Microbiome and pathogen interaction with the immune system
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdepend...
Saved in:
Published in | Poultry science Vol. 99; no. 4; pp. 1906 - 1913 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.04.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer’s patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis. |
---|---|
AbstractList | The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis. The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis. |
Author | Lee, Annah Kogut, Michael H. Santin, Elizabeth |
Author_xml | – sequence: 1 givenname: Michael H. surname: Kogut fullname: Kogut, Michael H. email: mike.kogut@ars.usda.gov organization: Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA – sequence: 2 givenname: Annah surname: Lee fullname: Lee, Annah organization: Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA – sequence: 3 givenname: Elizabeth surname: Santin fullname: Santin, Elizabeth organization: Universidade Federal Do Paraná, Department of Veterinary Medicine, Curitiba, 80035-050 Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32241470$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUtFAR3RZ-ABeUI5cEPzuOE5CQUMVHpSIucLa89suuo8RebG9R_z3ebosoh3J6kj0zHr-ZM3Lig0dCXgJtgEL3Zmp2aWoYhaEB1lCAJ2QFgomag4QTsqKUs1rIAU7JWUoTpQy6Tj4jp5yxFlpJV-TtV2diWLuwYKW9rXY6b8MGfeV8xqhNdsFXv1zeVnmLlVuWvccq3aSMy3PydNRzwhd385z8-PTx-8WX-urb58uLD1e1EYLmeg2CmxasYUIzZoWwhkuhdS-xeKXd2MlODn3fdaPtBwO27ViPlg6sTMYtPyeXR10b9KR20S063qignbo9CHGjdMzOzKgGo43g42BoO7SaimE0rQFtGaftmklZtN4ftXb79YLWoM9Rzw9EH954t1WbcK2k6KUUvAi8vhOI4eceU1aLSwbnWXsM-6RYK2XHy3v9_6G8v_0hFQX66m9bf_zc51QA8ggoYaUUcVTGZX0Ip7h0swKqDo1QZT9pUodGKGCqNKIw4R_mvfhjnHdHDpZYrx1GlYxDb9C6iCaXvbtH2L8B4L7Mxw |
CitedBy_id | crossref_primary_10_3389_fmed_2024_1434582 crossref_primary_10_1098_rsos_210296 crossref_primary_10_3390_genes13122280 crossref_primary_10_1186_s12917_024_04125_5 crossref_primary_10_1016_j_jgr_2024_05_007 crossref_primary_10_26565_2313_6693_2021_41_04 crossref_primary_10_1016_j_neuroscience_2024_11_070 crossref_primary_10_1016_j_arr_2020_101164 crossref_primary_10_3390_biomedicines12051023 crossref_primary_10_1038_s41598_024_77017_1 crossref_primary_10_1128_spectrum_01847_21 crossref_primary_10_3390_antibiotics12030494 crossref_primary_10_3390_ph16091216 crossref_primary_10_1016_j_chaos_2024_115912 crossref_primary_10_3390_antiox9121182 crossref_primary_10_3390_nu13030850 crossref_primary_10_3390_microorganisms12112121 crossref_primary_10_2478_aoas_2023_0021 crossref_primary_10_1016_j_biopha_2024_117302 crossref_primary_10_1016_j_psj_2021_101612 crossref_primary_10_3390_cells12010184 crossref_primary_10_1038_s41598_024_69656_1 crossref_primary_10_1007_s11255_023_03760_5 crossref_primary_10_3390_vaccines9060606 crossref_primary_10_1016_j_clnu_2023_01_001 crossref_primary_10_1128_spectrum_01437_23 crossref_primary_10_2141_jpsa_2023021 crossref_primary_10_3389_fimmu_2022_1056036 crossref_primary_10_3389_fcimb_2023_1247182 crossref_primary_10_25259_GJMPBU_33_2022 crossref_primary_10_3389_fevo_2021_683183 crossref_primary_10_3389_fmicb_2022_960326 crossref_primary_10_3390_bioengineering11111063 crossref_primary_10_1016_j_mtbio_2024_101349 crossref_primary_10_3390_cells13232003 crossref_primary_10_3748_wjg_v28_i36_5265 crossref_primary_10_1007_s10482_024_02056_7 crossref_primary_10_1039_D5FO00162E crossref_primary_10_3390_antibiotics11121703 crossref_primary_10_7717_peerj_13559 crossref_primary_10_1007_s00262_024_03723_4 crossref_primary_10_3390_fishes8090473 crossref_primary_10_33073_pjm_2024_041 crossref_primary_10_3390_vaccines11061116 crossref_primary_10_1002_iid3_70027 crossref_primary_10_3390_ijms241411423 crossref_primary_10_1128_spectrum_01906_21 crossref_primary_10_1016_j_psj_2022_102296 crossref_primary_10_1038_s41392_023_01406_7 crossref_primary_10_1016_j_psj_2020_09_075 crossref_primary_10_1016_j_psj_2024_104158 crossref_primary_10_1016_j_nut_2021_111288 crossref_primary_10_1016_j_psj_2024_103581 crossref_primary_10_3389_fimmu_2021_623737 crossref_primary_10_3390_ani11102819 crossref_primary_10_2147_IDR_S368772 crossref_primary_10_3389_fonc_2023_1196217 crossref_primary_10_1016_j_aninu_2023_03_005 crossref_primary_10_1186_s40168_022_01317_9 crossref_primary_10_2147_JAA_S401755 crossref_primary_10_1093_jas_skae118 crossref_primary_10_1186_s40168_022_01299_8 crossref_primary_10_1038_s41598_022_22511_7 crossref_primary_10_55934_10_55934_2587_8824_2023_30_2_236_242 crossref_primary_10_1080_03079457_2024_2410873 crossref_primary_10_1016_j_isci_2022_105326 crossref_primary_10_1016_j_ijbiomac_2023_124789 crossref_primary_10_3390_ijms241512296 crossref_primary_10_3389_fphys_2022_1023453 crossref_primary_10_3390_microorganisms8121925 crossref_primary_10_47430_ujmr_2492_015 crossref_primary_10_1038_s41598_024_67881_2 crossref_primary_10_3389_fmicb_2023_1257701 crossref_primary_10_1002_vms3_573 crossref_primary_10_3390_ijms25031747 crossref_primary_10_1007_s11686_022_00613_6 crossref_primary_10_1016_j_psj_2022_101943 crossref_primary_10_1016_j_diabres_2023_110781 crossref_primary_10_1016_j_peptides_2024_171154 crossref_primary_10_1016_j_anireprosci_2024_107647 crossref_primary_10_1002_eji_202350503 crossref_primary_10_1016_j_psj_2025_104942 crossref_primary_10_3389_fmicb_2023_1211271 crossref_primary_10_2478_acb_2023_0015 crossref_primary_10_3389_fmicb_2022_886252 crossref_primary_10_3390_ani13162606 crossref_primary_10_3390_ani14182709 crossref_primary_10_1080_00439339_2024_2308232 crossref_primary_10_1016_j_imlet_2024_106883 crossref_primary_10_1155_2021_6628814 crossref_primary_10_3390_pathogens9070544 crossref_primary_10_1016_j_enmm_2024_100914 crossref_primary_10_1016_j_fsi_2022_03_001 crossref_primary_10_3390_biom12010039 crossref_primary_10_1016_j_jff_2022_105070 crossref_primary_10_1016_j_fsi_2023_109142 crossref_primary_10_1016_j_expneurol_2023_114324 crossref_primary_10_1016_j_intimp_2022_109428 crossref_primary_10_1080_19490976_2023_2263209 crossref_primary_10_3390_ani14071015 crossref_primary_10_3389_fvets_2023_1309151 crossref_primary_10_3389_fmicb_2024_1417864 crossref_primary_10_1055_s_0043_1778017 crossref_primary_10_3389_fcimb_2024_1393680 crossref_primary_10_1128_msystems_00844_23 crossref_primary_10_1016_j_psj_2025_104882 crossref_primary_10_1093_jas_skad215 crossref_primary_10_3390_ijms25073728 crossref_primary_10_1186_s40104_024_01145_x crossref_primary_10_3389_fnut_2022_810453 crossref_primary_10_3389_fvets_2024_1335765 crossref_primary_10_3390_jpm12010014 crossref_primary_10_1016_j_micres_2022_127139 crossref_primary_10_3389_fimmu_2024_1289644 crossref_primary_10_1038_s41598_021_99238_4 crossref_primary_10_3390_ani13111816 crossref_primary_10_3920_JIFF2020_0078 crossref_primary_10_1159_000538416 crossref_primary_10_1016_j_psj_2025_104770 crossref_primary_10_1016_j_blre_2024_101219 crossref_primary_10_1016_j_fsi_2024_109810 crossref_primary_10_1007_s12602_024_10443_9 crossref_primary_10_3390_microorganisms11081944 crossref_primary_10_1016_j_psj_2024_104003 crossref_primary_10_1021_acs_jafc_2c04017 crossref_primary_10_3390_md23040140 crossref_primary_10_3389_fimmu_2024_1413177 crossref_primary_10_3390_ani11123491 crossref_primary_10_1007_s00253_023_12934_1 crossref_primary_10_3390_vaccines10060981 |
Cites_doi | 10.3382/ps/pev344 10.1093/ps/83.4.580 10.1074/jbc.M507180200 10.4049/jimmunol.1601247 10.1016/j.cell.2010.01.023 10.1128/IAI.00380-17 10.1371/journal.pbio.0050244 10.1126/science.1223490 10.1016/j.dci.2013.05.009 10.1128/CMR.00046-08 10.3389/fcimb.2016.00154 10.1073/pnas.0604636103 10.3920/BM2016.0047 10.3382/ps/pex314 10.1016/j.immuni.2017.04.008 10.1637/11675-051917-Review.1 10.1126/science.aaf7419 10.1128/IAI.01375-10 10.3389/fimmu.2017.00427 10.3382/ps/pey064 10.1042/bj20040200 10.1186/s40168-018-0477-5 10.1016/j.coi.2013.10.016 10.1016/j.chom.2015.12.005 10.1016/j.tim.2009.08.008 10.1079/PAVSNNR201712031 10.1111/j.1600-065X.2007.00548.x 10.3382/ps.2010-01066 10.1371/journal.pone.0190095 10.2307/1591949 10.1073/pnas.0804812105 10.1093/intimm/dxp017 10.4049/jimmunol.174.8.4453 10.3109/08820131003622635 10.3389/fcimb.2017.00144 10.1016/0014-4894(70)90106-2 10.2307/3278208 10.1146/annurev.biochem.76.060605.122847 10.4049/jimmunol.178.8.5200 10.1101/gad.284091.116 10.1038/35100529 10.1126/science.aab3145 10.1007/s11434-016-1142-7 10.1038/nri2710 10.3920/BM2017.0088 10.1016/j.cell.2014.03.011 10.1016/j.cell.2016.12.021 10.1093/femsec/fix165 10.3389/fvets.2015.00061 10.1016/j.dci.2013.04.008 10.1038/ni0111-5 10.1016/j.cmet.2017.05.008 10.1146/annurev.immunol.20.083001.084359 10.1016/j.dci.2013.03.013 10.4049/jimmunol.176.12.7462 10.1053/j.gastro.2011.02.012 10.4049/jimmunol.171.4.1809 10.1016/j.cell.2006.02.015 10.1007/s00281-014-0451-7 10.2527/jas.2011-3949 10.1371/journal.pone.0104739 10.1128/AEM.02628-12 10.1016/j.mib.2016.10.003 10.1016/j.vetmic.2014.01.007 10.1089/jir.2005.25.467 10.1016/S0952-7915(97)80152-5 10.3389/fcimb.2012.00015 10.1016/j.molimm.2014.01.004 10.3109/08830185.2010.529976 10.1136/gutjnl-2015-309990 10.3382/japr.2013-00741 10.1111/1574-6941.12392 10.2307/1589145 10.1093/femsec/fiw188 10.1016/j.it.2011.01.005 10.1093/ajcn/73.6.1124S 10.1371/journal.pone.0184890 10.1016/j.dci.2010.07.001 10.1038/nature06246 10.1016/S1286-4579(02)01543-5 10.1073/pnas.89.16.7615 10.1038/nri1499 10.1038/nature18848 10.3382/japr.2008-00080 10.3390/toxins9020060 10.3382/ps.0350224 10.1016/j.cell.2010.01.022 10.1038/nature09415 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. 2019 Published by Elsevier Inc. on behalf of Poultry Science Association Inc. 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. – notice: 2019 Published by Elsevier Inc. on behalf of Poultry Science Association Inc. 2019 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.psj.2019.12.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1525-3171 |
EndPage | 1913 |
ExternalDocumentID | oai_doaj_org_article_9cac53f9c0494a059fc4c1ad2304b277 PMC7587753 32241470 10_1016_j_psj_2019_12_011 S0032579119579226 |
Genre | Journal Article Review |
GroupedDBID | --- .GJ 0R~ 0SF 123 18M 1TH 29O 2WC 3V. 4.4 48X 53G 5RE 5VS 6I. 7X2 7X7 7XC 88E 8FE 8FG 8FH 8FI 8FJ 8FW 8R4 8R5 AABJS AABMN AAEDW AAESY AAFTH AAIMJ AAIYJ AAJQQ AAMDB AAMVS AAOGV AAUQX AAXUO ABCQX ABEUO ABIXL ABJCF ABJNI ABQLI ABSAR ABSMQ ABUWG ACGFO ACGFS ACIWK ACLIJ ACUFI ADBBV ADEIU ADHKW ADHZD ADORX ADQLU ADRIX ADRTK ADYVW AEGPL AEGXH AEJOX AEKSI AEMDU AENEX AENZO AEPUE AEWNT AEXQZ AFIYH AFKRA AFOFC AFRAH AFXEN AGINJ AGSYK AHMBA AIAGR AIKOY AITUG AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC AMRAJ APIBT ARIXL ASAOO ATCPS ATDFG AVWKF AXUDD AYOIW AZQFJ BAWUL BAYMD BENPR BEYMZ BGLVJ BHONS BHPHI BPHCQ BQDIO BSWAC BVXVI BYORX CASEJ CCPQU CDBKE CKLRP CS3 CXTWN DAKXR DFGAJ DIK DILTD DPPUQ DU5 E3Z EBS EJD F5P F9R FDB FYUFA GJXCC GROUPED_DOAJ HAR HCIFZ HF~ HMCUK H~9 INIJC J21 KQ8 KSI KSN L6V L7B M0K M1P M7S MBTAY NCXOZ NLBLG NVLIB O9- OAWHX ODMLO OHT OJQWA OK1 OVD P2P PAFKI PATMY PEELM PQQKQ PROAC PSQYO PTHSS PYCSY Q2X Q5Y ROL ROX ROZ RPM RXO S0X SJN TCN TEORI TLC TPS TR2 TWZ UKHRP W8F WOQ XOL Y6R YAYTL YKOAZ ZXP ~KM AAHBH AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AEUYN AFJKZ AFPUW AGKRT AIGII AKBMS AKRWK AKYEP ALIPV APXCP CITATION H13 PHGZM PHGZT AHVMP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-b153c41dc25a22d55dc375aa87e15206f676798866fd89c1d4628ed09262823d3 |
IEDL.DBID | DOA |
ISSN | 0032-5791 1525-3171 |
IngestDate | Wed Aug 27 01:28:15 EDT 2025 Thu Aug 21 14:05:51 EDT 2025 Fri Jul 11 11:07:19 EDT 2025 Fri Jul 11 14:37:31 EDT 2025 Wed Feb 19 02:06:50 EST 2025 Tue Jul 01 03:55:34 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Fri Feb 23 02:48:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | microbiota gut health Salmonella innate immunity mucosal firewall |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. https://www.elsevier.com/tdm/userlicense/1.0 http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2019. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-b153c41dc25a22d55dc375aa87e15206f676798866fd89c1d4628ed09262823d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/9cac53f9c0494a059fc4c1ad2304b277 |
PMID | 32241470 |
PQID | 2386282305 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cac53f9c0494a059fc4c1ad2304b277 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7587753 proquest_miscellaneous_2477632308 proquest_miscellaneous_2386282305 pubmed_primary_32241470 crossref_citationtrail_10_1016_j_psj_2019_12_011 crossref_primary_10_1016_j_psj_2019_12_011 elsevier_sciencedirect_doi_10_1016_j_psj_2019_12_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Poultry science |
PublicationTitleAlternate | Poult Sci |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Belote, Tujimoto-Silva, Hummelgen, Sanches, Wammes, Hayashi, Santin (bib10) 2018; 97 Garrett, Gordon, Glimcher (bib28) 2010; 140 Honda, Litman (bib36) 2016; 535 Underhill (bib83) 2007; 219 Arsenault, Genovese, He, Wu, Neish, Kogut (bib5) 2016; 95 Awad, Mann, Dzeciol, Hess, Schmitz-Esser, Wagner, Hess (bib7) 2016; 6 Wu, Stanley, Rodgers, Swick, Moore (bib88) 2014; 169 Kumar, Akira (bib93) 2011; 30 Perumbakkam, Hunt, Cheng (bib69) 2014; 90 Mantis, Forbes (bib56) 2010; 39 Lu, Walker (bib55) 2001; 73 Erf (bib25) 2004; 83 Guo, Chang, P Wyche, Backus, Nayfach, Pollard, Craik, Cravett, Clardy, Voigt, Fischbach (bib33) 2017; 168 Wigley (bib86) 2013; 41 Levy, Blacher, Elinav (bib53) 2017; 35 Wieland, Orzáez, Lammers, Parmentier, Verstegen, Schots (bib96) 2004; 380 Abreu, Fukata, Arditi (bib2) 2005; 174 Birchenough, Nystrom, Johansson, Hansson (bib13) 2016; 352 Belkaid, Hand (bib8) 2014; 157 Thaiss, Levy, Suez, Elinav (bib82) 2014; 26 Kogut, Yin, Yuan, Broom (bib45) 2017; 12 Liu, da Cunha, Rezende, Cialic, Wei, Bry, Comstock, Gandhi, Weiner (bib54) 2016; 19 Macdonald, Nolan, Harman, Boulton, Hume, Tomley, Stabler, Blake (bib95) 2017; 12 Kaiser, Poh, Rothwell, Avery, Balu, Pathania, Hughes, Goodchild, Morrell, Watson, Bumstead, Kaufman, Young (bib41) 2005; 25 Akira, Uematsu, Takeuchi (bib3) 2006; 124 Shi, Xi, Duan, Niu (bib75) 2017; 4 Okulweicz, Zlotorzycka (bib67) 1985; 26 Levy, Thiass, Elinav (bib52) 2016; 30 Bomminieni, Pham, Sunkara, Achanta, Zhang (bib15) 2014; 59 Xiao, Cai, Bommineni, Fernando, Prakash, Gilliland, Zhang (bib89) 2006; 281 Perumbakkam, Hunt, Cheng (bib70) 2016; 92 Springer, Johnson, Reid (bib77) 1970; 28 Stanley, Wu, Rodgers, Swick, Moore (bib78) 2014; 9 Medzhitov (bib59) 2001; 1 Yitbarek, Weese, Alkie, Parkison, Sharif (bib91) 2018; 94 Kogut (bib43) 2013; 22 Kogut, Klasing (bib44) 2009; 18 Juricova, Videnska, Lukac, Faldynova, Babak, Havlickova, Sisak, Rychlik (bib40) 2013; 79 Mogensen (bib64) 2009; 22 Oakley, Kogut (bib66) 2016; 3 Crhanova, Hradecka, Faldynova, Matulova, Havlickova, Sisak, Rychlik (bib21) 2011; 79 Maslowski, Mackay (bib58) 2011; 12 Sokol, Pineur, Watterlot, Lakhdan, Bermidez-Humaran, Gratadoux, Blugen, Bridonneau, Furet, Corthier, Grangette, Vasquez, Pochart, Trugnan, Thomas, Blottiere, Dore, Marteau, Seksik, Langelia (bib76) 2008; 105 Bene, Varga, Petrov, Boyko, Rahnavolgyi (bib12) 2017; 8 Chai, Lillehoj (bib19) 1988; 63 Droleskey, Oyofo, Hargis, Corrier, DeLoach (bib24) 1994; 38 Goto, Miki, Nakimura, Fujimoto, Okada (bib30) 2017; 12 Guo, Thomas, Bruce, Hilton, Bean, Lowentahl (bib32) 2013; 41 Krysko, Agostinis, Krysko, Garg, Bachert, Lambrecht, Vandenabeele (bib46) 2011; 32 Lee, Kim (bib50) 2007; 76 Awad, Hess, Hess (bib6) 2017; 9 Glick, Chang, Jaap (bib29) 1956; 35 Han, Willer, Li, Pielsticker, Rychlik, Velge, Kaspers, Rautenschlein (bib34) 2017; 85 Stecher, Robbiani, Walker, westendorf, Barthel, Kremer, Chaffron, MacPerson, Buer, Parkhill, Dougan, von Mering, Hardt (bib79) 2007; 5 Blacher, Levy, Tatirovsky, Elinov (bib14) 2017; 198 Quinteiro-Filho, Rodrigues, Ribeiro, Ferraz-de-Paula, Pinheiro, Sa, Ferreira, Palermo-Neto (bib72) 2012; 90 Garg, Nowis, Golab, Vandenabeele, Krysko, Agostinis (bib27) 2010; 1805 Medzhitov, Janeway (bib61) 1997; 9 Takeuchi, Akira (bib81) 2010; 140 Visco, Burns (bib84) 1972; 58 Carpenter, O’Neill (bib18) 2007; 9 Hauck (bib35) 2017; 61 Connerton, Richards, Lafontaine, O’Kane, Ghaffar, Cummings, Smith, Fish, Connerton (bib22) 2018; 6 Abraham, Medzhitov (bib1) 2011; 140 Benatar, Tkalec, Ratcliffe (bib11) 1992; 89 Perez, Jacobs, Barnes, Jenkins, Kuhlenschmidt, Fahey, Parsons, Pettigrew (bib68) 2011; 90 Neish (bib65) 2002; 4 Alemka, Corcionivoschi, Bourke (bib4) 2012; 2 Janeway, Medzhitov (bib39) 2002; 20 Wang, Zhu, Yang, Cui, Pan, Jackson, Zheng, Rongvau, Sun, Yang, Gan, Liu, You, Flavell, Fikrig (bib85) 2015; 350 Yan, Huang, Chen, Jiang, Li, Chen (bib92) 2016; 61 Levy, Thiass, Katz, Suez, Elinav (bib51) 2015; 37 Marchesi, Adams, Fava, Hermes, Hirschfield, Hold, Quraishi, Kinross, Smidt, Tuohy, Thomas, Zoetendal, Hart (bib57) 2016; 65 Gobel, Schneider, Schaerer, Mejri, Puehler, Weigand, Staeheli, Kaspers (bib94) 2003; 171 Cheng, Brzostek, Ando, Van Scoy, Kumar, Rich (bib20) 2006; 176 Hooper, Litman, MacPherson (bib38) 2012; 336 Santos, Raffatellu, Bevins, Adams, Tukel, Tsolis, Baumler (bib74) 2009; 17 Mon, Saelao, Halstead, Chanthavixay, Chang, Garas, Maga, Zhou (bib63) 2015; 2 Straub, Neulen, Sperling, Windau, Zechmann, Jansen, Viertlboeck, Gobel (bib80) 2013; 41 Belkaid, Harrison (bib9) 2017; 46 Yitbarek, Alkie, Taha-Abdelaziz, Astill, Rodriguez-Lecompte, Parkinson, Nagy, Sharif (bib90) 2018; 9 Fischbach, Lin, Yu, Abergel, Liu, Raymond, Wanner, Strong, Walsh, Aderem, Smith (bib26) 2006; 103 Den Hartog, De Vries-Reilingh, Wehmaker, Savelkoul, Parmentier, Lammers (bib23) 2016; 7 Midha, Schlosser, Hartmann (bib62) 2017; 7 Hooper, MacPherson (bib37) 2010; 10 Gowan, Wong, Jung, Sanders, Mitchell, Alexopoulou, Flavell, Sidwell (bib31) 2007; 178 Medzhitov (bib60) 2007; 449 Postler, Ghosh (bib71) 2017; 26 Bradley, Radhakrishman (bib16) 1973; 17 Kawai, Akira (bib42) 2009; 21 Sansonetti (bib73) 2004; 4 Broom, Kogut (bib17) 2018; 97 Lammers, Wieland, Kruijit, Jansma, Straetemans, Schots, den Hartog, Parmentier (bib49) 2010; 34 Winter, Thienimitr, Winter, Butler, Huseby, Crawford, Russell, Bevins, Adams, Tsolis, Roth, Baumler (bib87) 2010; 467 Kogut (10.1016/j.psj.2019.12.011_bib45) 2017; 12 Benatar (10.1016/j.psj.2019.12.011_bib11) 1992; 89 Levy (10.1016/j.psj.2019.12.011_bib52) 2016; 30 Quinteiro-Filho (10.1016/j.psj.2019.12.011_bib72) 2012; 90 Liu (10.1016/j.psj.2019.12.011_bib54) 2016; 19 Abraham (10.1016/j.psj.2019.12.011_bib1) 2011; 140 Gowan (10.1016/j.psj.2019.12.011_bib31) 2007; 178 Den Hartog (10.1016/j.psj.2019.12.011_bib23) 2016; 7 Janeway (10.1016/j.psj.2019.12.011_bib39) 2002; 20 Postler (10.1016/j.psj.2019.12.011_bib71) 2017; 26 Belkaid (10.1016/j.psj.2019.12.011_bib9) 2017; 46 Garg (10.1016/j.psj.2019.12.011_bib27) 2010; 1805 Neish (10.1016/j.psj.2019.12.011_bib65) 2002; 4 Yitbarek (10.1016/j.psj.2019.12.011_bib90) 2018; 9 Glick (10.1016/j.psj.2019.12.011_bib29) 1956; 35 Wieland (10.1016/j.psj.2019.12.011_bib96) 2004; 380 Perumbakkam (10.1016/j.psj.2019.12.011_bib69) 2014; 90 Awad (10.1016/j.psj.2019.12.011_bib6) 2017; 9 Marchesi (10.1016/j.psj.2019.12.011_bib57) 2016; 65 Honda (10.1016/j.psj.2019.12.011_bib36) 2016; 535 Mon (10.1016/j.psj.2019.12.011_bib63) 2015; 2 Wigley (10.1016/j.psj.2019.12.011_bib86) 2013; 41 Fischbach (10.1016/j.psj.2019.12.011_bib26) 2006; 103 Springer (10.1016/j.psj.2019.12.011_bib77) 1970; 28 Wu (10.1016/j.psj.2019.12.011_bib88) 2014; 169 Yan (10.1016/j.psj.2019.12.011_bib92) 2016; 61 Bradley (10.1016/j.psj.2019.12.011_bib16) 1973; 17 Kogut (10.1016/j.psj.2019.12.011_bib43) 2013; 22 Lee (10.1016/j.psj.2019.12.011_bib50) 2007; 76 Kumar (10.1016/j.psj.2019.12.011_bib93) 2011; 30 Medzhitov (10.1016/j.psj.2019.12.011_bib60) 2007; 449 Guo (10.1016/j.psj.2019.12.011_bib32) 2013; 41 Connerton (10.1016/j.psj.2019.12.011_bib22) 2018; 6 Juricova (10.1016/j.psj.2019.12.011_bib40) 2013; 79 Droleskey (10.1016/j.psj.2019.12.011_bib24) 1994; 38 Stanley (10.1016/j.psj.2019.12.011_bib78) 2014; 9 Winter (10.1016/j.psj.2019.12.011_bib87) 2010; 467 Sansonetti (10.1016/j.psj.2019.12.011_bib73) 2004; 4 Visco (10.1016/j.psj.2019.12.011_bib84) 1972; 58 Hauck (10.1016/j.psj.2019.12.011_bib35) 2017; 61 Krysko (10.1016/j.psj.2019.12.011_bib46) 2011; 32 Maslowski (10.1016/j.psj.2019.12.011_bib58) 2011; 12 Sokol (10.1016/j.psj.2019.12.011_bib76) 2008; 105 Takeuchi (10.1016/j.psj.2019.12.011_bib81) 2010; 140 Yitbarek (10.1016/j.psj.2019.12.011_bib91) 2018; 94 Oakley (10.1016/j.psj.2019.12.011_bib66) 2016; 3 Perumbakkam (10.1016/j.psj.2019.12.011_bib70) 2016; 92 Belote (10.1016/j.psj.2019.12.011_bib10) 2018; 97 Lu (10.1016/j.psj.2019.12.011_bib55) 2001; 73 Birchenough (10.1016/j.psj.2019.12.011_bib13) 2016; 352 Levy (10.1016/j.psj.2019.12.011_bib51) 2015; 37 Straub (10.1016/j.psj.2019.12.011_bib80) 2013; 41 Garrett (10.1016/j.psj.2019.12.011_bib28) 2010; 140 Hooper (10.1016/j.psj.2019.12.011_bib37) 2010; 10 Bene (10.1016/j.psj.2019.12.011_bib12) 2017; 8 Guo (10.1016/j.psj.2019.12.011_bib33) 2017; 168 Awad (10.1016/j.psj.2019.12.011_bib7) 2016; 6 Shi (10.1016/j.psj.2019.12.011_bib75) 2017; 4 Underhill (10.1016/j.psj.2019.12.011_bib83) 2007; 219 Gobel (10.1016/j.psj.2019.12.011_bib94) 2003; 171 Okulweicz (10.1016/j.psj.2019.12.011_bib67) 1985; 26 Carpenter (10.1016/j.psj.2019.12.011_bib18) 2007; 9 Kogut (10.1016/j.psj.2019.12.011_bib44) 2009; 18 Han (10.1016/j.psj.2019.12.011_bib34) 2017; 85 Levy (10.1016/j.psj.2019.12.011_bib53) 2017; 35 Chai (10.1016/j.psj.2019.12.011_bib19) 1988; 63 Kaiser (10.1016/j.psj.2019.12.011_bib41) 2005; 25 Lammers (10.1016/j.psj.2019.12.011_bib49) 2010; 34 Xiao (10.1016/j.psj.2019.12.011_bib89) 2006; 281 Stecher (10.1016/j.psj.2019.12.011_bib79) 2007; 5 Cheng (10.1016/j.psj.2019.12.011_bib20) 2006; 176 Macdonald (10.1016/j.psj.2019.12.011_bib95) 2017; 12 Akira (10.1016/j.psj.2019.12.011_bib3) 2006; 124 Hooper (10.1016/j.psj.2019.12.011_bib38) 2012; 336 Kawai (10.1016/j.psj.2019.12.011_bib42) 2009; 21 Santos (10.1016/j.psj.2019.12.011_bib74) 2009; 17 Abreu (10.1016/j.psj.2019.12.011_bib2) 2005; 174 Mantis (10.1016/j.psj.2019.12.011_bib56) 2010; 39 Arsenault (10.1016/j.psj.2019.12.011_bib5) 2016; 95 Alemka (10.1016/j.psj.2019.12.011_bib4) 2012; 2 Broom (10.1016/j.psj.2019.12.011_bib17) 2018; 97 Goto (10.1016/j.psj.2019.12.011_bib30) 2017; 12 Wang (10.1016/j.psj.2019.12.011_bib85) 2015; 350 Belkaid (10.1016/j.psj.2019.12.011_bib8) 2014; 157 Blacher (10.1016/j.psj.2019.12.011_bib14) 2017; 198 Erf (10.1016/j.psj.2019.12.011_bib25) 2004; 83 Mogensen (10.1016/j.psj.2019.12.011_bib64) 2009; 22 Thaiss (10.1016/j.psj.2019.12.011_bib82) 2014; 26 Crhanova (10.1016/j.psj.2019.12.011_bib21) 2011; 79 Perez (10.1016/j.psj.2019.12.011_bib68) 2011; 90 Midha (10.1016/j.psj.2019.12.011_bib62) 2017; 7 Medzhitov (10.1016/j.psj.2019.12.011_bib61) 1997; 9 Bomminieni (10.1016/j.psj.2019.12.011_bib15) 2014; 59 Medzhitov (10.1016/j.psj.2019.12.011_bib59) 2001; 1 |
References_xml | – volume: 35 start-page: 224 year: 1956 end-page: 225 ident: bib29 article-title: The bursa of Fabricius and antibody production publication-title: Poult. Sci. – volume: 58 start-page: 576 year: 1972 end-page: 585 ident: bib84 article-title: Eimeria tenella in bacteria-free and conventionalized chicks publication-title: J. Parasitol. – volume: 103 start-page: 16502 year: 2006 end-page: 16507 ident: bib26 article-title: The pathogen-associated publication-title: Proc. Natl. Acad. Sci. – volume: 168 start-page: 617 year: 2017 end-page: 628 ident: bib33 article-title: Discovery of reactive microbiota-derived metabolites that inhibit host proteases publication-title: Cell – volume: 90 start-page: 558 year: 2011 end-page: 964 ident: bib68 article-title: Effect of distillers dried grains with solubles and Eimeria acervulina infection on growth performance and the intestinal microbiota of young chicks publication-title: Poult. Sci. – volume: 219 start-page: 75 year: 2007 end-page: 87 ident: bib83 article-title: Collaboration between the innate immune receptors dectin-1, TLRs, and NODs publication-title: Immunol. Rev. – volume: 18 start-page: 103 year: 2009 end-page: 110 ident: bib44 article-title: An immunologist’s perspective on nutrition, immunity, and infectious diseases: introduction and overview publication-title: J. Appl. Poult. Res. – volume: 535 start-page: 75 year: 2016 end-page: 84 ident: bib36 article-title: The microbiota in adaptive immune homeostasis and disease publication-title: Nature – volume: 12 start-page: e0184890 year: 2017 ident: bib95 article-title: Effects of Eimeria tenella infection on chicken cecal microbiome diversity, exploring variation associated with severity of pathology publication-title: Plos One – volume: 26 start-page: 110 year: 2017 end-page: 130 ident: bib71 article-title: Understanding the holobiont: how microbial metaobolites affect human health and shape the immune system publication-title: Cell Metabol – volume: 17 start-page: 461 year: 1973 end-page: 476 ident: bib16 article-title: Coccidiosis in chickens: obligate relationship between Eimeria tenella and certain species of cecal microflora in the pathogenesis of the disease publication-title: Av. Dis. – volume: 140 start-page: 805 year: 2010 end-page: 820 ident: bib81 article-title: Pattern recognition receptors and inflammation publication-title: Cell – volume: 79 start-page: 745 year: 2013 end-page: 747 ident: bib40 article-title: Influence of Salmonella enterica serovar Enteritidis infection on the development of the cecum microbiota in newly hatched chicks publication-title: Appl. Environ. Microbiol. – volume: 32 start-page: 157 year: 2011 end-page: 164 ident: bib46 article-title: Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation publication-title: Trend, Immunol. – volume: 61 start-page: 428 year: 2017 end-page: 436 ident: bib35 article-title: Interactions between parasites and the bacterial microbiota of chickens publication-title: Avian. Dis. – volume: 105 start-page: 16731 year: 2008 end-page: 16736 ident: bib76 article-title: Fecalobacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients publication-title: Proc. Natl. Acad. Sci. – volume: 198 start-page: 572 year: 2017 end-page: 580 ident: bib14 article-title: Microbiome-modulated metabolites at the interface of host immunity publication-title: J. Immunol. – volume: 169 start-page: 188 year: 2014 end-page: 197 ident: bib88 article-title: Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the cecal microbiota of broiler chickens publication-title: Vet. Microbiol. – volume: 41 start-page: 324 year: 2013 end-page: 333 ident: bib80 article-title: Chicken NK receptors publication-title: Develop. Comp. Immunol. – volume: 9 start-page: 417 year: 2018 end-page: 427 ident: bib90 article-title: Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2 publication-title: Benef. Microb. – volume: 12 start-page: 31 year: 2017 ident: bib45 article-title: Gut health in poultry publication-title: CAB Rev. – volume: 41 start-page: 413 year: 2013 end-page: 417 ident: bib86 article-title: Immunity to bacterial infection in the chicken publication-title: Dev. Comp. Immunol. – volume: 2 start-page: 61 year: 2015 ident: bib63 article-title: Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks publication-title: Front. Vet. Sci. – volume: 8 start-page: 427 year: 2017 ident: bib12 article-title: Gut microbiota species can invoke both inflammatory and tolerogenic immune responses in human dendritic cells mediated by retinoic acid receptor alpha ligation publication-title: Front. Immunol. – volume: 76 start-page: 447 year: 2007 end-page: 480 ident: bib50 article-title: Signaling pathways downstream of pattern-recognition receptors and their cross talk publication-title: Annu. Rev. Biochem. – volume: 73 start-page: 1124S year: 2001 end-page: 1130S ident: bib55 article-title: Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium publication-title: Am. J. Clin. Nutr. – volume: 5 start-page: e244 year: 2007 ident: bib79 article-title: Salmonella enterica serovars Typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PloS Biol – volume: 46 start-page: 562 year: 2017 end-page: 576 ident: bib9 article-title: Homeostatic immunity and the microbiota publication-title: Immunity – volume: 17 start-page: 498 year: 2009 end-page: 506 ident: bib74 article-title: Life in the inflamed intestine, Salmonella style publication-title: Trends Microbiol – volume: 30 start-page: 16 year: 2011 end-page: 34 ident: bib93 article-title: Pathogen recognition by the innate immune system publication-title: Int. Rev. Immunol. – volume: 90 start-page: 300 year: 2014 end-page: 312 ident: bib69 article-title: Marek’s disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication publication-title: FEMS Microbiol. Ecol. – volume: 7 start-page: 144 year: 2017 ident: bib62 article-title: Reciprocal interactions between nematodes and their microbial environments publication-title: Front. Cell. Infect. Microbiol. – volume: 174 start-page: 4453 year: 2005 end-page: 4460 ident: bib2 article-title: TLR signaling in the gut in health and disease publication-title: J. Immunol. – volume: 350 start-page: 826 year: 2015 end-page: 830 ident: bib85 article-title: Nlrp6 regulates intestinal antiviral innate immunity publication-title: Science – volume: 63 start-page: 111 year: 1988 end-page: 117 ident: bib19 article-title: Isolation and functional characterization of chicken intestinal intra-epithelial lymphocytes showing natural killer cell activity against tumor target cells publication-title: Immunology – volume: 1805 start-page: 53 year: 2010 end-page: 71 ident: bib27 article-title: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation publication-title: Biochim. Biophys. Acta. – volume: 2 start-page: 15 year: 2012 ident: bib4 article-title: Defense and adaptation: the complex inter-relationship between Campylobacter jejuni and mucus publication-title: Front. Cell. Infect. Microbiol. – volume: 6 start-page: 88 year: 2018 ident: bib22 article-title: The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens publication-title: Microbiome – volume: 38 start-page: 275 year: 1994 end-page: 281 ident: bib24 article-title: Effect of mannose on Salmonella typhimurium-mediated loss of mucosal epithelial integrity in cultured chick intestinal segments publication-title: Avian Dis – volume: 21 start-page: 317 year: 2009 end-page: 327 ident: bib42 article-title: The roles of TLRs, RLRs and NLRs in pathogen recognition publication-title: Int. Immunol. – volume: 467 start-page: 426 year: 2010 end-page: 429 ident: bib87 article-title: Gut inflammation provides a respiratory electron acceptor for Salmonella publication-title: Nature – volume: 95 start-page: 354 year: 2016 end-page: 363 ident: bib5 article-title: Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation publication-title: Poult. Sci. – volume: 85 year: 2017 ident: bib34 article-title: Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens publication-title: Infect. Immun. – volume: 4 start-page: 14 year: 2017 ident: bib75 article-title: Interaction between the gut microbiome and mucosal immune system publication-title: Mil. Med. Res. – volume: 140 start-page: 1729 year: 2011 end-page: 1737 ident: bib1 article-title: Interaction between the host innate immune system and microbes in inflammatory bowel disease publication-title: Gastroenterology – volume: 61 start-page: 1151 year: 2016 end-page: 1153 ident: bib92 article-title: Metabolome in microbiota: applications and challenges publication-title: Sci. Bull. – volume: 3 start-page: 11 year: 2016 ident: bib66 article-title: Spatial and temporal changes in broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression publication-title: Front. Vet. Infect. Dis. – volume: 34 start-page: 1252 year: 2010 end-page: 1262 ident: bib49 article-title: Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken publication-title: Develop. Comp. Immunol. – volume: 30 start-page: 1589 year: 2016 end-page: 1597 ident: bib52 article-title: Metabolites: messengers between the microbiota and the immune system publication-title: Genes Develop – volume: 19 start-page: 32 year: 2016 end-page: 43 ident: bib54 article-title: The host shapes the gut microbiota via fecal microRNA publication-title: Cell Host Microbe – volume: 1 start-page: 135 year: 2001 end-page: 145 ident: bib59 article-title: Toll-like receptors and innate immunity publication-title: Nat. Rev. Immunol. – volume: 352 start-page: 1535 year: 2016 end-page: 1542 ident: bib13 article-title: A sentinel goblet cell guards the colonic crypt by triggering NLRP6-dependnet Muc2 secretion publication-title: Science – volume: 25 start-page: 467 year: 2005 end-page: 484 ident: bib41 article-title: A genomic analysis of chicken cytokines and chemokines publication-title: J. IFN Cyto. Res. – volume: 26 start-page: 41 year: 2014 end-page: 48 ident: bib82 article-title: The interplay between the innate immune system and the microbiota publication-title: Curr. Opin. Immunol. – volume: 281 start-page: 2858 year: 2006 ident: bib89 article-title: Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity publication-title: J. Biol. Chem. – volume: 7 start-page: 677 year: 2016 end-page: 685 ident: bib23 article-title: Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota publication-title: Benef. Microb. – volume: 4 start-page: 309 year: 2002 end-page: 317 ident: bib65 article-title: The gut microflora and intestinal epithelial cells: a continuing dialogue publication-title: Microb. Infect. – volume: 178 start-page: 5200 year: 2007 end-page: 5208 ident: bib31 article-title: TLR3 is essential for the induction of protective immunity against Punta Toro virus infection by the double stranded RNA (dsRNA), poly(I:C12U), but not poly (I:C): differential recognition of synthetic dsRNA molecules publication-title: J. Immunol. – volume: 39 start-page: 383 year: 2010 end-page: 406 ident: bib56 article-title: Secretory IgA: arresting microbial pathogens at epithelial borders publication-title: Immunol. Invest. – volume: 9 start-page: e104739 year: 2014 ident: bib78 article-title: Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in necrotic enteritis challenge model in chicken publication-title: PloS One – volume: 59 start-page: 55 year: 2014 end-page: 63 ident: bib15 article-title: Immune regulatory activities of fowlcidin-1, a cathelicidin host defense peptide publication-title: Mol. Immunol. – volume: 26 start-page: 151 year: 1985 end-page: 155 ident: bib67 article-title: Connections between Acaridia galli and the bacterial flora in the intestine of hens publication-title: Angew. Parasitol. – volume: 20 start-page: 197 year: 2002 end-page: 216 ident: bib39 article-title: Innate immune recognition publication-title: Ann. Rev. Immunol. – volume: 65 start-page: 330 year: 2016 end-page: 339 ident: bib57 article-title: The gut microbiota and host health: a new clinical frontier publication-title: Gut – volume: 97 start-page: 510 year: 2018 end-page: 514 ident: bib17 article-title: Inflammation: friend or foe for animal production publication-title: Poult. Sci. – volume: 9 start-page: 60 year: 2017 ident: bib6 article-title: Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens publication-title: Toxins – volume: 140 start-page: 859 year: 2010 end-page: 870 ident: bib28 article-title: Homeostasis and inflammation in the intestine publication-title: Cell – volume: 22 start-page: 637 year: 2013 end-page: 646 ident: bib43 article-title: The gut microbiome and host innate immunity: regulators of host metabolism and metabolic diseases in poultry? publication-title: J. Appl. Poult. Res. – volume: 92 start-page: 188 year: 2016 ident: bib70 article-title: Differences in CD8αα and cecal microbiome community during proliferation and late cytolytic phases of Marek’s disease virus infection are associated with genetic resistance to Marek’s disease publication-title: FEMS Microbiol. Ecol. – volume: 41 start-page: 389 year: 2013 end-page: 396 ident: bib32 article-title: The chicken Th1 response: potential therapeutic applications of ChIFN-ɣ publication-title: Dev. Comp. Immunol. – volume: 89 start-page: 7615 year: 1992 end-page: 7619 ident: bib11 article-title: Stochastic rearrangement of immunoglobulin variable-region genes in chicken B-cell development publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 1891 year: 2007 end-page: 1901 ident: bib18 article-title: How important are toll-like receptors for antimicrobial responses? Cell publication-title: Microbiol – volume: 94 start-page: 165 year: 2018 ident: bib91 article-title: Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens publication-title: FEMS Microbiol. Ecol. – volume: 9 start-page: 4 year: 1997 end-page: 9 ident: bib61 article-title: Innate immunity: impact on the adaptive immune response publication-title: Curr. Opin. Immunol. – volume: 171 start-page: 1809 year: 2003 end-page: 1815 ident: bib94 article-title: IL-18 stimulates the proliferation and IFN-γ release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species publication-title: J. Immunol. – volume: 97 start-page: 2287 year: 2018 end-page: 2294 ident: bib10 article-title: Histological parameters to e valuate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter publication-title: Poult. Sci. – volume: 10 start-page: 159 year: 2010 end-page: 169 ident: bib37 article-title: Immune adaptations that maintain homeostasis with the intestinal microbiota publication-title: Nat. Rev. Immunol. – volume: 90 start-page: 1986 year: 2012 end-page: 1994 ident: bib72 article-title: Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary adrenal axis activation publication-title: J. Ani. Sci. – volume: 336 start-page: 1268 year: 2012 end-page: 1273 ident: bib38 article-title: Interactions between the microbiota and the immune system publication-title: Science – volume: 35 start-page: 8 year: 2017 end-page: 15 ident: bib53 article-title: Microbiome, metabolites, and host immunity publication-title: Curr. Opin. Microbiol. – volume: 12 start-page: 5 year: 2011 end-page: 9 ident: bib58 article-title: Diet, gut microbiota, and immune responses publication-title: Nat. Immunol. – volume: 4 start-page: 953 year: 2004 end-page: 964 ident: bib73 article-title: War and peace at mucosal surfaces publication-title: Nat. Rev. Immunol. – volume: 37 start-page: 39 year: 2015 end-page: 46 ident: bib51 article-title: Inflammasomes and the microbiota -- partners in the preservation of mucosal homeostasis publication-title: Semin. Immunopathol. – volume: 22 start-page: 240 year: 2009 end-page: 273 ident: bib64 article-title: Pathogen recognition and inflammatory signaling in innate immune defenses publication-title: Clin. Microbiol. Rev. – volume: 28 start-page: 383 year: 1970 end-page: 392 ident: bib77 article-title: Histomoniasis in gnotobiotic chickens and turkeys -- biological aspects of role of bacteria in etiology publication-title: Exp. Parasitol. – volume: 380 start-page: 669 year: 2004 end-page: 676 ident: bib96 article-title: A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity publication-title: Biochem. J. – volume: 124 start-page: 783 year: 2006 end-page: 801 ident: bib3 article-title: Pathogen recognition and innate immunity publication-title: Cell – volume: 6 start-page: 154 year: 2016 ident: bib7 article-title: Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection publication-title: Front. Cell. Infect. Microbiol. – volume: 12 start-page: e0190095 year: 2017 ident: bib30 article-title: Salmonella typhimurium PagP- and Ugtl-dependnet resistance to antimicrobial peptides contribute to gut colonization publication-title: Plos One – volume: 176 start-page: 7462 year: 2006 end-page: 7470 ident: bib20 article-title: Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection publication-title: J. Immunol. – volume: 83 start-page: 580 year: 2004 end-page: 590 ident: bib25 article-title: Cell mediated immunity in poultry publication-title: Poult. Sci. – volume: 157 start-page: 121 year: 2014 end-page: 141 ident: bib8 article-title: Role of the microbiota in immunity and inflammation publication-title: Cell – volume: 79 start-page: 2755 year: 2011 end-page: 2763 ident: bib21 article-title: Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection publication-title: Infect. Immun. – volume: 449 start-page: 819 year: 2007 end-page: 826 ident: bib60 article-title: Recognition of microorganisms and activation of the immune response publication-title: Nature – volume: 95 start-page: 354 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib5 article-title: Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation publication-title: Poult. Sci. doi: 10.3382/ps/pev344 – volume: 83 start-page: 580 year: 2004 ident: 10.1016/j.psj.2019.12.011_bib25 article-title: Cell mediated immunity in poultry publication-title: Poult. Sci. doi: 10.1093/ps/83.4.580 – volume: 281 start-page: 2858 year: 2006 ident: 10.1016/j.psj.2019.12.011_bib89 article-title: Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507180200 – volume: 4 start-page: 14 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib75 article-title: Interaction between the gut microbiome and mucosal immune system publication-title: Mil. Med. Res. – volume: 198 start-page: 572 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib14 article-title: Microbiome-modulated metabolites at the interface of host immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1601247 – volume: 140 start-page: 859 year: 2010 ident: 10.1016/j.psj.2019.12.011_bib28 article-title: Homeostasis and inflammation in the intestine publication-title: Cell doi: 10.1016/j.cell.2010.01.023 – volume: 85 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib34 article-title: Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens publication-title: Infect. Immun. doi: 10.1128/IAI.00380-17 – volume: 5 start-page: e244 year: 2007 ident: 10.1016/j.psj.2019.12.011_bib79 article-title: Salmonella enterica serovars Typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PloS Biol doi: 10.1371/journal.pbio.0050244 – volume: 336 start-page: 1268 year: 2012 ident: 10.1016/j.psj.2019.12.011_bib38 article-title: Interactions between the microbiota and the immune system publication-title: Science doi: 10.1126/science.1223490 – volume: 41 start-page: 389 year: 2013 ident: 10.1016/j.psj.2019.12.011_bib32 article-title: The chicken Th1 response: potential therapeutic applications of ChIFN-ɣ publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2013.05.009 – volume: 22 start-page: 240 year: 2009 ident: 10.1016/j.psj.2019.12.011_bib64 article-title: Pathogen recognition and inflammatory signaling in innate immune defenses publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00046-08 – volume: 6 start-page: 154 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib7 article-title: Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2016.00154 – volume: 26 start-page: 151 year: 1985 ident: 10.1016/j.psj.2019.12.011_bib67 article-title: Connections between Acaridia galli and the bacterial flora in the intestine of hens publication-title: Angew. Parasitol. – volume: 103 start-page: 16502 year: 2006 ident: 10.1016/j.psj.2019.12.011_bib26 article-title: The pathogen-associated iroA gene cluster mediates bacterial evasionof lipocalin-2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0604636103 – volume: 7 start-page: 677 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib23 article-title: Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota publication-title: Benef. Microb. doi: 10.3920/BM2016.0047 – volume: 97 start-page: 510 year: 2018 ident: 10.1016/j.psj.2019.12.011_bib17 article-title: Inflammation: friend or foe for animal production publication-title: Poult. Sci. doi: 10.3382/ps/pex314 – volume: 46 start-page: 562 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib9 article-title: Homeostatic immunity and the microbiota publication-title: Immunity doi: 10.1016/j.immuni.2017.04.008 – volume: 61 start-page: 428 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib35 article-title: Interactions between parasites and the bacterial microbiota of chickens publication-title: Avian. Dis. doi: 10.1637/11675-051917-Review.1 – volume: 352 start-page: 1535 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib13 article-title: A sentinel goblet cell guards the colonic crypt by triggering NLRP6-dependnet Muc2 secretion publication-title: Science doi: 10.1126/science.aaf7419 – volume: 79 start-page: 2755 year: 2011 ident: 10.1016/j.psj.2019.12.011_bib21 article-title: Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection publication-title: Infect. Immun. doi: 10.1128/IAI.01375-10 – volume: 8 start-page: 427 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib12 article-title: Gut microbiota species can invoke both inflammatory and tolerogenic immune responses in human dendritic cells mediated by retinoic acid receptor alpha ligation publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00427 – volume: 97 start-page: 2287 year: 2018 ident: 10.1016/j.psj.2019.12.011_bib10 article-title: Histological parameters to e valuate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter publication-title: Poult. Sci. doi: 10.3382/ps/pey064 – volume: 380 start-page: 669 year: 2004 ident: 10.1016/j.psj.2019.12.011_bib96 article-title: A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity publication-title: Biochem. J. doi: 10.1042/bj20040200 – volume: 6 start-page: 88 year: 2018 ident: 10.1016/j.psj.2019.12.011_bib22 article-title: The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens publication-title: Microbiome doi: 10.1186/s40168-018-0477-5 – volume: 26 start-page: 41 year: 2014 ident: 10.1016/j.psj.2019.12.011_bib82 article-title: The interplay between the innate immune system and the microbiota publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2013.10.016 – volume: 19 start-page: 32 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib54 article-title: The host shapes the gut microbiota via fecal microRNA publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.12.005 – volume: 17 start-page: 498 year: 2009 ident: 10.1016/j.psj.2019.12.011_bib74 article-title: Life in the inflamed intestine, Salmonella style publication-title: Trends Microbiol doi: 10.1016/j.tim.2009.08.008 – volume: 12 start-page: 31 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib45 article-title: Gut health in poultry publication-title: CAB Rev. doi: 10.1079/PAVSNNR201712031 – volume: 219 start-page: 75 year: 2007 ident: 10.1016/j.psj.2019.12.011_bib83 article-title: Collaboration between the innate immune receptors dectin-1, TLRs, and NODs publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2007.00548.x – volume: 63 start-page: 111 year: 1988 ident: 10.1016/j.psj.2019.12.011_bib19 article-title: Isolation and functional characterization of chicken intestinal intra-epithelial lymphocytes showing natural killer cell activity against tumor target cells publication-title: Immunology – volume: 90 start-page: 558 year: 2011 ident: 10.1016/j.psj.2019.12.011_bib68 article-title: Effect of distillers dried grains with solubles and Eimeria acervulina infection on growth performance and the intestinal microbiota of young chicks publication-title: Poult. Sci. doi: 10.3382/ps.2010-01066 – volume: 12 start-page: e0190095 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib30 article-title: Salmonella typhimurium PagP- and Ugtl-dependnet resistance to antimicrobial peptides contribute to gut colonization publication-title: Plos One doi: 10.1371/journal.pone.0190095 – volume: 38 start-page: 275 year: 1994 ident: 10.1016/j.psj.2019.12.011_bib24 article-title: Effect of mannose on Salmonella typhimurium-mediated loss of mucosal epithelial integrity in cultured chick intestinal segments publication-title: Avian Dis doi: 10.2307/1591949 – volume: 105 start-page: 16731 year: 2008 ident: 10.1016/j.psj.2019.12.011_bib76 article-title: Fecalobacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0804812105 – volume: 21 start-page: 317 year: 2009 ident: 10.1016/j.psj.2019.12.011_bib42 article-title: The roles of TLRs, RLRs and NLRs in pathogen recognition publication-title: Int. Immunol. doi: 10.1093/intimm/dxp017 – volume: 174 start-page: 4453 year: 2005 ident: 10.1016/j.psj.2019.12.011_bib2 article-title: TLR signaling in the gut in health and disease publication-title: J. Immunol. doi: 10.4049/jimmunol.174.8.4453 – volume: 39 start-page: 383 year: 2010 ident: 10.1016/j.psj.2019.12.011_bib56 article-title: Secretory IgA: arresting microbial pathogens at epithelial borders publication-title: Immunol. Invest. doi: 10.3109/08820131003622635 – volume: 7 start-page: 144 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib62 article-title: Reciprocal interactions between nematodes and their microbial environments publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2017.00144 – volume: 28 start-page: 383 year: 1970 ident: 10.1016/j.psj.2019.12.011_bib77 article-title: Histomoniasis in gnotobiotic chickens and turkeys -- biological aspects of role of bacteria in etiology publication-title: Exp. Parasitol. doi: 10.1016/0014-4894(70)90106-2 – volume: 58 start-page: 576 year: 1972 ident: 10.1016/j.psj.2019.12.011_bib84 article-title: Eimeria tenella in bacteria-free and conventionalized chicks publication-title: J. Parasitol. doi: 10.2307/3278208 – volume: 76 start-page: 447 year: 2007 ident: 10.1016/j.psj.2019.12.011_bib50 article-title: Signaling pathways downstream of pattern-recognition receptors and their cross talk publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.060605.122847 – volume: 178 start-page: 5200 year: 2007 ident: 10.1016/j.psj.2019.12.011_bib31 article-title: TLR3 is essential for the induction of protective immunity against Punta Toro virus infection by the double stranded RNA (dsRNA), poly(I:C12U), but not poly (I:C): differential recognition of synthetic dsRNA molecules publication-title: J. Immunol. doi: 10.4049/jimmunol.178.8.5200 – volume: 30 start-page: 1589 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib52 article-title: Metabolites: messengers between the microbiota and the immune system publication-title: Genes Develop doi: 10.1101/gad.284091.116 – volume: 1 start-page: 135 year: 2001 ident: 10.1016/j.psj.2019.12.011_bib59 article-title: Toll-like receptors and innate immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/35100529 – volume: 350 start-page: 826 year: 2015 ident: 10.1016/j.psj.2019.12.011_bib85 article-title: Nlrp6 regulates intestinal antiviral innate immunity publication-title: Science doi: 10.1126/science.aab3145 – volume: 61 start-page: 1151 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib92 article-title: Metabolome in microbiota: applications and challenges publication-title: Sci. Bull. doi: 10.1007/s11434-016-1142-7 – volume: 10 start-page: 159 year: 2010 ident: 10.1016/j.psj.2019.12.011_bib37 article-title: Immune adaptations that maintain homeostasis with the intestinal microbiota publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2710 – volume: 9 start-page: 417 year: 2018 ident: 10.1016/j.psj.2019.12.011_bib90 article-title: Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2 publication-title: Benef. Microb. doi: 10.3920/BM2017.0088 – volume: 157 start-page: 121 year: 2014 ident: 10.1016/j.psj.2019.12.011_bib8 article-title: Role of the microbiota in immunity and inflammation publication-title: Cell doi: 10.1016/j.cell.2014.03.011 – volume: 168 start-page: 617 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib33 article-title: Discovery of reactive microbiota-derived metabolites that inhibit host proteases publication-title: Cell doi: 10.1016/j.cell.2016.12.021 – volume: 3 start-page: 11 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib66 article-title: Spatial and temporal changes in broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression publication-title: Front. Vet. Infect. Dis. – volume: 1805 start-page: 53 year: 2010 ident: 10.1016/j.psj.2019.12.011_bib27 article-title: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation publication-title: Biochim. Biophys. Acta. – volume: 94 start-page: 165 year: 2018 ident: 10.1016/j.psj.2019.12.011_bib91 article-title: Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fix165 – volume: 2 start-page: 61 year: 2015 ident: 10.1016/j.psj.2019.12.011_bib63 article-title: Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks publication-title: Front. Vet. Sci. doi: 10.3389/fvets.2015.00061 – volume: 41 start-page: 413 year: 2013 ident: 10.1016/j.psj.2019.12.011_bib86 article-title: Immunity to bacterial infection in the chicken publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2013.04.008 – volume: 12 start-page: 5 year: 2011 ident: 10.1016/j.psj.2019.12.011_bib58 article-title: Diet, gut microbiota, and immune responses publication-title: Nat. Immunol. doi: 10.1038/ni0111-5 – volume: 26 start-page: 110 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib71 article-title: Understanding the holobiont: how microbial metaobolites affect human health and shape the immune system publication-title: Cell Metabol doi: 10.1016/j.cmet.2017.05.008 – volume: 9 start-page: 1891 year: 2007 ident: 10.1016/j.psj.2019.12.011_bib18 article-title: How important are toll-like receptors for antimicrobial responses? Cell publication-title: Microbiol – volume: 20 start-page: 197 year: 2002 ident: 10.1016/j.psj.2019.12.011_bib39 article-title: Innate immune recognition publication-title: Ann. Rev. Immunol. doi: 10.1146/annurev.immunol.20.083001.084359 – volume: 41 start-page: 324 year: 2013 ident: 10.1016/j.psj.2019.12.011_bib80 article-title: Chicken NK receptors publication-title: Develop. Comp. Immunol. doi: 10.1016/j.dci.2013.03.013 – volume: 176 start-page: 7462 year: 2006 ident: 10.1016/j.psj.2019.12.011_bib20 article-title: Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection publication-title: J. Immunol. doi: 10.4049/jimmunol.176.12.7462 – volume: 140 start-page: 1729 year: 2011 ident: 10.1016/j.psj.2019.12.011_bib1 article-title: Interaction between the host innate immune system and microbes in inflammatory bowel disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.02.012 – volume: 171 start-page: 1809 year: 2003 ident: 10.1016/j.psj.2019.12.011_bib94 article-title: IL-18 stimulates the proliferation and IFN-γ release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species publication-title: J. Immunol. doi: 10.4049/jimmunol.171.4.1809 – volume: 124 start-page: 783 year: 2006 ident: 10.1016/j.psj.2019.12.011_bib3 article-title: Pathogen recognition and innate immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.015 – volume: 37 start-page: 39 year: 2015 ident: 10.1016/j.psj.2019.12.011_bib51 article-title: Inflammasomes and the microbiota -- partners in the preservation of mucosal homeostasis publication-title: Semin. Immunopathol. doi: 10.1007/s00281-014-0451-7 – volume: 90 start-page: 1986 year: 2012 ident: 10.1016/j.psj.2019.12.011_bib72 article-title: Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary adrenal axis activation publication-title: J. Ani. Sci. doi: 10.2527/jas.2011-3949 – volume: 9 start-page: e104739 year: 2014 ident: 10.1016/j.psj.2019.12.011_bib78 article-title: Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in necrotic enteritis challenge model in chicken publication-title: PloS One doi: 10.1371/journal.pone.0104739 – volume: 79 start-page: 745 year: 2013 ident: 10.1016/j.psj.2019.12.011_bib40 article-title: Influence of Salmonella enterica serovar Enteritidis infection on the development of the cecum microbiota in newly hatched chicks publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02628-12 – volume: 35 start-page: 8 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib53 article-title: Microbiome, metabolites, and host immunity publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2016.10.003 – volume: 169 start-page: 188 year: 2014 ident: 10.1016/j.psj.2019.12.011_bib88 article-title: Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the cecal microbiota of broiler chickens publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2014.01.007 – volume: 25 start-page: 467 year: 2005 ident: 10.1016/j.psj.2019.12.011_bib41 article-title: A genomic analysis of chicken cytokines and chemokines publication-title: J. IFN Cyto. Res. doi: 10.1089/jir.2005.25.467 – volume: 9 start-page: 4 year: 1997 ident: 10.1016/j.psj.2019.12.011_bib61 article-title: Innate immunity: impact on the adaptive immune response publication-title: Curr. Opin. Immunol. doi: 10.1016/S0952-7915(97)80152-5 – volume: 2 start-page: 15 year: 2012 ident: 10.1016/j.psj.2019.12.011_bib4 article-title: Defense and adaptation: the complex inter-relationship between Campylobacter jejuni and mucus publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2012.00015 – volume: 59 start-page: 55 year: 2014 ident: 10.1016/j.psj.2019.12.011_bib15 article-title: Immune regulatory activities of fowlcidin-1, a cathelicidin host defense peptide publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.01.004 – volume: 30 start-page: 16 year: 2011 ident: 10.1016/j.psj.2019.12.011_bib93 article-title: Pathogen recognition by the innate immune system publication-title: Int. Rev. Immunol. doi: 10.3109/08830185.2010.529976 – volume: 65 start-page: 330 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib57 article-title: The gut microbiota and host health: a new clinical frontier publication-title: Gut doi: 10.1136/gutjnl-2015-309990 – volume: 22 start-page: 637 year: 2013 ident: 10.1016/j.psj.2019.12.011_bib43 article-title: The gut microbiome and host innate immunity: regulators of host metabolism and metabolic diseases in poultry? publication-title: J. Appl. Poult. Res. doi: 10.3382/japr.2013-00741 – volume: 90 start-page: 300 year: 2014 ident: 10.1016/j.psj.2019.12.011_bib69 article-title: Marek’s disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12392 – volume: 17 start-page: 461 year: 1973 ident: 10.1016/j.psj.2019.12.011_bib16 article-title: Coccidiosis in chickens: obligate relationship between Eimeria tenella and certain species of cecal microflora in the pathogenesis of the disease publication-title: Av. Dis. doi: 10.2307/1589145 – volume: 92 start-page: 188 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib70 article-title: Differences in CD8αα and cecal microbiome community during proliferation and late cytolytic phases of Marek’s disease virus infection are associated with genetic resistance to Marek’s disease publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiw188 – volume: 32 start-page: 157 year: 2011 ident: 10.1016/j.psj.2019.12.011_bib46 article-title: Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation publication-title: Trend, Immunol. doi: 10.1016/j.it.2011.01.005 – volume: 73 start-page: 1124S year: 2001 ident: 10.1016/j.psj.2019.12.011_bib55 article-title: Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/73.6.1124S – volume: 12 start-page: e0184890 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib95 article-title: Effects of Eimeria tenella infection on chicken cecal microbiome diversity, exploring variation associated with severity of pathology publication-title: Plos One doi: 10.1371/journal.pone.0184890 – volume: 34 start-page: 1252 year: 2010 ident: 10.1016/j.psj.2019.12.011_bib49 article-title: Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken publication-title: Develop. Comp. Immunol. doi: 10.1016/j.dci.2010.07.001 – volume: 449 start-page: 819 year: 2007 ident: 10.1016/j.psj.2019.12.011_bib60 article-title: Recognition of microorganisms and activation of the immune response publication-title: Nature doi: 10.1038/nature06246 – volume: 4 start-page: 309 year: 2002 ident: 10.1016/j.psj.2019.12.011_bib65 article-title: The gut microflora and intestinal epithelial cells: a continuing dialogue publication-title: Microb. Infect. doi: 10.1016/S1286-4579(02)01543-5 – volume: 89 start-page: 7615 year: 1992 ident: 10.1016/j.psj.2019.12.011_bib11 article-title: Stochastic rearrangement of immunoglobulin variable-region genes in chicken B-cell development publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.89.16.7615 – volume: 4 start-page: 953 year: 2004 ident: 10.1016/j.psj.2019.12.011_bib73 article-title: War and peace at mucosal surfaces publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1499 – volume: 535 start-page: 75 year: 2016 ident: 10.1016/j.psj.2019.12.011_bib36 article-title: The microbiota in adaptive immune homeostasis and disease publication-title: Nature doi: 10.1038/nature18848 – volume: 18 start-page: 103 year: 2009 ident: 10.1016/j.psj.2019.12.011_bib44 article-title: An immunologist’s perspective on nutrition, immunity, and infectious diseases: introduction and overview publication-title: J. Appl. Poult. Res. doi: 10.3382/japr.2008-00080 – volume: 9 start-page: 60 year: 2017 ident: 10.1016/j.psj.2019.12.011_bib6 article-title: Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens publication-title: Toxins doi: 10.3390/toxins9020060 – volume: 35 start-page: 224 year: 1956 ident: 10.1016/j.psj.2019.12.011_bib29 article-title: The bursa of Fabricius and antibody production publication-title: Poult. Sci. doi: 10.3382/ps.0350224 – volume: 140 start-page: 805 year: 2010 ident: 10.1016/j.psj.2019.12.011_bib81 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 467 start-page: 426 year: 2010 ident: 10.1016/j.psj.2019.12.011_bib87 article-title: Gut inflammation provides a respiratory electron acceptor for Salmonella publication-title: Nature doi: 10.1038/nature09415 |
SSID | ssj0021667 |
Score | 2.6314936 |
SecondaryResourceType | review_article |
Snippet | The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1906 |
SubjectTerms | adaptive immunity Animals bacteria Bacterial Infections - immunology Bacterial Infections - microbiology Bacterial Infections - veterinary blood plasma Chickens - immunology Chickens - microbiology coevolution dendritic cells gut health health status homeostasis Host-Pathogen Interactions immune response Immune System immunoglobulin A Immunology, Health and Disease inflammation innate immunity intestinal microorganisms intestinal mucosa macrophages microbial communities microbial load microbiome Microbiota mucosal firewall Parasitic Diseases, Animal - immunology Parasitic Diseases, Animal - parasitology pathogens Peyer's patches plasma cells Poultry Diseases - immunology Poultry Diseases - microbiology Poultry Diseases - parasitology Poultry Diseases - virology receptors Salmonella T-lymphocytes tonsils Virus Diseases - immunology Virus Diseases - veterinary Virus Diseases - virology |
Title | Microbiome and pathogen interaction with the immune system |
URI | https://dx.doi.org/10.1016/j.psj.2019.12.011 https://www.ncbi.nlm.nih.gov/pubmed/32241470 https://www.proquest.com/docview/2386282305 https://www.proquest.com/docview/2477632308 https://pubmed.ncbi.nlm.nih.gov/PMC7587753 https://doaj.org/article/9cac53f9c0494a059fc4c1ad2304b277 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzggaKEN0MqVOCFFje04cbgBKkKV4AQSN8tfoYsgu1qW_8-MnawISMul12SSyONx5s14_IaQI8sA5gYvcnDWIQdI3eZN8BZsmXPHXSWDx0Dx6rq6vC3_3sm7N62-sCYs0QMnxf1unHFStI1DIhMDYKB1pWPGYzLT8jqeIwefNwRTfajFqiqxZQoIteqGDfuZsbJr9vyANV1NzAMyNvJIkbh_5Jg-As_39ZNvHNLFNtnqkSQ9TSPYIWuh-0I2T-_nPZtG-EpOriaJZ-kpUNN5iu2Hp2AxFEki5ulIA8VMLAUYSCd4VCTQxO28S24v_tycX-Z9s4TcQZCxyC38ulzJvOPScO6l9E7U0hhVB3DRRdUiM1ujVFW1XjWOeTyUGnyBfIGKCy_2yHo37cJ3QsFdKc8MIr-yLHyrrGq8ENZWtnVB-owUg8K065nEsaHFox5Kxh406FijjjXjGnSckePlI7NEo7FK-AxnYSmIDNjxAtiF7u1Cf2YXGSmHOdQ9mEggAV41WfXtX8N8a1houHtiujB9edaAbaKmCrlCpqzhfw0yKiPfko0sRyEQLJV1kZF6ZD2jYY7vdJN_kfAbYroawsr9_6GXA7LBMWUQi48Oyfpi_hJ-AK5a2J9xCb0CKboeUA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiome+and+pathogen+interaction+with+the+immune+system&rft.jtitle=Poultry+science&rft.au=Kogut%2C+Michael+H&rft.au=Lee%2C+Annah&rft.au=Santin%2C+Elizabeth&rft.date=2020-04-01&rft.eissn=1525-3171&rft.volume=99&rft.issue=4&rft.spage=1906&rft_id=info:doi/10.1016%2Fj.psj.2019.12.011&rft_id=info%3Apmid%2F32241470&rft.externalDocID=32241470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5791&client=summon |