Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development
Aims All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic compone...
Saved in:
Published in | Plant and soil Vol. 368; no. 1/2; pp. 215 - 230 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer
01.07.2013
Springer Netherlands Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid- and gas-phase hydraulic conductance. Methods To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy). Results Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry. Conclusions Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed. |
---|---|
AbstractList | Aims
All components of the soil-plant-atmosphere (s-p-a)
continuum
are known to control berry quality in grapevine (
Vitis vinifera
L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid- and gas-phase hydraulic conductance.
Methods
To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy).
Results
Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry.
Conclusions
Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed. AIMS: All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid- and gas-phase hydraulic conductance. METHODS: To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy). RESULTS: Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry. CONCLUSIONS: Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed. Aims All components of the soil-plant-atmosphere (sp-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid and gas-phase hydraulic conductance. Methods To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy). Results Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry. Conclusions Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed. Keywords Cabernet franc. Grapevine. Hydraulic architecture. Merlot. Soil type. Water deficit Issue Title: Magnesium in Crop Production, Food Quality and Human Health All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid- and gas-phase hydraulic conductance. To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy). Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry. Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed.[PUBLICATION ABSTRACT] |
Audience | Academic |
Author | van Leeuwen, Cornelis Mosbach-Schulz, Olaf Vitali, Marco Tramontini, Sara Destrac-Irvine, Agnès Lovisolo, Claudio Domec, Jean-Christophe Basteau, Cyril |
Author_xml | – sequence: 1 givenname: Sara surname: Tramontini fullname: Tramontini, Sara – sequence: 2 givenname: Cornelis surname: van Leeuwen fullname: van Leeuwen, Cornelis – sequence: 3 givenname: Jean-Christophe surname: Domec fullname: Domec, Jean-Christophe – sequence: 4 givenname: Agnès surname: Destrac-Irvine fullname: Destrac-Irvine, Agnès – sequence: 5 givenname: Cyril surname: Basteau fullname: Basteau, Cyril – sequence: 6 givenname: Marco surname: Vitali fullname: Vitali, Marco – sequence: 7 givenname: Olaf surname: Mosbach-Schulz fullname: Mosbach-Schulz, Olaf – sequence: 8 givenname: Claudio surname: Lovisolo fullname: Lovisolo, Claudio |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584096$$DView record in Pascal Francis https://hal.inrae.fr/hal-02646540$$DView record in HAL |
BookMark | eNqFkkGL1DAUx4us4OzqB_AgBETQQ9ckbZLmuCzqLgx4UfAW3qTpTMZMUpPMOPPtTbfrIntYaaHk8fu98O9759WZD95U1WuCLwnG4mMihOC2xoTWhGFRH59VC8JEUzPc8LNqgXFDayzkjxfVeUpbPJ0JX1Q_b3cj6IzCgFKwDmVzzPtoEPge_YZsIoIDWAcr62w-oeBR3hi0OfUR9s5qpIPPMbjJHx34fCeuI4ymXpkYT6g3B-PCuDM-v6yeD-CSeXX_vai-f_707fqmXn79cnt9taw1YzjX2jRiRQkAXw1YcD70nRBCEwktIQz6VYtZy2gvNEhZIkLHKcOm5JGy6TvSXFQf5r4bcGqMdgfxpAJYdXO1VFMNU95y1uLDxL6f2TGGX3uTstrZpI0rWUzYJ0VaLolsm_L-F22klETIO_TtI3Qb9tGX0IXiHS-z4l2hLmdqDc4o64eQI-jy9GZny481gy31q0ZIijHhuAjv7ttC0uCGCF7b9BCRCta1WPLCiZnTMaQUzaC0zZDtNKsyTEWwmpZGzUujytKoaWnUsZjkkfm3-VMOnZ1UWL828Z-wT0hvZmmbcogPt7RUMspK1D9rbd18 |
CODEN | PLSOA2 |
CitedBy_id | crossref_primary_10_1016_j_agwat_2015_08_021 crossref_primary_10_1134_S1061934824700965 crossref_primary_10_1007_s10341_017_0361_7 crossref_primary_10_1016_j_eja_2020_126014 crossref_primary_10_1002_jsfa_8516 crossref_primary_10_1002_jsfa_11914 crossref_primary_10_1016_j_heliyon_2020_e05310 crossref_primary_10_1080_00103624_2015_1059845 crossref_primary_10_1111_nph_14718 crossref_primary_10_1371_journal_pone_0116690 crossref_primary_10_3389_fpls_2020_00244 crossref_primary_10_3389_fpls_2024_1308360 crossref_primary_10_3389_fpls_2016_00796 crossref_primary_10_1111_ejss_13401 crossref_primary_10_1007_s11120_015_0120_2 crossref_primary_10_1016_j_envexpbot_2013_10_012 crossref_primary_10_1093_jee_tov313 crossref_primary_10_1371_journal_pone_0108078 crossref_primary_10_1016_j_agwat_2018_07_012 crossref_primary_10_1111_ajgw_12318 crossref_primary_10_1111_ejss_13201 crossref_primary_10_31015_jaefs_17003 crossref_primary_10_1016_j_agwat_2020_106338 crossref_primary_10_1016_j_scienta_2018_09_035 crossref_primary_10_1016_j_agwat_2016_08_032 crossref_primary_10_3389_fpls_2019_01485 crossref_primary_10_1051_ctv_20173201072 crossref_primary_10_1093_hr_uhad071 crossref_primary_10_5194_bg_22_513_2025 crossref_primary_10_3389_fpls_2020_00790 crossref_primary_10_1371_journal_pone_0310172 crossref_primary_10_1071_FP13263 crossref_primary_10_1111_ejss_13435 crossref_primary_10_1002_jsfa_8086 crossref_primary_10_1093_forsci_fxae008 crossref_primary_10_1016_j_geoderma_2020_114908 crossref_primary_10_1007_s00271_023_00866_7 crossref_primary_10_3390_horticulturae8020182 crossref_primary_10_1093_jxb_eru228 crossref_primary_10_3390_horticulturae10040320 crossref_primary_10_1016_j_plaphy_2021_04_029 crossref_primary_10_1016_j_agrformet_2023_109755 crossref_primary_10_1016_j_agwat_2014_10_020 crossref_primary_10_1071_FP14167 crossref_primary_10_1016_j_scitotenv_2023_165228 crossref_primary_10_3390_plants13233427 crossref_primary_10_3390_plants10040641 crossref_primary_10_1007_s40333_020_0016_7 crossref_primary_10_1016_j_agwat_2021_107216 crossref_primary_10_1016_j_envpol_2021_118239 crossref_primary_10_3389_feart_2020_539377 crossref_primary_10_1007_s11104_021_04907_y crossref_primary_10_3389_fenvs_2016_00048 crossref_primary_10_12719_KSIA_2024_36_3_159 crossref_primary_10_1051_ctv_20173202142 crossref_primary_10_1111_ajgw_12054 crossref_primary_10_31015_jaefs_2020_4_13 crossref_primary_10_3390_agronomy10060800 crossref_primary_10_1016_j_scienta_2019_109063 crossref_primary_10_1016_j_stress_2024_100506 crossref_primary_10_5194_soil_1_273_2015 crossref_primary_10_1007_s11119_021_09787_x crossref_primary_10_1016_j_scienta_2021_109963 crossref_primary_10_3389_fpls_2019_01575 crossref_primary_10_3390_horticulturae9121321 crossref_primary_10_1007_s40626_016_0057_7 crossref_primary_10_3390_beverages9010008 crossref_primary_10_3390_su151712740 crossref_primary_10_1094_PHYTO_07_15_0154_R crossref_primary_10_1111_ppl_12530 |
Cites_doi | 10.1093/jxb/erq247 10.1111/j.1469-8137.2004.01142.x 10.1016/j.agee.2004.10.014 10.1111/j.1755-0238.2009.00074.x 10.1071/FP02079 10.1046/j.1469-8137.2002.00492.x 10.1007/978-3-662-04931-0 10.1111/j.1469-8137.1991.tb00035.x 10.1111/j.1469-8137.2008.02592.x 10.1093/treephys/tps013 10.1093/treephys/25.2.237 10.1098/rstb.1895.0012 10.1046/j.0028-646X.2001.00345.x 10.1093/aob/mcq030 10.1093/jxb/erq438 10.1023/A:1026415302759 10.1111/j.1365-3040.1993.tb00870.x 10.1093/treephys/tpr131 10.1111/j.1755-0238.2008.00036.x 10.1039/df9480300146 10.1071/PP99019 10.1093/treephys/19.3.165 10.1093/jxb/err081 10.1046/j.1365-3040.2001.00660.x 10.1093/treephys/24.5.561 10.1006/anbo.2000.1361 10.1016/j.eja.2006.03.003 10.1126/science.148.3668.339 10.1071/FP09191 10.1007/BF00196969 10.1111/j.1755-0238.2002.tb00208.x 10.1046/j.1365-3040.2002.00781.x 10.1071/FP09034 10.1111/j.1365-3040.2009.01981.x 10.1093/jexbot/51.350.1627 10.1046/j.1365-3040.2003.01064.x 10.1051/forest:2002060 10.1046/j.1365-3040.1998.00287.x 10.17660/ActaHortic.2005.689.38 10.1111/j.1399-3054.2008.01138.x 10.1104/pp.104.2.309 10.5344/ajev.2004.55.3.207 10.1007/s00468-002-0227-x 10.1093/jxb/49.Special_Issue.419 |
ContentType | Journal Article |
Copyright | 2013 Springer Springer Science+Business Media Dordrecht 2012 2014 INIST-CNRS COPYRIGHT 2013 Springer Springer Science+Business Media Dordrecht 2013 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Springer – notice: Springer Science+Business Media Dordrecht 2012 – notice: 2014 INIST-CNRS – notice: COPYRIGHT 2013 Springer – notice: Springer Science+Business Media Dordrecht 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7QH 7UA F1W H96 L.G 7S9 L.6 1XC |
DOI | 10.1007/s11104-012-1507-x |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology Environmental Sciences |
EISSN | 1573-5036 |
EndPage | 230 |
ExternalDocumentID | oai_HAL_hal_02646540v1 2998106871 A379200160 27584096 10_1007_s11104_012_1507_x 42952560 |
Genre | Feature |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PUEGO Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A ACKIV ADINQ ADYPR AEFIE AFEXP AFFNX AGGDS AHAVH AIDBO BBWZM CAG COF EN4 GQ6 JSODD KOW M0L NDZJH OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX AFOHR CITATION IQODW AEIIB PMFND 7SN 7ST 7T7 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7QH 7UA F1W H96 L.G 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c550t-ce37b21aa6bf0766fd8777c19a4115adb405452d7ca99573a86250e321993d813 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri May 09 12:31:02 EDT 2025 Fri Jul 11 03:35:45 EDT 2025 Fri Jul 11 08:37:46 EDT 2025 Fri Jul 25 11:18:16 EDT 2025 Tue Jun 10 20:47:59 EDT 2025 Wed Apr 02 07:15:04 EDT 2025 Tue Jul 01 00:58:50 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Fri Feb 21 02:33:36 EST 2025 Sun Aug 24 12:10:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Hydraulic architecture Cabernet franc Water deficit Merlot Soil type Grapevine Water supply Hydraulic control Berry Water availability Physical properties Texture Vitis vinifera Soils Fruit crop Vitidaceae Water regime Dicotyledones Grape Soil types Angiospermae Development Spermatophyta Soil plant relation |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-ce37b21aa6bf0766fd8777c19a4115adb405452d7ca99573a86250e321993d813 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9428-0167 |
OpenAccessLink | http://hdl.handle.net/2318/123807 |
PQID | 1368611068 |
PQPubID | 54098 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_02646540v1 proquest_miscellaneous_1469194394 proquest_miscellaneous_1399917994 proquest_journals_1368611068 gale_infotracacademiconefile_A379200160 pascalfrancis_primary_27584096 crossref_citationtrail_10_1007_s11104_012_1507_x crossref_primary_10_1007_s11104_012_1507_x springer_journals_10_1007_s11104_012_1507_x jstor_primary_42952560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2013 |
Publisher | Springer Springer Netherlands Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer – name: Springer Netherlands – name: Springer Nature B.V – name: Springer Verlag |
References | Tardieu, Simonneau (CR45) 1998; 49 Zimmermann, Timell (CR56) 1983 Lovisolo, Hartung, Schubert (CR24) 2002; 29 Muller, Pantin, Génard, Turc, Freixes, Piques, Gibon (CR29) 2011; 62 Addington, Mitchell, Oren, Donovan (CR1) 2004; 24 Sperry, Pockman (CR42) 1993; 16 CR35 Lovisolo, Perrone, Hartung, Schubert (CR25) 2008; 180 Trégoat, van Leeuwen, Choné, Gaudillère (CR47) 2002; 36 CR33 CR31 Schultz, Kiefer, Gruppe (CR40) 1996; 35 Choné, van Leeuwen, Dubourdieu, Gaudillère (CR7) 2001; 87 Hubbard, Ryan, Stiller, Sperry (CR19) 2001; 24 Tyree, Zimmermann (CR50) 2002 Escalona, Flexas, Medrano (CR16) 1999; 26 Ojeda, Andary, Kraeva, Carbonneau, Deloire (CR30) 2002; 53 Scholander, Hammel, Edda, Bradstreet, Hemmingsen (CR36) 1965; 148 Rogiers, Greer, Hatfield, Hutton, Clarke, Hutchinson, Somers (CR34) 2011; 32 Lovisolo, Schubert (CR22) 1998; 49 Hubbard, Bond, Ryan (CR18) 1999; 19 van Leeuwen, Seguin (CR52) 1994; 28 Zsófi, Gál, Szilágyi, Szücs, Marschall, Nagy, Bálo (CR57) 2009; 15 Lovisolo, Perrone, Carra, Ferrandino, Flexas, Medrano, Schubert (CR26) 2010; 37 Lovisolo, Schubert, Sorce (CR23) 2002; 156 Alsina, Smart, Bauerle, de Herralde, Biel, Stockert, Negron, Save (CR2) 2011; 62 Schultz, Stoll (CR39) 2010; 16 van Leeuwen, Tregoat, Choné, Bois, Pernet, Gaudillère (CR55) 2009; 43 Domec, Johnson (CR14) 2012; 32 Sperry, Adler, Campbell, Comstock (CR43) 1998; 21 Domec, Normeets, King, Sun, McNulty, Gavazzi, Treasure, Boggs (CR15) 2009; 32 Tesic, Woolley, Hewett, Martin (CR46) 2001; 8 Davies, Wilkinson, Loveys (CR12) 2002; 153 Chaves, Zarrouk, Francisco, Costa, Santos, Regalado, Rodrigues, Lopes (CR6) 2010; 105 Schultz, Matthews (CR38) 1993; 190 Tyree (CR48) 2003; 17 Dixon, Joly (CR13) 1894; 186 Tyree, Ewers (CR49) 1991; 119 Mabrouk, Carbonneau (CR27) 1996; 18 Angeles, Bond, Boyer, Brodribb, Brooks, Burns, Cavender-Bares, Clearwater, Cochard, Comstock, Davis, Domec, Donovan, Ewers, Gartner, Hacke, Hinckley, Holbrook, Jones, Kavanagh, Law, Lopez-Portillo, Lovisolo, Martin, Martinez-Vilalta, Mayr, Meinzer, Melcher, Mencuccini, Mulkey, Nardini, Neufeld, Passioura, Pockman, Pratt, Rambal, Richter, Sack, Salleo, Schubert, Schulte, Sparks, Sperry, Teskey, Tyree (CR4) 2004; 163 Davies, Tardieu, Trejo (CR11) 1994; 104 Jones, Sutherland (CR21) 1991; 11 Meinzer (CR28) 2002; 25 Stoll, Loveys, Dry (CR44) 2000; 51 van den Honert (CR51) 1948; 3 Beis, Patakas (CR5) 2010; 37 van Leeuwen, Friant, Choné, Trégoat, Koundouras, Dubourdieu (CR53) 2004; 55 Zufferey, Cochard, Améglio, Spring, Viret (CR58) 2011; 62 Hölttä, Vesala, Nikinmaa, Perämäki, Siivola, Mencuccini (CR17) 2005; 25 van Leeuwen, Bois, Pieri, Gaudillère (CR54) 2007 Pellegrino, Gozé, Lebon, Wery (CR32) 2006; 25 Damour, Simonneau, Cochard, Urban (CR10) 2010; 33 Améglio, Archer, Cohen, Valancogne, Daudet, Dayau, Cruiziat (CR3) 1999; 207 Souza, Maroco, dos Santos, Rodrigues, Lopes, Pereira, Chaves (CR41) 2005; 106 Chouzouri, Schultz (CR8) 2005; 689 Cruiziat, Cochard, Améglio (CR9) 2002; 59 Huber (CR20) 1928; 67 Schultz (CR37) 2003; 26 ZS Zsófi (1507_CR57) 2009; 15 A Pellegrino (1507_CR32) 2006; 25 TH Honert van den (1507_CR51) 1948; 3 C Lovisolo (1507_CR24) 2002; 29 JS Sperry (1507_CR43) 1998; 21 HR Schultz (1507_CR38) 1993; 190 MT Tyree (1507_CR50) 2002 RM Hubbard (1507_CR18) 1999; 19 RN Addington (1507_CR1) 2004; 24 T Hölttä (1507_CR17) 2005; 25 C Leeuwen van (1507_CR52) 1994; 28 V Zufferey (1507_CR58) 2011; 62 A Beis (1507_CR5) 2010; 37 C Lovisolo (1507_CR23) 2002; 156 WJ Davies (1507_CR12) 2002; 153 HR Schultz (1507_CR40) 1996; 35 CR Souza (1507_CR41) 2005; 106 D Tesic (1507_CR46) 2001; 8 C Lovisolo (1507_CR25) 2008; 180 MH Zimmermann (1507_CR56) 1983 B Huber (1507_CR20) 1928; 67 T Améglio (1507_CR3) 1999; 207 J-C Domec (1507_CR14) 2012; 32 1507_CR35 HH Dixon (1507_CR13) 1894; 186 1507_CR33 A Chouzouri (1507_CR8) 2005; 689 1507_CR31 M Stoll (1507_CR44) 2000; 51 HG Jones (1507_CR21) 1991; 11 HR Schultz (1507_CR39) 2010; 16 G Angeles (1507_CR4) 2004; 163 FC Meinzer (1507_CR28) 2002; 25 O Trégoat (1507_CR47) 2002; 36 MT Tyree (1507_CR48) 2003; 17 X Choné (1507_CR7) 2001; 87 C Lovisolo (1507_CR22) 1998; 49 G Damour (1507_CR10) 2010; 33 S Rogiers (1507_CR34) 2011; 32 C Leeuwen van (1507_CR54) 2007 JS Sperry (1507_CR42) 1993; 16 RM Hubbard (1507_CR19) 2001; 24 F Tardieu (1507_CR45) 1998; 49 P Scholander (1507_CR36) 1965; 148 HR Schultz (1507_CR37) 2003; 26 MM Alsina (1507_CR2) 2011; 62 C Lovisolo (1507_CR26) 2010; 37 B Muller (1507_CR29) 2011; 62 MT Tyree (1507_CR49) 1991; 119 M Chaves (1507_CR6) 2010; 105 C Leeuwen van (1507_CR55) 2009; 43 JM Escalona (1507_CR16) 1999; 26 H Mabrouk (1507_CR27) 1996; 18 WJ Davies (1507_CR11) 1994; 104 P Cruiziat (1507_CR9) 2002; 59 J-C Domec (1507_CR15) 2009; 32 H Ojeda (1507_CR30) 2002; 53 C Leeuwen van (1507_CR53) 2004; 55 |
References_xml | – volume: 62 start-page: 99 year: 2011 end-page: 109 ident: CR2 article-title: Seasonal changes of whole root system conductance by a drought-tolerant grape root system publication-title: J Exp Bot doi: 10.1093/jxb/erq247 – volume: 104 start-page: 309 year: 1994 end-page: 314 ident: CR11 article-title: How do chemical signals work in plants that grow in drying soil? publication-title: Plant Physiol – volume: 163 start-page: 451 year: 2004 end-page: 452 ident: CR4 article-title: The cohesion-tension theory publication-title: Letters New Phytol doi: 10.1111/j.1469-8137.2004.01142.x – volume: 106 start-page: 261 year: 2005 end-page: 274 ident: CR41 article-title: Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2004.10.014 – volume: 16 start-page: 4 year: 2010 end-page: 24 ident: CR39 article-title: Some critical issues in environmental physiology of grapevines: future challenges and current limitations publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2009.00074.x – volume: 29 start-page: 1349 year: 2002 end-page: 1356 ident: CR24 article-title: Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines publication-title: Funct Plant Biol doi: 10.1071/FP02079 – ident: CR35 – year: 1983 ident: CR56 article-title: Xylem structure and the ascent of sap publication-title: Springer series in wood science – volume: 156 start-page: 65 year: 2002 end-page: 74 ident: CR23 article-title: Are xylem radial development and hydraulic conductivity in downwardly-growing grapevine shoots influenced by perturbed auxin metabolism? publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00492.x – volume: 43 start-page: 121 year: 2009 end-page: 134 ident: CR55 article-title: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? publication-title: J Int des Sciences de la Vigne et du Vin – year: 2002 ident: CR50 publication-title: Xylem structure and the ascent of sap doi: 10.1007/978-3-662-04931-0 – volume: 119 start-page: 345 year: 1991 end-page: 360 ident: CR49 article-title: The hydraulic architecture of trees and other woody plants publication-title: New Phytol doi: 10.1111/j.1469-8137.1991.tb00035.x – volume: 17 start-page: 95 year: 2003 end-page: 100 ident: CR48 article-title: Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees publication-title: Trees Struct Funct – volume: 180 start-page: 642 year: 2008 end-page: 651 ident: CR25 article-title: An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02592.x – volume: 32 start-page: 245 year: 2012 end-page: 248 ident: CR14 article-title: Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric vs. anisohydric behavior of Vitis vinifera L. cultivars? publication-title: Tree Physiol doi: 10.1093/treephys/tps013 – volume: 25 start-page: 237 year: 2005 end-page: 243 ident: CR17 article-title: Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism publication-title: Tree Physiol doi: 10.1093/treephys/25.2.237 – volume: 186 start-page: 563 year: 1894 end-page: 576 ident: CR13 article-title: On the ascent of sap publication-title: Philos Trans R Soc Lond Ser B doi: 10.1098/rstb.1895.0012 – volume: 153 start-page: 449 year: 2002 end-page: 460 ident: CR12 article-title: Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture publication-title: New Phytol doi: 10.1046/j.0028-646X.2001.00345.x – volume: 11 start-page: 111 year: 1991 end-page: 121 ident: CR21 article-title: Stomatal control of xylem embolism publication-title: Plant Cell Environ – volume: 105 start-page: 661 year: 2010 end-page: 676 ident: CR6 article-title: Grapevine under deficit irrigation: hints from physiological and molecular data publication-title: Ann Bot doi: 10.1093/aob/mcq030 – volume: 62 start-page: 1715 year: 2011 end-page: 1729 ident: CR29 article-title: Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs publication-title: J Exp Bot doi: 10.1093/jxb/erq438 – start-page: 10 year: 2007 end-page: 14 ident: CR54 publication-title: Climate as a terroir component – volume: 18 start-page: 392 year: 1996 end-page: 398 ident: CR27 article-title: Une method simple de determination de la surface foliaire de la vigne (Vitis vinifera L.) publication-title: Progrès Agricole et Viticole – volume: 207 start-page: 155 year: 1999 end-page: 167 ident: CR3 article-title: Significance and limits in the use of predawn leaf water potential for tree irrigation publication-title: Plant Soil doi: 10.1023/A:1026415302759 – volume: 16 start-page: 279 year: 1993 end-page: 287 ident: CR42 article-title: Limitation of transpiration by hydraulic conductance and xylem cavitation in publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1993.tb00870.x – volume: 32 start-page: 249 year: 2011 end-page: 261 ident: CR34 article-title: Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and ABA publication-title: Tree Physiol doi: 10.1093/treephys/tpr131 – volume: 15 start-page: 36 year: 2009 end-page: 47 ident: CR57 article-title: Use of stomatal conductance and pre-dawn water potential to classify terroir for the grape variety Kékfrankos publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2008.00036.x – volume: 3 start-page: 146 year: 1948 end-page: 153 ident: CR51 article-title: Water transport in plants as a catenary process publication-title: Discuss Faraday Soc doi: 10.1039/df9480300146 – volume: 55 start-page: 207 year: 2004 end-page: 217 ident: CR53 article-title: Influence of climate, soil, and cultivar on terroir publication-title: Am J Enol Vitic – volume: 49 start-page: 419 year: 1998 end-page: 432 ident: CR45 article-title: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours publication-title: J Exp Bot – volume: 26 start-page: 421 year: 1999 end-page: 434 ident: CR16 article-title: Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines publication-title: Aust J Plant Physiol doi: 10.1071/PP99019 – ident: CR33 – volume: 19 start-page: 165 year: 1999 end-page: 172 ident: CR18 article-title: Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees publication-title: Tree Physiol doi: 10.1093/treephys/19.3.165 – volume: 36 start-page: 133 year: 2002 end-page: 142 ident: CR47 article-title: The assessment of vine water and nitrogen uptake by means of physiological indicators. Influence on vine development and berry potential ( L. cv Merlot, 2000, Bordeaux) publication-title: J Int des Sciences de la Vigne et du Vin – volume: 62 start-page: 3885 year: 2011 end-page: 3894 ident: CR58 article-title: Diurnal cycles of embolism formation and repair in petioles of grapevine ( cv. Chasselas) publication-title: J Exp Bot doi: 10.1093/jxb/err081 – volume: 689 start-page: 325 year: 2005 end-page: 331 ident: CR8 article-title: Hydraulic anatomy, cavitation susceptibility and gas-exchange of several grapevine cultivars of different geographical origin publication-title: Acta Horticult – volume: 24 start-page: 113 year: 2001 end-page: 121 ident: CR19 article-title: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2001.00660.x – volume: 24 start-page: 561 year: 2004 end-page: 569 ident: CR1 article-title: Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris publication-title: Tree Physiol doi: 10.1093/treephys/24.5.561 – volume: 35 start-page: 169 year: 1996 end-page: 176 ident: CR40 article-title: Photosynthetic duration, carboxylation efficiency and stomatal limitation of sun and shade leaves of different ages in field-grown grapevine ( L.) publication-title: Vitis – volume: 87 start-page: 477 year: 2001 end-page: 483 ident: CR7 article-title: Stem water potential is a sensitive indicator for grapevine water status publication-title: Ann Bot doi: 10.1006/anbo.2000.1361 – volume: 25 start-page: 49 year: 2006 end-page: 59 ident: CR32 article-title: A model-based diagnosis tool to evaluate the water stress experienced by grapevine in field sites publication-title: Eur J Agron doi: 10.1016/j.eja.2006.03.003 – volume: 148 start-page: 339 year: 1965 end-page: 346 ident: CR36 article-title: Sap pressure in vascular plants publication-title: Science doi: 10.1126/science.148.3668.339 – volume: 37 start-page: 98 year: 2010 end-page: 116 ident: CR26 article-title: Drought-induced changes in development and function of grapevine ( spp.) organs and in their hydraulic and non hydraulic interactions at the whole plant level: a physiological and molecular update publication-title: Funct Plant Biol doi: 10.1071/FP09191 – volume: 190 start-page: 393 year: 1993 end-page: 406 ident: CR38 article-title: Xylem development and hydraulic conductance in sun and shade shoots of grapevine ( L.): evidence that low light uncouples water transport capacity from leaf area publication-title: Planta doi: 10.1007/BF00196969 – volume: 8 start-page: 27 year: 2001 end-page: 35 ident: CR46 article-title: Environmental effects on cv Cabernet Sauvignon ( L.) grown in Hawke’s Bay, New Zealand. 2. Development of a site index publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2002.tb00208.x – volume: 25 start-page: 265 year: 2002 end-page: 274 ident: CR28 article-title: Co-ordination of liquid and vapor phase water transport properties in plants publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2002.00781.x – volume: 37 start-page: 139 year: 2010 end-page: 146 ident: CR5 article-title: Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought publication-title: Funct Plant Biol doi: 10.1071/FP09034 – volume: 33 start-page: 1419 year: 2010 end-page: 1438 ident: CR10 article-title: An overview of models of stomatal conductance at the leaf level publication-title: Plant Cell Environ – volume: 32 start-page: 980 year: 2009 end-page: 991 ident: CR15 article-title: Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapor pressure deficit as soil dries in a drained loblolly pine plantation publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.01981.x – ident: CR31 – volume: 67 start-page: 877 year: 1928 end-page: 959 ident: CR20 article-title: Weiter quantitative Untersuchungen uber das Wasserleitungssystem der Pflanzen publication-title: Jb Wiss Botany – volume: 53 start-page: 261 year: 2002 end-page: 267 ident: CR30 article-title: Influence of pre- and postvéraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of cv. Shiraz publication-title: Am J Enol Vitic – volume: 51 start-page: 1627 year: 2000 end-page: 1634 ident: CR44 article-title: Hormonal changes induced by partial rootzone drying of irrigated grapevine publication-title: J Exp Bot doi: 10.1093/jexbot/51.350.1627 – volume: 49 start-page: 693 year: 1998 end-page: 700 ident: CR22 article-title: Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L publication-title: J Exp Bot – volume: 28 start-page: 81 year: 1994 end-page: 110 ident: CR52 article-title: Incidences de l’alimentation en eau de la vigne, appréciée par l’état hydrique du feuillage, sur le développement de l’appareil végétatif et la maturation du raisin ( variété Cabernet franc, Saint-Emilion, 1990) publication-title: J Int des Sciences de la Vigne et du Vin – volume: 26 start-page: 1393 year: 2003 end-page: 1405 ident: CR37 article-title: Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown L. cultivars during drought publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.01064.x – volume: 59 start-page: 723 year: 2002 end-page: 752 ident: CR9 article-title: Hydraulic architecture of trees: main concepts and results publication-title: Ann For Sci doi: 10.1051/forest:2002060 – volume: 21 start-page: 347 year: 1998 end-page: 359 ident: CR43 article-title: Limitation of plant water use by rhizosphere and xylem conductance: results from a model publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1998.00287.x – volume: 37 start-page: 139 year: 2010 ident: 1507_CR5 publication-title: Funct Plant Biol doi: 10.1071/FP09034 – volume: 32 start-page: 249 year: 2011 ident: 1507_CR34 publication-title: Tree Physiol doi: 10.1093/treephys/tpr131 – volume: 3 start-page: 146 year: 1948 ident: 1507_CR51 publication-title: Discuss Faraday Soc doi: 10.1039/df9480300146 – volume: 207 start-page: 155 year: 1999 ident: 1507_CR3 publication-title: Plant Soil doi: 10.1023/A:1026415302759 – volume: 105 start-page: 661 year: 2010 ident: 1507_CR6 publication-title: Ann Bot doi: 10.1093/aob/mcq030 – volume: 180 start-page: 642 year: 2008 ident: 1507_CR25 publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02592.x – volume: 689 start-page: 325 year: 2005 ident: 1507_CR8 publication-title: Acta Horticult doi: 10.17660/ActaHortic.2005.689.38 – volume: 87 start-page: 477 year: 2001 ident: 1507_CR7 publication-title: Ann Bot doi: 10.1006/anbo.2000.1361 – volume: 19 start-page: 165 year: 1999 ident: 1507_CR18 publication-title: Tree Physiol doi: 10.1093/treephys/19.3.165 – volume: 26 start-page: 1393 year: 2003 ident: 1507_CR37 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.01064.x – volume: 36 start-page: 133 year: 2002 ident: 1507_CR47 publication-title: J Int des Sciences de la Vigne et du Vin – volume: 106 start-page: 261 year: 2005 ident: 1507_CR41 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2004.10.014 – volume: 33 start-page: 1419 year: 2010 ident: 1507_CR10 publication-title: Plant Cell Environ – volume: 35 start-page: 169 year: 1996 ident: 1507_CR40 publication-title: Vitis – volume: 11 start-page: 111 year: 1991 ident: 1507_CR21 publication-title: Plant Cell Environ – volume: 21 start-page: 347 year: 1998 ident: 1507_CR43 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1998.00287.x – volume: 32 start-page: 245 year: 2012 ident: 1507_CR14 publication-title: Tree Physiol doi: 10.1093/treephys/tps013 – ident: 1507_CR33 doi: 10.1111/j.1399-3054.2008.01138.x – volume: 51 start-page: 1627 year: 2000 ident: 1507_CR44 publication-title: J Exp Bot doi: 10.1093/jexbot/51.350.1627 – volume: 104 start-page: 309 year: 1994 ident: 1507_CR11 publication-title: Plant Physiol doi: 10.1104/pp.104.2.309 – volume: 148 start-page: 339 year: 1965 ident: 1507_CR36 publication-title: Science doi: 10.1126/science.148.3668.339 – volume: 25 start-page: 265 year: 2002 ident: 1507_CR28 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2002.00781.x – volume: 8 start-page: 27 year: 2001 ident: 1507_CR46 publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2002.tb00208.x – volume: 190 start-page: 393 year: 1993 ident: 1507_CR38 publication-title: Planta doi: 10.1007/BF00196969 – start-page: 10 volume-title: Climate as a terroir component year: 2007 ident: 1507_CR54 – volume: 26 start-page: 421 year: 1999 ident: 1507_CR16 publication-title: Aust J Plant Physiol doi: 10.1071/PP99019 – volume: 49 start-page: 693 year: 1998 ident: 1507_CR22 publication-title: J Exp Bot – volume: 119 start-page: 345 year: 1991 ident: 1507_CR49 publication-title: New Phytol doi: 10.1111/j.1469-8137.1991.tb00035.x – volume: 15 start-page: 36 year: 2009 ident: 1507_CR57 publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2008.00036.x – volume: 24 start-page: 561 year: 2004 ident: 1507_CR1 publication-title: Tree Physiol doi: 10.1093/treephys/24.5.561 – ident: 1507_CR35 – ident: 1507_CR31 – volume: 25 start-page: 49 year: 2006 ident: 1507_CR32 publication-title: Eur J Agron doi: 10.1016/j.eja.2006.03.003 – volume: 163 start-page: 451 year: 2004 ident: 1507_CR4 publication-title: Letters New Phytol doi: 10.1111/j.1469-8137.2004.01142.x – volume: 67 start-page: 877 year: 1928 ident: 1507_CR20 publication-title: Jb Wiss Botany – volume: 32 start-page: 980 year: 2009 ident: 1507_CR15 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.01981.x – volume: 156 start-page: 65 year: 2002 ident: 1507_CR23 publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00492.x – volume: 24 start-page: 113 year: 2001 ident: 1507_CR19 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2001.00660.x – volume: 62 start-page: 3885 year: 2011 ident: 1507_CR58 publication-title: J Exp Bot doi: 10.1093/jxb/err081 – volume: 59 start-page: 723 year: 2002 ident: 1507_CR9 publication-title: Ann For Sci doi: 10.1051/forest:2002060 – volume: 53 start-page: 261 year: 2002 ident: 1507_CR30 publication-title: Am J Enol Vitic – volume-title: Springer series in wood science year: 1983 ident: 1507_CR56 – volume: 153 start-page: 449 year: 2002 ident: 1507_CR12 publication-title: New Phytol doi: 10.1046/j.0028-646X.2001.00345.x – volume: 28 start-page: 81 year: 1994 ident: 1507_CR52 publication-title: J Int des Sciences de la Vigne et du Vin – volume: 25 start-page: 237 year: 2005 ident: 1507_CR17 publication-title: Tree Physiol doi: 10.1093/treephys/25.2.237 – volume: 55 start-page: 207 year: 2004 ident: 1507_CR53 publication-title: Am J Enol Vitic doi: 10.5344/ajev.2004.55.3.207 – volume: 186 start-page: 563 year: 1894 ident: 1507_CR13 publication-title: Philos Trans R Soc Lond Ser B doi: 10.1098/rstb.1895.0012 – volume: 37 start-page: 98 year: 2010 ident: 1507_CR26 publication-title: Funct Plant Biol doi: 10.1071/FP09191 – volume: 16 start-page: 4 year: 2010 ident: 1507_CR39 publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2009.00074.x – volume: 17 start-page: 95 year: 2003 ident: 1507_CR48 publication-title: Trees Struct Funct doi: 10.1007/s00468-002-0227-x – volume: 43 start-page: 121 year: 2009 ident: 1507_CR55 publication-title: J Int des Sciences de la Vigne et du Vin – volume: 29 start-page: 1349 year: 2002 ident: 1507_CR24 publication-title: Funct Plant Biol doi: 10.1071/FP02079 – volume: 16 start-page: 279 year: 1993 ident: 1507_CR42 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1993.tb00870.x – volume-title: Xylem structure and the ascent of sap year: 2002 ident: 1507_CR50 doi: 10.1007/978-3-662-04931-0 – volume: 62 start-page: 99 year: 2011 ident: 1507_CR2 publication-title: J Exp Bot doi: 10.1093/jxb/erq247 – volume: 62 start-page: 1715 year: 2011 ident: 1507_CR29 publication-title: J Exp Bot doi: 10.1093/jxb/erq438 – volume: 18 start-page: 392 year: 1996 ident: 1507_CR27 publication-title: Progrès Agricole et Viticole – volume: 49 start-page: 419 year: 1998 ident: 1507_CR45 publication-title: J Exp Bot doi: 10.1093/jxb/49.Special_Issue.419 |
SSID | ssj0003216 |
Score | 2.4098997 |
Snippet | Aims All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological... Aims All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine ( Vitis vinifera L.) via ecophysiological... Aims All components of the soil-plant-atmosphere (sp-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological... Issue Title: Magnesium in Crop Production, Food Quality and Human Health All components of the soil-plant-atmosphere (s-p-a) continuum are known to control... Aims: All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological... AIMS: All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological... |
SourceID | hal proquest gale pascalfrancis crossref springer jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 215 |
SubjectTerms | Agricultural soils Agrology Agronomy Agronomy. Soil science and plant productions Animal, plant and microbial ecology Berries Biological and medical sciences Biomedical and Life Sciences clay soils Crop production Cultivars Drought Droughts Ecology Environmental Sciences Food quality fruit quality Fruits Fundamental and applied biological sciences. Psychology Gas exchange General agronomy. Plant production Gravelly soils Hydraulics leaf water potential Leaves Life Sciences Magnesium Moisture content Plant Physiology Plant Sciences Plants Regular Article roots Sand soils Sandy soils shoots small fruits Soil hydraulic properties Soil moisture Soil science Soil Science & Conservation Soil texture Soil types Soil water Soil water content Soil water potential Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments Soils stems Sugar sugar content sugars Vegetal Biology Vineyards Vitaceae Vitis vinifera Water Water availability Water consumption Water loss Water potential Water stress Water uptake Wine industry Wineries Xylem |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB70VNAH0dXD6nlEEQSl0KZN2j5WuWMV9cmFfStpknqLS3t0d0_73zuT_lhX9MC30p1ky8wk-YbMfAPwSkZG48le-TrWFgMUI3xlSoFPopI8DUrh6Bg-f5HzRfxxKZZDHfdmzHYfryTdTr0vdsOTijImuE8gxkfgeEtQ6I5OvOD5tP1G3PU7pQc_SLLleJX5tykODqNhS755QRmRfXIiZUqqDSqr6rtcHMDQP25O3YF0_gDuD0iS5b3pH8INW8_gXv6tHdg07Axuv2sQ-3UzuHPmyKm7R_D9gyuLZE3FNs1qzSjxA2WZqg37gbizZepKrdY9e3fHmpohQmQXnWnVbr3SbEhtp_GXa7SKG0is19Yvbdt2zOyzkB7D4vzs6_u5PzRc8DUGKltf2ygpeaiULKsgkbIyxBaow0zFCBzRhmjBWHCTaJVlIokUhkMisKhxRDkmDaNjOKqb2j4BliBwMNam0qQ6rtJQiYpLhMi8ik0a6dSDYNR8oQc2cmqKsS72PMpkrAKNVZCxip8evJmGXPZUHNcJvyZzFrRMcV6thmoD_DoivCryKMm4a7LtwUu0-DQj0W3P808FvcP4lOjmgqvQg2PnEJMYHuOC0KIHpwceMglwDMQwdpYenIwuUwzbw6YII5lK_GKJengx_YwLm25rVG2bHckQdk-yLL5GJpZZmFFxswdvR3f87W_-pZ2n_yX9DO5y1wSEkpRP4Gjb7uxzhGLb8tQtvV_inCfJ priority: 102 providerName: Springer Nature |
Title | Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development |
URI | https://www.jstor.org/stable/42952560 https://link.springer.com/article/10.1007/s11104-012-1507-x https://www.proquest.com/docview/1368611068 https://www.proquest.com/docview/1399917994 https://www.proquest.com/docview/1469194394 https://hal.inrae.fr/hal-02646540 |
Volume | 368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_RlQd4QDCYFjYqg5CQQBH5dJInlEJL-ZoQolJ5ihzbYRVV0qXtWP977lI3pUj0qVFzdiLf-fy7-Pw7gOfcVxJX9sKWgdQYoKjQFioP8SosuBc7edjQMXy54KNx8HESTswHt4VJq9z6xMZRq0rSN_LXrs9jjmsVj9_Mr2yqGkW7q6aERge66IJjDL66_cHF12-tL_a9pvgpXdhOlEy2-5rN4TnsjTIwPJtAkX2ztzIZ_9y5pPTITaYipU2KBY5csSl5sYdJ_9lGbVan4X24Z2AlSzd28ABu6fIY7qY_a0OtoY_hdr9CILh-CL8-NCcjWVWwRTWdMcr9QAkmSsV-I_SsmbgW09mGwHvNqpIhSGSXa1WL1Wwqmclup_bzGSqmaUjE19rOdV2vmdolIj2C8XDw_e3INjUXbImxytKW2o9yzxWC54UTcV4oIgyUbiICxI6oRlRiEHoqkiJJwsgXGBGFjsZxRqCjYtc_gaOyKvUpsAixg9I65iqWQRG7Iiw8jijZKwIV-zK2wNmOdyYNITnVxZhlOyplUlGGKspIRdmNBS_bJvMNG8ch4RekxIxmKvYrhTlwgG9HnFdZ6keJ19TZtuAZ6rntkRi3R-nnjP7DEJUY55xr14KTxgxaMVzJQwKMFvT27KIV8DAWw_CZW3C-NZTMeIhFtrNnC562t3Fu04aNKHW1IhmC71GSBAdkAp64CZ1vtuDV1gj_esz_Rufx4Zc6gzteU_iDEpPP4WhZr_QThF_LvAfdtP-uP6Tf9z8-DXpmzvWgM_bSP_PPLUE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tHRLwgGAwERjDIBASKKJxEid5QKiDTS3rKoQ2qW_BsR1WUSWlH9v6T_E3cpevUiT6treqPbun3Pn8u_j8O4BXwtUKd_bUVp4ymKBo35Y68fGTnwoethO_oGM4HYjuufdl6A-34Hd9F4bKKuuYWARqnSt6R_7ecUUocK8S4cfJL5u6RtHpat1Co3SLE7O8wpRt9qH3Ge37mvPjo7NPXbvqKmArRONzWxk3SLgjpUhSTOJFqokSTzmR9BAdoaKopudzHSgZRX7gSsT8ftu4nErddOi4OO827HgupjIt2Dk8Gnz91sR-lBIlESTVdEbD-hy1uKyH2lPFB7cJhNnXazthtR9sX1A5ZlkZSWWacoaWSssWG2sY-J9j22I3PL4P9yoYyzql3z2ALZPtwt3Oj2lF5WF24dZhjsBz-RB-9oqbmCxP2SwfjRnVmqAEk5lmVwh1p0xeytG4JAxfsjxjCErZxVJP5WI8UqyqpqfxkzE6QjGQiLaNnZjpdMn0qvDpEZzfiDX2oJXlmXkMLECsoo0JhQ6Vl4aO9FMuEJXz1NOhq0IL2vXzjlVFgE59OMbxirqZTBSjiWIyUXxtwdtmyKRk_9gk_IaMGFNkwHmVrC44oHbEsRV33CDiRV9vC16inZsZieG72-nH9B2mxMRw1750LNgr3KARQ-TgE0C14GDNLxoBjrkfpuvCgv3aUeIqIs3i1fqx4EXzM8YSOiCSmckXJEPpQhBF3gYZT0RORPepLXhXO-Fff_O_p_Nks1LP4Xb37LQf93uDk6dwhxdNR6goeh9a8-nCPEPoN08OqvXG4PtNL_E_XSJkdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tHULwgGAwERjDIBASU7TGSZzkAaGOrWrZqCbEpL4F13ZYRZWUtN3Wf42_jrv8KkVib3ur0rPj-s6-7-rzdwBvhKsVevbEVp4yGKBo35Z65OMnPxE8bI_8go7hy0D0zr3PQ3-4Ab_ruzCUVlnvicVGrTNF_5EfOK4IBfoqER4kVVrE2VH34_SXTRWk6KS1LqdRmsiJWV5h-Db70D9CXb_lvHv87VPPrioM2AqR-dxWxg1G3JFSjBIM6EWiiR5POZH0ECnhoHHIns91oGQU-YErEf_7beNySnvToeNiv5uwFWBU1G7B1uHx4Oxr4wdQSpSkkJTfGQ3rM9Xi4h7-Esr-4DYBMvt6zStWvmHzglIzyyxJStmUM9RaUpbbWMPD_xzhFp6x-xAeVJCWdUobfAQbJt2G-50feUXrYbbhzmGGIHT5GH72i1uZLEvYLBtPGE0wSjCZanaFsDdn8lKOJyV5-JJlKUOAyi6WOpeLyVixKrOe2k8naBRFQyLdNvbI5PmS6VUS1BM4vxVt7EArzVLzFFiAuEUbEwodKi8JHeknXCBC54mnQ1eFFrTr-Y5VRYZONTkm8YrGmVQUo4piUlF8bcH7psm0ZAK5SfgdKTGmXQL7VbK67ICjI76tuOMGES9qfFvwGvXc9Ehs373OaUzPMDwmtrv2pWPBTmEGjRiiCJ_AqgV7a3bRCHCMAzF0Fxbs1oYSV7vTLF6tJQteNV_jvkKHRTI12YJkKHQIosi7QcYTkRPR3WoL9msj_Os1_5udZzcP6iXcxaUdn_YHJ8_hHi_qj1B-9C605vnCvEAUOB_tVcuNwffbXuF_AGaNaKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+soil+texture+and+water+availability+on+the+hydraulic+control+of+plant+and+grape-berry+development&rft.jtitle=Plant+and+soil&rft.au=Tramontini%2C+Sara&rft.au=van+Leeuwen%2C+Cornelis&rft.au=Domec%2C+Jean-Christophe&rft.au=Destrac-Irvine%2C+Agn%C3%A8s&rft.date=2013-07-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=368&rft.issue=1-2&rft.spage=215&rft.epage=230&rft_id=info:doi/10.1007%2Fs11104-012-1507-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_012_1507_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |