Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we rep...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 5; pp. 1584 - 1589 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.02.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn²⁺ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. |
---|---|
AbstractList | Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn 2+ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine–glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2Ang. resolution and show that it assumes a sulfatase-like fold with an a/b core and a C-terminal part composed of 4 anti-parallel b-strands and a long a-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn super(2+) cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-... resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn... cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. (ProQuest: ... denotes formulae/symbols omitted.) Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerolphosphate and the coordination of a Mn²+ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for 5. aureus and many other Gram-positive pathogens. Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn 2+ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine–glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn²⁺ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-A resolution and show that it assumes a sulfatase-like fold with an alpha/beta core and a C-terminal part composed of 4 anti-parallel beta-strands and a long alpha-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn(2+) cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. |
Author | Gründling, Angelika Zhang, Xiaodong Schneewind, Olaf Lu, Duo Freemont, Paul S Wörmann, Mirka E |
Author_xml | – sequence: 1 fullname: Lu, Duo – sequence: 2 fullname: Wörmann, Mirka E – sequence: 3 fullname: Zhang, Xiaodong – sequence: 4 fullname: Schneewind, Olaf – sequence: 5 fullname: Gründling, Angelika – sequence: 6 fullname: Freemont, Paul S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19168632$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAURi1URKeFNSsgYgGrtNfPiTdIVcWj0kgshrK1HMdpPEriYDuo8-_xMKNOQV3dxT33yJ8-n6GT0Y8WodcYLjAs6eU06ngBFUgggEE8QwsMEpeCSThBCwCyLCtG2Ck6i3EDAJJX8AKdYolFJShZoJ_rFGaT5mDLWkfbFIM1nR5dHArfFr2bfLLOdN6ZQhvXFHE7ps5GF4t6W6yTnrpt7403Zo6FzpY8VkmvX6Lnre6jfXWY5-j2y-cf19_K1fevN9dXq9JwDqmUQrMGDOFYUkKwJpi2YBsOshYtIzSHsphZy4A3RjQtZgCcmIYI1lhdE3qOPu2901wPtjF2TEH3agpu0GGrvHbq383oOnXnfysiKF8KmgUfDoLgf802JjW4aGzf69H6OSoChFRkiTP4_j9w4-cw5nCZwRQqLiFDl3vIBB9jsO3DSzCoXWFqV5g6FpYv3j4OcOQPDWXg4wHYXR51QnGFecVUO_d9svfpkeppMgNv9sAmJh8eCJZ_CWFkF_Hdft9qr_RdcFHdrv-Gy-dSUqB_ADk1vqQ |
CitedBy_id | crossref_primary_10_1073_pnas_2008929117 crossref_primary_10_12688_f1000research_7842_1 crossref_primary_10_12688_f1000research_7842_2 crossref_primary_10_1186_s12964_023_01347_2 crossref_primary_10_1146_annurev_biochem_011520_104707 crossref_primary_10_1074_jbc_M114_598300 crossref_primary_10_1093_femsre_fuab051 crossref_primary_10_3389_fmicb_2017_01991 crossref_primary_10_1002_jobm_201400313 crossref_primary_10_1128_JB_01155_13 crossref_primary_10_1073_pnas_1217337110 crossref_primary_10_1038_srep17215 crossref_primary_10_1007_s13369_020_05104_2 crossref_primary_10_1111_j_1365_2958_2011_07929_x crossref_primary_10_1021_acsinfecdis_3c00250 crossref_primary_10_1111_j_1365_2958_2010_07472_x crossref_primary_10_1016_j_archoralbio_2022_105370 crossref_primary_10_1038_s41586_020_2597_x crossref_primary_10_1111_j_1574_6968_2011_02260_x crossref_primary_10_1016_j_ijmm_2017_12_002 crossref_primary_10_1128_JB_00453_10 crossref_primary_10_1089_omi_2019_0164 crossref_primary_10_1038_s41598_020_73660_6 crossref_primary_10_3390_molecules29040856 crossref_primary_10_1038_s41589_019_0251_4 crossref_primary_10_1073_pnas_1522179113 crossref_primary_10_3389_fmicb_2020_609280 crossref_primary_10_1111_mmi_14734 crossref_primary_10_1126_scisignal_aaf7279 crossref_primary_10_1128_JB_01052_10 crossref_primary_10_1016_j_jmb_2018_07_008 crossref_primary_10_4161_mge_21647 crossref_primary_10_1002_alr_22232 crossref_primary_10_1128_mBio_01228_16 crossref_primary_10_1002_1873_3468_12288 crossref_primary_10_1016_j_tim_2009_03_003 crossref_primary_10_1073_pnas_1300595110 crossref_primary_10_1128_JB_00369_11 crossref_primary_10_1038_nsmb_1819 crossref_primary_10_1016_j_molstruc_2023_134977 crossref_primary_10_1146_annurev_micro_091213_112949 crossref_primary_10_1038_s41564_018_0146_2 crossref_primary_10_1128_JB_00149_20 crossref_primary_10_1128_JB_00116_16 crossref_primary_10_1099_mic_0_070607_0 crossref_primary_10_1021_acs_jcim_2c00300 crossref_primary_10_1002_cmdc_201900053 crossref_primary_10_1016_j_ijmm_2009_10_001 crossref_primary_10_1074_jbc_R111_241976 crossref_primary_10_1186_s13567_024_01287_w crossref_primary_10_1038_s41598_018_35696_7 crossref_primary_10_1099_mic_0_069898_0 crossref_primary_10_1128_JB_00574_18 crossref_primary_10_1038_srep30815 crossref_primary_10_1111_jam_12044 crossref_primary_10_1016_j_mib_2013_06_014 crossref_primary_10_1016_j_carres_2016_06_004 crossref_primary_10_1016_j_tim_2020_09_008 crossref_primary_10_1021_jacs_1c12697 crossref_primary_10_1021_jacs_7b11704 crossref_primary_10_1021_acs_jmedchem_1c02034 crossref_primary_10_1111_j_1365_2958_2009_06829_x crossref_primary_10_3390_ph15091107 crossref_primary_10_1038_s41594_020_0425_5 crossref_primary_10_1002_pmic_201400343 crossref_primary_10_1016_j_chom_2015_03_003 crossref_primary_10_1016_j_ijantimicag_2016_12_002 crossref_primary_10_1038_srep38793 crossref_primary_10_1128_mBio_03277_19 crossref_primary_10_1128_mBio_00939_20 crossref_primary_10_1371_journal_ppat_1002217 crossref_primary_10_1016_j_mib_2009_07_001 crossref_primary_10_1074_jbc_M114_590570 crossref_primary_10_1128_mbio_02852_23 crossref_primary_10_2139_ssrn_4167586 crossref_primary_10_1074_jbc_M114_621789 crossref_primary_10_1038_s41467_023_41896_1 crossref_primary_10_1111_j_1365_2958_2010_07480_x |
Cites_doi | 10.1086/527392 10.1016/S0065-2911(08)60349-5 10.1016/0005-2760(78)90018-8 10.1002/1615-9861(200104)1:4<480::AID-PROT480>3.0.CO;2-O 10.1099/mic.0.2007/013169-0 10.1016/0014-5793(89)80937-8 10.1107/S0907444994003112 10.1093/emboj/19.7.1419 10.1128/jb.147.1.75-79.1981 10.1086/430312 10.1107/S0108767307043930 10.1007/BF00277157 10.1007/s00018-007-7175-y 10.1002/pmic.200401218 10.1073/pnas.0701821104 10.1146/annurev.micro.56.012302.160806 10.1086/320184 10.1128/jb.154.3.1110-1116.1983 10.1056/NEJM199808203390806 10.1128/jb.178.19.5712-5718.1996 10.1128/JB.01683-06 10.1099/00221287-146-1-65 10.1128/jcm.33.9.2400-2404.1995 10.1016/S0969-2126(01)00609-8 10.1016/S0163-7258(00)00064-4 10.1002/pmic.200500253 10.1093/jac/40.1.135 10.1016/j.jinorgbio.2008.05.006 10.1107/S0907444904019158 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 3, 2009 2009 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 3, 2009 – notice: 2009 by The National Academy of Sciences of the USA |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.0809020106 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 1589 |
ExternalDocumentID | 1639594481 10_1073_pnas_0809020106 19168632 106_5_1584 40272421 US201301589930 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0501723 – fundername: Medical Research Council grantid: G0701212 – fundername: Medical Research Council grantid: MRC76791 – fundername: NIAID NIH HHS grantid: AI073511A – fundername: NIAID NIH HHS grantid: R03 AI073511 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c550t-96a4d0c25193221a213f0ed509b6f423201e14ee405dc6df140052cd264deab23 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:29:58 EDT 2024 Fri Oct 25 10:43:43 EDT 2024 Thu Oct 10 16:53:03 EDT 2024 Fri Aug 23 00:41:11 EDT 2024 Tue Aug 27 13:50:28 EDT 2024 Wed Nov 11 00:29:08 EST 2020 Thu May 30 15:50:00 EDT 2019 Fri Feb 02 07:05:47 EST 2024 Wed Dec 27 18:59:35 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-96a4d0c25193221a213f0ed509b6f423201e14ee405dc6df140052cd264deab23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: D.L., A.G., and P.S.F. designed research; D.L., M.E.W., and A.G. performed research; D.L., O.S., A.G., and P.S.F. contributed new reagents/analytic tools; D.L., M.E.W., A.G., and P.S.F. analyzed data; and D.L., X.Z., O.S., A.G., and P.S.F. wrote the paper. Edited by Wayne A. Hendrickson, Columbia University, New York, NY, and approved December 1, 2008 |
OpenAccessLink | https://doi.org/10.1073/pnas.0809020106 |
PMID | 19168632 |
PQID | 201308590 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_106_5_1584_fulltext pubmedcentral_primary_oai_pubmedcentral_nih_gov_2635763 pubmed_primary_19168632 proquest_miscellaneous_20228271 crossref_primary_10_1073_pnas_0809020106 proquest_journals_201308590 pnas_primary_106_5_1584 jstor_primary_40272421 fao_agris_US201301589930 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2009-02-03 |
PublicationDateYYYYMMDD | 2009-02-03 |
PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | de La Fortelle E (e_1_3_3_31_2) 1997 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 Lamzin VS (e_1_3_3_32_2) 2001 Fischer W (e_1_3_3_9_2) 1990 e_1_3_3_6_2 Tenover FE (e_1_3_3_1_2) 2000 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_8_2 doi: 10.1086/527392 – ident: e_1_3_3_10_2 doi: 10.1016/S0065-2911(08)60349-5 – ident: e_1_3_3_12_2 doi: 10.1016/0005-2760(78)90018-8 – ident: e_1_3_3_13_2 doi: 10.1002/1615-9861(200104)1:4<480::AID-PROT480>3.0.CO;2-O – ident: e_1_3_3_22_2 doi: 10.1099/mic.0.2007/013169-0 – ident: e_1_3_3_26_2 doi: 10.1016/0014-5793(89)80937-8 – ident: e_1_3_3_29_2 doi: 10.1107/S0907444994003112 – ident: e_1_3_3_18_2 doi: 10.1093/emboj/19.7.1419 – ident: e_1_3_3_21_2 doi: 10.1128/jb.147.1.75-79.1981 – ident: e_1_3_3_3_2 doi: 10.1086/430312 – start-page: 369 volume-title: Gram-Positive Pathogens year: 2000 ident: e_1_3_3_1_2 contributor: fullname: Tenover FE – ident: e_1_3_3_30_2 doi: 10.1107/S0108767307043930 – ident: e_1_3_3_15_2 doi: 10.1007/BF00277157 – ident: e_1_3_3_17_2 doi: 10.1007/s00018-007-7175-y – ident: e_1_3_3_24_2 doi: 10.1002/pmic.200401218 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0701821104 – ident: e_1_3_3_7_2 doi: 10.1146/annurev.micro.56.012302.160806 – ident: e_1_3_3_4_2 doi: 10.1086/320184 – ident: e_1_3_3_20_2 doi: 10.1128/jb.154.3.1110-1116.1983 – ident: e_1_3_3_2_2 doi: 10.1056/NEJM199808203390806 – start-page: 123 volume-title: Handbook of Lipid Research year: 1990 ident: e_1_3_3_9_2 contributor: fullname: Fischer W – ident: e_1_3_3_25_2 doi: 10.1128/jb.178.19.5712-5718.1996 – ident: e_1_3_3_28_2 doi: 10.1128/JB.01683-06 – ident: e_1_3_3_23_2 doi: 10.1099/00221287-146-1-65 – ident: e_1_3_3_5_2 doi: 10.1128/jcm.33.9.2400-2404.1995 – ident: e_1_3_3_16_2 doi: 10.1016/S0969-2126(01)00609-8 – ident: e_1_3_3_27_2 doi: 10.1016/S0163-7258(00)00064-4 – start-page: 720 volume-title: International Tables for Crystallography year: 2001 ident: e_1_3_3_32_2 contributor: fullname: Lamzin VS – ident: e_1_3_3_14_2 doi: 10.1002/pmic.200500253 – ident: e_1_3_3_6_2 doi: 10.1093/jac/40.1.135 – ident: e_1_3_3_19_2 doi: 10.1016/j.jinorgbio.2008.05.006 – ident: e_1_3_3_33_2 doi: 10.1107/S0907444904019158 – start-page: 472 volume-title: Methods in Enzymology year: 1997 ident: e_1_3_3_31_2 contributor: fullname: de La Fortelle E |
SSID | ssj0009580 |
Score | 2.3016746 |
Snippet | Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5... Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1584 |
SubjectTerms | Active sites Amino acids Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - physiology Binding sites Biological Sciences Catalytic Domain Cell walls Cells Crystal structure Enzymes Hydrolysis Infections Lipopolysaccharides - biosynthesis Manganese - metabolism Membranes Models, Molecular Mutagenesis, Site-Directed Phosphates Plasmids Protein Conformation Protein synthesis Proteins Reaction mechanisms Staphylococcus aureus Staphylococcus aureus - metabolism Staphylococcus infections Teichoic Acids - biosynthesis |
Title | Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS |
URI | https://www.jstor.org/stable/40272421 http://www.pnas.org/content/106/5/1584.abstract https://www.ncbi.nlm.nih.gov/pubmed/19168632 https://www.proquest.com/docview/201308590 https://search.proquest.com/docview/20228271 https://pubmed.ncbi.nlm.nih.gov/PMC2635763 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9ad-KCGDAWBsMHDuPg1rEdpz2iiWlCDCGVot0sfwUirUlF2sP-e57dpKUILpwSyV-R33t-v6f3_AvAW8utR9egqJLB0siFSWeeSWqFC8oEj-_xNvLtZ3WzkB_virsjKIa7MKlo39l63Nwvx039I9VWrpZuMtSJTb7cXkUCFbSLyQhGqKBDiL5j2p1u751wPH4llwOfTykmq8Z0Y4RIMxZzwOnvRYiOpkrwA680qkw7lCdGzlMc9Tf8-WcZ5W9-6foJPO4BJXm__fATOArNUzjpTbYjlz2v9Ltn8G2euGI3PwONvsuTZYjXfutuSdqK3Nerdh1qPA1rR4yrPekeGkSHXd0R-0AQlKJA0PO1zm06YnAWfHxam_lzWFx_-Hp1Q_vfKlCH4ciazpSRnjmesBvPDc9FxYJH5GBVFfO2LA-5DAGhnHfKVxiCsYI7j9DJB2O5OIXjpm3CGZDI16eCxDPBxLiSWWeFUB5hQ1UVGNhlcDlsq15t2TN0ynqXQsdt1XthZHCG267Ndzzb9GLOY0Y1LzAaFCyD0ySL3RQY85YxlZ3BizTLfmqlC42jZAbkHy266otqMjgfRKp7u-10WnZazHDNN7tWNLiYRTFNaDexC8cwtUyLJ_HvF-mVKYPyQDF2HSKV92ELanii9O41-uV_jzyHR9s8F6dMvIJjVKjwGuHS2l5EZ1VcJCP5BUn8EQ0 |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB615QAXoECpW6B74FAOduy1vU6OqKIKkFRIaareVvtysWjsqHYO5dczu7YTUsEBTra0L61mduYbzey3AO8llRpdA_NZYqRvuTD9kQ4TX8bKMGE0_tvbyNMLNp4nX67T6x1I-7swrmhfySIobxdBWXx3tZXLhRr0dWKDb9MzS6CC52KwC4_wvIasD9LXXLvD9uYJRQOc0KRn9MniwbIUdYAgaRTaLLB7vwjx0ZDFdMsv7eai6gsULespjvoTAn1YSPmbZzp_Blf9ntqClB_BqpGB-vmA7vGfN_0cnnZYlXxsm_dhx5QvYL-zBjU57SirP7yEq5mjoV3dGd-6RU0Wxt4oLuoFqXJyWyyrxhRoaAtFhCo0qe9LBJ51URN5TxDvoqzRqVZKrWoicBb8TBoxewXz80-XZ2O_e7HBVxjpNP6IiUSHijpYSCNBozgPjUZQIlluU8JhZKLEGESJWjGdY3QXplRpRGXaCEnjA9grq9IcArFUgMwkaG6EDVlDqWQcM42IJM9TjBk9OO3lxZctMQd3CfUs5lZefCNlDw5RnlzcoNnk8xm1ydooxUAzDj04cEJeT4HhdGaz5B68drNspmY85Tgq8YD8pYXnXb2OB8e9rvDOJNTcLTtMR7jmyboVz7JN0IjSVCvbhWIEnLnFnV5tFum01INsS-PWHSxL-HYL6pFjC-_05ui_R57A4_HldMInny--HsOTNp1G_TB-A3uoXOYtorJGvnNn8BfuQDIf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuhQKloUB94FAOyTpO4uweUWFVoK0qLYsqLpZfgYhusmp2D-XXM3aS3W4Fl54SyS9ZM575RjP-DPBOMWXQNfCQp1aFjgszHBmahirRlktr8N_dRj475yfT9MtldnnrqS9ftK9VGVVXs6gqf_nayvlMD_o6scHF2bEjUMFzMZibYrAFD_HM0mEfqK_4doft7ROGRjhlac_qk-OoSjYRAqURdZlg_4YRYqQhT9iGb9oqZN0XKTrmUxz1LxR6t5jylncaP4Ef_b7aopTf0XKhIv3nDuXjvTb-FHY6zEo-tF124YGtnsFuZxUactRRV79_Dt8nno52eW1D5x4NmVl3s7hsZqQuyFU5rxe2RINbaiJ1aUhzUyEAbcqGqBuCuBdljs611nrZEImz4Od0IScvYDr-9O34JOxebgg1RjyLcMRlaqhmHh6yWLI4Kag1CE4UL1xqmMY2Tq1FtGg0NwVGeTRj2iA6M1YqluzBdlVXdh-IowTkNkWzI13oSpVWScINIpOiyDB2DOCol5mYtwQdwifW80Q4mYm1pAPYR5kK-RPNp5hOmEvaxhkGnAkNYM8LejUFhtW5y5YH8NLPsp6ai0zgqDQA8p8WUXR1OwEc9PoiOtPQCL_sMBvhmoerVjzTLlEjK1svXReGkXDuF_e6tV6k09QA8g2tW3VwbOGbLahLnjW8051X9x55CI8uPo7F6efzrwfwuM2qsZAmr2Ebdcu-QXC2UG_9MfwLmtE0nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-based+mechanism+of+lipoteichoic+acid+synthesis+by+Staphylococcus+aureus+LtaS&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lu%2C+Duo&rft.au=W%C3%B6rmann%2C+Mirka+E&rft.au=Zhang%2C+Xiaodong&rft.au=Schneewind%2C+Olaf&rft.date=2009-02-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=5&rft.spage=1584&rft_id=info:doi/10.1073%2Fpnas.0809020106&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1639594481 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F5.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F5.cover.gif |