De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae

Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with me...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering communications Vol. 10; p. e00111
Main Authors Wernig, Florian, Boles, Eckhard, Oreb, Mislav
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2214-0301
2214-0301
DOI10.1016/j.mec.2019.e00111

Cover

Abstract Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis. •Low toxic effects of medium-chain ω-hydroxy fatty acids on yeast cells .•Systematic comparison of cytochrome P450 enzyme activities on octanoic acid .•De novo biosynthesis of 8-hydroxyoctanoic acid .•Improvement of cytochrome P450 activity with ethanol or by addition of hemin .
AbstractList Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis. •Low toxic effects of medium-chain ω-hydroxy fatty acids on yeast cells .•Systematic comparison of cytochrome P450 enzyme activities on octanoic acid .•De novo biosynthesis of 8-hydroxyoctanoic acid .•Improvement of cytochrome P450 activity with ethanol or by addition of hemin .
Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast . Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis.
Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis.
Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis.
Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis.Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis.
Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae . Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 ​mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis. • Low toxic effects of medium-chain ω-hydroxy fatty acids on yeast cells . • Systematic comparison of cytochrome P450 enzyme activities on octanoic acid . • De novo biosynthesis of 8-hydroxyoctanoic acid . • Improvement of cytochrome P450 activity with ethanol or by addition of hemin .
ArticleNumber e00111
Author Boles, Eckhard
Oreb, Mislav
Wernig, Florian
AuthorAffiliation Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
AuthorAffiliation_xml – name: Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
Author_xml – sequence: 1
  givenname: Florian
  surname: Wernig
  fullname: Wernig, Florian
– sequence: 2
  givenname: Eckhard
  surname: Boles
  fullname: Boles, Eckhard
– sequence: 3
  givenname: Mislav
  surname: Oreb
  fullname: Oreb, Mislav
  email: m.oreb@bio.uni-frankfurt.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31867212$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxiNUREvpA3BBPnLZxY4TJxESEir_KlUCCThb9ni88SqJi-1dNQ_C--JtWtRyKCdb4-_7aTzzPS-OJj9hUbxkdM0oE2-26xFhXVLWrZFSxtiT4qQsWbWinLKje_fj4izGLc0aLljF2LPimLNWNCUrT4rfH5BMfu-Jdj7OU-oxuki8Je2qn03w17OHpCbvgChwhuydIoqMaNxuXEGv3EQGnDapJ_EKwdmssyqleVHfEFVEoiZDYE4e-uBHJN-qmpJs_a4gM3JpBowEMODeRafwRfHUqiHi2e15Wvz89PHH-ZfV5dfPF-fvL1dQ1zStVFe2wrScl6Cb_B9Om07bTusOaqhaowy3BjU2uq5F27QarVBGaFoBsFJ3_LS4WLjGq628Cm5UYZZeOXlT8GEjVUgOBpTM5FEba7XRZYWUt1pg29oqQ4Wyts2sdwvraqfzfACnFNTwAPrwZXK93Pi9FB0VouEZ8PoWEPyvHcYkRxcBh0FN6HdRlhXveFsf9vhfKeeUCs5EmaWv7rf1t5-7CGRBswgg-BgDWgkuqeT8oUs3SEblIW9yK3Pe5CFvcslbdrJ_nHfwxzxvFw_mte4dBhnB4QQ5UAEh5bm7R9x_AFtH8KM
CitedBy_id crossref_primary_10_1007_s12013_020_00947_w
crossref_primary_10_1016_j_mec_2023_e00224
crossref_primary_10_1038_s41598_020_66629_y
crossref_primary_10_1002_cbdv_202300829
crossref_primary_10_1016_j_cjche_2024_06_009
crossref_primary_10_1021_acs_jafc_2c04329
crossref_primary_10_1016_j_copbio_2022_102852
crossref_primary_10_1021_acssuschemeng_2c07561
Cites_doi 10.1128/AEM.01280-10
10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
10.1007/BF02678781
10.1021/bm2007554
10.1021/sb500366v
10.1007/s00253-013-4773-5
10.1186/s12934-015-0278-5
10.1128/mr.56.1.1-11.1992
10.1016/j.bbagen.2006.08.018
10.1016/j.copbio.2015.02.010
10.1038/ncomms14650
10.1007/s000180050442
10.1002/bit.25679
10.1039/B604190F
10.1111/1751-7915.12073
10.1016/j.cell.2007.03.013
10.1074/jbc.M117.790923
10.1016/j.tibs.2012.11.006
10.1021/acs.jafc.9b00109
10.1016/j.bbrc.2003.09.151
10.1038/nprot.2007.17
10.1016/j.jclepro.2014.10.011
10.1128/AEM.04151-13
10.1038/nchembio.2301
10.1006/bbrc.1998.8842
10.1111/j.1574-6968.1994.tb07255.x
10.1016/j.ymben.2015.01.007
10.1016/j.taap.2004.01.018
10.1186/s12934-015-0228-2
10.1128/aem.55.1.21-28.1989
10.1016/j.biotechadv.2013.07.004
10.3389/fmicb.2017.02184
10.1016/j.mimet.2016.06.020
10.1021/ja107707v
10.1016/j.pbi.2014.03.004
10.1186/s13068-018-1149-1
10.1002/ejlt.200600291
10.1021/jacs.6b11895
10.1002/yea.3071
10.1186/s12934-016-0526-3
10.1099/13500872-142-3-469
10.1038/s41598-019-41759-0
10.1038/sj.cr.7310086
10.1111/j.1742-4658.2007.06032.x
10.1021/je060132t
10.1002/bit.25839
10.1002/bit.25021
10.1007/BF02541401
10.1007/s002030100269
10.1038/nature12051
10.1016/S0168-1605(96)01200-7
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.mec.2019.e00111
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-0301
ExternalDocumentID oai_doaj_org_article_1d201dffbdb24e038b6e88f48be6aff8
PMC6906673
31867212
10_1016_j_mec_2019_e00111
S221403011930015X
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-a9286d8332cb77213079bf9bb9c5c48dad3fdebe7b556878bef6ad6b04cc12b93
IEDL.DBID DOA
ISSN 2214-0301
IngestDate Wed Aug 27 01:28:39 EDT 2025
Thu Aug 21 18:43:18 EDT 2025
Fri Jul 11 07:40:30 EDT 2025
Fri Jul 11 16:08:35 EDT 2025
Thu Jan 02 22:59:56 EST 2025
Tue Jul 01 04:03:42 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Tue Jul 25 21:03:16 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords α,ω-dicarboxylic acids
ω-Hydroxy fatty acids
Cytochrome P450
8-Hydroxyoctanoic acid
Oleochemicals
Toxicity test
S. cerevisiae
Language English
License This is an open access article under the CC BY-NC-ND license.
2019 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-a9286d8332cb77213079bf9bb9c5c48dad3fdebe7b556878bef6ad6b04cc12b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1d201dffbdb24e038b6e88f48be6aff8
PMID 31867212
PQID 2330063162
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1d201dffbdb24e038b6e88f48be6aff8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6906673
proquest_miscellaneous_2439385001
proquest_miscellaneous_2330063162
pubmed_primary_31867212
crossref_citationtrail_10_1016_j_mec_2019_e00111
crossref_primary_10_1016_j_mec_2019_e00111
elsevier_sciencedirect_doi_10_1016_j_mec_2019_e00111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Metabolic engineering communications
PublicationTitleAlternate Metab Eng Commun
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kim, Oh (bib28) 2013; 31
Peng, Williams, Henry, Nielsen, Vickers (bib45) 2015; 14
Alexandre, Mathieu, Charpentier (bib2) 1996; 142
Fisher, Zheng, Rettie (bib15) 1998; 248
Pavlovic (bib44) 2016
Scheps, Honda Malca, Richter, Marisch, Nestl, Hauer (bib49) 2013; 6
Gietz, Schiestl (bib18) 2007; 2
Viegas, Sá-Correia (bib52) 1997; 34
Han, Peng, Zhang, Chen, Lin, Wang (bib19) 2017; 8
Bruder, Reifenrath, Thomik, Boles, Herzog (bib7) 2016; 15
Bretti, Crea, Foti, Sammartano (bib6) 2006; 51
Dean (bib11) 1987
Henderson, Block (bib22) 2014; 80
Huffer, Clark, Ning, Blanch, Clark (bib25) 2011; 77
Durairaj, Malla, Nadarajan, Lee, Jung, Park, Kim, Yun (bib12) 2015; 14
Cray, Stevenson, Ball, Bankar, Eleutherio, Ezeji, Singhal, Thevelein, Timson, Hallsworth (bib10) 2015; 33
Farwick, Bruder, Schadeweg, Oreb, Boles (bib13) 2014; vol. 111
Liu, Zhang, Lu (bib34) 2019; 67
Akaike (bib1) 1985; 62
Schmidt (bib50) 2015; 87
Borrull, Lopez-Martinez, Poblet, Cordero-Otero, Rozes (bib4) 2015; 32
Zangar, Davydov, Verma (bib53) 2004; 199
Alexandre, Rousseaux, Charpentier (bib3) 1994; 124
Leber, Da Silva (bib30) 2014; 111
Kandel, Sauveplane, Compagnon, Franke, Millet, Schreiber, Werck-Reichhart, Pinot (bib26) 2007; 274
Clomburg, Blankschien, Vick, Chou, Kim, Gonzalez (bib9) 2015; 28
Mense, Zhang (bib38) 2006
Zitromer, Lowrym (bib57) 1992; 56
Generoso, Gottardi, Oreb, Boles (bib17) 2016; 127
Liu, Liu, Cai, Xie, Long, Turner, Lyons, Gross (bib33) 2011; 12
Cabral, Viegas, Sá-Correia (bib8) 2001; 175
Lu, Ness, Xie, Zhang, Minshull, Gross (bib37) 2010; 132
Munro, Girvan, McLean (bib42) 2007; 24
Savitskaya, Protzko, Li, Arkin, Dueber (bib48) 2019; 9
Renault, Bassard, Hamberger, Werck-Reichhart (bib46) 2014; 19
Keng, Guarente (bib27) 1987; vol. 84
Hoffman, Góra, Rytka (bib24) 2003; 310
Liu, Chernyshov, Najdi, Fu, Dickerson, Sandmeyer, Jarboe (bib35) 2013; 97
Zhu, Zhou, Krivoruchko, Grininger, Zhao, Nielsen (bib56) 2017; 13
Leber, Choi, Polson, Da Silva (bib29) 2016; 113
Lee, DeLoache, Cervantes, Dueber (bib31) 2015; 4
Viegas, Rosa, Sà-Correia, Novais (bib51) 1989; 55
Haushalter, Phelan, Hoh, Su, Wang, Baidoo, Keasling (bib21) 2017; 139
Lomakin, Xiong, Steitz (bib36) 2007; 129
Munro, Girvan, Mason, Dunford, McLean (bib40) 2013; 38
Haupt, Drinkard, Pierce (bib20) 1984; 61
Zhang, Hach (bib54) 1999; 56
Legras, Erny, Le Jeune, Lollier, Adolphe, Demuyter, Delobel, Blondin, Karst (bib32) 2010; 76
Munro, Girvan, McLean (bib41) 2007; 1770
Paddon, Westfall, Pitera, Benjamin, Fisher, McPhee, Leavell, Tai, Main, Eng (bib43) 2013; 496
Zhang, Bu, Zeng, Vancura (bib55) 2017; 292
Henritzi, Fischer, Grininger, Oreb, Boles (bib23) 2018; 11
Michener, Nielsen, Smolke (bib39) 2012; vol. 109
Brachmann, Davies, Cost, Caputo, Li, Hieter, Boeke (bib5) 1998; 14
Gajewski, Pavlovic, Fischer, Boles, Grininger (bib16) 2017; 8
Fernandez-Moya, Leber, Cardenas, Da Silva (bib14) 2015; 112
Rupilius, Ahmad (bib47) 2007; 109
Leber (10.1016/j.mec.2019.e00111_bib30) 2014; 111
Generoso (10.1016/j.mec.2019.e00111_bib17) 2016; 127
Schmidt (10.1016/j.mec.2019.e00111_bib50) 2015; 87
Bruder (10.1016/j.mec.2019.e00111_bib7) 2016; 15
Cray (10.1016/j.mec.2019.e00111_bib10) 2015; 33
Lu (10.1016/j.mec.2019.e00111_bib37) 2010; 132
Farwick (10.1016/j.mec.2019.e00111_bib13) 2014; vol. 111
Bretti (10.1016/j.mec.2019.e00111_bib6) 2006; 51
Clomburg (10.1016/j.mec.2019.e00111_bib9) 2015; 28
Alexandre (10.1016/j.mec.2019.e00111_bib2) 1996; 142
Peng (10.1016/j.mec.2019.e00111_bib45) 2015; 14
Rupilius (10.1016/j.mec.2019.e00111_bib47) 2007; 109
Akaike (10.1016/j.mec.2019.e00111_bib1) 1985; 62
Munro (10.1016/j.mec.2019.e00111_bib42) 2007; 24
Scheps (10.1016/j.mec.2019.e00111_bib49) 2013; 6
Haupt (10.1016/j.mec.2019.e00111_bib20) 1984; 61
Dean (10.1016/j.mec.2019.e00111_bib11) 1987
Paddon (10.1016/j.mec.2019.e00111_bib43) 2013; 496
Kandel (10.1016/j.mec.2019.e00111_bib26) 2007; 274
Savitskaya (10.1016/j.mec.2019.e00111_bib48) 2019; 9
Keng (10.1016/j.mec.2019.e00111_bib27) 1987; vol. 84
Huffer (10.1016/j.mec.2019.e00111_bib25) 2011; 77
Munro (10.1016/j.mec.2019.e00111_bib40) 2013; 38
Gietz (10.1016/j.mec.2019.e00111_bib18) 2007; 2
Liu (10.1016/j.mec.2019.e00111_bib35) 2013; 97
Viegas (10.1016/j.mec.2019.e00111_bib51) 1989; 55
Liu (10.1016/j.mec.2019.e00111_bib33) 2011; 12
Kim (10.1016/j.mec.2019.e00111_bib28) 2013; 31
Henderson (10.1016/j.mec.2019.e00111_bib22) 2014; 80
Lee (10.1016/j.mec.2019.e00111_bib31) 2015; 4
Michener (10.1016/j.mec.2019.e00111_bib39) 2012; vol. 109
Fernandez-Moya (10.1016/j.mec.2019.e00111_bib14) 2015; 112
Henritzi (10.1016/j.mec.2019.e00111_bib23) 2018; 11
Cabral (10.1016/j.mec.2019.e00111_bib8) 2001; 175
Zangar (10.1016/j.mec.2019.e00111_bib53) 2004; 199
Liu (10.1016/j.mec.2019.e00111_bib34) 2019; 67
Han (10.1016/j.mec.2019.e00111_bib19) 2017; 8
Gajewski (10.1016/j.mec.2019.e00111_bib16) 2017; 8
Lomakin (10.1016/j.mec.2019.e00111_bib36) 2007; 129
Zhu (10.1016/j.mec.2019.e00111_bib56) 2017; 13
Zitromer (10.1016/j.mec.2019.e00111_bib57) 1992; 56
Viegas (10.1016/j.mec.2019.e00111_bib52) 1997; 34
Zhang (10.1016/j.mec.2019.e00111_bib54) 1999; 56
Hoffman (10.1016/j.mec.2019.e00111_bib24) 2003; 310
Durairaj (10.1016/j.mec.2019.e00111_bib12) 2015; 14
Mense (10.1016/j.mec.2019.e00111_bib38) 2006
Pavlovic (10.1016/j.mec.2019.e00111_bib44) 2016
Brachmann (10.1016/j.mec.2019.e00111_bib5) 1998; 14
Borrull (10.1016/j.mec.2019.e00111_bib4) 2015; 32
Legras (10.1016/j.mec.2019.e00111_bib32) 2010; 76
Munro (10.1016/j.mec.2019.e00111_bib41) 2007; 1770
Zhang (10.1016/j.mec.2019.e00111_bib55) 2017; 292
Leber (10.1016/j.mec.2019.e00111_bib29) 2016; 113
Alexandre (10.1016/j.mec.2019.e00111_bib3) 1994; 124
Haushalter (10.1016/j.mec.2019.e00111_bib21) 2017; 139
Fisher (10.1016/j.mec.2019.e00111_bib15) 1998; 248
Renault (10.1016/j.mec.2019.e00111_bib46) 2014; 19
References_xml – volume: 6
  start-page: 694
  year: 2013
  end-page: 707
  ident: bib49
  article-title: Synthesis of ω-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct
  publication-title: Microb. Biotechnol.
– volume: 19
  start-page: 27
  year: 2014
  end-page: 34
  ident: bib46
  article-title: Cytochrome P450-mediated metabolic engineering: current progress and future challenges
  publication-title: Curr. Opin. Plant Biol.
– volume: 14
  start-page: 115
  year: 1998
  end-page: 132
  ident: bib5
  article-title: Designer deletion strains derived from
  publication-title: Yeast
– volume: 76
  start-page: 7526
  year: 2010
  end-page: 7535
  ident: bib32
  article-title: Activation of two different resistance mechanisms in
  publication-title: Appl. Environ. Microbiol.
– volume: 109
  start-page: 433
  year: 2007
  end-page: 439
  ident: bib47
  article-title: Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel
  publication-title: Eur. J. Lipid Sci. Technol.
– year: 2016
  ident: bib44
  article-title: Genetic Modification of Enzymes and Metabolic Pathways for the Improvement of Fatty Acid Synthesis in the Yeast
– volume: 112
  start-page: 2618
  year: 2015
  end-page: 2623
  ident: bib14
  article-title: Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles
  publication-title: Biotechnol. Bioeng.
– volume: 4
  start-page: 975
  year: 2015
  end-page: 986
  ident: bib31
  article-title: A highly characterized yeast toolkit for modular, multipart assembly
  publication-title: ACS Synth. Biol.
– volume: vol. 111
  start-page: 5159
  year: 2014
  end-page: 5164
  ident: bib13
  article-title: Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 496
  start-page: 528
  year: 2013
  end-page: 532
  ident: bib43
  article-title: High-level semi-synthetic production of the potent antimalarial artemisinin
  publication-title: Nature
– volume: 124
  start-page: 17
  year: 1994
  end-page: 22
  ident: bib3
  article-title: Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.
– volume: 13
  start-page: 360
  year: 2017
  end-page: 362
  ident: bib56
  article-title: Expanding the product portfolio of fungal type I fatty acid synthases
  publication-title: Nat. Chem. Biol.
– volume: 61
  start-page: 276
  year: 1984
  end-page: 281
  ident: bib20
  article-title: Future of petrochemical raw materials in oleochemical markets
  publication-title: JAOCS (J. Am. Oil Chem. Soc.)
– volume: 33
  start-page: 228
  year: 2015
  end-page: 259
  ident: bib10
  article-title: Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms
  publication-title: Curr. Opin. Biotechnol.
– volume: 80
  start-page: 2966
  year: 2014
  end-page: 2972
  ident: bib22
  article-title: Examining the role of membrane lipid composition in determining the ethanol tolerance of
  publication-title: Appl. Environ. Microbiol.
– volume: 8
  start-page: 2184
  year: 2017
  ident: bib19
  article-title: Designing and creating a synthetic omega oxidation pathway in
  publication-title: Front. Microbiol.
– volume: 28
  start-page: 202
  year: 2015
  end-page: 212
  ident: bib9
  article-title: Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids
  publication-title: Metab. Eng.
– volume: vol. 109
  start-page: 19504
  year: 2012
  end-page: 19509
  ident: bib39
  article-title: Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 87
  start-page: 130
  year: 2015
  end-page: 138
  ident: bib50
  article-title: Life cycle assessment of five vegetable oils
  publication-title: J. Clean. Prod.
– volume: 292
  start-page: 16942
  year: 2017
  end-page: 16954
  ident: bib55
  article-title: Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression
  publication-title: J. Biol. Chem.
– volume: 127
  start-page: 203
  year: 2016
  end-page: 205
  ident: bib17
  article-title: Simplified CRISPR-Cas genome editing for
  publication-title: J. Microbiol. Methods
– volume: 31
  start-page: 1473
  year: 2013
  end-page: 1485
  ident: bib28
  article-title: Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes
  publication-title: Biotechnol. Adv.
– volume: 139
  start-page: 4615
  year: 2017
  end-page: 4618
  ident: bib21
  article-title: Production of odd-carbon dicarboxylic acids in
  publication-title: J. Am. Chem. Soc.
– volume: 274
  start-page: 5116
  year: 2007
  end-page: 5127
  ident: bib26
  article-title: Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of Arabidopsis thaliana catalyzing dicarboxylic fatty acid formation in vitro
  publication-title: FEBS J.
– year: 1987
  ident: bib11
  article-title: Handbook of Organic Chemistry
– volume: 8
  year: 2017
  ident: bib16
  article-title: Engineering fungal
  publication-title: Nat. Commun.
– volume: 97
  start-page: 3239
  year: 2013
  end-page: 3251
  ident: bib35
  article-title: Membrane stress caused by octanoic acid in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 11
  start-page: 150
  year: 2018
  ident: bib23
  article-title: An engineered fatty acid synthase combined with a carboxylic acid reductase enables
  publication-title: Biotechnol. Biofuels
– volume: 56
  start-page: 415
  year: 1999
  end-page: 426
  ident: bib54
  article-title: Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator
  publication-title: Cell. Mol. Life Sci.
– volume: 142
  start-page: 469
  year: 1996
  end-page: 475
  ident: bib2
  article-title: Alteration in membrane fluidity and lipid composition, and modulation of H
  publication-title: Microbiology
– volume: 2
  start-page: 1
  year: 2007
  end-page: 4
  ident: bib18
  article-title: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat. Protoc.
– volume: 9
  start-page: 5815
  year: 2019
  ident: bib48
  article-title: Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production
  publication-title: Sci. Rep.
– volume: 14
  start-page: 45
  year: 2015
  ident: bib12
  article-title: Fungal cytochrome P450 monooxygenases of
  publication-title: Microb. Cell Factories
– volume: 111
  start-page: 347
  year: 2014
  end-page: 358
  ident: bib30
  article-title: Engineering of
  publication-title: Biotechnol. Bioeng.
– volume: 1770
  start-page: 345
  year: 2007
  end-page: 359
  ident: bib41
  article-title: Cytochrome P450--redox partner fusion enzymes
  publication-title: Biochim. Biophys. Acta
– volume: 56
  start-page: 1
  year: 1992
  end-page: 11
  ident: bib57
  article-title: Regulation of gene expression by oxygen in
  publication-title: Microbiol. Rev.
– volume: 51
  start-page: 1660
  year: 2006
  end-page: 1667
  ident: bib6
  article-title: Solubility and activity coefficients of acidic and basic nonelectrolytes in aqueous salt solutions. 2. Solubility and activity coefficients of suberic, azelaic, and sebacic acids in NaCl(aq), (CH
  publication-title: J. Chem. Eng. Data
– volume: 248
  start-page: 352
  year: 1998
  end-page: 355
  ident: bib15
  article-title: Positional specificity of rabbit CYP4B1 for ω-hydroxylation of short-medium chain fatty acids and hydrocarbons
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 62
  start-page: 335
  year: 1985
  end-page: 340
  ident: bib1
  article-title: Other oleochemical uses: palm oil products
  publication-title: JAOCS (J. Am. Oil Chem. Soc.)
– volume: 14
  start-page: 91
  year: 2015
  ident: bib45
  article-title: Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities
  publication-title: Microb. Cell Factories
– volume: vol. 84
  start-page: 9113
  year: 1987
  end-page: 9117
  ident: bib27
  article-title: Constitutive expression of the yeast HEMJ gene is actually a composite of activation and repression
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 113
  start-page: 895
  year: 2016
  end-page: 900
  ident: bib29
  article-title: Disrupted short chain specific beta-oxidation and improved synthase expression increase synthesis of short chain fatty acids in
  publication-title: Biotechnol. Bioeng.
– volume: 132
  start-page: 15451
  year: 2010
  end-page: 15455
  ident: bib37
  article-title: Biosynthesis of monomers for plastics from renewable oils
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 267
  year: 1997
  end-page: 277
  ident: bib52
  article-title: Effects of low temperatures (9-33°C) and pH (3.3-5.7) in the loss of
  publication-title: Int. J. Food Microbiol.
– volume: 12
  start-page: 3291
  year: 2011
  end-page: 3298
  ident: bib33
  article-title: Polymers from fatty acids: poly(ω-hydroxyl tetradecanoic acid) synthesis and physico-mechanical studies
  publication-title: Biomacromolecules
– volume: 24
  start-page: 585
  year: 2007
  end-page: 609
  ident: bib42
  article-title: Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily
  publication-title: Nat. Prod. Rep.
– volume: 199
  start-page: 316
  year: 2004
  end-page: 331
  ident: bib53
  article-title: Mechanisms that regulate production of reactive oxygen species by cytochrome P450
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 38
  start-page: 140
  year: 2013
  end-page: 150
  ident: bib40
  article-title: What makes a P450 tick?
  publication-title: Trends Biochem. Sci.
– volume: 175
  start-page: 301
  year: 2001
  end-page: 307
  ident: bib8
  article-title: Mechanisms underlying the acquisition of resistance to octanoic-acid-induced-death following exposure of
  publication-title: Arch. Microbiol.
– volume: 67
  start-page: 4545
  year: 2019
  end-page: 4552
  ident: bib34
  article-title: Biosynthesis of long-chain ω-hydroxy fatty acids by engineered
  publication-title: J. Agric. Food Chem.
– volume: 15
  start-page: 127
  year: 2016
  ident: bib7
  article-title: Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of
  publication-title: Microb. Cell Factories
– volume: 55
  start-page: 21
  year: 1989
  end-page: 28
  ident: bib51
  article-title: Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation
  publication-title: Appl. Environ. Microbiol.
– volume: 32
  start-page: 451
  year: 2015
  end-page: 460
  ident: bib4
  article-title: New insights into the toxicity mechanism of octanoic and decanoic acids on
  publication-title: Yeast
– volume: 310
  start-page: 1247
  year: 2003
  end-page: 1253
  ident: bib24
  article-title: Identification of rate-limiting steps in yeast heme biosynthesis
  publication-title: Biochem. Biophys. Res. Commun.
– start-page: 681
  year: 2006
  end-page: 692
  ident: bib38
  article-title: Heme: a versatile signaling molecule controlling the activities of
  publication-title: Cell Res.
– volume: 77
  start-page: 6400
  year: 2011
  end-page: 6408
  ident: bib25
  article-title: Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea
  publication-title: Biotechnol. Biofuels
– volume: 129
  start-page: 319
  year: 2007
  end-page: 332
  ident: bib36
  article-title: The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together
  publication-title: Cell
– volume: 76
  start-page: 7526
  year: 2010
  ident: 10.1016/j.mec.2019.e00111_bib32
  article-title: Activation of two different resistance mechanisms in Saccharomyces cerevisiae upon exposure to octanoic and decanoic acids
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01280-10
– volume: 14
  start-page: 115
  year: 1998
  ident: 10.1016/j.mec.2019.e00111_bib5
  article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
– volume: 61
  start-page: 276
  year: 1984
  ident: 10.1016/j.mec.2019.e00111_bib20
  article-title: Future of petrochemical raw materials in oleochemical markets
  publication-title: JAOCS (J. Am. Oil Chem. Soc.)
  doi: 10.1007/BF02678781
– volume: 12
  start-page: 3291
  year: 2011
  ident: 10.1016/j.mec.2019.e00111_bib33
  article-title: Polymers from fatty acids: poly(ω-hydroxyl tetradecanoic acid) synthesis and physico-mechanical studies
  publication-title: Biomacromolecules
  doi: 10.1021/bm2007554
– volume: 4
  start-page: 975
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib31
  article-title: A highly characterized yeast toolkit for modular, multipart assembly
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb500366v
– volume: 97
  start-page: 3239
  year: 2013
  ident: 10.1016/j.mec.2019.e00111_bib35
  article-title: Membrane stress caused by octanoic acid in Saccharomyces cerevisiae
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-4773-5
– volume: 14
  start-page: 91
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib45
  article-title: Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-015-0278-5
– volume: 56
  start-page: 1
  year: 1992
  ident: 10.1016/j.mec.2019.e00111_bib57
  article-title: Regulation of gene expression by oxygen in Saccharomyces cerevisiae
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.56.1.1-11.1992
– volume: 1770
  start-page: 345
  year: 2007
  ident: 10.1016/j.mec.2019.e00111_bib41
  article-title: Cytochrome P450--redox partner fusion enzymes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2006.08.018
– volume: 33
  start-page: 228
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib10
  article-title: Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.02.010
– volume: 8
  year: 2017
  ident: 10.1016/j.mec.2019.e00111_bib16
  article-title: Engineering fungal de novo fatty acid synthesis for short chain fatty acid production
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14650
– volume: vol. 84
  start-page: 9113
  year: 1987
  ident: 10.1016/j.mec.2019.e00111_bib27
  article-title: Constitutive expression of the yeast HEMJ gene is actually a composite of activation and repression
– volume: 56
  start-page: 415
  year: 1999
  ident: 10.1016/j.mec.2019.e00111_bib54
  article-title: Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s000180050442
– volume: 112
  start-page: 2618
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib14
  article-title: Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25679
– volume: 24
  start-page: 585
  year: 2007
  ident: 10.1016/j.mec.2019.e00111_bib42
  article-title: Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/B604190F
– volume: 6
  start-page: 694
  year: 2013
  ident: 10.1016/j.mec.2019.e00111_bib49
  article-title: Synthesis of ω-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12073
– volume: 129
  start-page: 319
  year: 2007
  ident: 10.1016/j.mec.2019.e00111_bib36
  article-title: The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together
  publication-title: Cell
  doi: 10.1016/j.cell.2007.03.013
– volume: 292
  start-page: 16942
  year: 2017
  ident: 10.1016/j.mec.2019.e00111_bib55
  article-title: Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.790923
– volume: 38
  start-page: 140
  year: 2013
  ident: 10.1016/j.mec.2019.e00111_bib40
  article-title: What makes a P450 tick?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2012.11.006
– volume: 67
  start-page: 4545
  year: 2019
  ident: 10.1016/j.mec.2019.e00111_bib34
  article-title: Biosynthesis of long-chain ω-hydroxy fatty acids by engineered Saccharomyces cerevisiae
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b00109
– volume: 310
  start-page: 1247
  year: 2003
  ident: 10.1016/j.mec.2019.e00111_bib24
  article-title: Identification of rate-limiting steps in yeast heme biosynthesis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2003.09.151
– year: 2016
  ident: 10.1016/j.mec.2019.e00111_bib44
– volume: 2
  start-page: 1
  year: 2007
  ident: 10.1016/j.mec.2019.e00111_bib18
  article-title: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.17
– volume: 87
  start-page: 130
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib50
  article-title: Life cycle assessment of five vegetable oils
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.10.011
– volume: 80
  start-page: 2966
  year: 2014
  ident: 10.1016/j.mec.2019.e00111_bib22
  article-title: Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.04151-13
– volume: 13
  start-page: 360
  year: 2017
  ident: 10.1016/j.mec.2019.e00111_bib56
  article-title: Expanding the product portfolio of fungal type I fatty acid synthases
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2301
– volume: 248
  start-page: 352
  year: 1998
  ident: 10.1016/j.mec.2019.e00111_bib15
  article-title: Positional specificity of rabbit CYP4B1 for ω-hydroxylation of short-medium chain fatty acids and hydrocarbons
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1998.8842
– volume: 124
  start-page: 17
  year: 1994
  ident: 10.1016/j.mec.2019.e00111_bib3
  article-title: Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata
  publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1994.tb07255.x
– volume: 28
  start-page: 202
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib9
  article-title: Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.01.007
– volume: 199
  start-page: 316
  year: 2004
  ident: 10.1016/j.mec.2019.e00111_bib53
  article-title: Mechanisms that regulate production of reactive oxygen species by cytochrome P450
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2004.01.018
– volume: vol. 109
  start-page: 19504
  year: 2012
  ident: 10.1016/j.mec.2019.e00111_bib39
  article-title: Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases
– volume: vol. 111
  start-page: 5159
  year: 2014
  ident: 10.1016/j.mec.2019.e00111_bib13
  article-title: Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
– volume: 14
  start-page: 45
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib12
  article-title: Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-015-0228-2
– volume: 55
  start-page: 21
  year: 1989
  ident: 10.1016/j.mec.2019.e00111_bib51
  article-title: Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.55.1.21-28.1989
– volume: 31
  start-page: 1473
  year: 2013
  ident: 10.1016/j.mec.2019.e00111_bib28
  article-title: Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.07.004
– volume: 8
  start-page: 2184
  year: 2017
  ident: 10.1016/j.mec.2019.e00111_bib19
  article-title: Designing and creating a synthetic omega oxidation pathway in Saccharomyces cerevisiae enables production of medium-chain α,ω-dicarboxylic acids
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02184
– volume: 127
  start-page: 203
  year: 2016
  ident: 10.1016/j.mec.2019.e00111_bib17
  article-title: Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2016.06.020
– volume: 132
  start-page: 15451
  year: 2010
  ident: 10.1016/j.mec.2019.e00111_bib37
  article-title: Biosynthesis of monomers for plastics from renewable oils
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja107707v
– volume: 19
  start-page: 27
  year: 2014
  ident: 10.1016/j.mec.2019.e00111_bib46
  article-title: Cytochrome P450-mediated metabolic engineering: current progress and future challenges
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2014.03.004
– volume: 11
  start-page: 150
  year: 2018
  ident: 10.1016/j.mec.2019.e00111_bib23
  article-title: An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1149-1
– volume: 109
  start-page: 433
  year: 2007
  ident: 10.1016/j.mec.2019.e00111_bib47
  article-title: Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200600291
– year: 1987
  ident: 10.1016/j.mec.2019.e00111_bib11
– volume: 139
  start-page: 4615
  year: 2017
  ident: 10.1016/j.mec.2019.e00111_bib21
  article-title: Production of odd-carbon dicarboxylic acids in Escherichia coli using an engineered biotin-fatty acid biosynthetic pathway
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11895
– volume: 32
  start-page: 451
  year: 2015
  ident: 10.1016/j.mec.2019.e00111_bib4
  article-title: New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.3071
– volume: 15
  start-page: 127
  year: 2016
  ident: 10.1016/j.mec.2019.e00111_bib7
  article-title: Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-016-0526-3
– volume: 77
  start-page: 6400
  year: 2011
  ident: 10.1016/j.mec.2019.e00111_bib25
  article-title: Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea
  publication-title: Biotechnol. Biofuels
– volume: 142
  start-page: 469
  year: 1996
  ident: 10.1016/j.mec.2019.e00111_bib2
  article-title: Alteration in membrane fluidity and lipid composition, and modulation of H+-ATPase activity in Saccharomyces cerevisiae caused by decanoic acid
  publication-title: Microbiology
  doi: 10.1099/13500872-142-3-469
– volume: 9
  start-page: 5815
  year: 2019
  ident: 10.1016/j.mec.2019.e00111_bib48
  article-title: Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41759-0
– start-page: 681
  year: 2006
  ident: 10.1016/j.mec.2019.e00111_bib38
  article-title: Heme: a versatile signaling molecule controlling the activities of
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7310086
– volume: 274
  start-page: 5116
  year: 2007
  ident: 10.1016/j.mec.2019.e00111_bib26
  article-title: Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of Arabidopsis thaliana catalyzing dicarboxylic fatty acid formation in vitro
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.06032.x
– volume: 51
  start-page: 1660
  year: 2006
  ident: 10.1016/j.mec.2019.e00111_bib6
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je060132t
– volume: 113
  start-page: 895
  year: 2016
  ident: 10.1016/j.mec.2019.e00111_bib29
  article-title: Disrupted short chain specific beta-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25839
– volume: 111
  start-page: 347
  year: 2014
  ident: 10.1016/j.mec.2019.e00111_bib30
  article-title: Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25021
– volume: 62
  start-page: 335
  year: 1985
  ident: 10.1016/j.mec.2019.e00111_bib1
  article-title: Other oleochemical uses: palm oil products
  publication-title: JAOCS (J. Am. Oil Chem. Soc.)
  doi: 10.1007/BF02541401
– volume: 175
  start-page: 301
  year: 2001
  ident: 10.1016/j.mec.2019.e00111_bib8
  article-title: Mechanisms underlying the acquisition of resistance to octanoic-acid-induced-death following exposure of Saccharomyces cerevisiae to mild stress imposed by octanoic acid or ethanol
  publication-title: Arch. Microbiol.
  doi: 10.1007/s002030100269
– volume: 496
  start-page: 528
  year: 2013
  ident: 10.1016/j.mec.2019.e00111_bib43
  article-title: High-level semi-synthetic production of the potent antimalarial artemisinin
  publication-title: Nature
  doi: 10.1038/nature12051
– volume: 34
  start-page: 267
  year: 1997
  ident: 10.1016/j.mec.2019.e00111_bib52
  article-title: Effects of low temperatures (9-33°C) and pH (3.3-5.7) in the loss of Saccharomyces cerevisiae viability by combining lethal concentrations of ethanol with octanoic and decanoic acids
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/S0168-1605(96)01200-7
SSID ssj0001361411
Score 2.1728847
Snippet Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e00111
SubjectTerms 8-Hydroxyoctanoic acid
biosynthesis
carbon
cytochrome P-450
Cytochrome P450
dicarboxylic acids
ethanol
fatty-acid synthase
glucose
heme
hydroxylation
octanoic acid
Oleochemicals
S. cerevisiae
Saccharomyces cerevisiae
Toxicity test
toxicity testing
yeasts
α,ω-dicarboxylic acids
ω-Hydroxy fatty acids
Title De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae
URI https://dx.doi.org/10.1016/j.mec.2019.e00111
https://www.ncbi.nlm.nih.gov/pubmed/31867212
https://www.proquest.com/docview/2330063162
https://www.proquest.com/docview/2439385001
https://pubmed.ncbi.nlm.nih.gov/PMC6906673
https://doaj.org/article/1d201dffbdb24e038b6e88f48be6aff8
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucABlXd4VEbihBSIH0nsY3lUFRUIARW9RX4qQWyCmmyl_BD-L2Mnu9qAtFy4JmNH9ow9XzzjbxB6LhwxeQ4LkGS6SLmROhVUcdgMwZfB5uh4jJ5_-FicnvP3F_nFTqmvkBM20QNPE_eKWHBR1nttNeUuY0IXTgjPhXaF8j5e881ktvMzFU9XGLidWHyXUsLTgPs3Ic2Y3LVygb6QyJcuFltfOKXI3b_wTX9jzz9TKHd80skhujWDSXw8DeI2uubaO-jmDsXgXfTrrcNtd9Vh3XT92ALc65sedx6LtB5tyGHpDODDrjFYmcbiq0ZhhUPEfb1KTa2aFodaK0ONw53MkFeEvRqGcZKOPYIfxKq12IxDZ-pAf4A_8TzD0PSLMuFaV7caYTvCJuYU941y99D5ybuvb07TuRRDCprMhlRJKgorGKNGAx4Hx1dK7aXW0uSGC6ss8xbsodSB0awE5fhC2UJn3BhCtWT30UHbte4hwqUhwshClsQTrmwmmQA1eqJp7kuQTlC20UVlZp7yUC7jR7VJSPtegfqqoL5qUl-CXmyb_JxIOvYJvw4K3goGfu34AKyumq2u-pfVJYhvzKOaocoEQaCrZt-3n21MqYJlHGIzqnXduq8oYwEtkoLukQHwyEQOPSXowWR-21GwQEwIMCRB5cIwF8NcvmmbOtKJB6rqomSP_se8PEY3aDiQiMdUT9DBcLl2TwG1DfoIXT8--_zt7Cgu1N8pxkRX
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+biosynthesis+of+8-hydroxyoctanoic+acid+via+a+medium-chain+length+specific+fatty+acid+synthase+and+cytochrome+P450+in+Saccharomyces+cerevisiae&rft.jtitle=Metabolic+engineering+communications&rft.au=Wernig%2C+Florian&rft.au=Boles%2C+Eckhard&rft.au=Oreb%2C+Mislav&rft.date=2020-06-01&rft.issn=2214-0301&rft.eissn=2214-0301&rft.volume=10&rft.spage=e00111&rft_id=info:doi/10.1016%2Fj.mec.2019.e00111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mec_2019_e00111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon