_10_4103_digm_digm_1_19 crossref_primary_10_1098_rsos_241052 crossref_primary_10_14801_jkiit_2022_20_12_149 crossref_primary_10_1145_3329784 crossref_primary_10_14801_jkiit_2022_20_8_19 crossref_primary_10_1038_s41598_020_64803_w crossref_primary_10_18699_SSMJ20240111 crossref_primary_10_1016_j_compmedimag_2023_102285 crossref_primary_10_1111_jon_12506 crossref_primary_10_14801_jkiit_2021_19_11_81 crossref_primary_10_1016_j_nicl_2020_102256 crossref_primary_10_3389_fnins_2023_1176625 crossref_primary_10_1016_j_nicl_2023_103354 crossref_primary_10_1038_s41467_024_54972_x crossref_primary_10_1109_ACCESS_2023_3281832 crossref_primary_10_1007_s10462_025_11146_5 |
Cites_doi | 10.1002/hbm.22409 10.1109/ISBI.2007.356937 10.54294/lmkqvm 10.1016/j.neuroimage.2016.12.064 10.1016/j.neuroimage.2011.03.045 10.1109/TMI.2010.2046908 10.1016/S1053-8119(09)70884-5 10.1016/j.neuroimage.2011.02.076 |
ContentType | Journal Article |
Copyright | 2017 The Authors 2017 The Authors 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: 2017 The Authors 2017 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.dib.2017.04.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2352-3409 |
EndPage | 350 |
ExternalDocumentID | oai_doaj_org_article_398942aad7ae471c8c1fc1e50cf250e1 PMC5412004 28491937 10_1016_j_dib_2017_04_004 S2352340917301361 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS060910 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-ce57271f4f41f24b2b07b6f5a70ca65c2d1c17c09b77707a22663c7c64406aca3 |
IEDL.DBID | M48 |
ISSN | 2352-3409 |
IngestDate | Wed Aug 27 01:28:37 EDT 2025 Thu Aug 21 14:01:01 EDT 2025 Fri Sep 05 13:29:24 EDT 2025 Thu Sep 04 17:44:15 EDT 2025 Thu Jan 02 23:08:24 EST 2025 Tue Jul 01 04:20:18 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Tue May 16 22:14:31 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Magnetic resonance imaging Multiple sclerosis |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-ce57271f4f41f24b2b07b6f5a70ca65c2d1c17c09b77707a22663c7c64406aca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.dib.2017.04.004 |
PMID | 28491937 |
PQID | 1897807384 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_398942aad7ae471c8c1fc1e50cf250e1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5412004 proquest_miscellaneous_2661018909 proquest_miscellaneous_1897807384 pubmed_primary_28491937 crossref_citationtrail_10_1016_j_dib_2017_04_004 crossref_primary_10_1016_j_dib_2017_04_004 elsevier_sciencedirect_doi_10_1016_j_dib_2017_04_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Data in brief |
PublicationTitleAlternate | Data Brief |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | A. Carass, M.B. Wheeler, J. Cuzzocreo, P.-L. Bazin, S.S. Bassett, J.L. Prince, A joint registration and segmentation approach to skull stripping, in: Proceedings of the 4th International Symposium on Biomedical Imaging, ISBI 2007, IEEE, 2007, pp. 656–659. Fonov, Evans, McKinstry, Almli, Collins (bib6) 2009; 47 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib2) 2010; 29 Shiee, Bazin, Cuzzocreo, Ye, Kishore, Carass, Calabresi, Reich, Prince, Pham (bib5) 2014; 35 Carass, Cuzzocreo, Wheeler, Bazin, Resnick, Prince. (bib4) 2010; 56 Reuter, Fischl (bib7) 2011; 57 Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman, But- ton, Nguyen, Prados, Sudre, Cawley, Cardoso, Cic- carelli, Wheeler-Kingshott, Catanese, Ourselin, Deshpande, Maurel, Commowick, Barillot, Tomas-Fernandez, Vaidya, Muthuganapathy, Chunduru, Krishnamurthi, Arbel, Handels, Maier, Iheme, Unay, Jain, Sima, Ghafoorian, Smeets, Platel, Birenbaum, Greenspan, Cal- abresi, Bazin, Crainiceanu, Ellingsen, Reich, Prince, Pham (bib1) 2017, 148(c), 2017 M. Styner, J. Lee, B. Chin, M.S. Chin, O. Commowick, H.-H. Tran, S. Markovic-Plese, V. Jewells, S. Warfield, 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation, in: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2008, 2008, pp. 1–6. 10.1016/j.dib.2017.04.004_bib3 Shiee (10.1016/j.dib.2017.04.004_bib5) 2014; 35 Fonov (10.1016/j.dib.2017.04.004_bib6) 2009; 47 Reuter (10.1016/j.dib.2017.04.004_bib7) 2011; 57 Tustison (10.1016/j.dib.2017.04.004_bib2) 2010; 29 Carass (10.1016/j.dib.2017.04.004_bib1) 2017 Carass (10.1016/j.dib.2017.04.004_bib4) 2010; 56 10.1016/j.dib.2017.04.004_bib8 21376812 - Neuroimage. 2011 Jul 1;57(1):19-21 24382742 - Hum Brain Mapp. 2014 Jul;35(7):3385-401 28087490 - Neuroimage. 2017 Mar 1;148:77-102 21458576 - Neuroimage. 2011 Jun 15;56(4):1982-92 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 |
References_xml | – reference: A. Carass, M.B. Wheeler, J. Cuzzocreo, P.-L. Bazin, S.S. Bassett, J.L. Prince, A joint registration and segmentation approach to skull stripping, in: Proceedings of the 4th International Symposium on Biomedical Imaging, ISBI 2007, IEEE, 2007, pp. 656–659. – reference: M. Styner, J. Lee, B. Chin, M.S. Chin, O. Commowick, H.-H. Tran, S. Markovic-Plese, V. Jewells, S. Warfield, 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation, in: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2008, 2008, pp. 1–6. – start-page: 77 year: 2017, 148(c), 2017 end-page: 102 ident: bib1 article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge publication-title: NeuroImage – volume: 35 start-page: 3385 year: 2014 end-page: 3401 ident: bib5 article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation publication-title: Hum. Brain Mapp. – volume: 57 start-page: 19 year: 2011 end-page: 21 ident: bib7 article-title: Avoiding asymmetry-induced bias in longitudinal. Image processing publication-title: NeuroImage – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib2 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imag. – volume: 56 start-page: 1982 year: 2010 end-page: 1992 ident: bib4 article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis publication-title: NeuroImage – volume: 47 start-page: S102 year: 2009 ident: bib6 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: NeuroImage – volume: 35 start-page: 3385 issue: 7 year: 2014 ident: 10.1016/j.dib.2017.04.004_bib5 article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22409 – ident: 10.1016/j.dib.2017.04.004_bib3 doi: 10.1109/ISBI.2007.356937 – ident: 10.1016/j.dib.2017.04.004_bib8 doi: 10.54294/lmkqvm – start-page: 77 year: 2017 ident: 10.1016/j.dib.2017.04.004_bib1 article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.12.064 – volume: 56 start-page: 1982 issue: 4 year: 2010 ident: 10.1016/j.dib.2017.04.004_bib4 article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.045 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.dib.2017.04.004_bib2 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2010.2046908 – volume: 47 start-page: S102 issue: S1 year: 2009 ident: 10.1016/j.dib.2017.04.004_bib6 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: NeuroImage doi: 10.1016/S1053-8119(09)70884-5 – volume: 57 start-page: 19 issue: 1 year: 2011 ident: 10.1016/j.dib.2017.04.004_bib7 article-title: Avoiding asymmetry-induced bias in longitudinal. Image processing publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.076 – reference: 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 – reference: 21376812 - Neuroimage. 2011 Jul 1;57(1):19-21 – reference: 21458576 - Neuroimage. 2011 Jun 15;56(4):1982-92 – reference: 24382742 - Hum Brain Mapp. 2014 Jul;35(7):3385-401 – reference: 28087490 - Neuroimage. 2017 Mar 1;148:77-102 |
SSID | ssj0001542355 |
Score | 2.2038348 |
Snippet | The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge”... The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge"... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 346 |
SubjectTerms | automation Data humans Internet Magnetic resonance imaging Multiple sclerosis sclerosis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQJy6otLRNKZUrcSiVotqJHTvHBYEQAk4gcbNsx2lT0Sza7P4_M4mz2hRpe-kpUjJO4vHY82yP3xByAhi8dOCmU1dqmYrcyVRXVZnWMoRgLQdQgEsDt3fF1YO4fpSPG6m-MCZsoAceFPcjR4bwzNpK2QADqdee154HyXwN3jv0Ex9Wso3J1HA-GL7fpzyFS5bmMIsZtzT74K6qcRjWpXqa05ikbXRKPXf_xDe9xp5_h1Bu-KTLN2Q_gkk6GypxQHZC-5YcxO7a0W-RU_r0HZndzDEx0arCJFh0jCKkHRSDP2o6-hRw2Yx24eefeBqppRg9Shdxff-QPFxe3J9fpTF7Quph1rFMfZCATXgtasHrTLjMMeWKWlrFvC2kzyruufKsdEoppizgsCL3ygNAYoX1Nn9Pdtt5Gz4SiqmFVMiUC1ojoZrTwjpAltpWRV6pMiFsVJ_xkVocM1w8mTGG7LcBjRvUuGHCgMYT8n1d5Hng1dgmfIZtshZESuz-BhiKiYZi_mUoCRFji5qILgbUAK9qtn3769j6BnoebqfYNsxXneEa2ZtUrrfIIPxhIMhARx8Gi1nXAoBBCfBZJURNbGlSzemTtvnVM4BLwXF0-_Q_9HJE9rC6Q_jbZ7K7XKzCMQCtpfvS96kXu8YkEg priority: 102 providerName: Directory of Open Access Journals |
Title | Longitudinal multiple sclerosis lesion segmentation data resource |
URI | https://dx.doi.org/10.1016/j.dib.2017.04.004 https://www.ncbi.nlm.nih.gov/pubmed/28491937 https://www.proquest.com/docview/1897807384 https://www.proquest.com/docview/2661018909 https://pubmed.ncbi.nlm.nih.gov/PMC5412004 https://doaj.org/article/398942aad7ae471c8c1fc1e50cf250e1 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq9sIFUZ7LY2UkDoAUZCd27ByqakFUFaUcECt6s2zHaRct2XazK9F_35nEWQhUK3GKkjiJM_ZkvhlPviHkFWDwwoGZTlyhZSIyJxNdlkVSyRCCtRxAAYYGTr_kx1Px6Uye7ZC-vFUUYHOra4f1pKbL-btfV9eHoPAHv3O1SnD7wZKplrUU2UH3wDDl6IudRrTf_TQMnWrroMImTTJwbfp1ztvuMrBULaH_wGD9C0j_zqv8w1Ad3SN3I8Kkk25K7JOdUN8n-1GHG_o6Ek2_eUAmnxdYrWhdYmUs2qcW0gYugx7NGjoPGEujTTj_GX9RqimmlNJlDPo_JNOjj98-HCexpELiwRVZJT5IACy8EpXgVSpc6phyeSWtYt7m0qcl91x5VjilFFMWwFmeeeUBNbHceps9Irv1og5PCMV6QyqkygWtkWXNaWEdwE1tyzwrVTEirBef8ZFvHMtezE2fWPbDgMQNStwwYUDiI_J2c8llR7axrfF7HJNNQ-TJbg8slucmqp3JkF8-tbZUNoAZ9trzyvMgma8A-wU-IqIfURMhRwcl4Fazbc9-2Y--AXXENRZbh8W6MVwjpZPK9JY2iIkYNGQgo8fdjNm8BaCFAjC1GhE1mEuD1xyeqWcXLS24FBw_eU__R4jPyB3c63LfnpPd1XIdXgDKWrkx2ZucfP1-Mm6jFONWk24AHGElbw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+multiple+sclerosis+lesion+segmentation+data+resource&rft.jtitle=Data+in+brief&rft.au=Carass%2C+Aaron&rft.au=Roy%2C+Snehashis&rft.au=Jog%2C+Amod&rft.au=Cuzzocreo%2C+Jennifer+L.&rft.date=2017-06-01&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=12&rft.spage=346&rft.epage=350&rft_id=info:doi/10.1016%2Fj.dib.2017.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dib_2017_04_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon |