Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS

Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we rep...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 5; pp. 1584 - 1589
Main Authors Lu, Duo, Wörmann, Mirka E, Zhang, Xiaodong, Schneewind, Olaf, Gründling, Angelika, Freemont, Paul S
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.02.2009
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn²⁺ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens.
AbstractList Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn 2+ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine–glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens.
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2Ang. resolution and show that it assumes a sulfatase-like fold with an a/b core and a C-terminal part composed of 4 anti-parallel b-strands and a long a-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn super(2+) cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens.
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-... resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn... cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens. (ProQuest: ... denotes formulae/symbols omitted.)
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerolphosphate and the coordination of a Mn²+ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for 5. aureus and many other Gram-positive pathogens.
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn 2+ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine–glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens.
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-Å resolution and show that it assumes a sulfatase-like fold with an α/β core and a C-terminal part composed of 4 anti-parallel β-strands and a long α-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn²⁺ cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens.
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-A resolution and show that it assumes a sulfatase-like fold with an alpha/beta core and a C-terminal part composed of 4 anti-parallel beta-strands and a long alpha-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn(2+) cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens.
Author Gründling, Angelika
Zhang, Xiaodong
Schneewind, Olaf
Lu, Duo
Freemont, Paul S
Wörmann, Mirka E
Author_xml – sequence: 1
  fullname: Lu, Duo
– sequence: 2
  fullname: Wörmann, Mirka E
– sequence: 3
  fullname: Zhang, Xiaodong
– sequence: 4
  fullname: Schneewind, Olaf
– sequence: 5
  fullname: Gründling, Angelika
– sequence: 6
  fullname: Freemont, Paul S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19168632$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAURi1URKeFNSsgYgGrtNfPiTdIVcWj0kgshrK1HMdpPEriYDuo8-_xMKNOQV3dxT33yJ8-n6GT0Y8WodcYLjAs6eU06ngBFUgggEE8QwsMEpeCSThBCwCyLCtG2Ck6i3EDAJJX8AKdYolFJShZoJ_rFGaT5mDLWkfbFIM1nR5dHArfFr2bfLLOdN6ZQhvXFHE7ps5GF4t6W6yTnrpt7403Zo6FzpY8VkmvX6Lnre6jfXWY5-j2y-cf19_K1fevN9dXq9JwDqmUQrMGDOFYUkKwJpi2YBsOshYtIzSHsphZy4A3RjQtZgCcmIYI1lhdE3qOPu2901wPtjF2TEH3agpu0GGrvHbq383oOnXnfysiKF8KmgUfDoLgf802JjW4aGzf69H6OSoChFRkiTP4_j9w4-cw5nCZwRQqLiFDl3vIBB9jsO3DSzCoXWFqV5g6FpYv3j4OcOQPDWXg4wHYXR51QnGFecVUO_d9svfpkeppMgNv9sAmJh8eCJZ_CWFkF_Hdft9qr_RdcFHdrv-Gy-dSUqB_ADk1vqQ
CitedBy_id crossref_primary_10_1073_pnas_2008929117
crossref_primary_10_12688_f1000research_7842_1
crossref_primary_10_12688_f1000research_7842_2
crossref_primary_10_1186_s12964_023_01347_2
crossref_primary_10_1146_annurev_biochem_011520_104707
crossref_primary_10_1074_jbc_M114_598300
crossref_primary_10_1093_femsre_fuab051
crossref_primary_10_3389_fmicb_2017_01991
crossref_primary_10_1002_jobm_201400313
crossref_primary_10_1128_JB_01155_13
crossref_primary_10_1073_pnas_1217337110
crossref_primary_10_1038_srep17215
crossref_primary_10_1007_s13369_020_05104_2
crossref_primary_10_1111_j_1365_2958_2011_07929_x
crossref_primary_10_1021_acsinfecdis_3c00250
crossref_primary_10_1111_j_1365_2958_2010_07472_x
crossref_primary_10_1016_j_archoralbio_2022_105370
crossref_primary_10_1038_s41586_020_2597_x
crossref_primary_10_1111_j_1574_6968_2011_02260_x
crossref_primary_10_1016_j_ijmm_2017_12_002
crossref_primary_10_1128_JB_00453_10
crossref_primary_10_1089_omi_2019_0164
crossref_primary_10_1038_s41598_020_73660_6
crossref_primary_10_3390_molecules29040856
crossref_primary_10_1038_s41589_019_0251_4
crossref_primary_10_1073_pnas_1522179113
crossref_primary_10_3389_fmicb_2020_609280
crossref_primary_10_1111_mmi_14734
crossref_primary_10_1126_scisignal_aaf7279
crossref_primary_10_1128_JB_01052_10
crossref_primary_10_1016_j_jmb_2018_07_008
crossref_primary_10_4161_mge_21647
crossref_primary_10_1002_alr_22232
crossref_primary_10_1128_mBio_01228_16
crossref_primary_10_1002_1873_3468_12288
crossref_primary_10_1016_j_tim_2009_03_003
crossref_primary_10_1073_pnas_1300595110
crossref_primary_10_1128_JB_00369_11
crossref_primary_10_1038_nsmb_1819
crossref_primary_10_1016_j_molstruc_2023_134977
crossref_primary_10_1146_annurev_micro_091213_112949
crossref_primary_10_1038_s41564_018_0146_2
crossref_primary_10_1128_JB_00149_20
crossref_primary_10_1128_JB_00116_16
crossref_primary_10_1099_mic_0_070607_0
crossref_primary_10_1021_acs_jcim_2c00300
crossref_primary_10_1002_cmdc_201900053
crossref_primary_10_1016_j_ijmm_2009_10_001
crossref_primary_10_1074_jbc_R111_241976
crossref_primary_10_1186_s13567_024_01287_w
crossref_primary_10_1038_s41598_018_35696_7
crossref_primary_10_1099_mic_0_069898_0
crossref_primary_10_1128_JB_00574_18
crossref_primary_10_1038_srep30815
crossref_primary_10_1111_jam_12044
crossref_primary_10_1016_j_mib_2013_06_014
crossref_primary_10_1016_j_carres_2016_06_004
crossref_primary_10_1016_j_tim_2020_09_008
crossref_primary_10_1021_jacs_1c12697
crossref_primary_10_1021_jacs_7b11704
crossref_primary_10_1021_acs_jmedchem_1c02034
crossref_primary_10_1111_j_1365_2958_2009_06829_x
crossref_primary_10_3390_ph15091107
crossref_primary_10_1038_s41594_020_0425_5
crossref_primary_10_1002_pmic_201400343
crossref_primary_10_1016_j_chom_2015_03_003
crossref_primary_10_1016_j_ijantimicag_2016_12_002
crossref_primary_10_1038_srep38793
crossref_primary_10_1128_mBio_03277_19
crossref_primary_10_1128_mBio_00939_20
crossref_primary_10_1371_journal_ppat_1002217
crossref_primary_10_1016_j_mib_2009_07_001
crossref_primary_10_1074_jbc_M114_590570
crossref_primary_10_1128_mbio_02852_23
crossref_primary_10_2139_ssrn_4167586
crossref_primary_10_1074_jbc_M114_621789
crossref_primary_10_1038_s41467_023_41896_1
crossref_primary_10_1111_j_1365_2958_2010_07480_x
Cites_doi 10.1086/527392
10.1016/S0065-2911(08)60349-5
10.1016/0005-2760(78)90018-8
10.1002/1615-9861(200104)1:4<480::AID-PROT480>3.0.CO;2-O
10.1099/mic.0.2007/013169-0
10.1016/0014-5793(89)80937-8
10.1107/S0907444994003112
10.1093/emboj/19.7.1419
10.1128/jb.147.1.75-79.1981
10.1086/430312
10.1107/S0108767307043930
10.1007/BF00277157
10.1007/s00018-007-7175-y
10.1002/pmic.200401218
10.1073/pnas.0701821104
10.1146/annurev.micro.56.012302.160806
10.1086/320184
10.1128/jb.154.3.1110-1116.1983
10.1056/NEJM199808203390806
10.1128/jb.178.19.5712-5718.1996
10.1128/JB.01683-06
10.1099/00221287-146-1-65
10.1128/jcm.33.9.2400-2404.1995
10.1016/S0969-2126(01)00609-8
10.1016/S0163-7258(00)00064-4
10.1002/pmic.200500253
10.1093/jac/40.1.135
10.1016/j.jinorgbio.2008.05.006
10.1107/S0907444904019158
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 3, 2009
2009 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright National Academy of Sciences Feb 3, 2009
– notice: 2009 by The National Academy of Sciences of the USA
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.0809020106
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts

CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 1589
ExternalDocumentID 1639594481
10_1073_pnas_0809020106
19168632
106_5_1584
40272421
US201301589930
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0501723
– fundername: Medical Research Council
  grantid: G0701212
– fundername: Medical Research Council
  grantid: MRC76791
– fundername: NIAID NIH HHS
  grantid: AI073511A
– fundername: NIAID NIH HHS
  grantid: R03 AI073511
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c550t-96a4d0c25193221a213f0ed509b6f423201e14ee405dc6df140052cd264deab23
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:29:58 EDT 2024
Fri Oct 25 10:43:43 EDT 2024
Thu Oct 10 16:53:03 EDT 2024
Fri Aug 23 00:41:11 EDT 2024
Tue Aug 27 13:50:28 EDT 2024
Wed Nov 11 00:29:08 EST 2020
Thu May 30 15:50:00 EDT 2019
Fri Feb 02 07:05:47 EST 2024
Wed Dec 27 18:59:35 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-96a4d0c25193221a213f0ed509b6f423201e14ee405dc6df140052cd264deab23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: D.L., A.G., and P.S.F. designed research; D.L., M.E.W., and A.G. performed research; D.L., O.S., A.G., and P.S.F. contributed new reagents/analytic tools; D.L., M.E.W., A.G., and P.S.F. analyzed data; and D.L., X.Z., O.S., A.G., and P.S.F. wrote the paper.
Edited by Wayne A. Hendrickson, Columbia University, New York, NY, and approved December 1, 2008
OpenAccessLink https://doi.org/10.1073/pnas.0809020106
PMID 19168632
PQID 201308590
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_106_5_1584_fulltext
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2635763
pubmed_primary_19168632
proquest_miscellaneous_20228271
crossref_primary_10_1073_pnas_0809020106
proquest_journals_201308590
pnas_primary_106_5_1584
jstor_primary_40272421
fao_agris_US201301589930
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2009-02-03
PublicationDateYYYYMMDD 2009-02-03
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References de La Fortelle E (e_1_3_3_31_2) 1997
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
Lamzin VS (e_1_3_3_32_2) 2001
Fischer W (e_1_3_3_9_2) 1990
e_1_3_3_6_2
Tenover FE (e_1_3_3_1_2) 2000
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_8_2
  doi: 10.1086/527392
– ident: e_1_3_3_10_2
  doi: 10.1016/S0065-2911(08)60349-5
– ident: e_1_3_3_12_2
  doi: 10.1016/0005-2760(78)90018-8
– ident: e_1_3_3_13_2
  doi: 10.1002/1615-9861(200104)1:4<480::AID-PROT480>3.0.CO;2-O
– ident: e_1_3_3_22_2
  doi: 10.1099/mic.0.2007/013169-0
– ident: e_1_3_3_26_2
  doi: 10.1016/0014-5793(89)80937-8
– ident: e_1_3_3_29_2
  doi: 10.1107/S0907444994003112
– ident: e_1_3_3_18_2
  doi: 10.1093/emboj/19.7.1419
– ident: e_1_3_3_21_2
  doi: 10.1128/jb.147.1.75-79.1981
– ident: e_1_3_3_3_2
  doi: 10.1086/430312
– start-page: 369
  volume-title: Gram-Positive Pathogens
  year: 2000
  ident: e_1_3_3_1_2
  contributor:
    fullname: Tenover FE
– ident: e_1_3_3_30_2
  doi: 10.1107/S0108767307043930
– ident: e_1_3_3_15_2
  doi: 10.1007/BF00277157
– ident: e_1_3_3_17_2
  doi: 10.1007/s00018-007-7175-y
– ident: e_1_3_3_24_2
  doi: 10.1002/pmic.200401218
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0701821104
– ident: e_1_3_3_7_2
  doi: 10.1146/annurev.micro.56.012302.160806
– ident: e_1_3_3_4_2
  doi: 10.1086/320184
– ident: e_1_3_3_20_2
  doi: 10.1128/jb.154.3.1110-1116.1983
– ident: e_1_3_3_2_2
  doi: 10.1056/NEJM199808203390806
– start-page: 123
  volume-title: Handbook of Lipid Research
  year: 1990
  ident: e_1_3_3_9_2
  contributor:
    fullname: Fischer W
– ident: e_1_3_3_25_2
  doi: 10.1128/jb.178.19.5712-5718.1996
– ident: e_1_3_3_28_2
  doi: 10.1128/JB.01683-06
– ident: e_1_3_3_23_2
  doi: 10.1099/00221287-146-1-65
– ident: e_1_3_3_5_2
  doi: 10.1128/jcm.33.9.2400-2404.1995
– ident: e_1_3_3_16_2
  doi: 10.1016/S0969-2126(01)00609-8
– ident: e_1_3_3_27_2
  doi: 10.1016/S0163-7258(00)00064-4
– start-page: 720
  volume-title: International Tables for Crystallography
  year: 2001
  ident: e_1_3_3_32_2
  contributor:
    fullname: Lamzin VS
– ident: e_1_3_3_14_2
  doi: 10.1002/pmic.200500253
– ident: e_1_3_3_6_2
  doi: 10.1093/jac/40.1.135
– ident: e_1_3_3_19_2
  doi: 10.1016/j.jinorgbio.2008.05.006
– ident: e_1_3_3_33_2
  doi: 10.1107/S0907444904019158
– start-page: 472
  volume-title: Methods in Enzymology
  year: 1997
  ident: e_1_3_3_31_2
  contributor:
    fullname: de La Fortelle E
SSID ssj0009580
Score 2.3016746
Snippet Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5...
Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1584
SubjectTerms Active sites
Amino acids
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - physiology
Binding sites
Biological Sciences
Catalytic Domain
Cell walls
Cells
Crystal structure
Enzymes
Hydrolysis
Infections
Lipopolysaccharides - biosynthesis
Manganese - metabolism
Membranes
Models, Molecular
Mutagenesis, Site-Directed
Phosphates
Plasmids
Protein Conformation
Protein synthesis
Proteins
Reaction mechanisms
Staphylococcus aureus
Staphylococcus aureus - metabolism
Staphylococcus infections
Teichoic Acids - biosynthesis
Title Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS
URI https://www.jstor.org/stable/40272421
http://www.pnas.org/content/106/5/1584.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19168632
https://www.proquest.com/docview/201308590
https://search.proquest.com/docview/20228271
https://pubmed.ncbi.nlm.nih.gov/PMC2635763
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9ad-KCGDAWBsMHDuPg1rEdpz2iiWlCDCGVot0sfwUirUlF2sP-e57dpKUILpwSyV-R33t-v6f3_AvAW8utR9egqJLB0siFSWeeSWqFC8oEj-_xNvLtZ3WzkB_virsjKIa7MKlo39l63Nwvx039I9VWrpZuMtSJTb7cXkUCFbSLyQhGqKBDiL5j2p1u751wPH4llwOfTykmq8Z0Y4RIMxZzwOnvRYiOpkrwA680qkw7lCdGzlMc9Tf8-WcZ5W9-6foJPO4BJXm__fATOArNUzjpTbYjlz2v9Ltn8G2euGI3PwONvsuTZYjXfutuSdqK3Nerdh1qPA1rR4yrPekeGkSHXd0R-0AQlKJA0PO1zm06YnAWfHxam_lzWFx_-Hp1Q_vfKlCH4ciazpSRnjmesBvPDc9FxYJH5GBVFfO2LA-5DAGhnHfKVxiCsYI7j9DJB2O5OIXjpm3CGZDI16eCxDPBxLiSWWeFUB5hQ1UVGNhlcDlsq15t2TN0ynqXQsdt1XthZHCG267Ndzzb9GLOY0Y1LzAaFCyD0ySL3RQY85YxlZ3BizTLfmqlC42jZAbkHy266otqMjgfRKp7u-10WnZazHDNN7tWNLiYRTFNaDexC8cwtUyLJ_HvF-mVKYPyQDF2HSKV92ELanii9O41-uV_jzyHR9s8F6dMvIJjVKjwGuHS2l5EZ1VcJCP5BUn8EQ0
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB615QAXoECpW6B74FAOduy1vU6OqKIKkFRIaareVvtysWjsqHYO5dczu7YTUsEBTra0L61mduYbzey3AO8llRpdA_NZYqRvuTD9kQ4TX8bKMGE0_tvbyNMLNp4nX67T6x1I-7swrmhfySIobxdBWXx3tZXLhRr0dWKDb9MzS6CC52KwC4_wvIasD9LXXLvD9uYJRQOc0KRn9MniwbIUdYAgaRTaLLB7vwjx0ZDFdMsv7eai6gsULespjvoTAn1YSPmbZzp_Blf9ntqClB_BqpGB-vmA7vGfN_0cnnZYlXxsm_dhx5QvYL-zBjU57SirP7yEq5mjoV3dGd-6RU0Wxt4oLuoFqXJyWyyrxhRoaAtFhCo0qe9LBJ51URN5TxDvoqzRqVZKrWoicBb8TBoxewXz80-XZ2O_e7HBVxjpNP6IiUSHijpYSCNBozgPjUZQIlluU8JhZKLEGESJWjGdY3QXplRpRGXaCEnjA9grq9IcArFUgMwkaG6EDVlDqWQcM42IJM9TjBk9OO3lxZctMQd3CfUs5lZefCNlDw5RnlzcoNnk8xm1ydooxUAzDj04cEJeT4HhdGaz5B68drNspmY85Tgq8YD8pYXnXb2OB8e9rvDOJNTcLTtMR7jmyboVz7JN0IjSVCvbhWIEnLnFnV5tFum01INsS-PWHSxL-HYL6pFjC-_05ui_R57A4_HldMInny--HsOTNp1G_TB-A3uoXOYtorJGvnNn8BfuQDIf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuhQKloUB94FAOyTpO4uweUWFVoK0qLYsqLpZfgYhusmp2D-XXM3aS3W4Fl54SyS9ZM575RjP-DPBOMWXQNfCQp1aFjgszHBmahirRlktr8N_dRj475yfT9MtldnnrqS9ftK9VGVVXs6gqf_nayvlMD_o6scHF2bEjUMFzMZibYrAFD_HM0mEfqK_4doft7ROGRjhlac_qk-OoSjYRAqURdZlg_4YRYqQhT9iGb9oqZN0XKTrmUxz1LxR6t5jylncaP4Ef_b7aopTf0XKhIv3nDuXjvTb-FHY6zEo-tF124YGtnsFuZxUactRRV79_Dt8nno52eW1D5x4NmVl3s7hsZqQuyFU5rxe2RINbaiJ1aUhzUyEAbcqGqBuCuBdljs611nrZEImz4Od0IScvYDr-9O34JOxebgg1RjyLcMRlaqhmHh6yWLI4Kag1CE4UL1xqmMY2Tq1FtGg0NwVGeTRj2iA6M1YqluzBdlVXdh-IowTkNkWzI13oSpVWScINIpOiyDB2DOCol5mYtwQdwifW80Q4mYm1pAPYR5kK-RPNp5hOmEvaxhkGnAkNYM8LejUFhtW5y5YH8NLPsp6ai0zgqDQA8p8WUXR1OwEc9PoiOtPQCL_sMBvhmoerVjzTLlEjK1svXReGkXDuF_e6tV6k09QA8g2tW3VwbOGbLahLnjW8051X9x55CI8uPo7F6efzrwfwuM2qsZAmr2Ebdcu-QXC2UG_9MfwLmtE0nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-based+mechanism+of+lipoteichoic+acid+synthesis+by+Staphylococcus+aureus+LtaS&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lu%2C+Duo&rft.au=W%C3%B6rmann%2C+Mirka+E&rft.au=Zhang%2C+Xiaodong&rft.au=Schneewind%2C+Olaf&rft.date=2009-02-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=5&rft.spage=1584&rft_id=info:doi/10.1073%2Fpnas.0809020106&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1639594481
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F5.cover.gif