Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica

World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering communications Vol. 10; p. e00121
Main Authors Marsafari, Monireh, Xu, Peng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2214-0301
2214-0301
DOI10.1016/j.mec.2019.e00121

Cover

Loading…
Abstract World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. •Endogenous acetyl-CoA and mevalonate pathway were harnessed for amorphadiene synthesis.•Expression of native untruncated HMG-CoA reductase (HMG1) removes rate-limiting steps.•Balancing ADS, HMG1 and MVK activity effectively pull FPP flux toward amorphadiene.•Activation of fatty acid degradation pushes carbon flux toward HMG-CoA pathways.•A push-and-pull strategy boosts amorphadiene production to 171.5 ​mg/L in shake flasks.
AbstractList World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors.
World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors.
World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant . Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and is a promising microbial host to expand nature's biosynthetic capacity, allowing us to quickly access antimalarial drug precursors.
World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature's biosynthetic capacity, allowing us to quickly access antimalarial drug precursors.World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature's biosynthetic capacity, allowing us to quickly access antimalarial drug precursors.
World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua . Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. • Endogenous acetyl-CoA and mevalonate pathway were harnessed for amorphadiene synthesis. • Expression of native untruncated HMG-CoA reductase (HMG1) removes rate-limiting steps. • Balancing ADS, HMG1 and MVK activity effectively pull FPP flux toward amorphadiene. • Activation of fatty acid degradation pushes carbon flux toward HMG-CoA pathways. • A push-and-pull strategy boosts amorphadiene production to 171.5 ​mg/L in shake flasks.
World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent anti-malaria drug, is a sesquiterpene endoperoxide extracted from the plant Artemisia annua. Due to scalability and economics issues, plant extraction or chemical synthesis could not provide a sustainable route for large-scale manufacturing of artemisinin. The price of artemisinin has been fluctuating from 200$/Kg to 1100$/Kg, due to geopolitical and climate factors. Microbial fermentation was considered as a promising method to stabilize the artemisinin supply chain. Yarrowia lipolytica, is an oleaginous yeast with proven capacity to produce large quantity of lipids and oleochemicals. In this report, the lipogenic acetyl-CoA pathways and the endogenous mevalonate pathway of Y. lipolytica were harnessed for amorphadiene production. Gene overexpression indicate that HMG-CoA and acetyl-CoA supply are two limiting bottlenecks for amorphadiene production. We have identified the optimal HMG-CoA reductase and determined the optimal gene copy number for the precursor pathways. Amorphadiene production was improved further by either inhibiting fatty acids synthase or activating the fatty acid degradation pathway. With co-expression of mevalonate kinase (encoded by Erg12), a push-and-pull strategy enabled the engineered strain to produce 171.5 ​mg/L of amorphadiene in shake flasks. These results demonstrate that balancing carbon flux and manipulation of precursor competing pathways are key factors to improve amorphadiene biosynthesis in oleaginous yeast; and Y. lipolytica is a promising microbial host to expand nature’s biosynthetic capacity, allowing us to quickly access antimalarial drug precursors. •Endogenous acetyl-CoA and mevalonate pathway were harnessed for amorphadiene synthesis.•Expression of native untruncated HMG-CoA reductase (HMG1) removes rate-limiting steps.•Balancing ADS, HMG1 and MVK activity effectively pull FPP flux toward amorphadiene.•Activation of fatty acid degradation pushes carbon flux toward HMG-CoA pathways.•A push-and-pull strategy boosts amorphadiene production to 171.5 ​mg/L in shake flasks.
ArticleNumber e00121
Author Marsafari, Monireh
Xu, Peng
AuthorAffiliation Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
AuthorAffiliation_xml – name: Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
Author_xml – sequence: 1
  givenname: Monireh
  surname: Marsafari
  fullname: Marsafari, Monireh
– sequence: 2
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  email: pengxu@umbc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31956504$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNUREvpD2CDsmQzg5_JREhIqLwqVWIDC1bWjXM948Gxg-1MNf8eD9OilkVZ2fI95_O173lenfjgsapeUrKkhDZvtssR9ZIR2i2REMrok-qMMSoWhBN6cm9_Wl2ktCVFwxsqKH1WnXLayUYScValD9iHnB161D-tX9cj7sAFDxnrCfLmBva1CbEGn-0IDqIFVw9xXtdTRD3HdKiNIU4bGGyB1L0Nae_zBpNNtfX1D4gx3FionZ2C22er4UX11IBLeHG7nlffP338dvllcf3189Xl--uFlpLkRcdXjLcDN8ysiBSt4Yx2reCEwzDInhEwgNgYTsG0ouGDkdq0jK2GHqHRjJ9XV0fuEGCrplgeEPcqgFV_DkJcK4ilIYeKMy56yYQR5SagtDNtL6kESnqNUnSF9e7ImuZ-xEGjzxHcA-jDircbtQ471XSybVe8AF7fAmL4NWPKarRJo3PgMcxJMcE73jVMtP-XcsG4XPFGFumr-2397eduwEXQHgU6hpQiGqVthmzDoUvrFCXqkCa1VSVN6pAmdUxTcdJ_nHfwxzxvjx4sY91ZjCrpkgqNgy1pyeXf7SPu34yU5Ig
CitedBy_id crossref_primary_10_1021_acs_jafc_2c03917
crossref_primary_10_1002_bit_28544
crossref_primary_10_1021_acssynbio_9b00468
crossref_primary_10_3390_molecules29051127
crossref_primary_10_1016_j_copbio_2020_07_008
crossref_primary_10_1016_j_mec_2020_e00147
crossref_primary_10_1021_acs_jafc_2c04405
crossref_primary_10_34133_bdr_0051
crossref_primary_10_1186_s12934_022_01915_0
crossref_primary_10_1007_s00438_021_01821_x
crossref_primary_10_1016_j_biortech_2020_123991
crossref_primary_10_1186_s12934_023_02283_z
crossref_primary_10_1016_j_biotechadv_2023_108128
crossref_primary_10_1038_s42003_022_04202_1
crossref_primary_10_1016_j_biotechadv_2020_107555
crossref_primary_10_1021_acs_jafc_1c00350
crossref_primary_10_4103_2311_8571_336839
crossref_primary_10_1021_acs_jafc_1c03864
crossref_primary_10_1021_acs_jafc_3c09080
crossref_primary_10_1016_j_biortech_2024_130379
crossref_primary_10_1186_s40643_021_00431_0
crossref_primary_10_3389_fbioe_2020_00945
crossref_primary_10_1186_s40643_022_00493_8
crossref_primary_10_1021_acs_jafc_2c05847
crossref_primary_10_1021_acssuschemeng_3c06260
crossref_primary_10_3389_fbioe_2020_594061
crossref_primary_10_1021_acs_jafc_3c07889
crossref_primary_10_1186_s12934_024_02460_8
crossref_primary_10_1016_j_ijbiomac_2025_141727
crossref_primary_10_1039_D4GC00528G
crossref_primary_10_3389_fbioe_2023_1188119
crossref_primary_10_1016_j_copbio_2021_02_008
crossref_primary_10_1007_s00253_021_11584_5
crossref_primary_10_1016_j_fshw_2022_07_017
crossref_primary_10_3390_fermentation8110615
crossref_primary_10_1021_acs_jafc_0c06504
crossref_primary_10_1016_j_ymben_2020_08_009
crossref_primary_10_1016_j_procbio_2024_01_027
crossref_primary_10_1021_acssynbio_0c00185
crossref_primary_10_1007_s12033_024_01289_1
crossref_primary_10_1021_acs_iecr_0c05228
crossref_primary_10_1080_07388551_2021_1947183
crossref_primary_10_1186_s12934_025_02667_3
crossref_primary_10_1016_j_mec_2020_e00130
crossref_primary_10_1021_acssynbio_2c00569
crossref_primary_10_1002_biot_202100097
crossref_primary_10_1186_s12934_025_02660_w
crossref_primary_10_1016_j_tibtech_2020_03_009
crossref_primary_10_1186_s12934_022_02010_0
crossref_primary_10_1186_s13068_020_01773_1
crossref_primary_10_1021_acs_jafc_1c00498
crossref_primary_10_1093_femsyr_foab008
crossref_primary_10_1021_acssuschemeng_4c03561
crossref_primary_10_1089_ind_2021_0003
crossref_primary_10_1039_D2GC02255A
crossref_primary_10_1007_s00253_021_11539_w
crossref_primary_10_1186_s13068_022_02201_2
crossref_primary_10_1016_j_mec_2022_e00213
crossref_primary_10_1021_acs_jafc_3c06459
crossref_primary_10_1080_07388551_2021_1924112
crossref_primary_10_1016_j_jbiotec_2023_05_005
crossref_primary_10_4103_wjtcm_wjtcm_66_21
crossref_primary_10_1021_acs_jafc_2c08579
crossref_primary_10_1016_j_biotechadv_2022_108033
crossref_primary_10_1007_s10295_020_02290_8
crossref_primary_10_3390_microorganisms12020309
crossref_primary_10_1038_s41589_020_00691_5
Cites_doi 10.4103/0973-7847.91118
10.1016/j.jbiotec.2013.07.025
10.1079/IVP2006782
10.1016/j.tibtech.2016.04.010
10.1007/s00253-019-09664-8
10.1038/nrmicro3240
10.1038/nbt.3763
10.1038/530390a
10.1016/j.copbio.2012.08.010
10.1016/j.bbrc.2007.01.155
10.1002/pmic.200500339
10.1021/acssynbio.9b00193
10.1073/pnas.1607295113
10.1016/j.mec.2019.e00112
10.1038/nbt833
10.1016/j.ymben.2008.07.007
10.1016/j.ymben.2019.08.017
10.1128/AEM.01412-08
10.1021/acssynbio.8b00535
10.1371/journal.pone.0004489
10.1002/bit.26285
10.1016/j.copbio.2015.08.010
10.1016/S0031-9422(99)00206-X
10.1038/nature04640
10.1016/j.copbio.2014.12.004
10.1073/pnas.1721203115
10.1016/S0022-2275(20)34935-X
10.1038/343425a0
10.3389/fbioe.2018.00207
10.1073/pnas.1110740109
10.1021/acs.biochem.7b00999
10.1016/j.ymben.2006.11.002
10.3389/fmicb.2014.00344
10.1186/2191-0855-3-58
10.1007/s10529-007-9596-y
10.1186/1475-2859-13-42
10.1016/j.ymben.2017.04.004
10.1038/nature12051
10.1016/j.ymben.2012.11.002
10.1016/j.meteno.2017.09.001
10.1186/s12934-015-0219-3
10.1016/j.ymben.2019.07.007
10.1016/j.ymben.2009.01.005
10.1016/j.biotechadv.2014.04.008
ContentType Journal Article
Copyright 2020 The Authors
2020 The Authors.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: 2020 The Authors.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.mec.2019.e00121
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-0301
ExternalDocumentID oai_doaj_org_article_3234b524f4054a119f7b515a10bce549
PMC6957783
31956504
10_1016_j_mec_2019_e00121
S2214030119300458
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-938237d3f2f80547f321974303add5b20afaee6f31af7463df5cf7228dbea6c23
IEDL.DBID DOA
ISSN 2214-0301
IngestDate Wed Aug 27 01:30:23 EDT 2025
Thu Aug 21 18:12:38 EDT 2025
Fri Jul 11 14:35:01 EDT 2025
Thu Jul 10 21:49:49 EDT 2025
Thu Jan 02 22:59:16 EST 2025
Thu Apr 24 22:57:47 EDT 2025
Tue Jul 01 04:03:42 EDT 2025
Tue Jul 25 21:03:16 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Antimalarial
Metabolic engineering
Amorphadiene
Mevalonate pathway
Heterologous expression
Yarrowia lipolytica
Language English
License This is an open access article under the CC BY license.
2020 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-938237d3f2f80547f321974303add5b20afaee6f31af7463df5cf7228dbea6c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/3234b524f4054a119f7b515a10bce549
PMID 31956504
PQID 2342358365
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3234b524f4054a119f7b515a10bce549
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6957783
proquest_miscellaneous_2439396247
proquest_miscellaneous_2342358365
pubmed_primary_31956504
crossref_citationtrail_10_1016_j_mec_2019_e00121
crossref_primary_10_1016_j_mec_2019_e00121
elsevier_sciencedirect_doi_10_1016_j_mec_2019_e00121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Metabolic engineering communications
PublicationTitleAlternate Metab Eng Commun
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hinson, Chambliss, Toth, Tanaka, Gibson (bib10) 1997; 38
Miller, Kung (bib21) 2018; 57
Varman, He, You, Hollinshead, Tang (bib33) 2014; 13
Goldstein, Brown (bib9) 1990; 343
Smith, W Brown, Eitzen, Rachubinski (bib31) 2000
Beopoulos, Mrozova, Thevenieau, Le Dall, Hapala, Papanikolaou, Chardot, Nicaud (bib4) 2008; 74
Paddon, Westfall, Pitera, Benjamin, Fisher, McPhee, Leavell, Tai, Main, Eng, Polichuk, Teoh, Reed, Treynor, Lenihan, Fleck, Bajad, Dang, Dengrove, Diola, Dorin, Ellens, Fickes, Galazzo, Gaucher, Geistlinger, Henry, Hepp, Horning, Iqbal, Jiang, Kizer, Lieu, Melis, Moss, Regentin, Secrest, Tsuruta, Vazquez, Westblade, Xu, Yu, Zhang, Zhao, Lievense, Covello, Keasling, Reiling, Renninger, Newman (bib25) 2013; 496
Hollinshead, He, Tang (bib11) 2014; 5
Ro, Paradise, Ouellet, Fisher, Newman, Ndungu, Ho, Eachus, Ham, Kirby, Chang, Withers, Shiba, Sarpong, Keasling (bib29) 2006; 440
Tsuruta, Paddon, Eng, Lenihan, Horning, Anthony, Regentin, Keasling, Renninger, Newman (bib32) 2009; 4
Nadler, Bracharz, Kabisch (bib23) 2018; 6
Xu, Qiao, Ahn, Stephanopoulos (bib42) 2016; 113
Wong, Engel, Jin, Holdridge, Xu (bib37) 2017; 5
Zhu, Jackson (bib47) 2015; 36
Xu, Bhan, Koffas (bib41) 2013; 24
Zeng, Qiu, Yuan (bib45) 2008; 30
Zha, Rubin-Pitel, Shao, Zhao (bib46) 2009; 11
Anthony, Anthony, Nowroozi, Kwon, Newman, Keasling (bib1) 2009; 11
Wu, He, Wang, Tang (bib40) 2015; 14
Ledesma-Amaro, Nicaud (bib13) 2016; 34
Krivoruchko, Nielsen (bib12) 2015; 35
Liu, Marsafari, Deng, Xu (bib15) 2019; 103
Martin, Pitera, Withers, Newman, Keasling (bib20) 2003; 21
Murphy, Murray, Meaney, Gåfvels (bib22) 2007; 355
Athenstaedt, Jolivet, Boulard, Zivy, Negroni, Nicaud, Chardot (bib2) 2006; 6
Qiao, Wasylenko, Zhou, Xu, Stephanopoulos (bib28) 2017
Xu, Qiao, Stephanopoulos (bib43) 2017; 114
Paddon, Keasling (bib24) 2014; 12
Peplow (bib26) 2016; 530
Zinjarde, Apte, Mohite, Kumar (bib48) 2014; 32
Lv, Edwards, Zhou, Xu (bib17) 2019; 8
Liu, Liu, Zhou, Shin, Chen, Madzak, Li, Du, Chen (bib14) 2013; 167
Liu, Marsafari, Wang, Deng, Xu (bib16) 2019; 56
Bouwmeester, Wallaart, Janssen, van Loo, Jansen, Posthumus, Schmidt, De Kraker, König, Franssen (bib5) 1999; 52
Lv, Marsafari, Koffas, Zhou, Xu (bib18) 2019; 8
Shukal, Chen, Zhang (bib30) 2019; 55
Westfall, Pitera, Lenihan, Eng, Woolard, Regentin, Horning, Tsuruta, Melis, Owens, Fickes, Diola, Benjamin, Keasling, Leavell, McPhee, Renninger, Newman, Paddon (bib36) 2012; 109
Chen, Daviet, Schalk, Siewers, Nielsen (bib6) 2013; 15
Pitera, Paddon, Newman, Keasling (bib27) 2007; 9
Weathers, Elkholy, Wobbe (bib34) 2006; 42
Wen, Yu (bib35) 2011; 5
Workman, Holt, Thykaer (bib38) 2013; 3
Markham, Palmer, Chwatko, Wagner, Murray, Vazquez, Swaminathan, Chakravarty, Lynd, Alper (bib19) 2018; 115
Baadhe, Mekala, Parcha, Prameela Devi (bib3) 2013; 2013
Davis, Lamson, Matthew, Brignall (bib7) 2000
Yang, Edwards, Xu (bib44) 2020; 10
Gao, Tong, Zhu, Ge, Zhang, Chen, Jiang, Yang (bib8) 2017; 41
Workman (10.1016/j.mec.2019.e00121_bib38) 2013; 3
Zhu (10.1016/j.mec.2019.e00121_bib47) 2015; 36
Murphy (10.1016/j.mec.2019.e00121_bib22) 2007; 355
Hollinshead (10.1016/j.mec.2019.e00121_bib11) 2014; 5
Miller (10.1016/j.mec.2019.e00121_bib21) 2018; 57
Varman (10.1016/j.mec.2019.e00121_bib33) 2014; 13
Xu (10.1016/j.mec.2019.e00121_bib42) 2016; 113
Paddon (10.1016/j.mec.2019.e00121_bib25) 2013; 496
Wu (10.1016/j.mec.2019.e00121_bib40) 2015; 14
Nadler (10.1016/j.mec.2019.e00121_bib23) 2018; 6
Yang (10.1016/j.mec.2019.e00121_bib44) 2020; 10
Krivoruchko (10.1016/j.mec.2019.e00121_bib12) 2015; 35
Gao (10.1016/j.mec.2019.e00121_bib8) 2017; 41
Liu (10.1016/j.mec.2019.e00121_bib14) 2013; 167
Xu (10.1016/j.mec.2019.e00121_bib41) 2013; 24
Smith (10.1016/j.mec.2019.e00121_bib31) 2000
Ledesma-Amaro (10.1016/j.mec.2019.e00121_bib13) 2016; 34
Westfall (10.1016/j.mec.2019.e00121_bib36) 2012; 109
Zha (10.1016/j.mec.2019.e00121_bib46) 2009; 11
Ro (10.1016/j.mec.2019.e00121_bib29) 2006; 440
Liu (10.1016/j.mec.2019.e00121_bib15) 2019; 103
Peplow (10.1016/j.mec.2019.e00121_bib26) 2016; 530
Xu (10.1016/j.mec.2019.e00121_bib43) 2017; 114
Tsuruta (10.1016/j.mec.2019.e00121_bib32) 2009; 4
Chen (10.1016/j.mec.2019.e00121_bib6) 2013; 15
Martin (10.1016/j.mec.2019.e00121_bib20) 2003; 21
Wen (10.1016/j.mec.2019.e00121_bib35) 2011; 5
Markham (10.1016/j.mec.2019.e00121_bib19) 2018; 115
Hinson (10.1016/j.mec.2019.e00121_bib10) 1997; 38
Lv (10.1016/j.mec.2019.e00121_bib17) 2019; 8
Shukal (10.1016/j.mec.2019.e00121_bib30) 2019; 55
Baadhe (10.1016/j.mec.2019.e00121_bib3) 2013; 2013
Liu (10.1016/j.mec.2019.e00121_bib16) 2019; 56
Paddon (10.1016/j.mec.2019.e00121_bib24) 2014; 12
Lv (10.1016/j.mec.2019.e00121_bib18) 2019; 8
Qiao (10.1016/j.mec.2019.e00121_bib28) 2017
Wong (10.1016/j.mec.2019.e00121_bib37) 2017; 5
Weathers (10.1016/j.mec.2019.e00121_bib34) 2006; 42
Zinjarde (10.1016/j.mec.2019.e00121_bib48) 2014; 32
Beopoulos (10.1016/j.mec.2019.e00121_bib4) 2008; 74
Davis (10.1016/j.mec.2019.e00121_bib7) 2000
Pitera (10.1016/j.mec.2019.e00121_bib27) 2007; 9
Zeng (10.1016/j.mec.2019.e00121_bib45) 2008; 30
Bouwmeester (10.1016/j.mec.2019.e00121_bib5) 1999; 52
Athenstaedt (10.1016/j.mec.2019.e00121_bib2) 2006; 6
Goldstein (10.1016/j.mec.2019.e00121_bib9) 1990; 343
Anthony (10.1016/j.mec.2019.e00121_bib1) 2009; 11
References_xml – volume: 103
  start-page: 3167
  year: 2019
  end-page: 3179
  ident: bib15
  article-title: Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 56
  start-page: 60
  year: 2019
  end-page: 68
  ident: bib16
  article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica
  publication-title: Metab. Eng.
– volume: 74
  start-page: 7779
  year: 2008
  ident: bib4
  article-title: Control of lipid accumulation in the yeast <em>Yarrowia lipolytica</em>
  publication-title: Appl. Environ. Microbiol.
– volume: 30
  start-page: 581
  year: 2008
  end-page: 592
  ident: bib45
  article-title: Production of artemisinin by genetically-modified microbes
  publication-title: Biotechnol. Lett.
– volume: 355
  start-page: 359
  year: 2007
  end-page: 364
  ident: bib22
  article-title: Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 5
  start-page: 189
  year: 2011
  end-page: 194
  ident: bib35
  article-title: Artemisinin biosynthesis and its regulatory enzymes: progress and perspective
  publication-title: Pharmacogn. Rev.
– volume: 21
  start-page: 796
  year: 2003
  end-page: 802
  ident: bib20
  article-title: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: 58
  year: 2013
  ident: bib38
  article-title: Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations
  publication-title: Amb. Express
– volume: 35
  start-page: 7
  year: 2015
  end-page: 15
  ident: bib12
  article-title: Production of natural products through metabolic engineering of Saccharomyces cerevisiae
  publication-title: Curr. Opin. Biotechnol.
– volume: 115
  start-page: 2096
  year: 2018
  ident: bib19
  article-title: Rewiring <em>Yarrowia lipolytica</em> toward triacetic acid lactone for materials generation
  publication-title: Proc. Natl. Acad. Sci.
– volume: 42
  start-page: 309
  year: 2006
  end-page: 317
  ident: bib34
  article-title: Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species
  publication-title: In Vitro Cell. Dev. Biol. Plant
– volume: 15
  start-page: 48
  year: 2013
  end-page: 54
  ident: bib6
  article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
  publication-title: Metab. Eng.
– volume: 11
  start-page: 192
  year: 2009
  end-page: 198
  ident: bib46
  article-title: Improving cellular malonyl-CoA level in
  publication-title: Metab. Eng.
– volume: 530
  start-page: 389
  year: 2016
  end-page: 390
  ident: bib26
  article-title: Synthetic biology’s first malaria drug meets market resistance
  publication-title: Nature
– volume: 9
  start-page: 193
  year: 2007
  end-page: 207
  ident: bib27
  article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
  publication-title: Metab. Eng.
– volume: 6
  start-page: 1450
  year: 2006
  end-page: 1459
  ident: bib2
  article-title: Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source
  publication-title: Proteomics
– volume: 109
  start-page: E111
  year: 2012
  end-page: E118
  ident: bib36
  article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  year: 2020
  ident: bib44
  article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica
  publication-title: Metabol. Eng. Commun.
– volume: 114
  start-page: 1521
  year: 2017
  end-page: 1530
  ident: bib43
  article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica
  publication-title: Biotechnol. Bioeng.
– volume: 41
  year: 2017
  ident: bib8
  article-title: Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production
  publication-title: Metab. Eng.
– volume: 440
  start-page: 940
  year: 2006
  end-page: 943
  ident: bib29
  article-title: Production of the antimalarial drug precursor artemisinic acid in engineered yeast
  publication-title: Nature
– volume: 11
  start-page: 13
  year: 2009
  end-page: 19
  ident: bib1
  article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
  publication-title: Metab. Eng.
– volume: 2013
  start-page: 140469
  year: 2013
  ident: bib3
  article-title: Combination of ERG9 repression and enzyme fusion technology for improved production of amorphadiene in Saccharomyces cerevisiae
  publication-title: J. Anal. Methods Chem.
– volume: 4
  start-page: e4489
  year: 2009
  ident: bib32
  article-title: High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli
  publication-title: PLoS One
– volume: 113
  start-page: 10848
  year: 2016
  end-page: 10853
  ident: bib42
  article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  start-page: 2216
  year: 1997
  end-page: 2223
  ident: bib10
  article-title: Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways
  publication-title: J. Lipid Res.
– volume: 6
  start-page: 207
  year: 2018
  ident: bib23
  article-title: CopySwitch-
  publication-title: Front. Bioeng. Biotechnol.
– volume: 8
  start-page: 2514
  year: 2019
  end-page: 2523
  ident: bib18
  article-title: Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis
  publication-title: ACS Synth. Biol.
– volume: 12
  start-page: 355
  year: 2014
  end-page: 367
  ident: bib24
  article-title: Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
  publication-title: Nat. Rev. Microbiol.
– volume: 55
  start-page: 170
  year: 2019
  end-page: 178
  ident: bib30
  article-title: Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli
  publication-title: Metab. Eng.
– volume: 343
  start-page: 425
  year: 1990
  end-page: 430
  ident: bib9
  article-title: Regulation of the mevalonate pathway
  publication-title: Nature
– volume: 52
  start-page: 843
  year: 1999
  end-page: 854
  ident: bib5
  article-title: Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis
  publication-title: Phytochemistry
– year: 2017
  ident: bib28
  article-title: Lipid Production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
  publication-title: Nat. Biotech.
– volume: 34
  start-page: 798
  year: 2016
  end-page: 809
  ident: bib13
  article-title: Metabolic engineering for expanding the substrate range of <em>Yarrowia lipolytica</em>
  publication-title: Trends Biotechnol.
– volume: 5
  start-page: 68
  year: 2017
  end-page: 77
  ident: bib37
  article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica
  publication-title: Metabol. Eng. Commun.
– volume: 24
  start-page: 291
  year: 2013
  end-page: 299
  ident: bib41
  article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology
  publication-title: Curr. Opin. Biotechnol.
– volume: 14
  start-page: 39
  year: 2015
  ident: bib40
  article-title: An ancient Chinese wisdom for metabolic engineering: Yin-Yang
  publication-title: Microb. Cell Factories
– year: 2000
  ident: bib7
  article-title: Antioxidants and Cancer III: Quercetin
– volume: 13
  start-page: 42
  year: 2014
  ident: bib33
  article-title: Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis
  publication-title: Microb. Cell Factories
– volume: 496
  start-page: 528
  year: 2013
  end-page: 532
  ident: bib25
  article-title: High-level semi-synthetic production of the potent antimalarial artemisinin
  publication-title: Nature
– volume: 36
  start-page: 65
  year: 2015
  end-page: 72
  ident: bib47
  article-title: Metabolic engineering of Yarrowia lipolytica for industrial applications
  publication-title: Curr. Opin. Biotechnol.
– volume: 8
  start-page: 568
  year: 2019
  end-page: 576
  ident: bib17
  article-title: Combining 26s rDNA and the cre-loxP system for iterative gene integration and efficient marker curation in yarrowia lipolytica
  publication-title: ACS Synth. Biol.
– year: 2000
  ident: bib31
  article-title: Regulation of peroxisome size and number by fatty acid beta -oxidation in the yeast yarrowia lipolytica
– volume: 32
  start-page: 920
  year: 2014
  end-page: 933
  ident: bib48
  article-title: Yarrowia lipolytica and pollutants: interactions and applications
  publication-title: Biotechnol. Adv.
– volume: 5
  start-page: 344
  year: 2014
  ident: bib11
  article-title: Biofuel production: an odyssey from metabolic engineering to fermentation scale-up
  publication-title: Front. Microbiol.
– volume: 167
  start-page: 472
  year: 2013
  end-page: 478
  ident: bib14
  article-title: Biosynthesis of homoeriodictyol from eriodictyol by flavone 3’-O-methyltransferase from recombinant Yarrowia lioplytica: heterologous expression, biochemical characterization, and optimal transformation
  publication-title: J. Biotechnol.
– volume: 57
  start-page: 654
  year: 2018
  end-page: 662
  ident: bib21
  article-title: Structural features and domain movements controlling substrate binding and cofactor specificity in class II HMG-CoA reductase
  publication-title: Biochemistry
– volume: 2013
  start-page: 140469
  year: 2013
  ident: 10.1016/j.mec.2019.e00121_bib3
  article-title: Combination of ERG9 repression and enzyme fusion technology for improved production of amorphadiene in Saccharomyces cerevisiae
  publication-title: J. Anal. Methods Chem.
– volume: 5
  start-page: 189
  issue: 10
  year: 2011
  ident: 10.1016/j.mec.2019.e00121_bib35
  article-title: Artemisinin biosynthesis and its regulatory enzymes: progress and perspective
  publication-title: Pharmacogn. Rev.
  doi: 10.4103/0973-7847.91118
– volume: 167
  start-page: 472
  issue: 4
  year: 2013
  ident: 10.1016/j.mec.2019.e00121_bib14
  article-title: Biosynthesis of homoeriodictyol from eriodictyol by flavone 3’-O-methyltransferase from recombinant Yarrowia lioplytica: heterologous expression, biochemical characterization, and optimal transformation
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2013.07.025
– volume: 42
  start-page: 309
  issue: 4
  year: 2006
  ident: 10.1016/j.mec.2019.e00121_bib34
  article-title: Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species
  publication-title: In Vitro Cell. Dev. Biol. Plant
  doi: 10.1079/IVP2006782
– volume: 34
  start-page: 798
  issue: 10
  year: 2016
  ident: 10.1016/j.mec.2019.e00121_bib13
  article-title: Metabolic engineering for expanding the substrate range of Yarrowia lipolytica
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.04.010
– volume: 103
  start-page: 3167
  issue: 7
  year: 2019
  ident: 10.1016/j.mec.2019.e00121_bib15
  article-title: Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09664-8
– volume: 12
  start-page: 355
  issue: 5
  year: 2014
  ident: 10.1016/j.mec.2019.e00121_bib24
  article-title: Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3240
– year: 2017
  ident: 10.1016/j.mec.2019.e00121_bib28
  article-title: Lipid Production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
  publication-title: Nat. Biotech.
  doi: 10.1038/nbt.3763
– volume: 530
  start-page: 389
  issue: 7591
  year: 2016
  ident: 10.1016/j.mec.2019.e00121_bib26
  article-title: Synthetic biology’s first malaria drug meets market resistance
  publication-title: Nature
  doi: 10.1038/530390a
– volume: 24
  start-page: 291
  issue: 2
  year: 2013
  ident: 10.1016/j.mec.2019.e00121_bib41
  article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2012.08.010
– volume: 355
  start-page: 359
  issue: 2
  year: 2007
  ident: 10.1016/j.mec.2019.e00121_bib22
  article-title: Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.01.155
– volume: 6
  start-page: 1450
  issue: 5
  year: 2006
  ident: 10.1016/j.mec.2019.e00121_bib2
  article-title: Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source
  publication-title: Proteomics
  doi: 10.1002/pmic.200500339
– volume: 8
  start-page: 2514
  issue: 11
  year: 2019
  ident: 10.1016/j.mec.2019.e00121_bib18
  article-title: Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.9b00193
– volume: 113
  start-page: 10848
  issue: 39
  year: 2016
  ident: 10.1016/j.mec.2019.e00121_bib42
  article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1607295113
– volume: 10
  year: 2020
  ident: 10.1016/j.mec.2019.e00121_bib44
  article-title: CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica
  publication-title: Metabol. Eng. Commun.
  doi: 10.1016/j.mec.2019.e00112
– volume: 21
  start-page: 796
  issue: 7
  year: 2003
  ident: 10.1016/j.mec.2019.e00121_bib20
  article-title: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt833
– volume: 11
  start-page: 13
  issue: 1
  year: 2009
  ident: 10.1016/j.mec.2019.e00121_bib1
  article-title: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2008.07.007
– volume: 56
  start-page: 60
  year: 2019
  ident: 10.1016/j.mec.2019.e00121_bib16
  article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.08.017
– volume: 74
  start-page: 7779
  issue: 24
  year: 2008
  ident: 10.1016/j.mec.2019.e00121_bib4
  article-title: Control of lipid accumulation in the yeast Yarrowia lipolytica
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01412-08
– volume: 8
  start-page: 568
  issue: 3
  year: 2019
  ident: 10.1016/j.mec.2019.e00121_bib17
  article-title: Combining 26s rDNA and the cre-loxP system for iterative gene integration and efficient marker curation in yarrowia lipolytica
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00535
– volume: 4
  start-page: e4489
  issue: 2
  year: 2009
  ident: 10.1016/j.mec.2019.e00121_bib32
  article-title: High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004489
– volume: 114
  start-page: 1521
  issue: 7
  year: 2017
  ident: 10.1016/j.mec.2019.e00121_bib43
  article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26285
– volume: 36
  start-page: 65
  year: 2015
  ident: 10.1016/j.mec.2019.e00121_bib47
  article-title: Metabolic engineering of Yarrowia lipolytica for industrial applications
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.08.010
– volume: 52
  start-page: 843
  issue: 5
  year: 1999
  ident: 10.1016/j.mec.2019.e00121_bib5
  article-title: Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(99)00206-X
– volume: 440
  start-page: 940
  issue: 7086
  year: 2006
  ident: 10.1016/j.mec.2019.e00121_bib29
  article-title: Production of the antimalarial drug precursor artemisinic acid in engineered yeast
  publication-title: Nature
  doi: 10.1038/nature04640
– year: 2000
  ident: 10.1016/j.mec.2019.e00121_bib7
– volume: 35
  start-page: 7
  year: 2015
  ident: 10.1016/j.mec.2019.e00121_bib12
  article-title: Production of natural products through metabolic engineering of Saccharomyces cerevisiae
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.12.004
– volume: 115
  start-page: 2096
  issue: 9
  year: 2018
  ident: 10.1016/j.mec.2019.e00121_bib19
  article-title: Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1721203115
– volume: 38
  start-page: 2216
  issue: 11
  year: 1997
  ident: 10.1016/j.mec.2019.e00121_bib10
  article-title: Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)34935-X
– volume: 343
  start-page: 425
  issue: 6257
  year: 1990
  ident: 10.1016/j.mec.2019.e00121_bib9
  article-title: Regulation of the mevalonate pathway
  publication-title: Nature
  doi: 10.1038/343425a0
– volume: 6
  start-page: 207
  year: 2018
  ident: 10.1016/j.mec.2019.e00121_bib23
  article-title: CopySwitch-
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2018.00207
– volume: 109
  start-page: E111
  issue: 3
  year: 2012
  ident: 10.1016/j.mec.2019.e00121_bib36
  article-title: Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1110740109
– volume: 57
  start-page: 654
  issue: 5
  year: 2018
  ident: 10.1016/j.mec.2019.e00121_bib21
  article-title: Structural features and domain movements controlling substrate binding and cofactor specificity in class II HMG-CoA reductase
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00999
– volume: 9
  start-page: 193
  issue: 2
  year: 2007
  ident: 10.1016/j.mec.2019.e00121_bib27
  article-title: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2006.11.002
– volume: 5
  start-page: 344
  year: 2014
  ident: 10.1016/j.mec.2019.e00121_bib11
  article-title: Biofuel production: an odyssey from metabolic engineering to fermentation scale-up
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00344
– year: 2000
  ident: 10.1016/j.mec.2019.e00121_bib31
– volume: 3
  start-page: 58
  issue: 1
  year: 2013
  ident: 10.1016/j.mec.2019.e00121_bib38
  article-title: Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations
  publication-title: Amb. Express
  doi: 10.1186/2191-0855-3-58
– volume: 30
  start-page: 581
  issue: 4
  year: 2008
  ident: 10.1016/j.mec.2019.e00121_bib45
  article-title: Production of artemisinin by genetically-modified microbes
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-007-9596-y
– volume: 13
  start-page: 42
  issue: 1
  year: 2014
  ident: 10.1016/j.mec.2019.e00121_bib33
  article-title: Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-13-42
– volume: 41
  year: 2017
  ident: 10.1016/j.mec.2019.e00121_bib8
  article-title: Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2017.04.004
– volume: 496
  start-page: 528
  issue: 7446
  year: 2013
  ident: 10.1016/j.mec.2019.e00121_bib25
  article-title: High-level semi-synthetic production of the potent antimalarial artemisinin
  publication-title: Nature
  doi: 10.1038/nature12051
– volume: 15
  start-page: 48
  year: 2013
  ident: 10.1016/j.mec.2019.e00121_bib6
  article-title: Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.11.002
– volume: 5
  start-page: 68
  issue: Suppl. C
  year: 2017
  ident: 10.1016/j.mec.2019.e00121_bib37
  article-title: YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica
  publication-title: Metabol. Eng. Commun.
  doi: 10.1016/j.meteno.2017.09.001
– volume: 14
  start-page: 39
  issue: 1
  year: 2015
  ident: 10.1016/j.mec.2019.e00121_bib40
  article-title: An ancient Chinese wisdom for metabolic engineering: Yin-Yang
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-015-0219-3
– volume: 55
  start-page: 170
  year: 2019
  ident: 10.1016/j.mec.2019.e00121_bib30
  article-title: Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.07.007
– volume: 11
  start-page: 192
  issue: 3
  year: 2009
  ident: 10.1016/j.mec.2019.e00121_bib46
  article-title: Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2009.01.005
– volume: 32
  start-page: 920
  issue: 5
  year: 2014
  ident: 10.1016/j.mec.2019.e00121_bib48
  article-title: Yarrowia lipolytica and pollutants: interactions and applications
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.04.008
SSID ssj0001361411
Score 2.4119163
Snippet World Health Organization reports that half of the population in developing countries are at risk of malaria infection. Artemisinin, the most potent...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e00121
SubjectTerms acetyl coenzyme A
Amorphadiene
Antimalarial
Artemisia annua
artemisinin
biosynthesis
carbon
climatic factors
culture flasks
fatty acids
fermentation
gene dosage
gene overexpression
Heterologous expression
hydroxymethylglutaryl-CoA reductases
malaria
manufacturing
Metabolic engineering
Mevalonate pathway
plant extracts
politics
prices
supply chain
synthesis
Yarrowia lipolytica
yeasts
Title Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica
URI https://dx.doi.org/10.1016/j.mec.2019.e00121
https://www.ncbi.nlm.nih.gov/pubmed/31956504
https://www.proquest.com/docview/2342358365
https://www.proquest.com/docview/2439396247
https://pubmed.ncbi.nlm.nih.gov/PMC6957783
https://doaj.org/article/3234b524f4054a119f7b515a10bce549
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQcoED4pvAsjISJ6RA4o84OS6I1YoVHBArlpNlOzZk1SZV0wr13--Mk1YNSOXCNXEbeebF8zyevCHkdWDcSi95KoyyqaiLLLXAO9I8lGVuBAdSgKmBz1-K80vx6Upe7bX6wpqwQR54MNw7zriwkokAzEKYPK-CshCDTZ5Z52Fzg6svxLy9zVTMrnAIO7H5LmO5SJH3b480Y3HX3KN8YV699VHUbBKUonb_JDb9zT3_LKHci0ln98m9kUzS02ESD8gt3z4kd_ckBh-RHhcU1CluvcOsOJ2jvjemzD3FbsS_zYYCb6Vg4GZuYJsLeKT1cv2TLpaYiu_x3rwDb8TaME9t0_WbFmhj3_S0aemPqOLYGDprFt1sg6nxx-Ty7OO3D-fp2GghdbBBWaUVHgaqmgcWSrCyChzWMaAWGYfVT1qWmWC8LwLPTVCi4HWQLijGytp6UzjGn5Cjtmv9M0KDq2xV59I5K4XNmOWVqJXhNSBAFM4lJNtaWrtRhRybYcz0ttzsWoNzNDpHD85JyJvdTxaDBMehwe_RfbuBqJ4dLwCm9Igp_S9MJURsna9HIjIQDPir5tCzX22BouElxZMX0_pu3WuGOouyBOQfGAPUkFcFEyohTwdw7WbB8atOmYmEqAnsJtOc3mmbX1EsvKikUiV__j_s8oLcYZhuiEmoY3K0Wq79S-BkK3tCbp9efP1-cRJfwxuqCDYe
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Debottlenecking+mevalonate+pathway+for+antimalarial+drug+precursor+amorphadiene+biosynthesis+in+Yarrowia+lipolytica&rft.jtitle=Metabolic+engineering+communications&rft.au=Monireh+Marsafari&rft.au=Peng+Xu&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=2214-0301&rft.eissn=2214-0301&rft.volume=10&rft.spage=e00121&rft_id=info:doi/10.1016%2Fj.mec.2019.e00121&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3234b524f4054a119f7b515a10bce549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon