Microbiome and pathogen interaction with the immune system

The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdepend...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 99; no. 4; pp. 1906 - 1913
Main Authors Kogut, Michael H., Lee, Annah, Santin, Elizabeth
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.04.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer’s patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.
AbstractList The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.
Author Lee, Annah
Kogut, Michael H.
Santin, Elizabeth
Author_xml – sequence: 1
  givenname: Michael H.
  surname: Kogut
  fullname: Kogut, Michael H.
  email: mike.kogut@ars.usda.gov
  organization: Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA
– sequence: 2
  givenname: Annah
  surname: Lee
  fullname: Lee, Annah
  organization: Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA
– sequence: 3
  givenname: Elizabeth
  surname: Santin
  fullname: Santin, Elizabeth
  organization: Universidade Federal Do Paraná, Department of Veterinary Medicine, Curitiba, 80035-050 Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32241470$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUtFAR3RZ-ABeUI5cEPzuOE5CQUMVHpSIucLa89suuo8RebG9R_z3ebosoh3J6kj0zHr-ZM3Lig0dCXgJtgEL3Zmp2aWoYhaEB1lCAJ2QFgomag4QTsqKUs1rIAU7JWUoTpQy6Tj4jp5yxFlpJV-TtV2diWLuwYKW9rXY6b8MGfeV8xqhNdsFXv1zeVnmLlVuWvccq3aSMy3PydNRzwhd385z8-PTx-8WX-urb58uLD1e1EYLmeg2CmxasYUIzZoWwhkuhdS-xeKXd2MlODn3fdaPtBwO27ViPlg6sTMYtPyeXR10b9KR20S063qignbo9CHGjdMzOzKgGo43g42BoO7SaimE0rQFtGaftmklZtN4ftXb79YLWoM9Rzw9EH954t1WbcK2k6KUUvAi8vhOI4eceU1aLSwbnWXsM-6RYK2XHy3v9_6G8v_0hFQX66m9bf_zc51QA8ggoYaUUcVTGZX0Ip7h0swKqDo1QZT9pUodGKGCqNKIw4R_mvfhjnHdHDpZYrx1GlYxDb9C6iCaXvbtH2L8B4L7Mxw
CitedBy_id crossref_primary_10_3389_fmed_2024_1434582
crossref_primary_10_1098_rsos_210296
crossref_primary_10_3390_genes13122280
crossref_primary_10_1186_s12917_024_04125_5
crossref_primary_10_1016_j_jgr_2024_05_007
crossref_primary_10_26565_2313_6693_2021_41_04
crossref_primary_10_1016_j_neuroscience_2024_11_070
crossref_primary_10_1016_j_arr_2020_101164
crossref_primary_10_3390_biomedicines12051023
crossref_primary_10_1038_s41598_024_77017_1
crossref_primary_10_1128_spectrum_01847_21
crossref_primary_10_3390_antibiotics12030494
crossref_primary_10_3390_ph16091216
crossref_primary_10_1016_j_chaos_2024_115912
crossref_primary_10_3390_antiox9121182
crossref_primary_10_3390_nu13030850
crossref_primary_10_3390_microorganisms12112121
crossref_primary_10_2478_aoas_2023_0021
crossref_primary_10_1016_j_biopha_2024_117302
crossref_primary_10_1016_j_psj_2021_101612
crossref_primary_10_3390_cells12010184
crossref_primary_10_1038_s41598_024_69656_1
crossref_primary_10_1007_s11255_023_03760_5
crossref_primary_10_3390_vaccines9060606
crossref_primary_10_1016_j_clnu_2023_01_001
crossref_primary_10_1128_spectrum_01437_23
crossref_primary_10_2141_jpsa_2023021
crossref_primary_10_3389_fimmu_2022_1056036
crossref_primary_10_3389_fcimb_2023_1247182
crossref_primary_10_25259_GJMPBU_33_2022
crossref_primary_10_3389_fevo_2021_683183
crossref_primary_10_3389_fmicb_2022_960326
crossref_primary_10_3390_bioengineering11111063
crossref_primary_10_1016_j_mtbio_2024_101349
crossref_primary_10_3390_cells13232003
crossref_primary_10_3748_wjg_v28_i36_5265
crossref_primary_10_1007_s10482_024_02056_7
crossref_primary_10_1039_D5FO00162E
crossref_primary_10_3390_antibiotics11121703
crossref_primary_10_7717_peerj_13559
crossref_primary_10_1007_s00262_024_03723_4
crossref_primary_10_3390_fishes8090473
crossref_primary_10_33073_pjm_2024_041
crossref_primary_10_3390_vaccines11061116
crossref_primary_10_1002_iid3_70027
crossref_primary_10_3390_ijms241411423
crossref_primary_10_1128_spectrum_01906_21
crossref_primary_10_1016_j_psj_2022_102296
crossref_primary_10_1038_s41392_023_01406_7
crossref_primary_10_1016_j_psj_2020_09_075
crossref_primary_10_1016_j_psj_2024_104158
crossref_primary_10_1016_j_nut_2021_111288
crossref_primary_10_1016_j_psj_2024_103581
crossref_primary_10_3389_fimmu_2021_623737
crossref_primary_10_3390_ani11102819
crossref_primary_10_2147_IDR_S368772
crossref_primary_10_3389_fonc_2023_1196217
crossref_primary_10_1016_j_aninu_2023_03_005
crossref_primary_10_1186_s40168_022_01317_9
crossref_primary_10_2147_JAA_S401755
crossref_primary_10_1093_jas_skae118
crossref_primary_10_1186_s40168_022_01299_8
crossref_primary_10_1038_s41598_022_22511_7
crossref_primary_10_55934_10_55934_2587_8824_2023_30_2_236_242
crossref_primary_10_1080_03079457_2024_2410873
crossref_primary_10_1016_j_isci_2022_105326
crossref_primary_10_1016_j_ijbiomac_2023_124789
crossref_primary_10_3390_ijms241512296
crossref_primary_10_3389_fphys_2022_1023453
crossref_primary_10_3390_microorganisms8121925
crossref_primary_10_47430_ujmr_2492_015
crossref_primary_10_1038_s41598_024_67881_2
crossref_primary_10_3389_fmicb_2023_1257701
crossref_primary_10_1002_vms3_573
crossref_primary_10_3390_ijms25031747
crossref_primary_10_1007_s11686_022_00613_6
crossref_primary_10_1016_j_psj_2022_101943
crossref_primary_10_1016_j_diabres_2023_110781
crossref_primary_10_1016_j_peptides_2024_171154
crossref_primary_10_1016_j_anireprosci_2024_107647
crossref_primary_10_1002_eji_202350503
crossref_primary_10_1016_j_psj_2025_104942
crossref_primary_10_3389_fmicb_2023_1211271
crossref_primary_10_2478_acb_2023_0015
crossref_primary_10_3389_fmicb_2022_886252
crossref_primary_10_3390_ani13162606
crossref_primary_10_3390_ani14182709
crossref_primary_10_1080_00439339_2024_2308232
crossref_primary_10_1016_j_imlet_2024_106883
crossref_primary_10_1155_2021_6628814
crossref_primary_10_3390_pathogens9070544
crossref_primary_10_1016_j_enmm_2024_100914
crossref_primary_10_1016_j_fsi_2022_03_001
crossref_primary_10_3390_biom12010039
crossref_primary_10_1016_j_jff_2022_105070
crossref_primary_10_1016_j_fsi_2023_109142
crossref_primary_10_1016_j_expneurol_2023_114324
crossref_primary_10_1016_j_intimp_2022_109428
crossref_primary_10_1080_19490976_2023_2263209
crossref_primary_10_3390_ani14071015
crossref_primary_10_3389_fvets_2023_1309151
crossref_primary_10_3389_fmicb_2024_1417864
crossref_primary_10_1055_s_0043_1778017
crossref_primary_10_3389_fcimb_2024_1393680
crossref_primary_10_1128_msystems_00844_23
crossref_primary_10_1016_j_psj_2025_104882
crossref_primary_10_1093_jas_skad215
crossref_primary_10_3390_ijms25073728
crossref_primary_10_1186_s40104_024_01145_x
crossref_primary_10_3389_fnut_2022_810453
crossref_primary_10_3389_fvets_2024_1335765
crossref_primary_10_3390_jpm12010014
crossref_primary_10_1016_j_micres_2022_127139
crossref_primary_10_3389_fimmu_2024_1289644
crossref_primary_10_1038_s41598_021_99238_4
crossref_primary_10_3390_ani13111816
crossref_primary_10_3920_JIFF2020_0078
crossref_primary_10_1159_000538416
crossref_primary_10_1016_j_psj_2025_104770
crossref_primary_10_1016_j_blre_2024_101219
crossref_primary_10_1016_j_fsi_2024_109810
crossref_primary_10_1007_s12602_024_10443_9
crossref_primary_10_3390_microorganisms11081944
crossref_primary_10_1016_j_psj_2024_104003
crossref_primary_10_1021_acs_jafc_2c04017
crossref_primary_10_3390_md23040140
crossref_primary_10_3389_fimmu_2024_1413177
crossref_primary_10_3390_ani11123491
crossref_primary_10_1007_s00253_023_12934_1
crossref_primary_10_3390_vaccines10060981
Cites_doi 10.3382/ps/pev344
10.1093/ps/83.4.580
10.1074/jbc.M507180200
10.4049/jimmunol.1601247
10.1016/j.cell.2010.01.023
10.1128/IAI.00380-17
10.1371/journal.pbio.0050244
10.1126/science.1223490
10.1016/j.dci.2013.05.009
10.1128/CMR.00046-08
10.3389/fcimb.2016.00154
10.1073/pnas.0604636103
10.3920/BM2016.0047
10.3382/ps/pex314
10.1016/j.immuni.2017.04.008
10.1637/11675-051917-Review.1
10.1126/science.aaf7419
10.1128/IAI.01375-10
10.3389/fimmu.2017.00427
10.3382/ps/pey064
10.1042/bj20040200
10.1186/s40168-018-0477-5
10.1016/j.coi.2013.10.016
10.1016/j.chom.2015.12.005
10.1016/j.tim.2009.08.008
10.1079/PAVSNNR201712031
10.1111/j.1600-065X.2007.00548.x
10.3382/ps.2010-01066
10.1371/journal.pone.0190095
10.2307/1591949
10.1073/pnas.0804812105
10.1093/intimm/dxp017
10.4049/jimmunol.174.8.4453
10.3109/08820131003622635
10.3389/fcimb.2017.00144
10.1016/0014-4894(70)90106-2
10.2307/3278208
10.1146/annurev.biochem.76.060605.122847
10.4049/jimmunol.178.8.5200
10.1101/gad.284091.116
10.1038/35100529
10.1126/science.aab3145
10.1007/s11434-016-1142-7
10.1038/nri2710
10.3920/BM2017.0088
10.1016/j.cell.2014.03.011
10.1016/j.cell.2016.12.021
10.1093/femsec/fix165
10.3389/fvets.2015.00061
10.1016/j.dci.2013.04.008
10.1038/ni0111-5
10.1016/j.cmet.2017.05.008
10.1146/annurev.immunol.20.083001.084359
10.1016/j.dci.2013.03.013
10.4049/jimmunol.176.12.7462
10.1053/j.gastro.2011.02.012
10.4049/jimmunol.171.4.1809
10.1016/j.cell.2006.02.015
10.1007/s00281-014-0451-7
10.2527/jas.2011-3949
10.1371/journal.pone.0104739
10.1128/AEM.02628-12
10.1016/j.mib.2016.10.003
10.1016/j.vetmic.2014.01.007
10.1089/jir.2005.25.467
10.1016/S0952-7915(97)80152-5
10.3389/fcimb.2012.00015
10.1016/j.molimm.2014.01.004
10.3109/08830185.2010.529976
10.1136/gutjnl-2015-309990
10.3382/japr.2013-00741
10.1111/1574-6941.12392
10.2307/1589145
10.1093/femsec/fiw188
10.1016/j.it.2011.01.005
10.1093/ajcn/73.6.1124S
10.1371/journal.pone.0184890
10.1016/j.dci.2010.07.001
10.1038/nature06246
10.1016/S1286-4579(02)01543-5
10.1073/pnas.89.16.7615
10.1038/nri1499
10.1038/nature18848
10.3382/japr.2008-00080
10.3390/toxins9020060
10.3382/ps.0350224
10.1016/j.cell.2010.01.022
10.1038/nature09415
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Inc.
2019 Published by Elsevier Inc. on behalf of Poultry Science Association Inc. 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Inc.
– notice: 2019 Published by Elsevier Inc. on behalf of Poultry Science Association Inc. 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.psj.2019.12.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3171
EndPage 1913
ExternalDocumentID oai_doaj_org_article_9cac53f9c0494a059fc4c1ad2304b277
PMC7587753
32241470
10_1016_j_psj_2019_12_011
S0032579119579226
Genre Journal Article
Review
GroupedDBID ---
.GJ
0R~
0SF
123
18M
1TH
29O
2WC
3V.
4.4
48X
53G
5RE
5VS
6I.
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
AABJS
AABMN
AAEDW
AAESY
AAFTH
AAIMJ
AAIYJ
AAJQQ
AAMDB
AAMVS
AAOGV
AAUQX
AAXUO
ABCQX
ABEUO
ABIXL
ABJCF
ABJNI
ABQLI
ABSAR
ABSMQ
ABUWG
ACGFO
ACGFS
ACIWK
ACLIJ
ACUFI
ADBBV
ADEIU
ADHKW
ADHZD
ADORX
ADQLU
ADRIX
ADRTK
ADYVW
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEWNT
AEXQZ
AFIYH
AFKRA
AFOFC
AFRAH
AFXEN
AGINJ
AGSYK
AHMBA
AIAGR
AIKOY
AITUG
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMRAJ
APIBT
ARIXL
ASAOO
ATCPS
ATDFG
AVWKF
AXUDD
AYOIW
AZQFJ
BAWUL
BAYMD
BENPR
BEYMZ
BGLVJ
BHONS
BHPHI
BPHCQ
BQDIO
BSWAC
BVXVI
BYORX
CASEJ
CCPQU
CDBKE
CKLRP
CS3
CXTWN
DAKXR
DFGAJ
DIK
DILTD
DPPUQ
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
FYUFA
GJXCC
GROUPED_DOAJ
HAR
HCIFZ
HF~
HMCUK
H~9
INIJC
J21
KQ8
KSI
KSN
L6V
L7B
M0K
M1P
M7S
MBTAY
NCXOZ
NLBLG
NVLIB
O9-
OAWHX
ODMLO
OHT
OJQWA
OK1
OVD
P2P
PAFKI
PATMY
PEELM
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
Q5Y
ROL
ROX
ROZ
RPM
RXO
S0X
SJN
TCN
TEORI
TLC
TPS
TR2
TWZ
UKHRP
W8F
WOQ
XOL
Y6R
YAYTL
YKOAZ
ZXP
~KM
AAHBH
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AEUYN
AFJKZ
AFPUW
AGKRT
AIGII
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
CITATION
H13
PHGZM
PHGZT
AHVMP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-b153c41dc25a22d55dc375aa87e15206f676798866fd89c1d4628ed09262823d3
IEDL.DBID DOA
ISSN 0032-5791
1525-3171
IngestDate Wed Aug 27 01:28:15 EDT 2025
Thu Aug 21 14:05:51 EDT 2025
Fri Jul 11 11:07:19 EDT 2025
Fri Jul 11 14:37:31 EDT 2025
Wed Feb 19 02:06:50 EST 2025
Tue Jul 01 03:55:34 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Fri Feb 23 02:48:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords microbiota
gut health
Salmonella
innate immunity
mucosal firewall
Language English
License This is an open access article under the CC BY-NC-ND license.
https://www.elsevier.com/tdm/userlicense/1.0
http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2019. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-b153c41dc25a22d55dc375aa87e15206f676798866fd89c1d4628ed09262823d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/9cac53f9c0494a059fc4c1ad2304b277
PMID 32241470
PQID 2386282305
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_9cac53f9c0494a059fc4c1ad2304b277
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7587753
proquest_miscellaneous_2477632308
proquest_miscellaneous_2386282305
pubmed_primary_32241470
crossref_citationtrail_10_1016_j_psj_2019_12_011
crossref_primary_10_1016_j_psj_2019_12_011
elsevier_sciencedirect_doi_10_1016_j_psj_2019_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Poultry science
PublicationTitleAlternate Poult Sci
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Belote, Tujimoto-Silva, Hummelgen, Sanches, Wammes, Hayashi, Santin (bib10) 2018; 97
Garrett, Gordon, Glimcher (bib28) 2010; 140
Honda, Litman (bib36) 2016; 535
Underhill (bib83) 2007; 219
Arsenault, Genovese, He, Wu, Neish, Kogut (bib5) 2016; 95
Awad, Mann, Dzeciol, Hess, Schmitz-Esser, Wagner, Hess (bib7) 2016; 6
Wu, Stanley, Rodgers, Swick, Moore (bib88) 2014; 169
Kumar, Akira (bib93) 2011; 30
Perumbakkam, Hunt, Cheng (bib69) 2014; 90
Mantis, Forbes (bib56) 2010; 39
Lu, Walker (bib55) 2001; 73
Erf (bib25) 2004; 83
Guo, Chang, P Wyche, Backus, Nayfach, Pollard, Craik, Cravett, Clardy, Voigt, Fischbach (bib33) 2017; 168
Wigley (bib86) 2013; 41
Levy, Blacher, Elinav (bib53) 2017; 35
Wieland, Orzáez, Lammers, Parmentier, Verstegen, Schots (bib96) 2004; 380
Abreu, Fukata, Arditi (bib2) 2005; 174
Birchenough, Nystrom, Johansson, Hansson (bib13) 2016; 352
Belkaid, Hand (bib8) 2014; 157
Thaiss, Levy, Suez, Elinav (bib82) 2014; 26
Kogut, Yin, Yuan, Broom (bib45) 2017; 12
Liu, da Cunha, Rezende, Cialic, Wei, Bry, Comstock, Gandhi, Weiner (bib54) 2016; 19
Macdonald, Nolan, Harman, Boulton, Hume, Tomley, Stabler, Blake (bib95) 2017; 12
Kaiser, Poh, Rothwell, Avery, Balu, Pathania, Hughes, Goodchild, Morrell, Watson, Bumstead, Kaufman, Young (bib41) 2005; 25
Akira, Uematsu, Takeuchi (bib3) 2006; 124
Shi, Xi, Duan, Niu (bib75) 2017; 4
Okulweicz, Zlotorzycka (bib67) 1985; 26
Levy, Thiass, Elinav (bib52) 2016; 30
Bomminieni, Pham, Sunkara, Achanta, Zhang (bib15) 2014; 59
Xiao, Cai, Bommineni, Fernando, Prakash, Gilliland, Zhang (bib89) 2006; 281
Perumbakkam, Hunt, Cheng (bib70) 2016; 92
Springer, Johnson, Reid (bib77) 1970; 28
Stanley, Wu, Rodgers, Swick, Moore (bib78) 2014; 9
Medzhitov (bib59) 2001; 1
Yitbarek, Weese, Alkie, Parkison, Sharif (bib91) 2018; 94
Kogut (bib43) 2013; 22
Kogut, Klasing (bib44) 2009; 18
Juricova, Videnska, Lukac, Faldynova, Babak, Havlickova, Sisak, Rychlik (bib40) 2013; 79
Mogensen (bib64) 2009; 22
Oakley, Kogut (bib66) 2016; 3
Crhanova, Hradecka, Faldynova, Matulova, Havlickova, Sisak, Rychlik (bib21) 2011; 79
Maslowski, Mackay (bib58) 2011; 12
Sokol, Pineur, Watterlot, Lakhdan, Bermidez-Humaran, Gratadoux, Blugen, Bridonneau, Furet, Corthier, Grangette, Vasquez, Pochart, Trugnan, Thomas, Blottiere, Dore, Marteau, Seksik, Langelia (bib76) 2008; 105
Bene, Varga, Petrov, Boyko, Rahnavolgyi (bib12) 2017; 8
Chai, Lillehoj (bib19) 1988; 63
Droleskey, Oyofo, Hargis, Corrier, DeLoach (bib24) 1994; 38
Goto, Miki, Nakimura, Fujimoto, Okada (bib30) 2017; 12
Guo, Thomas, Bruce, Hilton, Bean, Lowentahl (bib32) 2013; 41
Krysko, Agostinis, Krysko, Garg, Bachert, Lambrecht, Vandenabeele (bib46) 2011; 32
Lee, Kim (bib50) 2007; 76
Awad, Hess, Hess (bib6) 2017; 9
Glick, Chang, Jaap (bib29) 1956; 35
Han, Willer, Li, Pielsticker, Rychlik, Velge, Kaspers, Rautenschlein (bib34) 2017; 85
Stecher, Robbiani, Walker, westendorf, Barthel, Kremer, Chaffron, MacPerson, Buer, Parkhill, Dougan, von Mering, Hardt (bib79) 2007; 5
Blacher, Levy, Tatirovsky, Elinov (bib14) 2017; 198
Quinteiro-Filho, Rodrigues, Ribeiro, Ferraz-de-Paula, Pinheiro, Sa, Ferreira, Palermo-Neto (bib72) 2012; 90
Garg, Nowis, Golab, Vandenabeele, Krysko, Agostinis (bib27) 2010; 1805
Medzhitov, Janeway (bib61) 1997; 9
Takeuchi, Akira (bib81) 2010; 140
Visco, Burns (bib84) 1972; 58
Carpenter, O’Neill (bib18) 2007; 9
Hauck (bib35) 2017; 61
Connerton, Richards, Lafontaine, O’Kane, Ghaffar, Cummings, Smith, Fish, Connerton (bib22) 2018; 6
Abraham, Medzhitov (bib1) 2011; 140
Benatar, Tkalec, Ratcliffe (bib11) 1992; 89
Perez, Jacobs, Barnes, Jenkins, Kuhlenschmidt, Fahey, Parsons, Pettigrew (bib68) 2011; 90
Neish (bib65) 2002; 4
Alemka, Corcionivoschi, Bourke (bib4) 2012; 2
Janeway, Medzhitov (bib39) 2002; 20
Wang, Zhu, Yang, Cui, Pan, Jackson, Zheng, Rongvau, Sun, Yang, Gan, Liu, You, Flavell, Fikrig (bib85) 2015; 350
Yan, Huang, Chen, Jiang, Li, Chen (bib92) 2016; 61
Levy, Thiass, Katz, Suez, Elinav (bib51) 2015; 37
Marchesi, Adams, Fava, Hermes, Hirschfield, Hold, Quraishi, Kinross, Smidt, Tuohy, Thomas, Zoetendal, Hart (bib57) 2016; 65
Gobel, Schneider, Schaerer, Mejri, Puehler, Weigand, Staeheli, Kaspers (bib94) 2003; 171
Cheng, Brzostek, Ando, Van Scoy, Kumar, Rich (bib20) 2006; 176
Hooper, Litman, MacPherson (bib38) 2012; 336
Santos, Raffatellu, Bevins, Adams, Tukel, Tsolis, Baumler (bib74) 2009; 17
Mon, Saelao, Halstead, Chanthavixay, Chang, Garas, Maga, Zhou (bib63) 2015; 2
Straub, Neulen, Sperling, Windau, Zechmann, Jansen, Viertlboeck, Gobel (bib80) 2013; 41
Belkaid, Harrison (bib9) 2017; 46
Yitbarek, Alkie, Taha-Abdelaziz, Astill, Rodriguez-Lecompte, Parkinson, Nagy, Sharif (bib90) 2018; 9
Fischbach, Lin, Yu, Abergel, Liu, Raymond, Wanner, Strong, Walsh, Aderem, Smith (bib26) 2006; 103
Den Hartog, De Vries-Reilingh, Wehmaker, Savelkoul, Parmentier, Lammers (bib23) 2016; 7
Midha, Schlosser, Hartmann (bib62) 2017; 7
Hooper, MacPherson (bib37) 2010; 10
Gowan, Wong, Jung, Sanders, Mitchell, Alexopoulou, Flavell, Sidwell (bib31) 2007; 178
Medzhitov (bib60) 2007; 449
Postler, Ghosh (bib71) 2017; 26
Bradley, Radhakrishman (bib16) 1973; 17
Kawai, Akira (bib42) 2009; 21
Sansonetti (bib73) 2004; 4
Broom, Kogut (bib17) 2018; 97
Lammers, Wieland, Kruijit, Jansma, Straetemans, Schots, den Hartog, Parmentier (bib49) 2010; 34
Winter, Thienimitr, Winter, Butler, Huseby, Crawford, Russell, Bevins, Adams, Tsolis, Roth, Baumler (bib87) 2010; 467
Kogut (10.1016/j.psj.2019.12.011_bib45) 2017; 12
Benatar (10.1016/j.psj.2019.12.011_bib11) 1992; 89
Levy (10.1016/j.psj.2019.12.011_bib52) 2016; 30
Quinteiro-Filho (10.1016/j.psj.2019.12.011_bib72) 2012; 90
Liu (10.1016/j.psj.2019.12.011_bib54) 2016; 19
Abraham (10.1016/j.psj.2019.12.011_bib1) 2011; 140
Gowan (10.1016/j.psj.2019.12.011_bib31) 2007; 178
Den Hartog (10.1016/j.psj.2019.12.011_bib23) 2016; 7
Janeway (10.1016/j.psj.2019.12.011_bib39) 2002; 20
Postler (10.1016/j.psj.2019.12.011_bib71) 2017; 26
Belkaid (10.1016/j.psj.2019.12.011_bib9) 2017; 46
Garg (10.1016/j.psj.2019.12.011_bib27) 2010; 1805
Neish (10.1016/j.psj.2019.12.011_bib65) 2002; 4
Yitbarek (10.1016/j.psj.2019.12.011_bib90) 2018; 9
Glick (10.1016/j.psj.2019.12.011_bib29) 1956; 35
Wieland (10.1016/j.psj.2019.12.011_bib96) 2004; 380
Perumbakkam (10.1016/j.psj.2019.12.011_bib69) 2014; 90
Awad (10.1016/j.psj.2019.12.011_bib6) 2017; 9
Marchesi (10.1016/j.psj.2019.12.011_bib57) 2016; 65
Honda (10.1016/j.psj.2019.12.011_bib36) 2016; 535
Mon (10.1016/j.psj.2019.12.011_bib63) 2015; 2
Wigley (10.1016/j.psj.2019.12.011_bib86) 2013; 41
Fischbach (10.1016/j.psj.2019.12.011_bib26) 2006; 103
Springer (10.1016/j.psj.2019.12.011_bib77) 1970; 28
Wu (10.1016/j.psj.2019.12.011_bib88) 2014; 169
Yan (10.1016/j.psj.2019.12.011_bib92) 2016; 61
Bradley (10.1016/j.psj.2019.12.011_bib16) 1973; 17
Kogut (10.1016/j.psj.2019.12.011_bib43) 2013; 22
Lee (10.1016/j.psj.2019.12.011_bib50) 2007; 76
Kumar (10.1016/j.psj.2019.12.011_bib93) 2011; 30
Medzhitov (10.1016/j.psj.2019.12.011_bib60) 2007; 449
Guo (10.1016/j.psj.2019.12.011_bib32) 2013; 41
Connerton (10.1016/j.psj.2019.12.011_bib22) 2018; 6
Juricova (10.1016/j.psj.2019.12.011_bib40) 2013; 79
Droleskey (10.1016/j.psj.2019.12.011_bib24) 1994; 38
Stanley (10.1016/j.psj.2019.12.011_bib78) 2014; 9
Winter (10.1016/j.psj.2019.12.011_bib87) 2010; 467
Sansonetti (10.1016/j.psj.2019.12.011_bib73) 2004; 4
Visco (10.1016/j.psj.2019.12.011_bib84) 1972; 58
Hauck (10.1016/j.psj.2019.12.011_bib35) 2017; 61
Krysko (10.1016/j.psj.2019.12.011_bib46) 2011; 32
Maslowski (10.1016/j.psj.2019.12.011_bib58) 2011; 12
Sokol (10.1016/j.psj.2019.12.011_bib76) 2008; 105
Takeuchi (10.1016/j.psj.2019.12.011_bib81) 2010; 140
Yitbarek (10.1016/j.psj.2019.12.011_bib91) 2018; 94
Oakley (10.1016/j.psj.2019.12.011_bib66) 2016; 3
Perumbakkam (10.1016/j.psj.2019.12.011_bib70) 2016; 92
Belote (10.1016/j.psj.2019.12.011_bib10) 2018; 97
Lu (10.1016/j.psj.2019.12.011_bib55) 2001; 73
Birchenough (10.1016/j.psj.2019.12.011_bib13) 2016; 352
Levy (10.1016/j.psj.2019.12.011_bib51) 2015; 37
Straub (10.1016/j.psj.2019.12.011_bib80) 2013; 41
Garrett (10.1016/j.psj.2019.12.011_bib28) 2010; 140
Hooper (10.1016/j.psj.2019.12.011_bib37) 2010; 10
Bene (10.1016/j.psj.2019.12.011_bib12) 2017; 8
Guo (10.1016/j.psj.2019.12.011_bib33) 2017; 168
Awad (10.1016/j.psj.2019.12.011_bib7) 2016; 6
Shi (10.1016/j.psj.2019.12.011_bib75) 2017; 4
Underhill (10.1016/j.psj.2019.12.011_bib83) 2007; 219
Gobel (10.1016/j.psj.2019.12.011_bib94) 2003; 171
Okulweicz (10.1016/j.psj.2019.12.011_bib67) 1985; 26
Carpenter (10.1016/j.psj.2019.12.011_bib18) 2007; 9
Kogut (10.1016/j.psj.2019.12.011_bib44) 2009; 18
Han (10.1016/j.psj.2019.12.011_bib34) 2017; 85
Levy (10.1016/j.psj.2019.12.011_bib53) 2017; 35
Chai (10.1016/j.psj.2019.12.011_bib19) 1988; 63
Kaiser (10.1016/j.psj.2019.12.011_bib41) 2005; 25
Lammers (10.1016/j.psj.2019.12.011_bib49) 2010; 34
Xiao (10.1016/j.psj.2019.12.011_bib89) 2006; 281
Stecher (10.1016/j.psj.2019.12.011_bib79) 2007; 5
Cheng (10.1016/j.psj.2019.12.011_bib20) 2006; 176
Macdonald (10.1016/j.psj.2019.12.011_bib95) 2017; 12
Akira (10.1016/j.psj.2019.12.011_bib3) 2006; 124
Hooper (10.1016/j.psj.2019.12.011_bib38) 2012; 336
Kawai (10.1016/j.psj.2019.12.011_bib42) 2009; 21
Santos (10.1016/j.psj.2019.12.011_bib74) 2009; 17
Abreu (10.1016/j.psj.2019.12.011_bib2) 2005; 174
Mantis (10.1016/j.psj.2019.12.011_bib56) 2010; 39
Arsenault (10.1016/j.psj.2019.12.011_bib5) 2016; 95
Alemka (10.1016/j.psj.2019.12.011_bib4) 2012; 2
Broom (10.1016/j.psj.2019.12.011_bib17) 2018; 97
Goto (10.1016/j.psj.2019.12.011_bib30) 2017; 12
Wang (10.1016/j.psj.2019.12.011_bib85) 2015; 350
Belkaid (10.1016/j.psj.2019.12.011_bib8) 2014; 157
Blacher (10.1016/j.psj.2019.12.011_bib14) 2017; 198
Erf (10.1016/j.psj.2019.12.011_bib25) 2004; 83
Mogensen (10.1016/j.psj.2019.12.011_bib64) 2009; 22
Thaiss (10.1016/j.psj.2019.12.011_bib82) 2014; 26
Crhanova (10.1016/j.psj.2019.12.011_bib21) 2011; 79
Perez (10.1016/j.psj.2019.12.011_bib68) 2011; 90
Midha (10.1016/j.psj.2019.12.011_bib62) 2017; 7
Medzhitov (10.1016/j.psj.2019.12.011_bib61) 1997; 9
Bomminieni (10.1016/j.psj.2019.12.011_bib15) 2014; 59
Medzhitov (10.1016/j.psj.2019.12.011_bib59) 2001; 1
References_xml – volume: 35
  start-page: 224
  year: 1956
  end-page: 225
  ident: bib29
  article-title: The bursa of Fabricius and antibody production
  publication-title: Poult. Sci.
– volume: 58
  start-page: 576
  year: 1972
  end-page: 585
  ident: bib84
  article-title: Eimeria tenella in bacteria-free and conventionalized chicks
  publication-title: J. Parasitol.
– volume: 103
  start-page: 16502
  year: 2006
  end-page: 16507
  ident: bib26
  article-title: The pathogen-associated
  publication-title: Proc. Natl. Acad. Sci.
– volume: 168
  start-page: 617
  year: 2017
  end-page: 628
  ident: bib33
  article-title: Discovery of reactive microbiota-derived metabolites that inhibit host proteases
  publication-title: Cell
– volume: 90
  start-page: 558
  year: 2011
  end-page: 964
  ident: bib68
  article-title: Effect of distillers dried grains with solubles and Eimeria acervulina infection on growth performance and the intestinal microbiota of young chicks
  publication-title: Poult. Sci.
– volume: 219
  start-page: 75
  year: 2007
  end-page: 87
  ident: bib83
  article-title: Collaboration between the innate immune receptors dectin-1, TLRs, and NODs
  publication-title: Immunol. Rev.
– volume: 18
  start-page: 103
  year: 2009
  end-page: 110
  ident: bib44
  article-title: An immunologist’s perspective on nutrition, immunity, and infectious diseases: introduction and overview
  publication-title: J. Appl. Poult. Res.
– volume: 535
  start-page: 75
  year: 2016
  end-page: 84
  ident: bib36
  article-title: The microbiota in adaptive immune homeostasis and disease
  publication-title: Nature
– volume: 12
  start-page: e0184890
  year: 2017
  ident: bib95
  article-title: Effects of Eimeria tenella infection on chicken cecal microbiome diversity, exploring variation associated with severity of pathology
  publication-title: Plos One
– volume: 26
  start-page: 110
  year: 2017
  end-page: 130
  ident: bib71
  article-title: Understanding the holobiont: how microbial metaobolites affect human health and shape the immune system
  publication-title: Cell Metabol
– volume: 17
  start-page: 461
  year: 1973
  end-page: 476
  ident: bib16
  article-title: Coccidiosis in chickens: obligate relationship between Eimeria tenella and certain species of cecal microflora in the pathogenesis of the disease
  publication-title: Av. Dis.
– volume: 140
  start-page: 805
  year: 2010
  end-page: 820
  ident: bib81
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
– volume: 79
  start-page: 745
  year: 2013
  end-page: 747
  ident: bib40
  article-title: Influence of Salmonella enterica serovar Enteritidis infection on the development of the cecum microbiota in newly hatched chicks
  publication-title: Appl. Environ. Microbiol.
– volume: 32
  start-page: 157
  year: 2011
  end-page: 164
  ident: bib46
  article-title: Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation
  publication-title: Trend, Immunol.
– volume: 61
  start-page: 428
  year: 2017
  end-page: 436
  ident: bib35
  article-title: Interactions between parasites and the bacterial microbiota of chickens
  publication-title: Avian. Dis.
– volume: 105
  start-page: 16731
  year: 2008
  end-page: 16736
  ident: bib76
  article-title: Fecalobacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
  publication-title: Proc. Natl. Acad. Sci.
– volume: 198
  start-page: 572
  year: 2017
  end-page: 580
  ident: bib14
  article-title: Microbiome-modulated metabolites at the interface of host immunity
  publication-title: J. Immunol.
– volume: 169
  start-page: 188
  year: 2014
  end-page: 197
  ident: bib88
  article-title: Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the cecal microbiota of broiler chickens
  publication-title: Vet. Microbiol.
– volume: 41
  start-page: 324
  year: 2013
  end-page: 333
  ident: bib80
  article-title: Chicken NK receptors
  publication-title: Develop. Comp. Immunol.
– volume: 9
  start-page: 417
  year: 2018
  end-page: 427
  ident: bib90
  article-title: Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2
  publication-title: Benef. Microb.
– volume: 12
  start-page: 31
  year: 2017
  ident: bib45
  article-title: Gut health in poultry
  publication-title: CAB Rev.
– volume: 41
  start-page: 413
  year: 2013
  end-page: 417
  ident: bib86
  article-title: Immunity to bacterial infection in the chicken
  publication-title: Dev. Comp. Immunol.
– volume: 2
  start-page: 61
  year: 2015
  ident: bib63
  article-title: Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks
  publication-title: Front. Vet. Sci.
– volume: 8
  start-page: 427
  year: 2017
  ident: bib12
  article-title: Gut microbiota species can invoke both inflammatory and tolerogenic immune responses in human dendritic cells mediated by retinoic acid receptor alpha ligation
  publication-title: Front. Immunol.
– volume: 76
  start-page: 447
  year: 2007
  end-page: 480
  ident: bib50
  article-title: Signaling pathways downstream of pattern-recognition receptors and their cross talk
  publication-title: Annu. Rev. Biochem.
– volume: 73
  start-page: 1124S
  year: 2001
  end-page: 1130S
  ident: bib55
  article-title: Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium
  publication-title: Am. J. Clin. Nutr.
– volume: 5
  start-page: e244
  year: 2007
  ident: bib79
  article-title: Salmonella enterica serovars Typhimurium exploits inflammation to compete with the intestinal microbiota
  publication-title: PloS Biol
– volume: 46
  start-page: 562
  year: 2017
  end-page: 576
  ident: bib9
  article-title: Homeostatic immunity and the microbiota
  publication-title: Immunity
– volume: 17
  start-page: 498
  year: 2009
  end-page: 506
  ident: bib74
  article-title: Life in the inflamed intestine, Salmonella style
  publication-title: Trends Microbiol
– volume: 30
  start-page: 16
  year: 2011
  end-page: 34
  ident: bib93
  article-title: Pathogen recognition by the innate immune system
  publication-title: Int. Rev. Immunol.
– volume: 90
  start-page: 300
  year: 2014
  end-page: 312
  ident: bib69
  article-title: Marek’s disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication
  publication-title: FEMS Microbiol. Ecol.
– volume: 7
  start-page: 144
  year: 2017
  ident: bib62
  article-title: Reciprocal interactions between nematodes and their microbial environments
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 174
  start-page: 4453
  year: 2005
  end-page: 4460
  ident: bib2
  article-title: TLR signaling in the gut in health and disease
  publication-title: J. Immunol.
– volume: 350
  start-page: 826
  year: 2015
  end-page: 830
  ident: bib85
  article-title: Nlrp6 regulates intestinal antiviral innate immunity
  publication-title: Science
– volume: 63
  start-page: 111
  year: 1988
  end-page: 117
  ident: bib19
  article-title: Isolation and functional characterization of chicken intestinal intra-epithelial lymphocytes showing natural killer cell activity against tumor target cells
  publication-title: Immunology
– volume: 1805
  start-page: 53
  year: 2010
  end-page: 71
  ident: bib27
  article-title: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation
  publication-title: Biochim. Biophys. Acta.
– volume: 2
  start-page: 15
  year: 2012
  ident: bib4
  article-title: Defense and adaptation: the complex inter-relationship between Campylobacter jejuni and mucus
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 6
  start-page: 88
  year: 2018
  ident: bib22
  article-title: The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens
  publication-title: Microbiome
– volume: 38
  start-page: 275
  year: 1994
  end-page: 281
  ident: bib24
  article-title: Effect of mannose on Salmonella typhimurium-mediated loss of mucosal epithelial integrity in cultured chick intestinal segments
  publication-title: Avian Dis
– volume: 21
  start-page: 317
  year: 2009
  end-page: 327
  ident: bib42
  article-title: The roles of TLRs, RLRs and NLRs in pathogen recognition
  publication-title: Int. Immunol.
– volume: 467
  start-page: 426
  year: 2010
  end-page: 429
  ident: bib87
  article-title: Gut inflammation provides a respiratory electron acceptor for Salmonella
  publication-title: Nature
– volume: 95
  start-page: 354
  year: 2016
  end-page: 363
  ident: bib5
  article-title: Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation
  publication-title: Poult. Sci.
– volume: 85
  year: 2017
  ident: bib34
  article-title: Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens
  publication-title: Infect. Immun.
– volume: 4
  start-page: 14
  year: 2017
  ident: bib75
  article-title: Interaction between the gut microbiome and mucosal immune system
  publication-title: Mil. Med. Res.
– volume: 140
  start-page: 1729
  year: 2011
  end-page: 1737
  ident: bib1
  article-title: Interaction between the host innate immune system and microbes in inflammatory bowel disease
  publication-title: Gastroenterology
– volume: 61
  start-page: 1151
  year: 2016
  end-page: 1153
  ident: bib92
  article-title: Metabolome in microbiota: applications and challenges
  publication-title: Sci. Bull.
– volume: 3
  start-page: 11
  year: 2016
  ident: bib66
  article-title: Spatial and temporal changes in broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression
  publication-title: Front. Vet. Infect. Dis.
– volume: 34
  start-page: 1252
  year: 2010
  end-page: 1262
  ident: bib49
  article-title: Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken
  publication-title: Develop. Comp. Immunol.
– volume: 30
  start-page: 1589
  year: 2016
  end-page: 1597
  ident: bib52
  article-title: Metabolites: messengers between the microbiota and the immune system
  publication-title: Genes Develop
– volume: 19
  start-page: 32
  year: 2016
  end-page: 43
  ident: bib54
  article-title: The host shapes the gut microbiota via fecal microRNA
  publication-title: Cell Host Microbe
– volume: 1
  start-page: 135
  year: 2001
  end-page: 145
  ident: bib59
  article-title: Toll-like receptors and innate immunity
  publication-title: Nat. Rev. Immunol.
– volume: 352
  start-page: 1535
  year: 2016
  end-page: 1542
  ident: bib13
  article-title: A sentinel goblet cell guards the colonic crypt by triggering NLRP6-dependnet Muc2 secretion
  publication-title: Science
– volume: 25
  start-page: 467
  year: 2005
  end-page: 484
  ident: bib41
  article-title: A genomic analysis of chicken cytokines and chemokines
  publication-title: J. IFN Cyto. Res.
– volume: 26
  start-page: 41
  year: 2014
  end-page: 48
  ident: bib82
  article-title: The interplay between the innate immune system and the microbiota
  publication-title: Curr. Opin. Immunol.
– volume: 281
  start-page: 2858
  year: 2006
  ident: bib89
  article-title: Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 677
  year: 2016
  end-page: 685
  ident: bib23
  article-title: Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota
  publication-title: Benef. Microb.
– volume: 4
  start-page: 309
  year: 2002
  end-page: 317
  ident: bib65
  article-title: The gut microflora and intestinal epithelial cells: a continuing dialogue
  publication-title: Microb. Infect.
– volume: 178
  start-page: 5200
  year: 2007
  end-page: 5208
  ident: bib31
  article-title: TLR3 is essential for the induction of protective immunity against Punta Toro virus infection by the double stranded RNA (dsRNA), poly(I:C12U), but not poly (I:C): differential recognition of synthetic dsRNA molecules
  publication-title: J. Immunol.
– volume: 39
  start-page: 383
  year: 2010
  end-page: 406
  ident: bib56
  article-title: Secretory IgA: arresting microbial pathogens at epithelial borders
  publication-title: Immunol. Invest.
– volume: 9
  start-page: e104739
  year: 2014
  ident: bib78
  article-title: Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in necrotic enteritis challenge model in chicken
  publication-title: PloS One
– volume: 59
  start-page: 55
  year: 2014
  end-page: 63
  ident: bib15
  article-title: Immune regulatory activities of fowlcidin-1, a cathelicidin host defense peptide
  publication-title: Mol. Immunol.
– volume: 26
  start-page: 151
  year: 1985
  end-page: 155
  ident: bib67
  article-title: Connections between Acaridia galli and the bacterial flora in the intestine of hens
  publication-title: Angew. Parasitol.
– volume: 20
  start-page: 197
  year: 2002
  end-page: 216
  ident: bib39
  article-title: Innate immune recognition
  publication-title: Ann. Rev. Immunol.
– volume: 65
  start-page: 330
  year: 2016
  end-page: 339
  ident: bib57
  article-title: The gut microbiota and host health: a new clinical frontier
  publication-title: Gut
– volume: 97
  start-page: 510
  year: 2018
  end-page: 514
  ident: bib17
  article-title: Inflammation: friend or foe for animal production
  publication-title: Poult. Sci.
– volume: 9
  start-page: 60
  year: 2017
  ident: bib6
  article-title: Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens
  publication-title: Toxins
– volume: 140
  start-page: 859
  year: 2010
  end-page: 870
  ident: bib28
  article-title: Homeostasis and inflammation in the intestine
  publication-title: Cell
– volume: 22
  start-page: 637
  year: 2013
  end-page: 646
  ident: bib43
  article-title: The gut microbiome and host innate immunity: regulators of host metabolism and metabolic diseases in poultry?
  publication-title: J. Appl. Poult. Res.
– volume: 92
  start-page: 188
  year: 2016
  ident: bib70
  article-title: Differences in CD8αα and cecal microbiome community during proliferation and late cytolytic phases of Marek’s disease virus infection are associated with genetic resistance to Marek’s disease
  publication-title: FEMS Microbiol. Ecol.
– volume: 41
  start-page: 389
  year: 2013
  end-page: 396
  ident: bib32
  article-title: The chicken Th1 response: potential therapeutic applications of ChIFN-ɣ
  publication-title: Dev. Comp. Immunol.
– volume: 89
  start-page: 7615
  year: 1992
  end-page: 7619
  ident: bib11
  article-title: Stochastic rearrangement of immunoglobulin variable-region genes in chicken B-cell development
  publication-title: Proc. Natl. Acad. Sci.
– volume: 9
  start-page: 1891
  year: 2007
  end-page: 1901
  ident: bib18
  article-title: How important are toll-like receptors for antimicrobial responses? Cell
  publication-title: Microbiol
– volume: 94
  start-page: 165
  year: 2018
  ident: bib91
  article-title: Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens
  publication-title: FEMS Microbiol. Ecol.
– volume: 9
  start-page: 4
  year: 1997
  end-page: 9
  ident: bib61
  article-title: Innate immunity: impact on the adaptive immune response
  publication-title: Curr. Opin. Immunol.
– volume: 171
  start-page: 1809
  year: 2003
  end-page: 1815
  ident: bib94
  article-title: IL-18 stimulates the proliferation and IFN-γ release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species
  publication-title: J. Immunol.
– volume: 97
  start-page: 2287
  year: 2018
  end-page: 2294
  ident: bib10
  article-title: Histological parameters to e valuate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter
  publication-title: Poult. Sci.
– volume: 10
  start-page: 159
  year: 2010
  end-page: 169
  ident: bib37
  article-title: Immune adaptations that maintain homeostasis with the intestinal microbiota
  publication-title: Nat. Rev. Immunol.
– volume: 90
  start-page: 1986
  year: 2012
  end-page: 1994
  ident: bib72
  article-title: Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary adrenal axis activation
  publication-title: J. Ani. Sci.
– volume: 336
  start-page: 1268
  year: 2012
  end-page: 1273
  ident: bib38
  article-title: Interactions between the microbiota and the immune system
  publication-title: Science
– volume: 35
  start-page: 8
  year: 2017
  end-page: 15
  ident: bib53
  article-title: Microbiome, metabolites, and host immunity
  publication-title: Curr. Opin. Microbiol.
– volume: 12
  start-page: 5
  year: 2011
  end-page: 9
  ident: bib58
  article-title: Diet, gut microbiota, and immune responses
  publication-title: Nat. Immunol.
– volume: 4
  start-page: 953
  year: 2004
  end-page: 964
  ident: bib73
  article-title: War and peace at mucosal surfaces
  publication-title: Nat. Rev. Immunol.
– volume: 37
  start-page: 39
  year: 2015
  end-page: 46
  ident: bib51
  article-title: Inflammasomes and the microbiota -- partners in the preservation of mucosal homeostasis
  publication-title: Semin. Immunopathol.
– volume: 22
  start-page: 240
  year: 2009
  end-page: 273
  ident: bib64
  article-title: Pathogen recognition and inflammatory signaling in innate immune defenses
  publication-title: Clin. Microbiol. Rev.
– volume: 28
  start-page: 383
  year: 1970
  end-page: 392
  ident: bib77
  article-title: Histomoniasis in gnotobiotic chickens and turkeys -- biological aspects of role of bacteria in etiology
  publication-title: Exp. Parasitol.
– volume: 380
  start-page: 669
  year: 2004
  end-page: 676
  ident: bib96
  article-title: A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity
  publication-title: Biochem. J.
– volume: 124
  start-page: 783
  year: 2006
  end-page: 801
  ident: bib3
  article-title: Pathogen recognition and innate immunity
  publication-title: Cell
– volume: 6
  start-page: 154
  year: 2016
  ident: bib7
  article-title: Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 12
  start-page: e0190095
  year: 2017
  ident: bib30
  article-title: Salmonella typhimurium PagP- and Ugtl-dependnet resistance to antimicrobial peptides contribute to gut colonization
  publication-title: Plos One
– volume: 176
  start-page: 7462
  year: 2006
  end-page: 7470
  ident: bib20
  article-title: Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection
  publication-title: J. Immunol.
– volume: 83
  start-page: 580
  year: 2004
  end-page: 590
  ident: bib25
  article-title: Cell mediated immunity in poultry
  publication-title: Poult. Sci.
– volume: 157
  start-page: 121
  year: 2014
  end-page: 141
  ident: bib8
  article-title: Role of the microbiota in immunity and inflammation
  publication-title: Cell
– volume: 79
  start-page: 2755
  year: 2011
  end-page: 2763
  ident: bib21
  article-title: Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection
  publication-title: Infect. Immun.
– volume: 449
  start-page: 819
  year: 2007
  end-page: 826
  ident: bib60
  article-title: Recognition of microorganisms and activation of the immune response
  publication-title: Nature
– volume: 95
  start-page: 354
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib5
  article-title: Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pev344
– volume: 83
  start-page: 580
  year: 2004
  ident: 10.1016/j.psj.2019.12.011_bib25
  article-title: Cell mediated immunity in poultry
  publication-title: Poult. Sci.
  doi: 10.1093/ps/83.4.580
– volume: 281
  start-page: 2858
  year: 2006
  ident: 10.1016/j.psj.2019.12.011_bib89
  article-title: Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507180200
– volume: 4
  start-page: 14
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib75
  article-title: Interaction between the gut microbiome and mucosal immune system
  publication-title: Mil. Med. Res.
– volume: 198
  start-page: 572
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib14
  article-title: Microbiome-modulated metabolites at the interface of host immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601247
– volume: 140
  start-page: 859
  year: 2010
  ident: 10.1016/j.psj.2019.12.011_bib28
  article-title: Homeostasis and inflammation in the intestine
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.023
– volume: 85
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib34
  article-title: Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00380-17
– volume: 5
  start-page: e244
  year: 2007
  ident: 10.1016/j.psj.2019.12.011_bib79
  article-title: Salmonella enterica serovars Typhimurium exploits inflammation to compete with the intestinal microbiota
  publication-title: PloS Biol
  doi: 10.1371/journal.pbio.0050244
– volume: 336
  start-page: 1268
  year: 2012
  ident: 10.1016/j.psj.2019.12.011_bib38
  article-title: Interactions between the microbiota and the immune system
  publication-title: Science
  doi: 10.1126/science.1223490
– volume: 41
  start-page: 389
  year: 2013
  ident: 10.1016/j.psj.2019.12.011_bib32
  article-title: The chicken Th1 response: potential therapeutic applications of ChIFN-ɣ
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2013.05.009
– volume: 22
  start-page: 240
  year: 2009
  ident: 10.1016/j.psj.2019.12.011_bib64
  article-title: Pathogen recognition and inflammatory signaling in innate immune defenses
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00046-08
– volume: 6
  start-page: 154
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib7
  article-title: Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2016.00154
– volume: 26
  start-page: 151
  year: 1985
  ident: 10.1016/j.psj.2019.12.011_bib67
  article-title: Connections between Acaridia galli and the bacterial flora in the intestine of hens
  publication-title: Angew. Parasitol.
– volume: 103
  start-page: 16502
  year: 2006
  ident: 10.1016/j.psj.2019.12.011_bib26
  article-title: The pathogen-associated iroA gene cluster mediates bacterial evasionof lipocalin-2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0604636103
– volume: 7
  start-page: 677
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib23
  article-title: Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota
  publication-title: Benef. Microb.
  doi: 10.3920/BM2016.0047
– volume: 97
  start-page: 510
  year: 2018
  ident: 10.1016/j.psj.2019.12.011_bib17
  article-title: Inflammation: friend or foe for animal production
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pex314
– volume: 46
  start-page: 562
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib9
  article-title: Homeostatic immunity and the microbiota
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.04.008
– volume: 61
  start-page: 428
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib35
  article-title: Interactions between parasites and the bacterial microbiota of chickens
  publication-title: Avian. Dis.
  doi: 10.1637/11675-051917-Review.1
– volume: 352
  start-page: 1535
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib13
  article-title: A sentinel goblet cell guards the colonic crypt by triggering NLRP6-dependnet Muc2 secretion
  publication-title: Science
  doi: 10.1126/science.aaf7419
– volume: 79
  start-page: 2755
  year: 2011
  ident: 10.1016/j.psj.2019.12.011_bib21
  article-title: Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01375-10
– volume: 8
  start-page: 427
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib12
  article-title: Gut microbiota species can invoke both inflammatory and tolerogenic immune responses in human dendritic cells mediated by retinoic acid receptor alpha ligation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00427
– volume: 97
  start-page: 2287
  year: 2018
  ident: 10.1016/j.psj.2019.12.011_bib10
  article-title: Histological parameters to e valuate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pey064
– volume: 380
  start-page: 669
  year: 2004
  ident: 10.1016/j.psj.2019.12.011_bib96
  article-title: A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity
  publication-title: Biochem. J.
  doi: 10.1042/bj20040200
– volume: 6
  start-page: 88
  year: 2018
  ident: 10.1016/j.psj.2019.12.011_bib22
  article-title: The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0477-5
– volume: 26
  start-page: 41
  year: 2014
  ident: 10.1016/j.psj.2019.12.011_bib82
  article-title: The interplay between the innate immune system and the microbiota
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2013.10.016
– volume: 19
  start-page: 32
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib54
  article-title: The host shapes the gut microbiota via fecal microRNA
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.12.005
– volume: 17
  start-page: 498
  year: 2009
  ident: 10.1016/j.psj.2019.12.011_bib74
  article-title: Life in the inflamed intestine, Salmonella style
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2009.08.008
– volume: 12
  start-page: 31
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib45
  article-title: Gut health in poultry
  publication-title: CAB Rev.
  doi: 10.1079/PAVSNNR201712031
– volume: 219
  start-page: 75
  year: 2007
  ident: 10.1016/j.psj.2019.12.011_bib83
  article-title: Collaboration between the innate immune receptors dectin-1, TLRs, and NODs
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2007.00548.x
– volume: 63
  start-page: 111
  year: 1988
  ident: 10.1016/j.psj.2019.12.011_bib19
  article-title: Isolation and functional characterization of chicken intestinal intra-epithelial lymphocytes showing natural killer cell activity against tumor target cells
  publication-title: Immunology
– volume: 90
  start-page: 558
  year: 2011
  ident: 10.1016/j.psj.2019.12.011_bib68
  article-title: Effect of distillers dried grains with solubles and Eimeria acervulina infection on growth performance and the intestinal microbiota of young chicks
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2010-01066
– volume: 12
  start-page: e0190095
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib30
  article-title: Salmonella typhimurium PagP- and Ugtl-dependnet resistance to antimicrobial peptides contribute to gut colonization
  publication-title: Plos One
  doi: 10.1371/journal.pone.0190095
– volume: 38
  start-page: 275
  year: 1994
  ident: 10.1016/j.psj.2019.12.011_bib24
  article-title: Effect of mannose on Salmonella typhimurium-mediated loss of mucosal epithelial integrity in cultured chick intestinal segments
  publication-title: Avian Dis
  doi: 10.2307/1591949
– volume: 105
  start-page: 16731
  year: 2008
  ident: 10.1016/j.psj.2019.12.011_bib76
  article-title: Fecalobacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0804812105
– volume: 21
  start-page: 317
  year: 2009
  ident: 10.1016/j.psj.2019.12.011_bib42
  article-title: The roles of TLRs, RLRs and NLRs in pathogen recognition
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxp017
– volume: 174
  start-page: 4453
  year: 2005
  ident: 10.1016/j.psj.2019.12.011_bib2
  article-title: TLR signaling in the gut in health and disease
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.8.4453
– volume: 39
  start-page: 383
  year: 2010
  ident: 10.1016/j.psj.2019.12.011_bib56
  article-title: Secretory IgA: arresting microbial pathogens at epithelial borders
  publication-title: Immunol. Invest.
  doi: 10.3109/08820131003622635
– volume: 7
  start-page: 144
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib62
  article-title: Reciprocal interactions between nematodes and their microbial environments
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2017.00144
– volume: 28
  start-page: 383
  year: 1970
  ident: 10.1016/j.psj.2019.12.011_bib77
  article-title: Histomoniasis in gnotobiotic chickens and turkeys -- biological aspects of role of bacteria in etiology
  publication-title: Exp. Parasitol.
  doi: 10.1016/0014-4894(70)90106-2
– volume: 58
  start-page: 576
  year: 1972
  ident: 10.1016/j.psj.2019.12.011_bib84
  article-title: Eimeria tenella in bacteria-free and conventionalized chicks
  publication-title: J. Parasitol.
  doi: 10.2307/3278208
– volume: 76
  start-page: 447
  year: 2007
  ident: 10.1016/j.psj.2019.12.011_bib50
  article-title: Signaling pathways downstream of pattern-recognition receptors and their cross talk
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.060605.122847
– volume: 178
  start-page: 5200
  year: 2007
  ident: 10.1016/j.psj.2019.12.011_bib31
  article-title: TLR3 is essential for the induction of protective immunity against Punta Toro virus infection by the double stranded RNA (dsRNA), poly(I:C12U), but not poly (I:C): differential recognition of synthetic dsRNA molecules
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.8.5200
– volume: 30
  start-page: 1589
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib52
  article-title: Metabolites: messengers between the microbiota and the immune system
  publication-title: Genes Develop
  doi: 10.1101/gad.284091.116
– volume: 1
  start-page: 135
  year: 2001
  ident: 10.1016/j.psj.2019.12.011_bib59
  article-title: Toll-like receptors and innate immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/35100529
– volume: 350
  start-page: 826
  year: 2015
  ident: 10.1016/j.psj.2019.12.011_bib85
  article-title: Nlrp6 regulates intestinal antiviral innate immunity
  publication-title: Science
  doi: 10.1126/science.aab3145
– volume: 61
  start-page: 1151
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib92
  article-title: Metabolome in microbiota: applications and challenges
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-016-1142-7
– volume: 10
  start-page: 159
  year: 2010
  ident: 10.1016/j.psj.2019.12.011_bib37
  article-title: Immune adaptations that maintain homeostasis with the intestinal microbiota
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2710
– volume: 9
  start-page: 417
  year: 2018
  ident: 10.1016/j.psj.2019.12.011_bib90
  article-title: Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2
  publication-title: Benef. Microb.
  doi: 10.3920/BM2017.0088
– volume: 157
  start-page: 121
  year: 2014
  ident: 10.1016/j.psj.2019.12.011_bib8
  article-title: Role of the microbiota in immunity and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.011
– volume: 168
  start-page: 617
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib33
  article-title: Discovery of reactive microbiota-derived metabolites that inhibit host proteases
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.021
– volume: 3
  start-page: 11
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib66
  article-title: Spatial and temporal changes in broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression
  publication-title: Front. Vet. Infect. Dis.
– volume: 1805
  start-page: 53
  year: 2010
  ident: 10.1016/j.psj.2019.12.011_bib27
  article-title: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation
  publication-title: Biochim. Biophys. Acta.
– volume: 94
  start-page: 165
  year: 2018
  ident: 10.1016/j.psj.2019.12.011_bib91
  article-title: Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fix165
– volume: 2
  start-page: 61
  year: 2015
  ident: 10.1016/j.psj.2019.12.011_bib63
  article-title: Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2015.00061
– volume: 41
  start-page: 413
  year: 2013
  ident: 10.1016/j.psj.2019.12.011_bib86
  article-title: Immunity to bacterial infection in the chicken
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2013.04.008
– volume: 12
  start-page: 5
  year: 2011
  ident: 10.1016/j.psj.2019.12.011_bib58
  article-title: Diet, gut microbiota, and immune responses
  publication-title: Nat. Immunol.
  doi: 10.1038/ni0111-5
– volume: 26
  start-page: 110
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib71
  article-title: Understanding the holobiont: how microbial metaobolites affect human health and shape the immune system
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2017.05.008
– volume: 9
  start-page: 1891
  year: 2007
  ident: 10.1016/j.psj.2019.12.011_bib18
  article-title: How important are toll-like receptors for antimicrobial responses? Cell
  publication-title: Microbiol
– volume: 20
  start-page: 197
  year: 2002
  ident: 10.1016/j.psj.2019.12.011_bib39
  article-title: Innate immune recognition
  publication-title: Ann. Rev. Immunol.
  doi: 10.1146/annurev.immunol.20.083001.084359
– volume: 41
  start-page: 324
  year: 2013
  ident: 10.1016/j.psj.2019.12.011_bib80
  article-title: Chicken NK receptors
  publication-title: Develop. Comp. Immunol.
  doi: 10.1016/j.dci.2013.03.013
– volume: 176
  start-page: 7462
  year: 2006
  ident: 10.1016/j.psj.2019.12.011_bib20
  article-title: Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.12.7462
– volume: 140
  start-page: 1729
  year: 2011
  ident: 10.1016/j.psj.2019.12.011_bib1
  article-title: Interaction between the host innate immune system and microbes in inflammatory bowel disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.02.012
– volume: 171
  start-page: 1809
  year: 2003
  ident: 10.1016/j.psj.2019.12.011_bib94
  article-title: IL-18 stimulates the proliferation and IFN-γ release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.171.4.1809
– volume: 124
  start-page: 783
  year: 2006
  ident: 10.1016/j.psj.2019.12.011_bib3
  article-title: Pathogen recognition and innate immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.015
– volume: 37
  start-page: 39
  year: 2015
  ident: 10.1016/j.psj.2019.12.011_bib51
  article-title: Inflammasomes and the microbiota -- partners in the preservation of mucosal homeostasis
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-014-0451-7
– volume: 90
  start-page: 1986
  year: 2012
  ident: 10.1016/j.psj.2019.12.011_bib72
  article-title: Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary adrenal axis activation
  publication-title: J. Ani. Sci.
  doi: 10.2527/jas.2011-3949
– volume: 9
  start-page: e104739
  year: 2014
  ident: 10.1016/j.psj.2019.12.011_bib78
  article-title: Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in necrotic enteritis challenge model in chicken
  publication-title: PloS One
  doi: 10.1371/journal.pone.0104739
– volume: 79
  start-page: 745
  year: 2013
  ident: 10.1016/j.psj.2019.12.011_bib40
  article-title: Influence of Salmonella enterica serovar Enteritidis infection on the development of the cecum microbiota in newly hatched chicks
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02628-12
– volume: 35
  start-page: 8
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib53
  article-title: Microbiome, metabolites, and host immunity
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2016.10.003
– volume: 169
  start-page: 188
  year: 2014
  ident: 10.1016/j.psj.2019.12.011_bib88
  article-title: Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the cecal microbiota of broiler chickens
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2014.01.007
– volume: 25
  start-page: 467
  year: 2005
  ident: 10.1016/j.psj.2019.12.011_bib41
  article-title: A genomic analysis of chicken cytokines and chemokines
  publication-title: J. IFN Cyto. Res.
  doi: 10.1089/jir.2005.25.467
– volume: 9
  start-page: 4
  year: 1997
  ident: 10.1016/j.psj.2019.12.011_bib61
  article-title: Innate immunity: impact on the adaptive immune response
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/S0952-7915(97)80152-5
– volume: 2
  start-page: 15
  year: 2012
  ident: 10.1016/j.psj.2019.12.011_bib4
  article-title: Defense and adaptation: the complex inter-relationship between Campylobacter jejuni and mucus
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2012.00015
– volume: 59
  start-page: 55
  year: 2014
  ident: 10.1016/j.psj.2019.12.011_bib15
  article-title: Immune regulatory activities of fowlcidin-1, a cathelicidin host defense peptide
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.01.004
– volume: 30
  start-page: 16
  year: 2011
  ident: 10.1016/j.psj.2019.12.011_bib93
  article-title: Pathogen recognition by the innate immune system
  publication-title: Int. Rev. Immunol.
  doi: 10.3109/08830185.2010.529976
– volume: 65
  start-page: 330
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib57
  article-title: The gut microbiota and host health: a new clinical frontier
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309990
– volume: 22
  start-page: 637
  year: 2013
  ident: 10.1016/j.psj.2019.12.011_bib43
  article-title: The gut microbiome and host innate immunity: regulators of host metabolism and metabolic diseases in poultry?
  publication-title: J. Appl. Poult. Res.
  doi: 10.3382/japr.2013-00741
– volume: 90
  start-page: 300
  year: 2014
  ident: 10.1016/j.psj.2019.12.011_bib69
  article-title: Marek’s disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12392
– volume: 17
  start-page: 461
  year: 1973
  ident: 10.1016/j.psj.2019.12.011_bib16
  article-title: Coccidiosis in chickens: obligate relationship between Eimeria tenella and certain species of cecal microflora in the pathogenesis of the disease
  publication-title: Av. Dis.
  doi: 10.2307/1589145
– volume: 92
  start-page: 188
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib70
  article-title: Differences in CD8αα and cecal microbiome community during proliferation and late cytolytic phases of Marek’s disease virus infection are associated with genetic resistance to Marek’s disease
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiw188
– volume: 32
  start-page: 157
  year: 2011
  ident: 10.1016/j.psj.2019.12.011_bib46
  article-title: Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation
  publication-title: Trend, Immunol.
  doi: 10.1016/j.it.2011.01.005
– volume: 73
  start-page: 1124S
  year: 2001
  ident: 10.1016/j.psj.2019.12.011_bib55
  article-title: Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/73.6.1124S
– volume: 12
  start-page: e0184890
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib95
  article-title: Effects of Eimeria tenella infection on chicken cecal microbiome diversity, exploring variation associated with severity of pathology
  publication-title: Plos One
  doi: 10.1371/journal.pone.0184890
– volume: 34
  start-page: 1252
  year: 2010
  ident: 10.1016/j.psj.2019.12.011_bib49
  article-title: Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken
  publication-title: Develop. Comp. Immunol.
  doi: 10.1016/j.dci.2010.07.001
– volume: 449
  start-page: 819
  year: 2007
  ident: 10.1016/j.psj.2019.12.011_bib60
  article-title: Recognition of microorganisms and activation of the immune response
  publication-title: Nature
  doi: 10.1038/nature06246
– volume: 4
  start-page: 309
  year: 2002
  ident: 10.1016/j.psj.2019.12.011_bib65
  article-title: The gut microflora and intestinal epithelial cells: a continuing dialogue
  publication-title: Microb. Infect.
  doi: 10.1016/S1286-4579(02)01543-5
– volume: 89
  start-page: 7615
  year: 1992
  ident: 10.1016/j.psj.2019.12.011_bib11
  article-title: Stochastic rearrangement of immunoglobulin variable-region genes in chicken B-cell development
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.89.16.7615
– volume: 4
  start-page: 953
  year: 2004
  ident: 10.1016/j.psj.2019.12.011_bib73
  article-title: War and peace at mucosal surfaces
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1499
– volume: 535
  start-page: 75
  year: 2016
  ident: 10.1016/j.psj.2019.12.011_bib36
  article-title: The microbiota in adaptive immune homeostasis and disease
  publication-title: Nature
  doi: 10.1038/nature18848
– volume: 18
  start-page: 103
  year: 2009
  ident: 10.1016/j.psj.2019.12.011_bib44
  article-title: An immunologist’s perspective on nutrition, immunity, and infectious diseases: introduction and overview
  publication-title: J. Appl. Poult. Res.
  doi: 10.3382/japr.2008-00080
– volume: 9
  start-page: 60
  year: 2017
  ident: 10.1016/j.psj.2019.12.011_bib6
  article-title: Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens
  publication-title: Toxins
  doi: 10.3390/toxins9020060
– volume: 35
  start-page: 224
  year: 1956
  ident: 10.1016/j.psj.2019.12.011_bib29
  article-title: The bursa of Fabricius and antibody production
  publication-title: Poult. Sci.
  doi: 10.3382/ps.0350224
– volume: 140
  start-page: 805
  year: 2010
  ident: 10.1016/j.psj.2019.12.011_bib81
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 467
  start-page: 426
  year: 2010
  ident: 10.1016/j.psj.2019.12.011_bib87
  article-title: Gut inflammation provides a respiratory electron acceptor for Salmonella
  publication-title: Nature
  doi: 10.1038/nature09415
SSID ssj0021667
Score 2.6314936
SecondaryResourceType review_article
Snippet The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1906
SubjectTerms adaptive immunity
Animals
bacteria
Bacterial Infections - immunology
Bacterial Infections - microbiology
Bacterial Infections - veterinary
blood plasma
Chickens - immunology
Chickens - microbiology
coevolution
dendritic cells
gut health
health status
homeostasis
Host-Pathogen Interactions
immune response
Immune System
immunoglobulin A
Immunology, Health and Disease
inflammation
innate immunity
intestinal microorganisms
intestinal mucosa
macrophages
microbial communities
microbial load
microbiome
Microbiota
mucosal firewall
Parasitic Diseases, Animal - immunology
Parasitic Diseases, Animal - parasitology
pathogens
Peyer's patches
plasma cells
Poultry Diseases - immunology
Poultry Diseases - microbiology
Poultry Diseases - parasitology
Poultry Diseases - virology
receptors
Salmonella
T-lymphocytes
tonsils
Virus Diseases - immunology
Virus Diseases - veterinary
Virus Diseases - virology
Title Microbiome and pathogen interaction with the immune system
URI https://dx.doi.org/10.1016/j.psj.2019.12.011
https://www.ncbi.nlm.nih.gov/pubmed/32241470
https://www.proquest.com/docview/2386282305
https://www.proquest.com/docview/2477632308
https://pubmed.ncbi.nlm.nih.gov/PMC7587753
https://doaj.org/article/9cac53f9c0494a059fc4c1ad2304b277
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzggaKEN0MqVOCFFje04cbgBKkKV4AQSN8tfoYsgu1qW_8-MnawISMul12SSyONx5s14_IaQI8sA5gYvcnDWIQdI3eZN8BZsmXPHXSWDx0Dx6rq6vC3_3sm7N62-sCYs0QMnxf1unHFStI1DIhMDYKB1pWPGYzLT8jqeIwefNwRTfajFqiqxZQoIteqGDfuZsbJr9vyANV1NzAMyNvJIkbh_5Jg-As_39ZNvHNLFNtnqkSQ9TSPYIWuh-0I2T-_nPZtG-EpOriaJZ-kpUNN5iu2Hp2AxFEki5ulIA8VMLAUYSCd4VCTQxO28S24v_tycX-Z9s4TcQZCxyC38ulzJvOPScO6l9E7U0hhVB3DRRdUiM1ujVFW1XjWOeTyUGnyBfIGKCy_2yHo37cJ3QsFdKc8MIr-yLHyrrGq8ENZWtnVB-owUg8K065nEsaHFox5Kxh406FijjjXjGnSckePlI7NEo7FK-AxnYSmIDNjxAtiF7u1Cf2YXGSmHOdQ9mEggAV41WfXtX8N8a1houHtiujB9edaAbaKmCrlCpqzhfw0yKiPfko0sRyEQLJV1kZF6ZD2jYY7vdJN_kfAbYroawsr9_6GXA7LBMWUQi48Oyfpi_hJ-AK5a2J9xCb0CKboeUA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiome+and+pathogen+interaction+with+the+immune+system&rft.jtitle=Poultry+science&rft.au=Kogut%2C+Michael+H&rft.au=Lee%2C+Annah&rft.au=Santin%2C+Elizabeth&rft.date=2020-04-01&rft.eissn=1525-3171&rft.volume=99&rft.issue=4&rft.spage=1906&rft_id=info:doi/10.1016%2Fj.psj.2019.12.011&rft_id=info%3Apmid%2F32241470&rft.externalDocID=32241470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5791&client=summon