Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica
World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction...
Saved in:
Published in | Metabolic engineering communications Vol. 10; p. e00121 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-0301 2214-0301 |
DOI | 10.1016/j.mec.2019.e00121 |
Cover
Loading…
Abstract | World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors.
•Endogenous acetyl-CoA and mevalonate pathway were harnessed for amorphadiene synthesis.•Expression of native untruncated HMG-CoA reductase (HMG1) removes rate-limiting steps.•Balancing ADS, HMG1 and MVK activity effectively pull FPP flux toward amorphadiene.•Activation of fatty acid degradation pushes carbon flux toward HMG-CoA pathways.•A push-and-pull strategy boosts amorphadiene production to 171.5 mg/L in shake flasks. |
---|---|
AbstractList | World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant . Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and is a promising microbial host to expand nature's biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature's biosynthetic capacity, allowing us to quickly access antimalarial drug precursors.World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature's biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua . Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. • Endogenous acetyl-CoA and mevalonate pathway were harnessed for amorphadiene synthesis. • Expression of native untruncated HMG-CoA reductase (HMG1) removes rate-limiting steps. • Balancing ADS, HMG1 and MVK activity effectively pull FPP flux toward amorphadiene. • Activation of fatty acid degradation pushes carbon flux toward HMG-CoA pathways. • A push-and-pull strategy boosts amorphadiene production to 171.5 mg/L in shake flasks. World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. •Endogenous acetyl-CoA and mevalonate pathway were harnessed for amorphadiene synthesis.•Expression of native untruncated HMG-CoA reductase (HMG1) removes rate-limiting steps.•Balancing ADS, HMG1 and MVK activity effectively pull FPP flux toward amorphadiene.•Activation of fatty acid degradation pushes carbon flux toward HMG-CoA pathways.•A push-and-pull strategy boosts amorphadiene production to 171.5 mg/L in shake flasks. |
ArticleNumber | e00121 |
Author | Marsafari, Monireh Xu, Peng |
AuthorAffiliation | Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA |
AuthorAffiliation_xml | – name: Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA |
Author_xml | – sequence: 1 givenname: Monireh surname: Marsafari fullname: Marsafari, Monireh – sequence: 2 givenname: Peng surname: Xu fullname: Xu, Peng email: pengxu@umbc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31956504$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhSNUREvpD2CDsmQzg5_JREhIqLwqVWIDC1bWjXM948Gxg-1MNf8eD9OilkVZ2fI95_O173lenfjgsapeUrKkhDZvtssR9ZIR2i2REMrok-qMMSoWhBN6cm9_Wl2ktCVFwxsqKH1WnXLayUYScValD9iHnB161D-tX9cj7sAFDxnrCfLmBva1CbEGn-0IDqIFVw9xXtdTRD3HdKiNIU4bGGyB1L0Nae_zBpNNtfX1D4gx3FionZ2C22er4UX11IBLeHG7nlffP338dvllcf3189Xl--uFlpLkRcdXjLcDN8ysiBSt4Yx2reCEwzDInhEwgNgYTsG0ouGDkdq0jK2GHqHRjJ9XV0fuEGCrplgeEPcqgFV_DkJcK4ilIYeKMy56yYQR5SagtDNtL6kESnqNUnSF9e7ImuZ-xEGjzxHcA-jDircbtQ471XSybVe8AF7fAmL4NWPKarRJo3PgMcxJMcE73jVMtP-XcsG4XPFGFumr-2397eduwEXQHgU6hpQiGqVthmzDoUvrFCXqkCa1VSVN6pAmdUxTcdJ_nHfwxzxvjx4sY91ZjCrpkgqNgy1pyeXf7SPu34yU5Ig |
CitedBy_id | crossref_primary_10_1021_acs_jafc_2c03917 crossref_primary_10_1002_bit_28544 crossref_primary_10_1021_acssynbio_9b00468 crossref_primary_10_3390_molecules29051127 crossref_primary_10_1016_j_copbio_2020_07_008 crossref_primary_10_1016_j_mec_2020_e00147 crossref_primary_10_1021_acs_jafc_2c04405 crossref_primary_10_34133_bdr_0051 crossref_primary_10_1186_s12934_022_01915_0 crossref_primary_10_1007_s00438_021_01821_x crossref_primary_10_1016_j_biortech_2020_123991 crossref_primary_10_1186_s12934_023_02283_z crossref_primary_10_1016_j_biotechadv_2023_108128 crossref_primary_10_1038_s42003_022_04202_1 crossref_primary_10_1016_j_biotechadv_2020_107555 crossref_primary_10_1021_acs_jafc_1c00350 crossref_primary_10_4103_2311_8571_336839 crossref_primary_10_1021_acs_jafc_1c03864 crossref_primary_10_1021_acs_jafc_3c09080 crossref_primary_10_1016_j_biortech_2024_130379 crossref_primary_10_1186_s40643_021_00431_0 crossref_primary_10_3389_fbioe_2020_00945 crossref_primary_10_1186_s40643_022_00493_8 crossref_primary_10_1021_acs_jafc_2c05847 crossref_primary_10_1021_acssuschemeng_3c06260 crossref_primary_10_3389_fbioe_2020_594061 crossref_primary_10_1021_acs_jafc_3c07889 crossref_primary_10_1186_s12934_024_02460_8 crossref_primary_10_1016_j_ijbiomac_2025_141727 crossref_primary_10_1039_D4GC00528G crossref_primary_10_3389_fbioe_2023_1188119 crossref_primary_10_1016_j_copbio_2021_02_008 crossref_primary_10_1007_s00253_021_11584_5 crossref_primary_10_1016_j_fshw_2022_07_017 crossref_primary_10_3390_fermentation8110615 crossref_primary_10_1021_acs_jafc_0c06504 crossref_primary_10_1016_j_ymben_2020_08_009 crossref_primary_10_1016_j_procbio_2024_01_027 crossref_primary_10_1021_acssynbio_0c00185 crossref_primary_10_1007_s12033_024_01289_1 crossref_primary_10_1021_acs_iecr_0c05228 crossref_primary_10_1080_07388551_2021_1947183 crossref_primary_10_1186_s12934_025_02667_3 crossref_primary_10_1016_j_mec_2020_e00130 crossref_primary_10_1021_acssynbio_2c00569 crossref_primary_10_1002_biot_202100097 crossref_primary_10_1186_s12934_025_02660_w crossref_primary_10_1016_j_tibtech_2020_03_009 crossref_primary_10_1186_s12934_022_02010_0 crossref_primary_10_1186_s13068_020_01773_1 crossref_primary_10_1021_acs_jafc_1c00498 crossref_primary_10_1093_femsyr_foab008 crossref_primary_10_1021_acssuschemeng_4c03561 crossref_primary_10_1089_ind_2021_0003 crossref_primary_10_1039_D2GC02255A crossref_primary_10_1007_s00253_021_11539_w crossref_primary_10_1186_s13068_022_02201_2 crossref_primary_10_1016_j_mec_2022_e00213 crossref_primary_10_1021_acs_jafc_3c06459 crossref_primary_10_1080_07388551_2021_1924112 crossref_primary_10_1016_j_jbiotec_2023_05_005 crossref_primary_10_4103_wjtcm_wjtcm_66_21 crossref_primary_10_1021_acs_jafc_2c08579 crossref_primary_10_1016_j_biotechadv_2022_108033 crossref_primary_10_1007_s10295_020_02290_8 crossref_primary_10_3390_microorganisms12020309 crossref_primary_10_1038_s41589_020_00691_5 |
Cites_doi | 10.4103/0973-7847.91118 10.1016/j.jbiotec.2013.07.025 10.1079/IVP2006782 10.1016/j.tibtech.2016.04.010 10.1007/s00253-019-09664-8 10.1038/nrmicro3240 10.1038/nbt.3763 10.1038/530390a 10.1016/j.copbio.2012.08.010 10.1016/j.bbrc.2007.01.155 10.1002/pmic.200500339 10.1021/acssynbio.9b00193 10.1073/pnas.1607295113 10.1016/j.mec.2019.e00112 10.1038/nbt833 10.1016/j.ymben.2008.07.007 10.1016/j.ymben.2019.08.017 10.1128/AEM.01412-08 10.1021/acssynbio.8b00535 10.1371/journal.pone.0004489 10.1002/bit.26285 10.1016/j.copbio.2015.08.010 10.1016/S0031-9422(99)00206-X 10.1038/nature04640 10.1016/j.copbio.2014.12.004 10.1073/pnas.1721203115 10.1016/S0022-2275(20)34935-X 10.1038/343425a0 10.3389/fbioe.2018.00207 10.1073/pnas.1110740109 10.1021/acs.biochem.7b00999 10.1016/j.ymben.2006.11.002 10.3389/fmicb.2014.00344 10.1186/2191-0855-3-58 10.1007/s10529-007-9596-y 10.1186/1475-2859-13-42 10.1016/j.ymben.2017.04.004 10.1038/nature12051 10.1016/j.ymben.2012.11.002 10.1016/j.meteno.2017.09.001 10.1186/s12934-015-0219-3 10.1016/j.ymben.2019.07.007 10.1016/j.ymben.2009.01.005 10.1016/j.biotechadv.2014.04.008 |
ContentType | Journal Article |
Copyright | 2020 The Authors 2020 The Authors. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.mec.2019.e00121 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-0301 |
ExternalDocumentID | oai_doaj_org_article_3234b524f4054a119f7b515a10bce549 PMC6957783 31956504 10_1016_j_mec_2019_e00121 S2214030119300458 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-938237d3f2f80547f321974303add5b20afaee6f31af7463df5cf7228dbea6c23 |
IEDL.DBID | DOA |
ISSN | 2214-0301 |
IngestDate | Wed Aug 27 01:30:23 EDT 2025 Thu Aug 21 18:12:38 EDT 2025 Fri Jul 11 14:35:01 EDT 2025 Thu Jul 10 21:49:49 EDT 2025 Thu Jan 02 22:59:16 EST 2025 Thu Apr 24 22:57:47 EDT 2025 Tue Jul 01 04:03:42 EDT 2025 Tue Jul 25 21:03:16 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Antimalarial Metabolic engineering Amorphadiene Mevalonate pathway Heterologous expression Yarrowia lipolytica |
Language | English |
License | This is an open access article under the CC BY license. 2020 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-938237d3f2f80547f321974303add5b20afaee6f31af7463df5cf7228dbea6c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/3234b524f4054a119f7b515a10bce549 |
PMID | 31956504 |
PQID | 2342358365 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3234b524f4054a119f7b515a10bce549 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6957783 proquest_miscellaneous_2439396247 proquest_miscellaneous_2342358365 pubmed_primary_31956504 crossref_citationtrail_10_1016_j_mec_2019_e00121 crossref_primary_10_1016_j_mec_2019_e00121 elsevier_sciencedirect_doi_10_1016_j_mec_2019_e00121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Metabolic engineering communications |
PublicationTitleAlternate | Metab Eng Commun |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hinson, Chambliss, Toth, Tanaka, Gibson (bib10) 1997; 38 Miller, Kung (bib21) 2018; 57 Varman, He, You, Hollinshead, Tang (bib33) 2014; 13 Goldstein, Brown (bib9) 1990; 343 Smith, W Brown, Eitzen, Rachubinski (bib31) 2000 Beopoulos, Mrozova, Thevenieau, Le Dall, Hapala, Papanikolaou, Chardot, Nicaud (bib4) 2008; 74 Paddon, Westfall, Pitera, Benjamin, Fisher, McPhee, Leavell, Tai, Main, Eng, Polichuk, Teoh, Reed, Treynor, Lenihan, Fleck, Bajad, Dang, Dengrove, Diola, Dorin, Ellens, Fickes, Galazzo, Gaucher, Geistlinger, Henry, Hepp, Horning, Iqbal, Jiang, Kizer, Lieu, Melis, Moss, Regentin, Secrest, Tsuruta, Vazquez, Westblade, Xu, Yu, Zhang, Zhao, Lievense, Covello, Keasling, Reiling, Renninger, Newman (bib25) 2013; 496 Hollinshead, He, Tang (bib11) 2014; 5 Ro, Paradise, Ouellet, Fisher, Newman, Ndungu, Ho, Eachus, Ham, Kirby, Chang, Withers, Shiba, Sarpong, Keasling (bib29) 2006; 440 Tsuruta, Paddon, Eng, Lenihan, Horning, Anthony, Regentin, Keasling, Renninger, Newman (bib32) 2009; 4 Nadler, Bracharz, Kabisch (bib23) 2018; 6 Xu, Qiao, Ahn, Stephanopoulos (bib42) 2016; 113 Wong, Engel, Jin, Holdridge, Xu (bib37) 2017; 5 Zhu, Jackson (bib47) 2015; 36 Xu, Bhan, Koffas (bib41) 2013; 24 Zeng, Qiu, Yuan (bib45) 2008; 30 Zha, Rubin-Pitel, Shao, Zhao (bib46) 2009; 11 Anthony, Anthony, Nowroozi, Kwon, Newman, Keasling (bib1) 2009; 11 Wu, He, Wang, Tang (bib40) 2015; 14 Ledesma-Amaro, Nicaud (bib13) 2016; 34 Krivoruchko, Nielsen (bib12) 2015; 35 Liu, Marsafari, Deng, Xu (bib15) 2019; 103 Martin, Pitera, Withers, Newman, Keasling (bib20) 2003; 21 Murphy, Murray, Meaney, Gåfvels (bib22) 2007; 355 Athenstaedt, Jolivet, Boulard, Zivy, Negroni, Nicaud, Chardot (bib2) 2006; 6 Qiao, Wasylenko, Zhou, Xu, Stephanopoulos (bib28) 2017 Xu, Qiao, Stephanopoulos (bib43) 2017; 114 Paddon, Keasling (bib24) 2014; 12 Peplow (bib26) 2016; 530 Zinjarde, Apte, Mohite, Kumar (bib48) 2014; 32 Lv, Edwards, Zhou, Xu (bib17) 2019; 8 Liu, Liu, Zhou, Shin, Chen, Madzak, Li, Du, Chen (bib14) 2013; 167 Liu, Marsafari, Wang, Deng, Xu (bib16) 2019; 56 Bouwmeester, Wallaart, Janssen, van Loo, Jansen, Posthumus, Schmidt, De Kraker, König, Franssen (bib5) 1999; 52 Lv, Marsafari, Koffas, Zhou, Xu (bib18) 2019; 8 Shukal, Chen, Zhang (bib30) 2019; 55 Westfall, Pitera, Lenihan, Eng, Woolard, Regentin, Horning, Tsuruta, Melis, Owens, Fickes, Diola, Benjamin, Keasling, Leavell, McPhee, Renninger, Newman, Paddon (bib36) 2012; 109 Chen, Daviet, Schalk, Siewers, Nielsen (bib6) 2013; 15 Pitera, Paddon, Newman, Keasling (bib27) 2007; 9 Weathers, Elkholy, Wobbe (bib34) 2006; 42 Wen, Yu (bib35) 2011; 5 Workman, Holt, Thykaer (bib38) 2013; 3 Markham, Palmer, Chwatko, Wagner, Murray, Vazquez, Swaminathan, Chakravarty, Lynd, Alper (bib19) 2018; 115 Baadhe, Mekala, Parcha, Prameela Devi (bib3) 2013; 2013 Davis, Lamson, Matthew, Brignall (bib7) 2000 Yang, Edwards, Xu (bib44) 2020; 10 Gao, Tong, Zhu, Ge, Zhang, Chen, Jiang, Yang (bib8) 2017; 41 Workman (10.1016/j.mec.2019.e00121_bib38) 2013; 3 Zhu (10.1016/j.mec.2019.e00121_bib47) 2015; 36 Murphy (10.1016/j.mec.2019.e00121_bib22) 2007; 355 Hollinshead (10.1016/j.mec.2019.e00121_bib11) 2014; 5 Miller (10.1016/j.mec.2019.e00121_bib21) 2018; 57 Varman (10.1016/j.mec.2019.e00121_bib33) 2014; 13 Xu (10.1016/j.mec.2019.e00121_bib42) 2016; 113 Paddon (10.1016/j.mec.2019.e00121_bib25) 2013; 496 Wu (10.1016/j.mec.2019.e00121_bib40) 2015; 14 Nadler (10.1016/j.mec.2019.e00121_bib23) 2018; 6 Yang (10.1016/j.mec.2019.e00121_bib44) 2020; 10 Krivoruchko (10.1016/j.mec.2019.e00121_bib12) 2015; 35 Gao (10.1016/j.mec.2019.e00121_bib8) 2017; 41 Liu (10.1016/j.mec.2019.e00121_bib14) 2013; 167 Xu (10.1016/j.mec.2019.e00121_bib41) 2013; 24 Smith (10.1016/j.mec.2019.e00121_bib31) 2000 Ledesma-Amaro (10.1016/j.mec.2019.e00121_bib13) 2016; 34 Westfall (10.1016/j.mec.2019.e00121_bib36) 2012; 109 Zha (10.1016/j.mec.2019.e00121_bib46) 2009; 11 Ro (10.1016/j.mec.2019.e00121_bib29) 2006; 440 Liu (10.1016/j.mec.2019.e00121_bib15) 2019; 103 Peplow (10.1016/j.mec.2019.e00121_bib26) 2016; 530 Xu (10.1016/j.mec.2019.e00121_bib43) 2017; 114 Tsuruta (10.1016/j.mec.2019.e00121_bib32) 2009; 4 Chen (10.1016/j.mec.2019.e00121_bib6) 2013; 15 Martin (10.1016/j.mec.2019.e00121_bib20) 2003; 21 Wen (10.1016/j.mec.2019.e00121_bib35) 2011; 5 Markham (10.1016/j.mec.2019.e00121_bib19) 2018; 115 Hinson (10.1016/j.mec.2019.e00121_bib10) 1997; 38 Lv (10.1016/j.mec.2019.e00121_bib17) 2019; 8 Shukal (10.1016/j.mec.2019.e00121_bib30) 2019; 55 Baadhe (10.1016/j.mec.2019.e00121_bib3) 2013; 2013 Liu (10.1016/j.mec.2019.e00121_bib16) 2019; 56 Paddon (10.1016/j.mec.2019.e00121_bib24) 2014; 12 Lv (10.1016/j.mec.2019.e00121_bib18) 2019; 8 Qiao (10.1016/j.mec.2019.e00121_bib28) 2017 Wong (10.1016/j.mec.2019.e00121_bib37) 2017; 5 Weathers (10.1016/j.mec.2019.e00121_bib34) 2006; 42 Zinjarde (10.1016/j.mec.2019.e00121_bib48) 2014; 32 Beopoulos (10.1016/j.mec.2019.e00121_bib4) 2008; 74 Davis (10.1016/j.mec.2019.e00121_bib7) 2000 Pitera (10.1016/j.mec.2019.e00121_bib27) 2007; 9 Zeng (10.1016/j.mec.2019.e00121_bib45) 2008; 30 Bouwmeester (10.1016/j.mec.2019.e00121_bib5) 1999; 52 Athenstaedt (10.1016/j.mec.2019.e00121_bib2) 2006; 6 Goldstein (10.1016/j.mec.2019.e00121_bib9) 1990; 343 Anthony (10.1016/j.mec.2019.e00121_bib1) 2009; 11 |
References_xml | – volume: 103 start-page: 3167 year: 2019 end-page: 3179 ident: bib15 article-title: Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica publication-title: Appl. Microbiol. Biotechnol. – volume: 56 start-page: 60 year: 2019 end-page: 68 ident: bib16 article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica publication-title: Metab. Eng. – volume: 74 start-page: 7779 year: 2008 ident: bib4 article-title: Control of lipid accumulation in the yeast <em>Yarrowia lipolytica</em> publication-title: Appl. Environ. Microbiol. – volume: 30 start-page: 581 year: 2008 end-page: 592 ident: bib45 article-title: Production of artemisinin by genetically-modified microbes publication-title: Biotechnol. Lett. – volume: 355 start-page: 359 year: 2007 end-page: 364 ident: bib22 article-title: Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism publication-title: Biochem. Biophys. Res. Commun. – volume: 5 start-page: 189 year: 2011 end-page: 194 ident: bib35 article-title: Artemisinin biosynthesis and its regulatory enzymes: progress and perspective publication-title: Pharmacogn. Rev. – volume: 21 start-page: 796 year: 2003 end-page: 802 ident: bib20 article-title: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids publication-title: Nat. Biotechnol. – volume: 3 start-page: 58 year: 2013 ident: bib38 article-title: Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations publication-title: Amb. Express – volume: 35 start-page: 7 year: 2015 end-page: 15 ident: bib12 article-title: Production of natural products through metabolic engineering of Saccharomyces cerevisiae publication-title: Curr. Opin. Biotechnol. – volume: 115 start-page: 2096 year: 2018 ident: bib19 article-title: Rewiring <em>Yarrowia lipolytica</em> toward triacetic acid lactone for materials generation publication-title: Proc. Natl. Acad. Sci. – volume: 42 start-page: 309 year: 2006 end-page: 317 ident: bib34 article-title: Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species publication-title: In Vitro Cell. Dev. Biol. Plant – volume: 15 start-page: 48 year: 2013 end-page: 54 ident: bib6 article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism publication-title: Metab. Eng. – volume: 11 start-page: 192 year: 2009 end-page: 198 ident: bib46 article-title: Improving cellular malonyl-CoA level in publication-title: Metab. Eng. – volume: 530 start-page: 389 year: 2016 end-page: 390 ident: bib26 article-title: Synthetic biology’s first malaria drug meets market resistance publication-title: Nature – volume: 9 start-page: 193 year: 2007 end-page: 207 ident: bib27 article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli publication-title: Metab. Eng. – volume: 6 start-page: 1450 year: 2006 end-page: 1459 ident: bib2 article-title: Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source publication-title: Proteomics – volume: 109 start-page: E111 year: 2012 end-page: E118 ident: bib36 article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 year: 2020 ident: bib44 article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica publication-title: Metabol. Eng. Commun. – volume: 114 start-page: 1521 year: 2017 end-page: 1530 ident: bib43 article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica publication-title: Biotechnol. Bioeng. – volume: 41 year: 2017 ident: bib8 article-title: Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production publication-title: Metab. Eng. – volume: 440 start-page: 940 year: 2006 end-page: 943 ident: bib29 article-title: Production of the antimalarial drug precursor artemisinic acid in engineered yeast publication-title: Nature – volume: 11 start-page: 13 year: 2009 end-page: 19 ident: bib1 article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene publication-title: Metab. Eng. – volume: 2013 start-page: 140469 year: 2013 ident: bib3 article-title: Combination of ERG9 repression and enzyme fusion technology for improved production of amorphadiene in Saccharomyces cerevisiae publication-title: J. Anal. Methods Chem. – volume: 4 start-page: e4489 year: 2009 ident: bib32 article-title: High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli publication-title: PLoS One – volume: 113 start-page: 10848 year: 2016 end-page: 10853 ident: bib42 article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 start-page: 2216 year: 1997 end-page: 2223 ident: bib10 article-title: Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways publication-title: J. Lipid Res. – volume: 6 start-page: 207 year: 2018 ident: bib23 article-title: CopySwitch- publication-title: Front. Bioeng. Biotechnol. – volume: 8 start-page: 2514 year: 2019 end-page: 2523 ident: bib18 article-title: Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis publication-title: ACS Synth. Biol. – volume: 12 start-page: 355 year: 2014 end-page: 367 ident: bib24 article-title: Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development publication-title: Nat. Rev. Microbiol. – volume: 55 start-page: 170 year: 2019 end-page: 178 ident: bib30 article-title: Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli publication-title: Metab. Eng. – volume: 343 start-page: 425 year: 1990 end-page: 430 ident: bib9 article-title: Regulation of the mevalonate pathway publication-title: Nature – volume: 52 start-page: 843 year: 1999 end-page: 854 ident: bib5 article-title: Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis publication-title: Phytochemistry – year: 2017 ident: bib28 article-title: Lipid Production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism publication-title: Nat. Biotech. – volume: 34 start-page: 798 year: 2016 end-page: 809 ident: bib13 article-title: Metabolic engineering for expanding the substrate range of <em>Yarrowia lipolytica</em> publication-title: Trends Biotechnol. – volume: 5 start-page: 68 year: 2017 end-page: 77 ident: bib37 article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica publication-title: Metabol. Eng. Commun. – volume: 24 start-page: 291 year: 2013 end-page: 299 ident: bib41 article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology publication-title: Curr. Opin. Biotechnol. – volume: 14 start-page: 39 year: 2015 ident: bib40 article-title: An ancient Chinese wisdom for metabolic engineering: Yin-Yang publication-title: Microb. Cell Factories – year: 2000 ident: bib7 article-title: Antioxidants and Cancer III: Quercetin – volume: 13 start-page: 42 year: 2014 ident: bib33 article-title: Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis publication-title: Microb. Cell Factories – volume: 496 start-page: 528 year: 2013 end-page: 532 ident: bib25 article-title: High-level semi-synthetic production of the potent antimalarial artemisinin publication-title: Nature – volume: 36 start-page: 65 year: 2015 end-page: 72 ident: bib47 article-title: Metabolic engineering of Yarrowia lipolytica for industrial applications publication-title: Curr. Opin. Biotechnol. – volume: 8 start-page: 568 year: 2019 end-page: 576 ident: bib17 article-title: Combining 26s rDNA and the cre-loxP system for iterative gene integration and efficient marker curation in yarrowia lipolytica publication-title: ACS Synth. Biol. – year: 2000 ident: bib31 article-title: Regulation of peroxisome size and number by fatty acid beta -oxidation in the yeast yarrowia lipolytica – volume: 32 start-page: 920 year: 2014 end-page: 933 ident: bib48 article-title: Yarrowia lipolytica and pollutants: interactions and applications publication-title: Biotechnol. Adv. – volume: 5 start-page: 344 year: 2014 ident: bib11 article-title: Biofuel production: an odyssey from metabolic engineering to fermentation scale-up publication-title: Front. Microbiol. – volume: 167 start-page: 472 year: 2013 end-page: 478 ident: bib14 article-title: Biosynthesis of homoeriodictyol from eriodictyol by flavone 3’-O-methyltransferase from recombinant Yarrowia lioplytica: heterologous expression, biochemical characterization, and optimal transformation publication-title: J. Biotechnol. – volume: 57 start-page: 654 year: 2018 end-page: 662 ident: bib21 article-title: Structural features and domain movements controlling substrate binding and cofactor specificity in class II HMG-CoA reductase publication-title: Biochemistry – volume: 2013 start-page: 140469 year: 2013 ident: 10.1016/j.mec.2019.e00121_bib3 article-title: Combination of ERG9 repression and enzyme fusion technology for improved production of amorphadiene in Saccharomyces cerevisiae publication-title: J. Anal. Methods Chem. – volume: 5 start-page: 189 issue: 10 year: 2011 ident: 10.1016/j.mec.2019.e00121_bib35 article-title: Artemisinin biosynthesis and its regulatory enzymes: progress and perspective publication-title: Pharmacogn. Rev. doi: 10.4103/0973-7847.91118 – volume: 167 start-page: 472 issue: 4 year: 2013 ident: 10.1016/j.mec.2019.e00121_bib14 article-title: Biosynthesis of homoeriodictyol from eriodictyol by flavone 3’-O-methyltransferase from recombinant Yarrowia lioplytica: heterologous expression, biochemical characterization, and optimal transformation publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2013.07.025 – volume: 42 start-page: 309 issue: 4 year: 2006 ident: 10.1016/j.mec.2019.e00121_bib34 article-title: Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species publication-title: In Vitro Cell. Dev. Biol. Plant doi: 10.1079/IVP2006782 – volume: 34 start-page: 798 issue: 10 year: 2016 ident: 10.1016/j.mec.2019.e00121_bib13 article-title: Metabolic engineering for expanding the substrate range of Yarrowia lipolytica publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.04.010 – volume: 103 start-page: 3167 issue: 7 year: 2019 ident: 10.1016/j.mec.2019.e00121_bib15 article-title: Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09664-8 – volume: 12 start-page: 355 issue: 5 year: 2014 ident: 10.1016/j.mec.2019.e00121_bib24 article-title: Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3240 – year: 2017 ident: 10.1016/j.mec.2019.e00121_bib28 article-title: Lipid Production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism publication-title: Nat. Biotech. doi: 10.1038/nbt.3763 – volume: 530 start-page: 389 issue: 7591 year: 2016 ident: 10.1016/j.mec.2019.e00121_bib26 article-title: Synthetic biology’s first malaria drug meets market resistance publication-title: Nature doi: 10.1038/530390a – volume: 24 start-page: 291 issue: 2 year: 2013 ident: 10.1016/j.mec.2019.e00121_bib41 article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2012.08.010 – volume: 355 start-page: 359 issue: 2 year: 2007 ident: 10.1016/j.mec.2019.e00121_bib22 article-title: Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.01.155 – volume: 6 start-page: 1450 issue: 5 year: 2006 ident: 10.1016/j.mec.2019.e00121_bib2 article-title: Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source publication-title: Proteomics doi: 10.1002/pmic.200500339 – volume: 8 start-page: 2514 issue: 11 year: 2019 ident: 10.1016/j.mec.2019.e00121_bib18 article-title: Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.9b00193 – volume: 113 start-page: 10848 issue: 39 year: 2016 ident: 10.1016/j.mec.2019.e00121_bib42 article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1607295113 – volume: 10 year: 2020 ident: 10.1016/j.mec.2019.e00121_bib44 article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica publication-title: Metabol. Eng. Commun. doi: 10.1016/j.mec.2019.e00112 – volume: 21 start-page: 796 issue: 7 year: 2003 ident: 10.1016/j.mec.2019.e00121_bib20 article-title: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids publication-title: Nat. Biotechnol. doi: 10.1038/nbt833 – volume: 11 start-page: 13 issue: 1 year: 2009 ident: 10.1016/j.mec.2019.e00121_bib1 article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene publication-title: Metab. Eng. doi: 10.1016/j.ymben.2008.07.007 – volume: 56 start-page: 60 year: 2019 ident: 10.1016/j.mec.2019.e00121_bib16 article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.08.017 – volume: 74 start-page: 7779 issue: 24 year: 2008 ident: 10.1016/j.mec.2019.e00121_bib4 article-title: Control of lipid accumulation in the yeast Yarrowia lipolytica publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01412-08 – volume: 8 start-page: 568 issue: 3 year: 2019 ident: 10.1016/j.mec.2019.e00121_bib17 article-title: Combining 26s rDNA and the cre-loxP system for iterative gene integration and efficient marker curation in yarrowia lipolytica publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00535 – volume: 4 start-page: e4489 issue: 2 year: 2009 ident: 10.1016/j.mec.2019.e00121_bib32 article-title: High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli publication-title: PLoS One doi: 10.1371/journal.pone.0004489 – volume: 114 start-page: 1521 issue: 7 year: 2017 ident: 10.1016/j.mec.2019.e00121_bib43 article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26285 – volume: 36 start-page: 65 year: 2015 ident: 10.1016/j.mec.2019.e00121_bib47 article-title: Metabolic engineering of Yarrowia lipolytica for industrial applications publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.08.010 – volume: 52 start-page: 843 issue: 5 year: 1999 ident: 10.1016/j.mec.2019.e00121_bib5 article-title: Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis publication-title: Phytochemistry doi: 10.1016/S0031-9422(99)00206-X – volume: 440 start-page: 940 issue: 7086 year: 2006 ident: 10.1016/j.mec.2019.e00121_bib29 article-title: Production of the antimalarial drug precursor artemisinic acid in engineered yeast publication-title: Nature doi: 10.1038/nature04640 – year: 2000 ident: 10.1016/j.mec.2019.e00121_bib7 – volume: 35 start-page: 7 year: 2015 ident: 10.1016/j.mec.2019.e00121_bib12 article-title: Production of natural products through metabolic engineering of Saccharomyces cerevisiae publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.12.004 – volume: 115 start-page: 2096 issue: 9 year: 2018 ident: 10.1016/j.mec.2019.e00121_bib19 article-title: Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1721203115 – volume: 38 start-page: 2216 issue: 11 year: 1997 ident: 10.1016/j.mec.2019.e00121_bib10 article-title: Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)34935-X – volume: 343 start-page: 425 issue: 6257 year: 1990 ident: 10.1016/j.mec.2019.e00121_bib9 article-title: Regulation of the mevalonate pathway publication-title: Nature doi: 10.1038/343425a0 – volume: 6 start-page: 207 year: 2018 ident: 10.1016/j.mec.2019.e00121_bib23 article-title: CopySwitch- publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2018.00207 – volume: 109 start-page: E111 issue: 3 year: 2012 ident: 10.1016/j.mec.2019.e00121_bib36 article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1110740109 – volume: 57 start-page: 654 issue: 5 year: 2018 ident: 10.1016/j.mec.2019.e00121_bib21 article-title: Structural features and domain movements controlling substrate binding and cofactor specificity in class II HMG-CoA reductase publication-title: Biochemistry doi: 10.1021/acs.biochem.7b00999 – volume: 9 start-page: 193 issue: 2 year: 2007 ident: 10.1016/j.mec.2019.e00121_bib27 article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli publication-title: Metab. Eng. doi: 10.1016/j.ymben.2006.11.002 – volume: 5 start-page: 344 year: 2014 ident: 10.1016/j.mec.2019.e00121_bib11 article-title: Biofuel production: an odyssey from metabolic engineering to fermentation scale-up publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00344 – year: 2000 ident: 10.1016/j.mec.2019.e00121_bib31 – volume: 3 start-page: 58 issue: 1 year: 2013 ident: 10.1016/j.mec.2019.e00121_bib38 article-title: Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations publication-title: Amb. Express doi: 10.1186/2191-0855-3-58 – volume: 30 start-page: 581 issue: 4 year: 2008 ident: 10.1016/j.mec.2019.e00121_bib45 article-title: Production of artemisinin by genetically-modified microbes publication-title: Biotechnol. Lett. doi: 10.1007/s10529-007-9596-y – volume: 13 start-page: 42 issue: 1 year: 2014 ident: 10.1016/j.mec.2019.e00121_bib33 article-title: Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-13-42 – volume: 41 year: 2017 ident: 10.1016/j.mec.2019.e00121_bib8 article-title: Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2017.04.004 – volume: 496 start-page: 528 issue: 7446 year: 2013 ident: 10.1016/j.mec.2019.e00121_bib25 article-title: High-level semi-synthetic production of the potent antimalarial artemisinin publication-title: Nature doi: 10.1038/nature12051 – volume: 15 start-page: 48 year: 2013 ident: 10.1016/j.mec.2019.e00121_bib6 article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.11.002 – volume: 5 start-page: 68 issue: Suppl. C year: 2017 ident: 10.1016/j.mec.2019.e00121_bib37 article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica publication-title: Metabol. Eng. Commun. doi: 10.1016/j.meteno.2017.09.001 – volume: 14 start-page: 39 issue: 1 year: 2015 ident: 10.1016/j.mec.2019.e00121_bib40 article-title: An ancient Chinese wisdom for metabolic engineering: Yin-Yang publication-title: Microb. Cell Factories doi: 10.1186/s12934-015-0219-3 – volume: 55 start-page: 170 year: 2019 ident: 10.1016/j.mec.2019.e00121_bib30 article-title: Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.07.007 – volume: 11 start-page: 192 issue: 3 year: 2009 ident: 10.1016/j.mec.2019.e00121_bib46 article-title: Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering publication-title: Metab. Eng. doi: 10.1016/j.ymben.2009.01.005 – volume: 32 start-page: 920 issue: 5 year: 2014 ident: 10.1016/j.mec.2019.e00121_bib48 article-title: Yarrowia lipolytica and pollutants: interactions and applications publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.04.008 |
SSID | ssj0001361411 |
Score | 2.4119163 |
Snippet | World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e00121 |
SubjectTerms | acetyl coenzyme A Amorphadiene Antimalarial Artemisia annua artemisinin biosynthesis carbon climatic factors culture flasks fatty acids fermentation gene dosage gene overexpression Heterologous expression hydroxymethylglutaryl-CoA reductases malaria manufacturing Metabolic engineering Mevalonate pathway plant extracts politics prices supply chain synthesis Yarrowia lipolytica yeasts |
Title | Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica |
URI | https://dx.doi.org/10.1016/j.mec.2019.e00121 https://www.ncbi.nlm.nih.gov/pubmed/31956504 https://www.proquest.com/docview/2342358365 https://www.proquest.com/docview/2439396247 https://pubmed.ncbi.nlm.nih.gov/PMC6957783 https://doaj.org/article/3234b524f4054a119f7b515a10bce549 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQcoED4pvAsjISJ6RA4o84OS6I1YoVHBArlpNlOzZk1SZV0wr13--Mk1YNSOXCNXEbeebF8zyevCHkdWDcSi95KoyyqaiLLLXAO9I8lGVuBAdSgKmBz1-K80vx6Upe7bX6wpqwQR54MNw7zriwkokAzEKYPK-CshCDTZ5Z52Fzg6svxLy9zVTMrnAIO7H5LmO5SJH3b480Y3HX3KN8YV699VHUbBKUonb_JDb9zT3_LKHci0ln98m9kUzS02ESD8gt3z4kd_ckBh-RHhcU1CluvcOsOJ2jvjemzD3FbsS_zYYCb6Vg4GZuYJsLeKT1cv2TLpaYiu_x3rwDb8TaME9t0_WbFmhj3_S0aemPqOLYGDprFt1sg6nxx-Ty7OO3D-fp2GghdbBBWaUVHgaqmgcWSrCyChzWMaAWGYfVT1qWmWC8LwLPTVCi4HWQLijGytp6UzjGn5Cjtmv9M0KDq2xV59I5K4XNmOWVqJXhNSBAFM4lJNtaWrtRhRybYcz0ttzsWoNzNDpHD85JyJvdTxaDBMehwe_RfbuBqJ4dLwCm9Igp_S9MJURsna9HIjIQDPir5tCzX22BouElxZMX0_pu3WuGOouyBOQfGAPUkFcFEyohTwdw7WbB8atOmYmEqAnsJtOc3mmbX1EsvKikUiV__j_s8oLcYZhuiEmoY3K0Wq79S-BkK3tCbp9efP1-cRJfwxuqCDYe |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Debottlenecking+mevalonate+pathway+for+antimalarial+drug+precursor+amorphadiene+biosynthesis+in+Yarrowia+lipolytica&rft.jtitle=Metabolic+engineering+communications&rft.au=Monireh+Marsafari&rft.au=Peng+Xu&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=2214-0301&rft.eissn=2214-0301&rft.volume=10&rft.spage=e00121&rft_id=info:doi/10.1016%2Fj.mec.2019.e00121&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3234b524f4054a119f7b515a10bce549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon |