Longitudinal multiple sclerosis lesion segmentation data resource

The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple scl...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 12; no. C; pp. 346 - 350
Main Authors Carass, Aaron, Roy, Snehashis, Jog, Amod, Cuzzocreo, Jennifer L., Magrath, Elizabeth, Gherman, Adrian, Button, Julia, Nguyen, James, Bazin, Pierre-Louis, Calabresi, Peter A., Crainiceanu, Ciprian M., Ellingsen, Lotta M., Reich, Daniel S., Prince, Jerry L., Pham, Dzung L.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.06.2017
Elsevier
Subjects
Online AccessGet full text
ISSN2352-3409
2352-3409
DOI10.1016/j.dib.2017.04.004

Cover

Abstract The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download.11The data and evaluation website is: http://smart-stats-tools.org/lesion-challenge-2015. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.
AbstractList The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge" (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.
The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download.¹1The data and evaluation website is: http://smart-stats-tools.org/lesion-challenge-2015. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.
The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1] . In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. 1 In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.
The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge” (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download.11The data and evaluation website is: http://smart-stats-tools.org/lesion-challenge-2015. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.
The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge" (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge" (Carass et al., 2017) [1]. In conjunction with the 2015 International Symposium on Biomedical Imaging, we organized a longitudinal multiple sclerosis (MS) lesion segmentation challenge providing training and test data to registered participants. The training data consists of five subjects with a mean of 4.4 (±0.55) time-points, and test data of fourteen subjects with a mean of 4.4 (±0.67) time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. The training data including multi-modal scans and manually delineated lesion masks is available for download. In addition, the testing data is also being made available in conjunction with a website for evaluating the automated analysis of the testing data.
Author Reich, Daniel S.
Cuzzocreo, Jennifer L.
Carass, Aaron
Roy, Snehashis
Magrath, Elizabeth
Pham, Dzung L.
Bazin, Pierre-Louis
Jog, Amod
Button, Julia
Crainiceanu, Ciprian M.
Nguyen, James
Ellingsen, Lotta M.
Prince, Jerry L.
Gherman, Adrian
Calabresi, Peter A.
AuthorAffiliation a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
g Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
h Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
f Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
e Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
d Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
b Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
c CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
AuthorAffiliation_xml – name: b Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: g Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
– name: e Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
– name: d Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– name: a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: h Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
– name: c CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
– name: f Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
Author_xml – sequence: 1
  givenname: Aaron
  surname: Carass
  fullname: Carass, Aaron
  email: aaron_carass@jhu.edu
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 2
  givenname: Snehashis
  surname: Roy
  fullname: Roy, Snehashis
  organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Amod
  surname: Jog
  fullname: Jog, Amod
  organization: Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 4
  givenname: Jennifer L.
  surname: Cuzzocreo
  fullname: Cuzzocreo, Jennifer L.
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 5
  givenname: Elizabeth
  surname: Magrath
  fullname: Magrath, Elizabeth
  organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Adrian
  surname: Gherman
  fullname: Gherman, Adrian
  organization: Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
– sequence: 7
  givenname: Julia
  surname: Button
  fullname: Button, Julia
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 8
  givenname: James
  surname: Nguyen
  fullname: Nguyen, James
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 9
  givenname: Pierre-Louis
  surname: Bazin
  fullname: Bazin, Pierre-Louis
  organization: Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
– sequence: 10
  givenname: Peter A.
  surname: Calabresi
  fullname: Calabresi, Peter A.
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 11
  givenname: Ciprian M.
  surname: Crainiceanu
  fullname: Crainiceanu, Ciprian M.
  organization: Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
– sequence: 12
  givenname: Lotta M.
  surname: Ellingsen
  fullname: Ellingsen, Lotta M.
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 13
  givenname: Daniel S.
  surname: Reich
  fullname: Reich, Daniel S.
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 14
  givenname: Jerry L.
  surname: Prince
  fullname: Prince, Jerry L.
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 15
  givenname: Dzung L.
  surname: Pham
  fullname: Pham, Dzung L.
  organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28491937$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv1DAQhS1UREvpD-CCcuSyYezYcSIkpKqipdJKXOBsOZPJ4pUTL3ZSiX-Pl7So5VBOtsdvPj37zWt2MoWJGHvLoeTA6w_7snddKYDrEmQJIF-wM1EpsakktCeP9qfsIqU9AHAlc1G9YqeikS1vK33GLrdh2rl56d1kfTEufnYHT0VCTzEklwpPyYWpSLQbaZrtfDz0drZFpBSWiPSGvRysT3Rxv56z79efv1192Wy_3txeXW43qBTMGySlheaDHCQfhOxEB7qrB2U1oK0Vip4j1whtp7UGbYWo6wo11lJCbdFW5-x25fbB7s0hutHGXyZYZ_4UQtwZG2eXjZuqbVoprO21Jak5NsgH5KQAB6GAeGZ9WlmHpRupx_yyaP0T6NObyf0wu3BnlOQif3UGvL8HxPBzoTSb0SUk7-1EYUkmm88hNS20_5VmlW5AV82R-u6xrb9-HuLKAr0KMIeTIg0G3ZpJdum84WCOs2H2Js-GOc6GAWlWw_yfzgf4cz0f1x7Ksd45iiahowmpd5Fwzv_unun-Dbta0SU
CitedBy_id crossref_primary_10_1016_j_neuroimage_2018_08_003
crossref_primary_10_3389_fnimg_2022_948235
crossref_primary_10_1016_j_compbiomed_2024_109530
crossref_primary_10_1016_j_media_2020_101747
crossref_primary_10_1016_j_mri_2018_06_009
crossref_primary_10_1007_s11517_021_02414_x
crossref_primary_10_3389_fnins_2023_1177540
crossref_primary_10_3389_fnins_2024_1326108
crossref_primary_10_1038_s42256_022_00515_2
crossref_primary_10_1016_j_procs_2024_09_210
crossref_primary_10_1016_j_compbiomed_2021_104697
crossref_primary_10_1016_j_compmedimag_2022_102157
crossref_primary_10_1117_1_JMI_10_6_064001
crossref_primary_10_4103_digm_digm_1_19
crossref_primary_10_1098_rsos_241052
crossref_primary_10_14801_jkiit_2022_20_12_149
crossref_primary_10_1145_3329784
crossref_primary_10_14801_jkiit_2022_20_8_19
crossref_primary_10_1038_s41598_020_64803_w
crossref_primary_10_18699_SSMJ20240111
crossref_primary_10_1016_j_compmedimag_2023_102285
crossref_primary_10_1111_jon_12506
crossref_primary_10_14801_jkiit_2021_19_11_81
crossref_primary_10_1016_j_nicl_2020_102256
crossref_primary_10_3389_fnins_2023_1176625
crossref_primary_10_1016_j_nicl_2023_103354
crossref_primary_10_1038_s41467_024_54972_x
crossref_primary_10_1109_ACCESS_2023_3281832
crossref_primary_10_1007_s10462_025_11146_5
Cites_doi 10.1002/hbm.22409
10.1109/ISBI.2007.356937
10.54294/lmkqvm
10.1016/j.neuroimage.2016.12.064
10.1016/j.neuroimage.2011.03.045
10.1109/TMI.2010.2046908
10.1016/S1053-8119(09)70884-5
10.1016/j.neuroimage.2011.02.076
ContentType Journal Article
Copyright 2017 The Authors
2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors
– notice: 2017 The Authors 2017
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.dib.2017.04.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2352-3409
EndPage 350
ExternalDocumentID oai_doaj_org_article_398942aad7ae471c8c1fc1e50cf250e1
PMC5412004
28491937
10_1016_j_dib_2017_04_004
S2352340917301361
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS060910
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-ce57271f4f41f24b2b07b6f5a70ca65c2d1c17c09b77707a22663c7c64406aca3
IEDL.DBID M48
ISSN 2352-3409
IngestDate Wed Aug 27 01:28:37 EDT 2025
Thu Aug 21 14:01:01 EDT 2025
Fri Sep 05 13:29:24 EDT 2025
Thu Sep 04 17:44:15 EDT 2025
Thu Jan 02 23:08:24 EST 2025
Tue Jul 01 04:20:18 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Tue May 16 22:14:31 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Magnetic resonance imaging
Multiple sclerosis
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-ce57271f4f41f24b2b07b6f5a70ca65c2d1c17c09b77707a22663c7c64406aca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.dib.2017.04.004
PMID 28491937
PQID 1897807384
PQPubID 23479
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_398942aad7ae471c8c1fc1e50cf250e1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5412004
proquest_miscellaneous_2661018909
proquest_miscellaneous_1897807384
pubmed_primary_28491937
crossref_citationtrail_10_1016_j_dib_2017_04_004
crossref_primary_10_1016_j_dib_2017_04_004
elsevier_sciencedirect_doi_10_1016_j_dib_2017_04_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Data in brief
PublicationTitleAlternate Data Brief
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References A. Carass, M.B. Wheeler, J. Cuzzocreo, P.-L. Bazin, S.S. Bassett, J.L. Prince, A joint registration and segmentation approach to skull stripping, in: Proceedings of the 4th International Symposium on Biomedical Imaging, ISBI 2007, IEEE, 2007, pp. 656–659.
Fonov, Evans, McKinstry, Almli, Collins (bib6) 2009; 47
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib2) 2010; 29
Shiee, Bazin, Cuzzocreo, Ye, Kishore, Carass, Calabresi, Reich, Prince, Pham (bib5) 2014; 35
Carass, Cuzzocreo, Wheeler, Bazin, Resnick, Prince. (bib4) 2010; 56
Reuter, Fischl (bib7) 2011; 57
Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman, But- ton, Nguyen, Prados, Sudre, Cawley, Cardoso, Cic- carelli, Wheeler-Kingshott, Catanese, Ourselin, Deshpande, Maurel, Commowick, Barillot, Tomas-Fernandez, Vaidya, Muthuganapathy, Chunduru, Krishnamurthi, Arbel, Handels, Maier, Iheme, Unay, Jain, Sima, Ghafoorian, Smeets, Platel, Birenbaum, Greenspan, Cal- abresi, Bazin, Crainiceanu, Ellingsen, Reich, Prince, Pham (bib1) 2017, 148(c), 2017
M. Styner, J. Lee, B. Chin, M.S. Chin, O. Commowick, H.-H. Tran, S. Markovic-Plese, V. Jewells, S. Warfield, 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation, in: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2008, 2008, pp. 1–6.
10.1016/j.dib.2017.04.004_bib3
Shiee (10.1016/j.dib.2017.04.004_bib5) 2014; 35
Fonov (10.1016/j.dib.2017.04.004_bib6) 2009; 47
Reuter (10.1016/j.dib.2017.04.004_bib7) 2011; 57
Tustison (10.1016/j.dib.2017.04.004_bib2) 2010; 29
Carass (10.1016/j.dib.2017.04.004_bib1) 2017
Carass (10.1016/j.dib.2017.04.004_bib4) 2010; 56
10.1016/j.dib.2017.04.004_bib8
21376812 - Neuroimage. 2011 Jul 1;57(1):19-21
24382742 - Hum Brain Mapp. 2014 Jul;35(7):3385-401
28087490 - Neuroimage. 2017 Mar 1;148:77-102
21458576 - Neuroimage. 2011 Jun 15;56(4):1982-92
20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
References_xml – reference: A. Carass, M.B. Wheeler, J. Cuzzocreo, P.-L. Bazin, S.S. Bassett, J.L. Prince, A joint registration and segmentation approach to skull stripping, in: Proceedings of the 4th International Symposium on Biomedical Imaging, ISBI 2007, IEEE, 2007, pp. 656–659.
– reference: M. Styner, J. Lee, B. Chin, M.S. Chin, O. Commowick, H.-H. Tran, S. Markovic-Plese, V. Jewells, S. Warfield, 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation, in: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2008, 2008, pp. 1–6.
– start-page: 77
  year: 2017, 148(c), 2017
  end-page: 102
  ident: bib1
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge
  publication-title: NeuroImage
– volume: 35
  start-page: 3385
  year: 2014
  end-page: 3401
  ident: bib5
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation
  publication-title: Hum. Brain Mapp.
– volume: 57
  start-page: 19
  year: 2011
  end-page: 21
  ident: bib7
  article-title: Avoiding asymmetry-induced bias in longitudinal. Image processing
  publication-title: NeuroImage
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib2
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imag.
– volume: 56
  start-page: 1982
  year: 2010
  end-page: 1992
  ident: bib4
  article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis
  publication-title: NeuroImage
– volume: 47
  start-page: S102
  year: 2009
  ident: bib6
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: NeuroImage
– volume: 35
  start-page: 3385
  issue: 7
  year: 2014
  ident: 10.1016/j.dib.2017.04.004_bib5
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22409
– ident: 10.1016/j.dib.2017.04.004_bib3
  doi: 10.1109/ISBI.2007.356937
– ident: 10.1016/j.dib.2017.04.004_bib8
  doi: 10.54294/lmkqvm
– start-page: 77
  year: 2017
  ident: 10.1016/j.dib.2017.04.004_bib1
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.064
– volume: 56
  start-page: 1982
  issue: 4
  year: 2010
  ident: 10.1016/j.dib.2017.04.004_bib4
  article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.045
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.dib.2017.04.004_bib2
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2046908
– volume: 47
  start-page: S102
  issue: S1
  year: 2009
  ident: 10.1016/j.dib.2017.04.004_bib6
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)70884-5
– volume: 57
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.dib.2017.04.004_bib7
  article-title: Avoiding asymmetry-induced bias in longitudinal. Image processing
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.076
– reference: 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
– reference: 21376812 - Neuroimage. 2011 Jul 1;57(1):19-21
– reference: 21458576 - Neuroimage. 2011 Jun 15;56(4):1982-92
– reference: 24382742 - Hum Brain Mapp. 2014 Jul;35(7):3385-401
– reference: 28087490 - Neuroimage. 2017 Mar 1;148:77-102
SSID ssj0001542355
Score 2.2038348
Snippet The data presented in this article is related to the research article entitled “Longitudinal multiple sclerosis lesion segmentation: Resource and challenge”...
The data presented in this article is related to the research article entitled "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge"...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 346
SubjectTerms automation
Data
humans
Internet
Magnetic resonance imaging
Multiple sclerosis
sclerosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQJy6otLRNKZUrcSiVotqJHTvHBYEQAk4gcbNsx2lT0Sza7P4_M4mz2hRpe-kpUjJO4vHY82yP3xByAhi8dOCmU1dqmYrcyVRXVZnWMoRgLQdQgEsDt3fF1YO4fpSPG6m-MCZsoAceFPcjR4bwzNpK2QADqdee154HyXwN3jv0Ex9Wso3J1HA-GL7fpzyFS5bmMIsZtzT74K6qcRjWpXqa05ikbXRKPXf_xDe9xp5_h1Bu-KTLN2Q_gkk6GypxQHZC-5YcxO7a0W-RU_r0HZndzDEx0arCJFh0jCKkHRSDP2o6-hRw2Yx24eefeBqppRg9Shdxff-QPFxe3J9fpTF7Quph1rFMfZCATXgtasHrTLjMMeWKWlrFvC2kzyruufKsdEoppizgsCL3ygNAYoX1Nn9Pdtt5Gz4SiqmFVMiUC1ojoZrTwjpAltpWRV6pMiFsVJ_xkVocM1w8mTGG7LcBjRvUuGHCgMYT8n1d5Hng1dgmfIZtshZESuz-BhiKiYZi_mUoCRFji5qILgbUAK9qtn3769j6BnoebqfYNsxXneEa2ZtUrrfIIPxhIMhARx8Gi1nXAoBBCfBZJURNbGlSzemTtvnVM4BLwXF0-_Q_9HJE9rC6Q_jbZ7K7XKzCMQCtpfvS96kXu8YkEg
  priority: 102
  providerName: Directory of Open Access Journals
Title Longitudinal multiple sclerosis lesion segmentation data resource
URI https://dx.doi.org/10.1016/j.dib.2017.04.004
https://www.ncbi.nlm.nih.gov/pubmed/28491937
https://www.proquest.com/docview/1897807384
https://www.proquest.com/docview/2661018909
https://pubmed.ncbi.nlm.nih.gov/PMC5412004
https://doaj.org/article/398942aad7ae471c8c1fc1e50cf250e1
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq9sIFUZ7LY2UkDoAUZCd27ByqakFUFaUcECt6s2zHaRct2XazK9F_35nEWQhUK3GKkjiJM_ZkvhlPviHkFWDwwoGZTlyhZSIyJxNdlkVSyRCCtRxAAYYGTr_kx1Px6Uye7ZC-vFUUYHOra4f1pKbL-btfV9eHoPAHv3O1SnD7wZKplrUU2UH3wDDl6IudRrTf_TQMnWrroMImTTJwbfp1ztvuMrBULaH_wGD9C0j_zqv8w1Ad3SN3I8Kkk25K7JOdUN8n-1GHG_o6Ek2_eUAmnxdYrWhdYmUs2qcW0gYugx7NGjoPGEujTTj_GX9RqimmlNJlDPo_JNOjj98-HCexpELiwRVZJT5IACy8EpXgVSpc6phyeSWtYt7m0qcl91x5VjilFFMWwFmeeeUBNbHceps9Irv1og5PCMV6QyqkygWtkWXNaWEdwE1tyzwrVTEirBef8ZFvHMtezE2fWPbDgMQNStwwYUDiI_J2c8llR7axrfF7HJNNQ-TJbg8slucmqp3JkF8-tbZUNoAZ9trzyvMgma8A-wU-IqIfURMhRwcl4Fazbc9-2Y--AXXENRZbh8W6MVwjpZPK9JY2iIkYNGQgo8fdjNm8BaCFAjC1GhE1mEuD1xyeqWcXLS24FBw_eU__R4jPyB3c63LfnpPd1XIdXgDKWrkx2ZucfP1-Mm6jFONWk24AHGElbw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+multiple+sclerosis+lesion+segmentation+data+resource&rft.jtitle=Data+in+brief&rft.au=Carass%2C+Aaron&rft.au=Roy%2C+Snehashis&rft.au=Jog%2C+Amod&rft.au=Cuzzocreo%2C+Jennifer+L.&rft.date=2017-06-01&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=12&rft.spage=346&rft.epage=350&rft_id=info:doi/10.1016%2Fj.dib.2017.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dib_2017_04_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon