Discovery of farnesoid X receptor and its role in bile acid metabolism
In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation...
Saved in:
Published in | Molecular and cellular endocrinology Vol. 548; p. 111618 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
15.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.
•FXR is a bile acid-activated receptor that acts as a metabolic sensor.•FXR plays a central role in the regulation of liver homeostasis.•Dysregulation of bile acid and lipid homeostasis causes dysbiosis and contributes to metabolic disease.•Drugs targeting bile acids and FXR are in clinical trials for non-alcoholic fatty liver diseases, diabetes, and obesity. |
---|---|
AbstractList | In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases. In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases. •FXR is a bile acid-activated receptor that acts as a metabolic sensor.•FXR plays a central role in the regulation of liver homeostasis.•Dysregulation of bile acid and lipid homeostasis causes dysbiosis and contributes to metabolic disease.•Drugs targeting bile acids and FXR are in clinical trials for non-alcoholic fatty liver diseases, diabetes, and obesity. In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7α-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases. In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases. |
ArticleNumber | 111618 |
Author | Chiang, John Y.L. Ferrell, Jessica M. |
Author_xml | – sequence: 1 givenname: John Y.L. surname: Chiang fullname: Chiang, John Y.L. email: jchiang@neomed.edu – sequence: 2 givenname: Jessica M. orcidid: 0000-0003-3691-3330 surname: Ferrell fullname: Ferrell, Jessica M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35283218$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrGzEUhUVJaJzHD-gmaNnNOHpYIw2BQnFehUA3DWQnNNKdVmZGciXZkH8fGaeh7SJkdRb3nMO99ztGByEGQOgTJXNKaHuxmk8W5owwNqeUtlR9QDOqJGsUEfIAzQgnvJGMyCN0nPOKECIFUx_REa_CGVUzdHPls41bSE84DngwKUCO3uFHnMDCusSETXDYl4xTHAH7gHtf1dhqmqCYPo4-T6focDBjhrMXPUEPN9c_lnfN_ffbb8uv940VgpSmo5IL0TsiXOegZa103eAAjJV2kFy6vmWGA7eUVN_AXBVjJFf9IEGYnp-gL_ve9aafwFkIJZlRr5OfTHrS0Xj97yT4X_pn3OqOcNUqWQs-vxSk-HsDueipPgDG0QSIm6xZu1BKqAUV77By1S2Y6nat53-v9brPnz9XA90bbIo5JxheLZToHUu90pWl3rHUe5Y1I__LWF9M8XF3mR_fTF7uk1BRbD0kna2HYMH5SrVoF_0b6WfLDbix |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_126247 crossref_primary_10_1002_fsn3_70023 crossref_primary_10_1021_acs_jafc_4c04630 crossref_primary_10_3390_biomedicines10112686 crossref_primary_10_1016_j_ejphar_2023_176137 crossref_primary_10_1016_j_biopha_2022_113577 crossref_primary_10_1016_j_tox_2022_153278 crossref_primary_10_1016_j_jhazmat_2024_134821 crossref_primary_10_3389_fphar_2022_1027731 crossref_primary_10_3390_biom14070841 crossref_primary_10_3390_microorganisms13020241 crossref_primary_10_1002_cphc_202400783 crossref_primary_10_3389_fmicb_2023_1123716 crossref_primary_10_1007_s10517_024_06238_1 crossref_primary_10_1016_j_aninu_2024_03_008 crossref_primary_10_31857_S0233475523050109 crossref_primary_10_3390_cimb45120600 crossref_primary_10_3389_fphar_2024_1520158 crossref_primary_10_3390_ani14243554 crossref_primary_10_3389_fendo_2023_1268865 crossref_primary_10_1002_mnfr_202400147 crossref_primary_10_1210_endocr_bqaf031 crossref_primary_10_1016_j_phrs_2023_106943 crossref_primary_10_1002_biot_202400518 crossref_primary_10_1016_j_intimp_2024_111812 crossref_primary_10_1016_j_nbd_2024_106428 crossref_primary_10_1016_j_ijbiomac_2024_136393 crossref_primary_10_3390_pathogens13080702 crossref_primary_10_1038_s41522_024_00610_9 crossref_primary_10_1016_j_ijbiomac_2024_136154 crossref_primary_10_1016_j_bbadis_2024_167037 crossref_primary_10_3390_ph17081073 crossref_primary_10_3389_fimmu_2024_1431990 crossref_primary_10_1002_oby_24135 crossref_primary_10_1002_ptr_8005 crossref_primary_10_1016_j_phymed_2024_155919 crossref_primary_10_3390_cancers16071368 crossref_primary_10_1016_j_jgg_2023_05_013 crossref_primary_10_1097_MCO_0000000000000845 crossref_primary_10_3390_antiox13121532 crossref_primary_10_1016_j_cmet_2022_09_017 crossref_primary_10_1016_j_jep_2022_115682 crossref_primary_10_3390_ijms23137229 crossref_primary_10_3390_molecules29174080 crossref_primary_10_3390_molecules30051010 crossref_primary_10_3390_cimb44080235 crossref_primary_10_1016_j_ajpath_2024_07_023 crossref_primary_10_1111_liv_70027 crossref_primary_10_1016_j_phymed_2023_155291 crossref_primary_10_3390_metabo13070836 crossref_primary_10_3390_cimb46020078 crossref_primary_10_1371_journal_pone_0303786 crossref_primary_10_1002_med_21991 crossref_primary_10_1186_s40168_023_01743_3 crossref_primary_10_3389_fnut_2023_1121203 crossref_primary_10_1515_mr_2024_0020 crossref_primary_10_1016_j_biopha_2024_116400 crossref_primary_10_1016_j_scitotenv_2023_164307 crossref_primary_10_1051_medsci_2023125 crossref_primary_10_37349_eemd_2025_101425 crossref_primary_10_1016_j_plipres_2022_101210 crossref_primary_10_3389_fnut_2024_1447878 crossref_primary_10_1016_j_lfs_2023_121919 crossref_primary_10_3390_biology13070498 crossref_primary_10_3389_fnut_2022_991812 crossref_primary_10_3389_fendo_2023_1142177 crossref_primary_10_1016_j_micpath_2024_106767 crossref_primary_10_1016_j_heliyon_2024_e27819 crossref_primary_10_1016_j_intimp_2024_112799 crossref_primary_10_1016_j_scitotenv_2024_173795 crossref_primary_10_3390_ijms26041759 crossref_primary_10_1002_advs_202409107 crossref_primary_10_1097_HEP_0000000000000182 crossref_primary_10_1124_jpet_123_001900 crossref_primary_10_1016_j_psj_2024_104422 crossref_primary_10_1016_j_toxlet_2022_06_004 crossref_primary_10_1016_j_pharmthera_2023_108529 crossref_primary_10_1002_fsn3_4279 crossref_primary_10_1186_s40364_024_00694_7 crossref_primary_10_3390_ijms25084387 crossref_primary_10_1002_ptr_7926 crossref_primary_10_1016_j_jep_2024_118209 crossref_primary_10_1016_j_livres_2025_01_001 crossref_primary_10_3390_ijms252413656 crossref_primary_10_26599_FSHW_2022_9250252 crossref_primary_10_2147_CIA_S431220 crossref_primary_10_3390_ijms25073728 crossref_primary_10_1016_j_lfs_2024_122823 crossref_primary_10_1097_IM9_0000000000000137 crossref_primary_10_1002_ptr_8326 crossref_primary_10_1016_j_bioorg_2024_107940 crossref_primary_10_3390_biom14101227 crossref_primary_10_1186_s13023_024_03166_1 crossref_primary_10_1080_19490976_2022_2132903 crossref_primary_10_1007_s11010_024_05162_2 crossref_primary_10_1002_mnfr_202300148 crossref_primary_10_1186_s41232_023_00315_0 crossref_primary_10_1038_s41574_024_01067_8 crossref_primary_10_1016_j_tox_2024_153900 crossref_primary_10_3390_ijms26072972 crossref_primary_10_1134_S1990747823050100 crossref_primary_10_1016_j_phymed_2023_155124 crossref_primary_10_1080_14787210_2024_2376153 crossref_primary_10_1111_liv_16236 crossref_primary_10_1016_j_taap_2023_116550 crossref_primary_10_1016_j_jcmgh_2024_101392 crossref_primary_10_1016_j_csbj_2023_05_026 crossref_primary_10_1021_acs_analchem_4c03743 crossref_primary_10_1021_acsbiomedchemau_4c00105 crossref_primary_10_3389_fendo_2025_1551100 crossref_primary_10_1186_s13020_024_00889_y crossref_primary_10_3389_fphar_2025_1533141 crossref_primary_10_3390_foods12234308 |
Cites_doi | 10.1038/s41575-019-0145-7 10.1007/s11695-012-0673-5 10.1194/jlr.D600032-JLR200 10.1002/hep.29569 10.3389/fimmu.2020.609060 10.1016/j.cell.2006.06.049 10.1016/S0022-2275(20)33481-7 10.1016/j.livres.2017.05.001 10.1038/nature11225 10.1038/s41591-018-0222-4 10.1016/S0022-2275(20)31482-6 10.1016/j.cmet.2005.08.010 10.1146/annurev.biochem.72.121801.161712 10.1016/j.soard.2017.05.024 10.1016/j.jhep.2014.12.034 10.1016/j.jceh.2013.10.005 10.1161/01.ATV.0000195793.73118.b4 10.1126/scitranslmed.aba4448 10.1053/j.gastro.2014.12.005 10.1016/S1097-2765(00)80348-2 10.1038/ncomms3384 10.1016/j.cmet.2015.05.004 10.1016/S0022-2275(20)40050-1 10.1016/j.jcmgh.2016.10.002 10.1002/hep.31622 10.1002/hep.24702 10.1038/ncomms10166 10.1128/mSystems.00070-16 10.1016/j.cld.2007.11.010 10.1002/hep.31265 10.1002/hep.22891 10.1002/hep.28689 10.1194/jlr.M064709 10.1016/S1097-2765(00)00051-4 10.1371/journal.pone.0025637 10.1056/NEJMra1713263 10.1016/j.jsbmb.2019.01.011 10.1371/journal.pone.0093567 10.3389/fncel.2017.00191 10.1016/j.jcmgh.2020.10.011 10.1016/S0140-6736(14)61933-4 10.1146/annurev-nutr-082018-124344 10.1016/j.cmet.2021.04.009 10.1002/cld.1143 10.1128/MCB.20.1.187-195.2000 10.4161/gmic.25723 10.1016/j.jhep.2008.02.011 10.1038/nature13949 10.1096/fj.202101397R 10.1007/s11938-020-00290-2 10.1002/hep.21183 10.1007/978-1-4614-0887-1_11 10.1002/hep.25740 10.1002/hep.30590 10.1161/ATVBAHA.113.301565 10.1038/nm1501 10.1016/j.jhep.2018.10.035 10.1016/j.jhep.2009.05.012 10.1371/journal.pone.0151829 10.1002/hep.23032 10.1016/0016-5085(95)90083-7 10.1016/j.bbadis.2010.01.002 10.1016/0092-8674(95)90199-X 10.1016/j.cmet.2014.05.020 10.1002/hep.30513 10.1038/ncomms10713 10.1053/j.gastro.2008.03.003 10.1136/gutjnl-2015-309871 10.1194/jlr.M071183 10.1074/jbc.M510713200 10.1038/nrgastro.2015.12 10.1016/S0006-291X(02)02550-0 10.1111/hepr.13001 10.1016/j.bbadis.2018.05.011 10.1126/science.284.5418.1365 10.1210/en.2011-2145 10.1016/S0092-8674(00)00062-3 10.1016/S0022-2275(20)39723-6 10.1002/hep.26463 10.1111/imm.12045 10.1021/jm025529g 10.1152/ajpgi.00223.2019 10.1152/ajpgi.00258.2004 10.1126/science.284.5418.1362 10.1074/jbc.M111.305789 10.1038/nature13135 10.1016/S1534-5807(02)00154-5 10.1053/j.gastro.2017.01.055 10.1002/hep.22363 10.1002/hep.22627 10.1016/S1097-2765(00)00050-2 10.1038/s41575-020-0269-9 10.1038/nature07976 10.1016/j.jhep.2020.10.030 10.1152/ajpgi.00300.2018 10.1002/hep.29325 10.1172/JCI25604 10.1016/j.jhep.2020.07.028 10.1074/jbc.M105117200 10.1002/hep.21458 10.1021/jm501052c 10.2337/db13-0639 10.1038/s41589-020-0604-z 10.1016/j.jhep.2018.01.019 10.1074/jbc.275.15.10918 10.1126/science.1204265 10.2174/092986706778521823 10.1016/S0021-9258(17)32469-9 10.1074/jbc.M103270200 10.1002/hep.21878 10.1126/science.1198363 10.1172/JCI76738 10.1210/me.2011-0033 10.1172/JCI0215387 10.1074/jbc.R100029200 10.1016/j.bbrc.2008.04.171 10.2337/db16-0663 10.1053/j.gastro.2018.08.022 10.1146/annurev-pathol-012615-044224 10.1210/me.2007-0527 10.1194/jlr.RA119000395 10.1016/j.bbalip.2019.07.006 10.1002/hep.28709 10.1002/hep.27085 10.4161/auto.25063 10.1074/jbc.M405423200 10.1002/hep.20973 10.1016/j.jhep.2021.03.029 10.1038/sj.emboj.7600728 10.1074/jbc.M117.784322 10.1172/JCI76289 10.1515/hsz-2018-0379 10.1101/gad.184788.111 10.1038/mi.2016.42 10.1136/gutjnl-2015-309458 10.1172/JCI21025 10.1038/nm.3760 10.1371/journal.ppat.1007581 10.1002/hep.27804 10.1016/j.cmet.2013.01.003 10.1016/S0022-2275(20)30029-8 10.1038/s41575-020-00404-2 10.1124/pr.113.008201 10.1002/j.1460-2075.1992.tb05139.x 10.1016/j.metabol.2021.154844 10.1080/19490976.2021.1888673 10.1016/j.cmet.2010.04.005 10.1074/jbc.M501931200 10.1002/hep.29076 10.1038/nrgastro.2017.109 10.1053/j.gastro.2011.07.046 10.2337/dbi17-0007 10.1002/hep.22196 10.1002/hep.29359 10.1053/j.gastro.2013.05.042 10.1074/jbc.M000996200 10.1053/j.gastro.2003.12.013 10.1016/S2210-7401(12)70015-3 10.1194/jlr.R900009-JLR200 10.1053/gast.2001.25503 10.1007/s11695-018-3216-x 10.1074/jbc.M704075200 10.1126/science.1121435 10.1002/hep4.1814 10.1038/s41574-019-0156-z 10.1016/j.jhep.2017.05.009 10.1194/jlr.M087239 10.1152/ajpgi.00207.2004 10.1002/hep.30509 10.12688/f1000research.12449.1 10.1073/pnas.0506982103 10.1002/cld.861 10.1016/S1534-5807(02)00187-9 10.1194/jlr.R900010-JLR200 10.1074/jbc.M209706200 10.1074/jbc.M109.083899 10.1002/hep.27592 10.1194/jlr.M700330-JLR200 10.1006/mgme.2000.3106 10.1002/hep.23450 10.1038/nature13961 10.1056/NEJMoa1509840 10.1038/s41467-018-04697-5 10.1038/nrgastro.2010.21 10.1172/JCI0214505 10.1074/jbc.M010878200 10.2337/db11-0030 10.1073/pnas.0509592103 10.1074/jbc.M011610200 10.1136/gut.2010.212159 10.1038/nrd2619 10.1210/me.2007-0113 10.1038/ncpgasthep0521 10.1016/j.immuni.2016.10.009 10.1002/hep.24681 10.1053/j.gastro.2016.08.057 10.1002/hep.29857 10.1016/0092-8674(95)90530-8 10.1016/j.cmet.2011.11.006 10.1016/j.tips.2009.08.001 10.1002/hep.510280422 10.1074/jbc.C000275200 10.1128/MCB.01076-09 10.1016/j.cmet.2005.09.001 10.1210/me.2010-0460 10.1016/j.cmet.2009.08.001 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.mce.2022.111618 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-8057 |
EndPage | 111618 |
ExternalDocumentID | PMC9038687 35283218 10_1016_j_mce_2022_111618 S030372072200065X |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R37 DK058379 – fundername: NIDDK NIH HHS grantid: R01 DK044442 |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFRF ABGSF ABJNI ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ1 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SCU SDF SDG SDP SES SPCBC SSH SSU SSZ T5K WH7 ~G- .55 .GJ 29M 3O- 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HDZ HLW HMK HMO HVGLF HZ~ J5H MVM R2- RIG SAE SBG SEW WUQ X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-917355bd05d9de6267d9fdeeac7cf737db62a3e3c10355f2d035aa738bf7e5ab3 |
IEDL.DBID | .~1 |
ISSN | 0303-7207 1872-8057 |
IngestDate | Thu Aug 21 18:37:22 EDT 2025 Thu Jul 10 23:10:05 EDT 2025 Sun Aug 24 03:48:18 EDT 2025 Thu Apr 03 07:01:06 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Tue Jul 01 03:48:50 EDT 2025 Fri Feb 23 02:40:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FXR NAFLD NR UDCA CYP7A1 Metabolic disease PBC Bile acid receptors CA CDCA PSC DCA HCC MCA LCA CYP7B1 NASH OCA CYP27A1 TGR5 FGF15 PFIC FGF19 FGFR4 Fatty liver diseases Cholestasis |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-917355bd05d9de6267d9fdeeac7cf737db62a3e3c10355f2d035aa738bf7e5ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3691-3330 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9038687 |
PMID | 35283218 |
PQID | 2638942897 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038687 proquest_miscellaneous_2648858415 proquest_miscellaneous_2638942897 pubmed_primary_35283218 crossref_primary_10_1016_j_mce_2022_111618 crossref_citationtrail_10_1016_j_mce_2022_111618 elsevier_sciencedirect_doi_10_1016_j_mce_2022_111618 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-15 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Molecular and cellular endocrinology |
PublicationTitleAlternate | Mol Cell Endocrinol |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bookout, Jeong, Downes, Yu, Evans, Mangelsdorf (bib9) 2006; 126 Song, Li, Owsley, Strom, Chiang (bib180) 2009; 49 Foley, O'Flaherty, Barrangou, Theriot (bib58) 2019; 15 Kjaergaard, Frisch, Sorensen, Munk, Hofmann, Horsager, Schacht, Erickson, Shapiro, Keiding (bib104) 2021; 74 Zhang, Chiang (bib207) 2001; 276 Potthoff, Kliewer, Mangelsdorf (bib155) 2012; 26 Kir, Beddow, Samuel, Miller, Previs, Suino-Powell, Xu, Shulman, Kliewer, Mangelsdorf (bib103) 2011; 331 Perino, Pols, Nomura, Stein, Pellicciari, Schoonjans (bib153) 2014; 124 Jones (bib93) 2012; 728 Wang, Yang, Chen, Huang, Lai, Forman, Huang (bib196) 2008; 22 Hoofnagle (bib82) 2020; 72 Russell (bib167) 2003; 72 Chaudhari, Luo, Harris, Aliakbarian, Yao, Paik, Subramaniam, Adhikari, Vernon, Kilic, Weiss, Huh, Sheu, Devlin (bib18) 2020 Chavez-Talavera, Tailleux, Lefebvre, Staels (bib20) 2017; 152 Liu, Zhao, Zhou, Liang, Campbell, Zhang, Zhang, Shi, Wang, Pandak, Sirica, Hylemon, Zhou (bib120) 2014; 60 Pathak, Cen, Nichols, Ferrell, Boehme, Krausz, Patterson, Gonzalez, Chiang (bib150) 2018; 68 Forman, Goode, Chen, Oro, Bradley, Perlmann, Noonan, Burka, McMorris, Lamph, Evans, Weinberger (bib59) 1995; 81 Gonzalez, Jiang, Patterson (bib66) 2016; 151 Hirschfield, Chazouilleres, Drenth, Thorburn, Harrison, Landis, Mayo, Muir, Trotter, Leeming, Karsdal, Jaros, Ling, Kim, Rossi, Somaratne, DePaoli, Beuers (bib78) 2019; 70 Prawitt, Abdelkarim, Stroeve, Popescu, Duez, Velagapudi, Dumont, Bouchaert, van Dijk, Lucas, Dorchies, Daoudi, Lestavel, Gonzalez, Oresic, Cariou, Kuipers, Caron, Staels (bib158) 2011; 60 Simonen, Dali-Youcef, Kaminska, Venesmaa, Kakela, Paakkonen, Hallikainen, Kolehmainen, Uusitupa, Moilanen, Laakso, Gylling, Patti, Auwerx, Pihlajamaki (bib173) 2012; 22 Nevens, Andreone, Mazzella, Strasser, Bowlus, Invernizzi, Drenth, Pockros, Regula, Beuers, Trauner, Jones, Floreani, Hohenester, Luketic, Shiffman, van Erpecum, Vargas, Vincent, Hirschfield, Shah, Hansen, Lindor, Marschall, Kowdley, Hooshmand-Rad, Marmon, Sheeron, Pencek, MacConell, Pruzanski, Shapiro, Group (bib144) 2016; 375 Srivastava (bib181) 2014; 4 Francis, Forman (bib60) 2021; 18 Kowdley, Luketic, Chapman, Hirschfield, Poupon, Schramm, Vincent, Rust, Pares, Mason, Marschall, Shapiro, Adorini, Sciacca, Beecher-Jones, Bohm, Pencek, Jones, Obeticholic Acid (bib106) 2018; 67 Marchiano, Biagioli, Roselli, Zampella, Di Giorgio, Bordoni, Bellini, Morretta, Monti, Distrutti, Fiorucci (bib127) 2022; 36 Denson, Sturm, Echevarria, Zimmerman, Makishima, Mangelsdorf, Karpen (bib43) 2001; 121 Loomba, Noureddin, Kowdley, Kohli, Sheikh, Neff, Bhandari, Gunn, Caldwell, Goodman, Wapinski, Resnick, Beck, Ding, Jia, Chuang, Huss, Chung, Subramanian, Myers, Patel, Borg, Ghalib, Kabler, Poulos, Younes, Elkhashab, Hassanein, Iyer, Ruane, Shiffman, Strasser, Wong, Alkhouri, Investigators (bib121) 2021; 73 Thomas, Gioiello, Noriega, Strehle, Oury, Rizzo, Macchiarulo, Yamamoto, Mataki, Pruzanski, Pellicciari, Auwerx, Schoonjans (bib188) 2009; 10 Finn, Rodriguez, Kohler, Jiang, Wan, Blanco, King, Chen, Bell, Dragoli, Jacobs, Jain, Leadbetter, Siegel, Carreras, Koo-McCoy, Shaw, Le, Vanegas, Hsu, Kozuka, Okamoto, Caldwell, Lewis (bib56) 2019; 316 Reich, Deutschmann, Sommerfeld, Klindt, Kluge, Kubitz, Ullmer, Knoefel, Herebian, Mayatepek, Haussinger, Keitel (bib162) 2016; 65 Guo, Xie, Chi, Zhang, Liu, Zhang, Zheng, Zhang, Xia, Ke, Lu, Wang (bib69) 2016; 45 Li, Holmstrom, Kir, Umetani, Schmidt, Kliewer, Mangelsdorf (bib116) 2011; 25 Dawson (bib40) 2017; 66 Dyson, Hirschfield, Adams, Beuers, Mann, Lindor, Jones (bib48) 2015; 12 Claudel, Sturm, Duez, Torra, Sirvent, Kosykh, Fruchart, Dallongeville, Hum, Kuipers, Staels (bib34) 2002; 109 Ryan, Tremaroli, Clemmensen, Kovatcheva-Datchary, Myronovych, Karns, Wilson-Perez, Sandoval, Kohli, Backhed, Seeley (bib169) 2014; 509 Jiang, Xie, Lv, Li, Krausz, Shi, Brocker, Desai, Amin, Bisson, Liu, Gavrilova, Patterson, Gonzalez (bib91) 2015; 6 Inagaki, Choi, Moschetta, Peng, Cummins, McDonald, Luo, Jones, Goodwin, Richardson, Gerard, Repa, Mangelsdorf, Kliewer (bib86) 2005; 2 Wang, Lee, Bundman, Han, Thevananther, Kim, Chua, Wei, Heyman, Karin, Moore (bib194) 2002; 2 Chiang, Li (bib28) 2004 Friedman, Li, Shen, Jiang, Chau, Adorini, Babakhani, Edwards, Shapiro, Zhao, Carr, Bittinger, Li, Wu (bib62) 2018; 155 Lu, Makishima, Repa, Schoonjans, Kerr, Auwerx, Mangelsdorf (bib123) 2000; 6 Yan, Khambu, Chen, Dong, Guo, Yin (bib202) 2021; 11 Smith, Lear, Erickson (bib176) 1995; 36 Wang, Aoki, Yang, Peng, Liu, Li, Qiang, Sun, Gurley, Lai, Zhang, Liang, Nagahashi, Takabe, Pandak, Hylemon, Zhou (bib198) 2017; 65 Kida, Tsubosaka, Hori, Ozaki, Murata (bib101) 2013; 33 Amaral, Castro, Sola, Steer, Rodrigues (bib2) 2007; 282 Crestani, Stroup, Chiang (bib36) 1995; 36 Kakiyama, Marques, Takei, Nittono, Erickson, Fuchs, Rodriguez-Agudo, Gil, Hylemon, Zhou, Bajaj, Pandak (bib94) 2019; 189 Chiang, Chen, Zhang, Cowsley, Yang (bib31) 2001; 120 Zhang, Soto, Park, Viswanath, Kuwada, Abel, Wang (bib210) 2010; 30 Nemati, Lu, Dokpuang, Booth, Plank, Murphy (bib142) 2018 Zhang, Lee, Barrera, Lee, Vales, Gonzalez, Willson, Edwards (bib208) 2006; 103 Chiang (bib24) 2017; 6 Risstad, Kristinsson, Fagerland, le Roux, Birkeland, Gulseth, Thorsby, Vincent, Engstrom, Olbers, Mala (bib166) 2017; 13 Massimi, Lear, Huling, Jones, Erickson (bib129) 1998; 28 Mouzaki, Wang, Bandsma, Comelli, Arendt, Zhang, Fung, Fischer, McGilvray, Allard (bib137) 2016; 11 Friedman (bib61) 2008; 134 Pandak, Heuman, Hylemon, Chiang, Vlahcevic (bib146) 1995; 108 Zhang, Yin, Anderson, Ma, Gonzalez, Willson, Edwards (bib209) 2010; 285 Kucukoglu, Sowa, Mazzolini, Syn, Canbay (bib107) 2021; 74 Yang, Lee, Kim, Lee, Ryu, Fukuda, Hase, Yang, Lim, Kim, Kim, Ahn, Kwon, Ko, Kweon (bib204) 2017; 10 Chiang, Stroup (bib29) 1994; 269 Lou, Ma, Fu, Meng, Zhang, Wang, Van Ness, Yu, Xu, Huang (bib122) 2014; 9 Farrell, Larter (bib51) 2006; 43 Jahan, Chiang (bib89) 2005; 288 Park, Qatanani, Chua, LaRey, Johnson, Watanabe, Moore, Lee (bib147) 2008; 47 Hirschfield, Mason, Luketic, Lindor, Gordon, Mayo, Kowdley, Vincent, Bodhenheimer, Pares, Trauner, Marschall, Adorini, Sciacca, Beecher-Jones, Castelloe, Bohm, Shapiro (bib77) 2015; 148 Cipriani, Mencarelli, Chini, Distrutti, Renga, Bifulco, Baldelli, Donini, Fiorucci (bib33) 2011; 6 Czaja, Ding, Donohue, Friedman, Kim, Komatsu, Lemasters, Lemoine, Lin, Ou, Perlmutter, Randall, Ray, Tsung, Yin (bib38) 2013; 9 Ikegami, Honda (bib85) 2018; 48 Katafuchi, Esterhazy, Lemoff, Ding, Sondhi, Kliewer, Mirzaei, Mangelsdorf (bib95) 2015; 21 Miao, Fang, Bae, Kemper (bib132) 2006; 281 Honda, Yamashita, Numazawa, Ikegami, Doy, Matsuzaki, Miyazaki (bib80) 2007; 48 Reich, Spomer, Klindt, Fuchs, Stindt, Deutschmann, Hohne, Liaskou, Hov, Karlsen, Beuers, Verheij, Ferreira-Gonzalez, Hirschfield, Forbes, Schramm, Esposito, Nierhoff, Fickert, Fuchs, Trauner, Garcia-Beccaria, Gabernet, Nahnsen, Mallm, Vogel, Schoonjans, Lautwein, Kohrer, Haussinger, Luedde, Heikenwalder, Keitel (bib163) 2021; 75 Nagahashi, Takabe, Liu, Peng, Wang, Wang, Hait, Wang, Allegood, Yamada, Aoyagi, Liang, Pandak, Spiegel, Hylemon, Zhou (bib140) 2015; 61 Arab, Karpen, Dawson, Arrese, Trauner (bib5) 2017; 65 Halilbasic, Fiorotto, Fickert, Marschall, Moustafa, Spirli, Fuchsbichler, Gumhold, Silbert, Zatloukal, Langner, Maitra, Denk, Hofmann, Strazzabosco, Trauner (bib73) 2009; 49 Lee, Hong, Kim, Shim, Sung Lee, Lee, Soo Choi, Kim, Park (bib111) 2015; 62 Chiang, Ferrell (bib27) 2020; 15 Miyake, Wang, Davis (bib134) 2000; 275 Choi, Moschetta, Bookout, Peng, Umetani, Holmstrom, Suino-Powell, Xu, Richardson, Gerard, Mangelsdorf, Kliewer (bib32) 2006; 12 Thomas, Hart, Kong, Fang, Zhong, Guo (bib189) 2010; 51 Gege, Hambruch, Hambruch, Kinzel, Kremoser, Ligands (bib64) 2019 Thomas, Pellicciari, Pruzanski, Auwerx, Schoonjans (bib187) 2008; 7 Li, Dawson (bib114) 2019; 1865 Haeusler, Astiarraga, Camastra, Accili, Ferrannini (bib72) 2013; 62 McMillin, Frampton, Grant, Khan, Diocares, Petrescu, Wyatt, Kain, Jefferson, DeMorrow (bib131) 2017; 11 Nawrot, Peschard, Lestavel, Staels (bib141) 2021; 123 Ferrell, Boehme, Li, Chiang (bib53) 2016; 57 Li, Jiang, Krausz, Li, Albert, Hao, Fabre, Mitchell, Patterson, Gonzalez (bib118) 2013; 4 Fiorucci, Mencarelli, Palladino, Cipriani (bib57) 2009; 30 Watanabe, Houten, Wang, Moschetta, Mangelsdorf, Heyman, Moore, Auwerx (bib199) 2004; 113 Li, Chiang (bib113) 2014; 66 Makishima, Okamoto, Repa, Tu, Learned, Luk, Hull, Lustig, Mangelsdorf, Shan (bib125) 1999; 284 Poupon (bib156) 2012; 36 Neuschwander-Tetri, Loomba, Sanyal, Lavine, Van Natta, Abdelmalek, Chalasani, Dasarathy, Diehl, Hameed, Kowdley, McCullough, Terrault, Clark, Tonascia, Brunt, Kleiner, Doo, Network (bib143) 2015; 385 del Castillo-Olivares, Gil (bib42) 2000; 275 Canfora, Meex, Venema, Blaak (bib15) 2019; 15 Govaere, Cockell, Tiniakos, Queen, Younes, Vacca, Alexander, Ravaioli, Palmer, Petta, Boursier, Rosso, Johnson, Wonders, Day, Ekstedt, Oresic, Darlay, Cordell, Marra, Vidal-Puig, Bedossa, Schattenberg, Clement, Allison, Bugianesi, Ratziu, Daly, Anstee (bib68) 2020; 12 Huang, Ma, Zhang, Qatanani, Cuvillier, Liu, Dong, Huang, Moore (bib84) 2006; 312 Stroup, Crestani, Chiang (bib182) 1997; 273 Ridlon, Alves, Hylemon, Bajaj (bib165) 2013; 4 Chiang, Ferrell (bib26) 2020; 318 De Fabiani, Mitro, Anzulovich, Pinelli, Galli, Crestani (bib41) 2001; 276 Ding, Sousa, Jin, Dong, Kim, Ramirez, Xiao, Gu, Yang, Wang, Yu, Pigazzi, Schones, Yang, Moore, Wang, Huang (bib45) 2016; 64 Laudet, Hanni, Coll, Catzeflis, Stehelin (bib108) 1992; 11 Pols, Nomura, Harach, Lo Sasso, Oosterveer, Thomas, Rizzo, Gioiello, Adorini, Pellicciari, Auwerx, Schoonjans (bib154) 2011; 14 Ruuskanen, Aberg, Mannisto, Havulinna, Meric, Liu, Loomba, Vazquez-Baeza, Tripathi, Valsta, Inouye, Jousilahti, Salomaa, Jain, Knight, Lahti, Niiranen (bib168) 2021; 13 Chen, Ananthanarayanan, Emre, Neimark, Bull, Knisely, Strautnieks, Thompson, Magid, Gordon, Balasubramanian, Suchy, Shneider (bib21) 2004; 126 Gutierrez, Ratliff, Andres, Huang, McKeehan, Davis (bib71) 2006; 26 Gadaleta, van Erpecum, Oldenburg, Willemsen, Renooij, Murzilli, Klo Hirschfield (10.1016/j.mce.2022.111618_bib77) 2015; 148 Bozadjieva (10.1016/j.mce.2022.111618_bib11) 2018; 67 Harrison (10.1016/j.mce.2022.111618_bib76) 2019; 71 Kowdley (10.1016/j.mce.2022.111618_bib106) 2018; 67 Ryan (10.1016/j.mce.2022.111618_bib169) 2014; 509 Miao (10.1016/j.mce.2022.111618_bib132) 2006; 281 Sun (10.1016/j.mce.2022.111618_bib185) 2021; 18 del Castillo-Olivares (10.1016/j.mce.2022.111618_bib42) 2000; 275 Sola (10.1016/j.mce.2022.111618_bib177) 2006; 13 Smith (10.1016/j.mce.2022.111618_bib176) 1995; 36 Gonzalez (10.1016/j.mce.2022.111618_bib66) 2016; 151 Shi (10.1016/j.mce.2022.111618_bib172) 2020; 11 Li (10.1016/j.mce.2022.111618_bib115) 2006; 43 Wouters (10.1016/j.mce.2022.111618_bib200) 2008; 48 Pathak (10.1016/j.mce.2022.111618_bib149) 2017; 292 Czaja (10.1016/j.mce.2022.111618_bib38) 2013; 9 Makishima (10.1016/j.mce.2022.111618_bib125) 1999; 284 Stroup (10.1016/j.mce.2022.111618_bib182) 1997; 273 Arab (10.1016/j.mce.2022.111618_bib5) 2017; 65 Seok (10.1016/j.mce.2022.111618_bib171) 2014; 516 Cohen (10.1016/j.mce.2022.111618_bib35) 2011; 332 Jahan (10.1016/j.mce.2022.111618_bib89) 2005; 288 Yang (10.1016/j.mce.2022.111618_bib203) 2010; 11 Finn (10.1016/j.mce.2022.111618_bib56) 2019; 316 Govaere (10.1016/j.mce.2022.111618_bib68) 2020; 12 Srivastava (10.1016/j.mce.2022.111618_bib181) 2014; 4 Prawitt (10.1016/j.mce.2022.111618_bib158) 2011; 60 Zhang (10.1016/j.mce.2022.111618_bib210) 2010; 30 Pathak (10.1016/j.mce.2022.111618_bib150) 2018; 68 Huang (10.1016/j.mce.2022.111618_bib84) 2006; 312 Duane (10.1016/j.mce.2022.111618_bib46) 1999; 40 Massimi (10.1016/j.mce.2022.111618_bib129) 1998; 28 Ridlon (10.1016/j.mce.2022.111618_bib165) 2013; 4 Gupta (10.1016/j.mce.2022.111618_bib70) 2001; 276 Perino (10.1016/j.mce.2022.111618_bib153) 2014; 124 McGavigan (10.1016/j.mce.2022.111618_bib130) 2015; 66 Davis (10.1016/j.mce.2022.111618_bib39) 2002; 43 Wang (10.1016/j.mce.2022.111618_bib194) 2002; 2 Nagahashi (10.1016/j.mce.2022.111618_bib140) 2015; 61 Thomas (10.1016/j.mce.2022.111618_bib188) 2009; 10 Sinal (10.1016/j.mce.2022.111618_bib174) 2000; 102 Claudel (10.1016/j.mce.2022.111618_bib34) 2002; 109 Laudet (10.1016/j.mce.2022.111618_bib108) 1992; 11 Chaudhari (10.1016/j.mce.2022.111618_bib19) 2021; 17 Hall (10.1016/j.mce.2022.111618_bib74) 2001; 276 Kucukoglu (10.1016/j.mce.2022.111618_bib107) 2021; 74 Li (10.1016/j.mce.2022.111618_bib113) 2014; 66 Pols (10.1016/j.mce.2022.111618_bib154) 2011; 14 Beuers (10.1016/j.mce.2022.111618_bib7) 2006; 3 Lee (10.1016/j.mce.2022.111618_bib109) 2000; 20 Singh (10.1016/j.mce.2022.111618_bib175) 2009; 458 McMillin (10.1016/j.mce.2022.111618_bib131) 2017; 11 Zhang (10.1016/j.mce.2022.111618_bib207) 2001; 276 Wagner (10.1016/j.mce.2022.111618_bib192) 2009; 51 Mangelsdorf (10.1016/j.mce.2022.111618_bib126) 1995; 83 Nevens (10.1016/j.mce.2022.111618_bib144) 2016; 375 Ding (10.1016/j.mce.2022.111618_bib45) 2016; 64 Fickert (10.1016/j.mce.2022.111618_bib55) 2017; 67 Jensen (10.1016/j.mce.2022.111618_bib90) 2018; 68 Choi (10.1016/j.mce.2022.111618_bib32) 2006; 12 Miyazaki-Anzai (10.1016/j.mce.2022.111618_bib135) 2018; 59 Gomez-Ospina (10.1016/j.mce.2022.111618_bib65) 2016; 7 Haeusler (10.1016/j.mce.2022.111618_bib72) 2013; 62 Mouzaki (10.1016/j.mce.2022.111618_bib136) 2020; 18 Byun (10.1016/j.mce.2022.111618_bib14) 2018; 9 Li (10.1016/j.mce.2022.111618_bib117) 2012; 287 Kida (10.1016/j.mce.2022.111618_bib101) 2013; 33 Mueller (10.1016/j.mce.2022.111618_bib139) 2015; 62 Jones (10.1016/j.mce.2022.111618_bib93) 2012; 728 Kerr (10.1016/j.mce.2022.111618_bib100) 2002; 2 Forman (10.1016/j.mce.2022.111618_bib59) 1995; 81 Hirschfield (10.1016/j.mce.2022.111618_bib78) 2019; 70 Chiang (10.1016/j.mce.2022.111618_bib23) 2017; 1 Ikegami (10.1016/j.mce.2022.111618_bib85) 2018; 48 Maruyama (10.1016/j.mce.2022.111618_bib128) 2002; 298 Zollner (10.1016/j.mce.2022.111618_bib212) 2008; 12 Dawson (10.1016/j.mce.2022.111618_bib40) 2017; 66 Fang (10.1016/j.mce.2022.111618_bib50) 2015; 21 Pean (10.1016/j.mce.2022.111618_bib151) 2013; 58 Trauner (10.1016/j.mce.2022.111618_bib190) 2019; 70 Gege (10.1016/j.mce.2022.111618_bib64) 2019 Kim (10.1016/j.mce.2022.111618_bib102) 2007; 48 Song (10.1016/j.mce.2022.111618_bib178) 2007; 46 Francis (10.1016/j.mce.2022.111618_bib60) 2021; 18 Wang (10.1016/j.mce.2022.111618_bib195) 2005; 2 Chiang (10.1016/j.mce.2022.111618_bib25) 2019; 39 Gadaleta (10.1016/j.mce.2022.111618_bib63) 2011; 60 Pandak (10.1016/j.mce.2022.111618_bib146) 1995; 108 Duran-Sandoval (10.1016/j.mce.2022.111618_bib47) 2005; 280 Dyson (10.1016/j.mce.2022.111618_bib48) 2015; 12 Fan (10.1016/j.mce.2022.111618_bib49) 2019; 400 Alkhouri (10.1016/j.mce.2022.111618_bib1) 2021; 5 Honda (10.1016/j.mce.2022.111618_bib80) 2007; 48 Li (10.1016/j.mce.2022.111618_bib114) 2019; 1865 Li (10.1016/j.mce.2022.111618_bib119) 2014; 20 Puri (10.1016/j.mce.2022.111618_bib160) 2018; 67 Boulias (10.1016/j.mce.2022.111618_bib10) 2005; 24 Islam (10.1016/j.mce.2022.111618_bib88) 2011; 141 Song (10.1016/j.mce.2022.111618_bib179) 2009; 2 Friedman (10.1016/j.mce.2022.111618_bib61) 2008; 134 Chaudhari (10.1016/j.mce.2022.111618_bib18) 2020 Chiang (10.1016/j.mce.2022.111618_bib31) 2001; 120 Miyake (10.1016/j.mce.2022.111618_bib134) 2000; 275 Thomas (10.1016/j.mce.2022.111618_bib187) 2008; 7 Anstee (10.1016/j.mce.2022.111618_bib4) 2019; 16 Song (10.1016/j.mce.2022.111618_bib180) 2009; 49 Potthoff (10.1016/j.mce.2022.111618_bib155) 2012; 26 Reich (10.1016/j.mce.2022.111618_bib163) 2021; 75 Mouzaki (10.1016/j.mce.2022.111618_bib137) 2016; 11 Poupon (10.1016/j.mce.2022.111618_bib156) 2012; 36 Kir (10.1016/j.mce.2022.111618_bib103) 2011; 331 Pullinger (10.1016/j.mce.2022.111618_bib159) 2002; 110 Pournaras (10.1016/j.mce.2022.111618_bib157) 2012; 153 Katafuchi (10.1016/j.mce.2022.111618_bib95) 2015; 21 Bramlett (10.1016/j.mce.2022.111618_bib12) 2000; 71 Nemati (10.1016/j.mce.2022.111618_bib142) 2018 Chiang (10.1016/j.mce.2022.111618_bib28) 2004 Watanabe (10.1016/j.mce.2022.111618_bib199) 2004; 113 Kjaergaard (10.1016/j.mce.2022.111618_bib104) 2021; 74 Canfora (10.1016/j.mce.2022.111618_bib15) 2019; 15 Fiorucci (10.1016/j.mce.2022.111618_bib57) 2009; 30 Bhalla (10.1016/j.mce.2022.111618_bib8) 2004; 279 Studer (10.1016/j.mce.2022.111618_bib183) 2012; 55 Amaral (10.1016/j.mce.2022.111618_bib2) 2007; 282 Simonen (10.1016/j.mce.2022.111618_bib173) 2012; 22 Sayin (10.1016/j.mce.2022.111618_bib170) 2013; 17 Hoofnagle (10.1016/j.mce.2022.111618_bib82) 2020; 72 Foley (10.1016/j.mce.2022.111618_bib58) 2019; 15 Hardy (10.1016/j.mce.2022.111618_bib75) 2016; 11 Brunt (10.1016/j.mce.2022.111618_bib13) 2010; 7 Li (10.1016/j.mce.2022.111618_bib116) 2011; 25 Lee (10.1016/j.mce.2022.111618_bib110) 2014; 516 Chiang (10.1016/j.mce.2022.111618_bib26) 2020; 318 Houten (10.1016/j.mce.2022.111618_bib83) 2007; 21 Ouyang (10.1016/j.mce.2022.111618_bib145) 2008; 48 Ma (10.1016/j.mce.2022.111618_bib124) 2006; 116 Castellanos-Jankiewicz (10.1016/j.mce.2022.111618_bib17) 2021; 33 Rao (10.1016/j.mce.2022.111618_bib161) 1997; 38 Chen (10.1016/j.mce.2022.111618_bib21) 2004; 126 Wang (10.1016/j.mce.2022.111618_bib198) 2017; 65 Aron-Wisnewsky (10.1016/j.mce.2022.111618_bib6) 2020; 17 Zweers (10.1016/j.mce.2022.111618_bib213) 2012; 55 De Fabiani (10.1016/j.mce.2022.111618_bib41) 2001; 276 Nawrot (10.1016/j.mce.2022.111618_bib141) 2021; 123 Li (10.1016/j.mce.2022.111618_bib118) 2013; 4 Ferrell (10.1016/j.mce.2022.111618_bib53) 2016; 57 Chiang (10.1016/j.mce.2022.111618_bib29) 1994; 269 Marchiano (10.1016/j.mce.2022.111618_bib127) 2022; 36 Keitel (10.1016/j.mce.2022.111618_bib98) 2008; 372 Takahashi (10.1016/j.mce.2022.111618_bib186) 2016; 57 Chiang (10.1016/j.mce.2022.111618_bib24) 2017; 6 Pellicciari (10.1016/j.mce.2022.111618_bib152) 2002; 45 Park (10.1016/j.mce.2022.111618_bib147) 2008; 47 Devkota (10.1016/j.mce.2022.111618_bib44) 2012; 487 Kakiyama (10.1016/j.mce.2022.111618_bib94) 2019; 189 Yoneno (10.1016/j.mce.2022.111618_bib205) 2013; 139 Yan (10.1016/j.mce.2022.111618_bib202) 2021; 11 Zhang (10.1016/j.mce.2022.111618_bib208) 2006; 103 Friedman (10.1016/j.mce.2022.111618_bib62) 2018; 155 Crestani (10.1016/j.mce.2022.111618_bib36) 1995; 36 Guo (10.1016/j.mce.2022.111618_bib69) 2016; 45 Honda (10.1016/j.mce.2022.111618_bib81) 2020; 61 Cui (10.1016/j.mce.2022.111618_bib37) 2002; 9 Chiang (10.1016/j.mce.2022.111618_bib27) 2020; 15 Sun (10.1016/j.mce.2022.111618_bib184) 2018; 24 Ferdinandusse (10.1016/j.mce.2022.111618_bib52) 2009; 50 Liu (10.1016/j.mce.2022.111618_bib120) 2014; 60 Lee (10.1016/j.mce.2022.111618_bib111) 2015; 62 Bookout (10.1016/j.mce.2022.111618_bib9) 2006; 126 Denson (10.1016/j.mce.2022.111618_bib43) 2001; 121 Zhang (10.1016/j.mce.2022.111618_bib209) 2010; 285 Gutierrez (10.1016/j.mce.2022.111618_bib71) 2006; 26 Loomba (10.1016/j.mce.2022.111618_bib121) 2021; 73 Cipriani (10.1016/j.mce.2022.111618_bib33) 2011; 6 Renga (10.1016/j.mce.2022.111618_bib164) 2010 Keitel (10.1016/j.mce.2022.111618_bib99) 2009; 50 Jiang (10.1016/j.mce.2022.111618_bib92) 2015; 125 Wang (10.1016/j.mce.2022.111618_bib193) 1999; 3 Zhang (10.1016/j.mce.2022.111618_bib211) 2016; 1 Ferrell (10.1016/j.mce.2022.111618_bib54) 2019; 70 Inagaki (10.1016/j.mce.2022.111618_bib86) 2005; 2 Halilbasic (10.1016/j.mce.2022.111618_bib73) 2009; 49 Hogenauer (10.1016/j.mce.2022.111618_bib79) 2014; 57 Li (10.1016/j.mce.2022.111618_bib112) 2005; 288 Mudaliar (10.1016/j.mce.2022.111618_bib138) 2013; 145 Reich (10.1016/j.mce.2022.111618_bib162) 2016; 65 Wang (10.1016/j.mce.2022.111618_bib196) 2008; 22 Farrell (10.1016/j.mce.2022.111618_bib51) 2006; 43 Russell (10.1016/j.mce.2022.111618_bib167) 2003; 72 Xie (10.1016/j.mce.2022.111618_bib201) 2017; 66 Younossi (10.1016/j.mce.2022.111618_bib206) 2018; 15 Jiang (10.1016/j.mce.2022.111618_bib91) 2015; 6 Chiang (10.1016/j.mce.2022.111618_bib30) 2000; 275 Parks (10.1016/j.mce.2022.111618_bib148) 1999; 284 Lu (10.1016/j.mce.2022.111618_bib123) 2000; 6 Inagaki (10.1016/j.mce.2022.111618_bib87) 2006; 103 Villanueva (10.1016/j.mce.2022.111618_bib191) 2019; 380 Yang (10.1016/j.mce.2022.111618_bib204) 2017; 10 Keitel (10.1016/j.mce.2022.111618_bib97) 2007; 45 Lou (10.1016/j.mce.2022.111618_bib122) 2014; 9 Neuschwander-Tetri (10.1016/j.mce.2022.11161 |
References_xml | – volume: 269 start-page: 17502 year: 1994 end-page: 17507 ident: bib29 article-title: Identification and characterization of a putative bile acid responsive element in cholesterol 7a-hydroxylase gene promoter publication-title: J. Biol. Chem. – volume: 11 start-page: 609060 year: 2020 ident: bib172 article-title: TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation publication-title: Front. Immunol. – volume: 21 start-page: 159 year: 2015 end-page: 165 ident: bib50 article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance publication-title: Nat. Med. – volume: 50 start-page: 861 year: 2009 end-page: 870 ident: bib99 article-title: The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders publication-title: Hepatology – volume: 13 start-page: 1544 year: 2017 end-page: 1553 ident: bib166 article-title: Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial publication-title: Surg. Obes. Relat. Dis. – volume: 21 start-page: 898 year: 2015 end-page: 904 ident: bib95 article-title: Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry publication-title: Cell Metabol. – volume: 74 start-page: 442 year: 2021 end-page: 457 ident: bib107 article-title: Hepatokines and adipokines in NASH-related hepatocellular carcinoma publication-title: J. Hepatol. – volume: 1865 start-page: 895 year: 2019 end-page: 911 ident: bib114 article-title: Animal models to study bile acid metabolism publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. – volume: 70 start-page: 483 year: 2019 end-page: 493 ident: bib78 article-title: Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial publication-title: J. Hepatol. – volume: 64 start-page: 760 year: 2016 end-page: 773 ident: bib45 article-title: Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice publication-title: Hepatology – volume: 11 start-page: 1003 year: 1992 end-page: 1013 ident: bib108 article-title: Evolution of the nuclear receptor gene superfamily publication-title: EMBO J. – volume: 20 start-page: 320 year: 2014 end-page: 332 ident: bib119 article-title: Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis publication-title: Cell Metabol. – volume: 153 start-page: 3613 year: 2012 end-page: 3619 ident: bib157 article-title: The role of bile after roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control publication-title: Endocrinology – volume: 1864 start-page: 1422 year: 2019 end-page: 1437 ident: bib16 article-title: Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids – volume: 375 start-page: 631 year: 2016 end-page: 643 ident: bib144 article-title: A placebo-controlled trial of obeticholic acid in primary biliary cholangitis publication-title: N. Engl. J. Med. – volume: 124 start-page: 5424 year: 2014 end-page: 5436 ident: bib153 article-title: TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation publication-title: J. Clin. Invest. – volume: 39 start-page: 175 year: 2019 end-page: 200 ident: bib25 article-title: Bile acids as metabolic regulators and nutrient sensors publication-title: Annu. Rev. Nutr. – volume: 108 start-page: 533 year: 1995 end-page: 544 ident: bib146 article-title: Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7 alpha-hydroxylase in rats with biliary fistulas publication-title: Gastroenterology – volume: 6 start-page: 10166 year: 2015 ident: bib91 article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction publication-title: Nat. Commun. – volume: 2 start-page: 217 year: 2005 end-page: 225 ident: bib86 article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis publication-title: Cell Metabol. – volume: 280 start-page: 29971 year: 2005 end-page: 29979 ident: bib47 article-title: The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition publication-title: J. Biol. Chem. – volume: 48 start-page: 474 year: 2008 end-page: 486 ident: bib200 article-title: Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis publication-title: Hepatology – volume: 458 start-page: 1131 year: 2009 end-page: 1135 ident: bib175 article-title: Autophagy regulates lipid metabolism publication-title: Nature – volume: 17 start-page: 279 year: 2020 end-page: 297 ident: bib6 article-title: Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 189 start-page: 36 year: 2019 end-page: 47 ident: bib94 article-title: Mitochondrial oxysterol biosynthetic pathway gives evidence for CYP7B1 as controller of regulatory oxysterols publication-title: J. Steroid Biochem. Mol. Biol. – volume: 45 start-page: 695 year: 2007 end-page: 704 ident: bib97 article-title: The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells publication-title: Hepatology – volume: 71 start-page: 609 year: 2000 end-page: 615 ident: bib12 article-title: Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7alpha-hydroxylase gene repression by bile acids [In Process Citation] publication-title: Mol. Genet. Metabol. – volume: 13 start-page: 1 year: 2021 end-page: 22 ident: bib168 article-title: Links between gut microbiome composition and fatty liver disease in a large population sample publication-title: Gut Microb. – volume: 13 start-page: 3039 year: 2006 end-page: 3051 ident: bib177 article-title: Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors publication-title: Curr. Med. Chem. – volume: 43 start-page: 533 year: 2002 end-page: 543 ident: bib39 article-title: Regulation of cholesterol-7alpha-hydroxylase. Barely missing a shp publication-title: J. Lipid Res. – volume: 11 start-page: 191 year: 2017 ident: bib131 article-title: Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice publication-title: Front. Cell. Neurosci. – volume: 2 start-page: 275 year: 2009 end-page: 285 ident: bib179 article-title: Gene expression profiling reveals a diverse array of pathways inhibited by nuclear receptor SHP during adipogenesis publication-title: Int. J. Clin. Exp. Pathol. – volume: 288 start-page: G685 year: 2005 end-page: G695 ident: bib89 article-title: Cytokine regulation of human sterol 12{alpha}-hydroxylase (CYP8B1) gene publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 56 start-page: 1034 year: 2012 end-page: 1043 ident: bib105 article-title: Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice publication-title: Hepatology – volume: 1 start-page: 3 year: 2017 end-page: 9 ident: bib23 article-title: Bile acid metabolism and signaling in liver disease and therapy publication-title: Liver Res – year: 2004 ident: bib28 article-title: PXR Regulation of Bile Acid Synthesis and Drug Metabolism, DRUG METABOLISM REVIEWS – volume: 6 start-page: 517 year: 2000 end-page: 526 ident: bib67 article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis publication-title: Mol. Cell. – volume: 275 start-page: 21805 year: 2000 end-page: 21808 ident: bib134 article-title: Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase publication-title: J. Biol. Chem. – volume: 278 start-page: 9435 year: 2003 end-page: 9440 ident: bib96 article-title: A G protein-coupled receptor responsive to bile acids publication-title: J. Biol. Chem. – volume: 17 start-page: 225 year: 2013 end-page: 235 ident: bib170 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metabol. – volume: 30 start-page: 1341 year: 2010 end-page: 1356 ident: bib210 article-title: Nuclear receptor SHP, a death receptor that targets mitochondria, induces apoptosis and inhibits tumor growth publication-title: Mol. Cell Biol. – volume: 285 start-page: 3035 year: 2010 end-page: 3043 ident: bib209 article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia publication-title: J. Biol. Chem. – volume: 57 start-page: 2130 year: 2016 end-page: 2137 ident: bib186 article-title: Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans publication-title: J. Lipid Res. – volume: 9 start-page: 9 year: 2002 ident: bib37 article-title: The amino acid residues Asn354 and Ile372 of human FXR confer the receptor with high sensitivity to chenodeoxycholate publication-title: J. Biol. Chem. – volume: 61 start-page: 1216 year: 2015 end-page: 1226 ident: bib140 article-title: Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression publication-title: Hepatology – volume: 67 start-page: 1890 year: 2018 end-page: 1902 ident: bib106 article-title: A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis publication-title: Hepatology – volume: 48 start-page: 993 year: 2008 end-page: 999 ident: bib145 article-title: Fructose consumption as a risk factor for non-alcoholic fatty liver disease publication-title: J. Hepatol. – year: 2019 ident: bib64 article-title: Current Status and Clinical Applications – volume: 275 start-page: 10918 year: 2000 end-page: 10924 ident: bib30 article-title: FXR responds to bile acids and represses cholesterol 7a-hydroxylase gene (CYP7A1) transcription publication-title: J. Biol. Chem. – volume: 47 start-page: 1578 year: 2008 end-page: 1586 ident: bib147 article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis publication-title: Hepatology – volume: 60 start-page: 463 year: 2011 end-page: 472 ident: bib63 article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease publication-title: Gut – volume: 276 start-page: 30708 year: 2001 end-page: 30716 ident: bib41 article-title: The negative effects of bile acids and tumor necrosis factor on the transcription of cholesterol 7a-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4. A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors publication-title: J. Biol. Chem. – volume: 30 start-page: 570 year: 2009 end-page: 580 ident: bib57 article-title: Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders publication-title: Trends Pharmacol. Sci. – volume: 312 start-page: 233 year: 2006 end-page: 236 ident: bib84 article-title: Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration publication-title: Science – volume: 2 start-page: 713 year: 2002 end-page: 720 ident: bib100 article-title: Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis publication-title: Dev. Cell – volume: 15 start-page: 11 year: 2018 end-page: 20 ident: bib206 article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. – year: 2020 ident: bib18 article-title: A Microbial Metabolite Remodels the Gut-Liver axis Following Bariatric Surgery – volume: 62 start-page: 1398 year: 2015 end-page: 1404 ident: bib139 article-title: Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity publication-title: J. Hepatol. – volume: 516 start-page: 108 year: 2014 end-page: 111 ident: bib171 article-title: Transcriptional regulation of autophagy by an FXR-CREB axis publication-title: Nature – volume: 11 start-page: 467 year: 2010 end-page: 478 ident: bib203 article-title: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance publication-title: Cell Metabol. – volume: 24 start-page: 2624 year: 2005 end-page: 2633 ident: bib10 article-title: Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP publication-title: EMBO J. – volume: 148 start-page: 751 year: 2015 end-page: 761 e8 ident: bib77 article-title: Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid publication-title: Gastroenterology – volume: 284 start-page: 1362 year: 1999 end-page: 1365 ident: bib125 article-title: Identification of a nuclear receptor for bile acids publication-title: Science – volume: 18 start-page: 270 year: 2020 end-page: 280 ident: bib136 article-title: An update on the role of the microbiome in non-alcoholic fatty liver disease pathogenesis, diagnosis, and treatment publication-title: Curr. Treat. Options Gastroenterol. – volume: 55 start-page: 267 year: 2012 end-page: 276 ident: bib183 article-title: Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes publication-title: Hepatology – volume: 2 start-page: 227 year: 2005 end-page: 238 ident: bib195 article-title: The orphan nuclear receptor SHP regulates PGC-1alpha expression and energy production in brown adipocytes publication-title: Cell Metabol. – volume: 15 start-page: 261 year: 2019 end-page: 273 ident: bib15 article-title: Gut microbial metabolites in obesity, NAFLD and T2DM publication-title: Nat. Rev. Endocrinol. – volume: 51 start-page: 1410 year: 2010 end-page: 1419 ident: bib189 article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine publication-title: Hepatology – volume: 125 start-page: 386 year: 2015 end-page: 402 ident: bib92 article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease publication-title: J. Clin. Invest. – volume: 12 start-page: 1 year: 2008 end-page: 26 ident: bib212 article-title: Mechanisms of cholestasis publication-title: Clin. Liver Dis. – volume: 9 start-page: 1131 year: 2013 end-page: 1158 ident: bib38 article-title: Functions of autophagy in normal and diseased liver publication-title: Autophagy – volume: 155 start-page: 1741 year: 2018 end-page: 1752 ident: bib62 article-title: FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid publication-title: Gastroenterology – volume: 372 start-page: 78 year: 2008 end-page: 84 ident: bib98 article-title: Expression and function of the bile acid receptor TGR5 in Kupffer cells publication-title: Biochem. Biophys. Res. Commun. – volume: 66 start-page: 1384 year: 2017 end-page: 1386 ident: bib40 article-title: Hepatic bile acid uptake in humans and mice: multiple pathways and expanding potential role for gut-liver signaling publication-title: Hepatology – volume: 70 start-page: 788 year: 2019 end-page: 801 ident: bib190 article-title: The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis publication-title: Hepatology – volume: 11 start-page: 973 year: 2021 end-page: 997 ident: bib202 article-title: Hepatic autophagy deficiency remodels gut microbiota for adaptive protection via FGF15-FGFR4 signaling publication-title: Cell. Mol. Gastroenterol. Hepatol. – volume: 66 start-page: 613 year: 2017 end-page: 626 ident: bib201 article-title: An intestinal farnesoid X receptor-ceramide signaling Axis modulates hepatic gluconeogenesis in mice publication-title: Diabetes – volume: 45 start-page: 944 year: 2016 ident: bib69 article-title: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome publication-title: Immunity – volume: 67 start-page: 1720 year: 2018 end-page: 1728 ident: bib11 article-title: Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery publication-title: Diabetes – volume: 3 start-page: 318 year: 2006 end-page: 328 ident: bib7 article-title: Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis publication-title: Nat. Clin. Pract. Gastroenterol. Hepatol. – volume: 81 start-page: 687 year: 1995 end-page: 693 ident: bib59 article-title: Identification of a nuclear receptor that is activated by farnesol metabolites publication-title: Cell – volume: 6 start-page: 507 year: 2000 end-page: 515 ident: bib123 article-title: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors publication-title: Mol. Cell. – volume: 145 start-page: 574 year: 2013 end-page: 582 e1 ident: bib138 article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic Acid in patients with type 2 diabetes and nonalcoholic Fatty liver disease publication-title: Gastroenterology – volume: 332 start-page: 1519 year: 2011 end-page: 1523 ident: bib35 article-title: Human fatty liver disease: old questions and new insights publication-title: Science – volume: 728 start-page: 171 year: 2012 end-page: 182 ident: bib93 article-title: Physiology of FGF15/19 publication-title: Adv. Exp. Med. Biol. – volume: 71 start-page: 1198 year: 2019 end-page: 1212 ident: bib76 article-title: NGM282 improves liver fibrosis and histology in 12 Weeks in patients with nonalcoholic steatohepatitis publication-title: Hepatology – volume: 83 start-page: 835 year: 1995 end-page: 839 ident: bib126 article-title: The nuclear receptor superfamily: the second decade publication-title: Cell – volume: 12 start-page: 1253 year: 2006 end-page: 1255 ident: bib32 article-title: Identification of a hormonal basis for gallbladder filling publication-title: Nat. Med. – volume: 487 start-page: 104 year: 2012 end-page: 108 ident: bib44 article-title: Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice publication-title: Nature – volume: 22 start-page: 1622 year: 2008 end-page: 1632 ident: bib196 article-title: Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo publication-title: Mol. Endocrinol. – volume: 276 start-page: 41690 year: 2001 end-page: 41699 ident: bib207 article-title: Transcriptional regulation of the human sterol 12a-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4a (HNF4a) in mediating bile acid repression publication-title: J. Biol. Chem. – volume: 287 start-page: 1861 year: 2012 end-page: 1873 ident: bib117 article-title: Glucose and insulin induction of bile acid synthesis: mechanisms and implication IN diabetes and obesity publication-title: J. Biol. Chem. – volume: 36 start-page: S3 year: 2012 end-page: S12 ident: bib156 article-title: Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action publication-title: Clin Res Hepatol Gastroenterol – volume: 4 start-page: 382 year: 2013 end-page: 387 ident: bib165 article-title: Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship publication-title: Gut Microb. – volume: 67 start-page: 549 year: 2017 end-page: 558 ident: bib55 article-title: norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis publication-title: J. Hepatol. – volume: 14 start-page: 747 year: 2011 end-page: 757 ident: bib154 article-title: TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading publication-title: Cell Metabol. – volume: 12 start-page: 147 year: 2015 end-page: 158 ident: bib48 article-title: Novel therapeutic targets in primary biliary cirrhosis publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 49 start-page: 297 year: 2009 end-page: 305 ident: bib180 article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression publication-title: Hepatology – volume: 103 start-page: 3920 year: 2006 end-page: 3925 ident: bib87 article-title: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 110 start-page: 109 year: 2002 end-page: 117 ident: bib159 article-title: Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype publication-title: J. Clin. Invest. – volume: 276 start-page: 15816 year: 2001 end-page: 15822 ident: bib70 article-title: Down-regulation of cholesterol 7alpha -hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-jun N-terminal kinase pathway publication-title: J. Biol. Chem. – volume: 2 start-page: 721 year: 2002 end-page: 731 ident: bib194 article-title: Redundant pathways for negative feedback regulation of bile Acid production publication-title: Dev. Cell – volume: 126 start-page: 789 year: 2006 end-page: 799 ident: bib9 article-title: Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network publication-title: Cell – volume: 9 year: 2014 ident: bib122 article-title: GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells publication-title: PLoS One – volume: 273 start-page: G508 year: 1997 end-page: G517 ident: bib182 article-title: Identification of a bile acid response element in the cholesterol 7 alpha-hydroxylase gene CYP7A publication-title: Am. J. Physiol. – volume: 126 start-page: 756 year: 2004 end-page: 764 ident: bib21 article-title: Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity publication-title: Gastroenterology – volume: 26 start-page: 301 year: 2006 end-page: 306 ident: bib71 article-title: Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4 publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 62 start-page: 4184 year: 2013 end-page: 4191 ident: bib72 article-title: Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids publication-title: Diabetes – volume: 116 start-page: 1102 year: 2006 end-page: 1109 ident: bib124 article-title: Farnesoid X receptor is essential for normal glucose homeostasis publication-title: J. Clin. Invest. – volume: 7 start-page: 678 year: 2008 end-page: 693 ident: bib187 article-title: Targeting bile-acid signalling for metabolic diseases publication-title: Nat. Rev. Drug Discov. – volume: 36 year: 2022 ident: bib127 article-title: Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling publication-title: Faseb. J. – volume: 7 start-page: 195 year: 2010 end-page: 203 ident: bib13 article-title: Pathology of nonalcoholic fatty liver disease publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 9 start-page: 2590 year: 2018 ident: bib14 article-title: Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis publication-title: Nat. Commun. – volume: 58 start-page: 1451 year: 2013 end-page: 1460 ident: bib151 article-title: The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice publication-title: Hepatology – volume: 22 start-page: 1473 year: 2012 end-page: 1480 ident: bib173 article-title: Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass publication-title: Obes. Surg. – volume: 59 start-page: 1709 year: 2018 end-page: 1713 ident: bib135 article-title: Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation publication-title: J. Lipid Res. – volume: 113 start-page: 1408 year: 2004 end-page: 1418 ident: bib199 article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c publication-title: J. Clin. Invest. – volume: 141 start-page: 1773 year: 2011 end-page: 1781 ident: bib88 article-title: Bile acid is a host factor that regulates the composition of the cecal microbiota in rats publication-title: Gastroenterology – volume: 65 start-page: 350 year: 2017 end-page: 362 ident: bib5 article-title: Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives publication-title: Hepatology – volume: 318 start-page: G554 year: 2020 end-page: G573 ident: bib26 article-title: Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 10 start-page: 104 year: 2017 end-page: 116 ident: bib204 article-title: Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice publication-title: Mucosal Immunol. – volume: 33 start-page: 1483 year: 2021 end-page: 1492 ident: bib17 article-title: Hypothalamic bile acid-TGR5 signaling protects from obesity publication-title: Cell Metabol. – volume: 36 start-page: 2419 year: 1995 end-page: 2432 ident: bib36 article-title: Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7) publication-title: J. Lipid Res. – volume: 288 start-page: G74 year: 2005 end-page: G84 ident: bib112 article-title: Mechanism of rifampicin and pregnane X receptor (PXR) inhibition of human cholesterol 7{alpha}-hydroxylase gene (CYP7A1) transcription publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 57 start-page: 10343 year: 2014 end-page: 10354 ident: bib79 article-title: G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype publication-title: J. Med. Chem. – volume: 284 start-page: 1365 year: 1999 end-page: 1368 ident: bib148 article-title: Bile acids: natural ligands for an orphan nuclear receptor publication-title: Science – volume: 316 start-page: G412 year: 2019 end-page: G424 ident: bib56 article-title: Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 43 start-page: S99 year: 2006 end-page: S112 ident: bib51 article-title: Nonalcoholic fatty liver disease: from steatosis to cirrhosis publication-title: Hepatology – volume: 18 start-page: 335 year: 2021 end-page: 347 ident: bib185 article-title: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 61 start-page: 54 year: 2020 end-page: 69 ident: bib81 article-title: Regulations of bile acid metabolism in mouse models with hydrophobic bile acid composition publication-title: J. Lipid Res. – volume: 6 start-page: 2029 year: 2017 ident: bib24 article-title: Recent advances in understanding bile acid homeostasis publication-title: F1000Res – volume: 281 start-page: 14537 year: 2006 end-page: 14546 ident: bib132 article-title: Functional inhibitory cross-talk between car and HNF-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha publication-title: J. Biol. Chem. – volume: 6 year: 2011 ident: bib33 article-title: The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis publication-title: PLoS One – volume: 275 start-page: 17793 year: 2000 end-page: 17799 ident: bib42 article-title: a1-fetoprotein transcription factor is required for the expression of sterol 12a-hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid-mediated regulation of gene transcription publication-title: J. Biol. Chem. – volume: 16 start-page: 411 year: 2019 end-page: 428 ident: bib4 article-title: From NASH to HCC: current concepts and future challenges publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 65 start-page: 487 year: 2016 end-page: 501 ident: bib162 article-title: TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro publication-title: Gut – volume: 282 start-page: 34250 year: 2007 end-page: 34259 ident: bib2 article-title: p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis publication-title: J. Biol. Chem. – volume: 102 start-page: 731 year: 2000 end-page: 744 ident: bib174 article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis publication-title: Cell – volume: 1 year: 2016 ident: bib211 article-title: Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism publication-title: mSystems – volume: 15 start-page: 91 year: 2020 end-page: 94 ident: bib27 article-title: Bile acid biology, pathophysiology, and therapeutics publication-title: Clin. Liver Dis. – volume: 28 start-page: 1064 year: 1998 end-page: 1072 ident: bib129 article-title: Cholesterol 7alpha-hydroxylase (CYP7A): patterns of messenger RNA expression during rat liver development [In Process Citation] publication-title: Hepatology – volume: 51 start-page: 565 year: 2009 end-page: 580 ident: bib192 article-title: New molecular insights into the mechanisms of cholestasis publication-title: J. Hepatol. – volume: 72 start-page: 1370174 year: 2003 ident: bib167 article-title: The enzymes, regulation, and genetics of bile acid synthesis publication-title: Annu. Rev. Biochem. – volume: 21 start-page: 1312 year: 2007 end-page: 1323 ident: bib83 article-title: In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue publication-title: Mol. Endocrinol. – volume: 20 start-page: 187 year: 2000 end-page: 195 ident: bib109 article-title: The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression publication-title: Mol. Cell Biol. – volume: 67 start-page: 534 year: 2018 end-page: 548 ident: bib160 article-title: The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids publication-title: Hepatology – volume: 109 start-page: 961 year: 2002 end-page: 971 ident: bib34 article-title: Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element publication-title: J. Clin. Invest. – volume: 298 start-page: 714 year: 2002 end-page: 719 ident: bib128 article-title: Identification of membrane-type receptor for bile acids (M-BAR) publication-title: Biochem. Biophys. Res. Commun. – volume: 25 start-page: 1159 year: 2011 end-page: 1169 ident: bib133 article-title: Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes publication-title: Mol. Endocrinol. – volume: 50 start-page: 1955 year: 2009 end-page: 1966 ident: bib22 article-title: Bile acids: regulation of synthesis publication-title: J. Lipid Res. – start-page: 363 year: 2010 end-page: 372 ident: bib164 article-title: The bile acid sensor FXR regulates insulin transcription and secretion publication-title: Biochim. Biophys. Acta. – volume: 400 start-page: 625 year: 2019 end-page: 628 ident: bib49 article-title: Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1 publication-title: Biol. Chem. – volume: 509 start-page: 183 year: 2014 end-page: 188 ident: bib169 article-title: FXR is a molecular target for the effects of vertical sleeve gastrectomy publication-title: Nature – volume: 46 start-page: 1993 year: 2007 end-page: 2002 ident: bib178 article-title: Hepatocyte growth factor signaling pathway inhibits cholesterol 7alpha-hydroxylase and bile acid synthesis in human hepatocytes publication-title: Hepatology – volume: 276 start-page: 36869 year: 2001 end-page: 36872 ident: bib74 article-title: The multifaceted mechanisms of estradiol and estrogen receptor signaling publication-title: J. Biol. Chem. – volume: 3 start-page: 245 year: 2017 end-page: 260 ident: bib197 article-title: Targeting the enterohepatic bile acid signaling induces hepatic autophagy via a CYP7A1-AKT-mTOR Axis in mice publication-title: Cell. Mol. Gastroenterol. Hepatol. – volume: 25 start-page: 1066 year: 2011 end-page: 1071 ident: bib116 article-title: The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling publication-title: Mol. Endocrinol. – volume: 72 start-page: 1 year: 2020 end-page: 3 ident: bib82 article-title: FXR agonists as therapy for liver disease publication-title: Hepatology – volume: 65 start-page: 2005 year: 2017 end-page: 2018 ident: bib198 article-title: The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice publication-title: Hepatology – volume: 49 start-page: 1972 year: 2009 end-page: 1981 ident: bib73 article-title: Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2-/- mice publication-title: Hepatology – year: 2018 ident: bib142 article-title: Increased bile acids and FGF19 after sleeve gastrectomy and roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial publication-title: Obes. Surg. – volume: 48 start-page: 2664 year: 2007 end-page: 2672 ident: bib102 article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine publication-title: J. Lipid Res. – volume: 292 start-page: 11055 year: 2017 end-page: 11069 ident: bib149 article-title: Farnesoid X receptor induces Takeda G-protein receptor 5 crosstalk to regulate bile acid synthesis and hepatic metabolism publication-title: J. Biol. Chem. – volume: 3 start-page: 543 year: 1999 end-page: 553 ident: bib193 article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR publication-title: Mol. Cell. – volume: 4 start-page: 25 year: 2014 end-page: 36 ident: bib181 article-title: Progressive familial intrahepatic cholestasis publication-title: J. Clin. Exp. Hepatol. – volume: 385 start-page: 956 year: 2015 end-page: 965 ident: bib143 article-title: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial publication-title: Lancet – volume: 18 start-page: 280 year: 2021 end-page: 287 ident: bib60 article-title: Statins show promise against progression of liver disease publication-title: Clin. Liver Dis. – volume: 103 start-page: 1006 year: 2006 end-page: 1011 ident: bib208 article-title: Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 17 start-page: 20 year: 2021 end-page: 29 ident: bib19 article-title: Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects publication-title: Nat. Chem. Biol. – volume: 38 start-page: 2446 year: 1997 end-page: 2454 ident: bib161 article-title: Activation of protein kinase Ca and d by bile acids: correlation with bile acid structure and diacylglycerol formation publication-title: J. Lipid Res. – volume: 60 start-page: 1861 year: 2011 end-page: 1871 ident: bib158 article-title: Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity publication-title: Diabetes – volume: 40 start-page: 1194 year: 1999 end-page: 1199 ident: bib46 article-title: Production rates in normal human subjects publication-title: J. Lipid Res. – volume: 36 start-page: 641 year: 1995 end-page: 652 ident: bib176 article-title: Developmental expression of elements of hepatic cholesterol metabolism in the rat publication-title: J. Lipid Res. – volume: 55 start-page: 575 year: 2012 end-page: 583 ident: bib213 article-title: The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract publication-title: Hepatology – volume: 276 start-page: 28857 year: 2001 end-page: 28865 ident: bib3 article-title: Human bile salt export pump (BSEP) promoter is transactivated by the farnesoid X receptor/bile acid receptor (FXR/BAR) publication-title: J. Biol. Chem. – volume: 74 start-page: 58 year: 2021 end-page: 65 ident: bib104 article-title: Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis publication-title: J. Hepatol. – volume: 60 start-page: 908 year: 2014 end-page: 918 ident: bib120 article-title: Conjugated bile acids promote cholangiocarcinoma cell invasive growth via activation of sphingosine 1-phosphate receptor 2 publication-title: Hepatology – volume: 152 start-page: 1679 year: 2017 end-page: 1694 ident: bib20 article-title: Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease publication-title: Gastroenterology – volume: 62 start-page: 135 year: 2015 end-page: 146 ident: bib111 article-title: Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice publication-title: Hepatology – volume: 121 start-page: 140 year: 2001 end-page: 147 ident: bib43 article-title: The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp publication-title: Gastroenterology – volume: 66 start-page: 948 year: 2014 end-page: 983 ident: bib113 article-title: Bile acid signaling in metabolic disease and drug therapy publication-title: Pharmacol. Rev. – volume: 5 start-page: 1810 year: 2021 end-page: 1823 ident: bib1 article-title: What does the future hold for patients with nonalcoholic steatohepatitis: diagnostic strategies and treatment options in 2021 and beyond? publication-title: Hepatol Commun – volume: 120 start-page: 17 year: 2001 ident: bib31 article-title: Nuclear receptor regulation of the human cholesterol 7a-hydroxylase, sterol 27-hydroxylase and sterol 12a-hydroxylase genes in bile acid synthesis publication-title: Biol. Bile Acid. Health. Dis. – volume: 70 start-page: 955 year: 2019 end-page: 970 ident: bib54 article-title: Deficiency of both farnesoid X receptor and Takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice publication-title: Hepatology – volume: 15 year: 2019 ident: bib58 article-title: Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract publication-title: PLoS Pathog. – volume: 123 start-page: 154844 year: 2021 ident: bib141 article-title: Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease publication-title: Metabolism – volume: 516 start-page: 112 year: 2014 end-page: 115 ident: bib110 article-title: Nutrient-sensing nuclear receptors coordinate autophagy publication-title: Nature – volume: 139 start-page: 19 year: 2013 end-page: 29 ident: bib205 article-title: TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease publication-title: Immunology – volume: 73 start-page: 625 year: 2021 end-page: 643 ident: bib121 article-title: Combination therapies including cilofexor and Firsocostat for bridging fibrosis and cirrhosis attributable to NASH publication-title: Hepatology – volume: 151 start-page: 845 year: 2016 end-page: 859 ident: bib66 article-title: An intestinal microbiota-farnesoid X receptor Axis modulates metabolic disease publication-title: Gastroenterology – volume: 66 start-page: 226 year: 2015 end-page: 234 ident: bib130 article-title: TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice publication-title: Gut – volume: 57 start-page: 1144 year: 2016 end-page: 1154 ident: bib53 article-title: Cholesterol 7{alpha}-hydroxylase-deficient mice are protected from high fat/high cholesterol diet-induced metabolic disorders publication-title: J. Lipid Res. – volume: 68 start-page: 1063 year: 2018 end-page: 1075 ident: bib90 article-title: A major mediator of non-alcoholic fatty liver disease publication-title: J. Hepatol. – volume: 10 start-page: 167 year: 2009 end-page: 177 ident: bib188 article-title: TGR5-mediated bile acid sensing controls glucose homeostasis publication-title: Cell Metabol. – volume: 50 start-page: 2139 year: 2009 end-page: 2147 ident: bib52 article-title: Bile acids: role of peroxisomes publication-title: J. Lipid Res. – volume: 26 start-page: 312 year: 2012 end-page: 324 ident: bib155 article-title: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine publication-title: Gene Dev. – volume: 134 start-page: 1655 year: 2008 end-page: 1669 ident: bib61 article-title: Mechanisms of hepatic fibrogenesis publication-title: Gastroenterology – volume: 75 start-page: 634 year: 2021 end-page: 646 ident: bib163 article-title: Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis publication-title: J. Hepatol. – volume: 48 start-page: 15 year: 2018 end-page: 27 ident: bib85 article-title: Reciprocal interactions between bile acids and gut microbiota in human liver diseases publication-title: Hepatol. Res. – volume: 7 start-page: 10713 year: 2016 ident: bib65 article-title: Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis publication-title: Nat. Commun. – volume: 12 year: 2020 ident: bib68 article-title: Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis publication-title: Sci. Transl. Med. – volume: 279 start-page: 45139 year: 2004 end-page: 45147 ident: bib8 article-title: Ligand-activated PXR interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha : functional implications in hepatic cholesterol and glucose metabolism publication-title: J. Biol. Chem. – volume: 48 start-page: 458 year: 2007 end-page: 464 ident: bib80 article-title: Highly sensitive quantification of 7alpha-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS publication-title: J. Lipid Res. – volume: 33 start-page: 1663 year: 2013 end-page: 1669 ident: bib101 article-title: Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 68 start-page: 1574 year: 2018 end-page: 1588 ident: bib150 article-title: Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism publication-title: Hepatology – volume: 331 start-page: 1621 year: 2011 end-page: 1624 ident: bib103 article-title: FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis publication-title: Science – volume: 380 start-page: 1450 year: 2019 end-page: 1462 ident: bib191 article-title: Hepatocellular carcinoma publication-title: N. Engl. J. Med. – volume: 11 year: 2016 ident: bib137 article-title: Bile acids and dysbiosis in non-alcoholic fatty liver disease publication-title: PLoS One – volume: 45 start-page: 3569 year: 2002 end-page: 3572 ident: bib152 article-title: 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity publication-title: J. Med. Chem. – volume: 24 start-page: 1919 year: 2018 end-page: 1929 ident: bib184 article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin publication-title: Nat. Med. – volume: 11 start-page: 451 year: 2016 end-page: 496 ident: bib75 article-title: Nonalcoholic fatty liver disease: pathogenesis and disease spectrum publication-title: Annu. Rev. Pathol. – volume: 43 start-page: 1202 year: 2006 end-page: 1210 ident: bib115 article-title: Bile acids and cytokines inhibit the human cholesterol 7alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells publication-title: Hepatology – volume: 4 start-page: 2384 year: 2013 ident: bib118 article-title: Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity publication-title: Nat. Commun. – volume: 16 start-page: 411 issue: 7 year: 2019 ident: 10.1016/j.mce.2022.111618_bib4 article-title: From NASH to HCC: current concepts and future challenges publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0145-7 – volume: 22 start-page: 1473 issue: 9 year: 2012 ident: 10.1016/j.mce.2022.111618_bib173 article-title: Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass publication-title: Obes. Surg. doi: 10.1007/s11695-012-0673-5 – volume: 48 start-page: 458 issue: 2 year: 2007 ident: 10.1016/j.mce.2022.111618_bib80 article-title: Highly sensitive quantification of 7alpha-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS publication-title: J. Lipid Res. doi: 10.1194/jlr.D600032-JLR200 – year: 2019 ident: 10.1016/j.mce.2022.111618_bib64 – volume: 67 start-page: 1890 issue: 5 year: 2018 ident: 10.1016/j.mce.2022.111618_bib106 article-title: A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis publication-title: Hepatology doi: 10.1002/hep.29569 – volume: 11 start-page: 609060 year: 2020 ident: 10.1016/j.mce.2022.111618_bib172 article-title: TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.609060 – volume: 120 start-page: 17 year: 2001 ident: 10.1016/j.mce.2022.111618_bib31 article-title: Nuclear receptor regulation of the human cholesterol 7a-hydroxylase, sterol 27-hydroxylase and sterol 12a-hydroxylase genes in bile acid synthesis publication-title: Biol. Bile Acid. Health. Dis. – volume: 126 start-page: 789 issue: 4 year: 2006 ident: 10.1016/j.mce.2022.111618_bib9 article-title: Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network publication-title: Cell doi: 10.1016/j.cell.2006.06.049 – volume: 40 start-page: 1194 issue: 7 year: 1999 ident: 10.1016/j.mce.2022.111618_bib46 article-title: Production rates in normal human subjects publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)33481-7 – volume: 1 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.mce.2022.111618_bib23 article-title: Bile acid metabolism and signaling in liver disease and therapy publication-title: Liver Res doi: 10.1016/j.livres.2017.05.001 – volume: 487 start-page: 104 issue: 7405 year: 2012 ident: 10.1016/j.mce.2022.111618_bib44 article-title: Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice publication-title: Nature doi: 10.1038/nature11225 – volume: 24 start-page: 1919 issue: 12 year: 2018 ident: 10.1016/j.mce.2022.111618_bib184 article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin publication-title: Nat. Med. doi: 10.1038/s41591-018-0222-4 – volume: 43 start-page: 533 issue: 4 year: 2002 ident: 10.1016/j.mce.2022.111618_bib39 article-title: Regulation of cholesterol-7alpha-hydroxylase. Barely missing a shp publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)31482-6 – volume: 2 start-page: 227 issue: 4 year: 2005 ident: 10.1016/j.mce.2022.111618_bib195 article-title: The orphan nuclear receptor SHP regulates PGC-1alpha expression and energy production in brown adipocytes publication-title: Cell Metabol. doi: 10.1016/j.cmet.2005.08.010 – volume: 72 start-page: 1370174 year: 2003 ident: 10.1016/j.mce.2022.111618_bib167 article-title: The enzymes, regulation, and genetics of bile acid synthesis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.72.121801.161712 – volume: 13 start-page: 1544 issue: 9 year: 2017 ident: 10.1016/j.mce.2022.111618_bib166 article-title: Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial publication-title: Surg. Obes. Relat. Dis. doi: 10.1016/j.soard.2017.05.024 – volume: 62 start-page: 1398 issue: 6 year: 2015 ident: 10.1016/j.mce.2022.111618_bib139 article-title: Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity publication-title: J. Hepatol. doi: 10.1016/j.jhep.2014.12.034 – volume: 4 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.mce.2022.111618_bib181 article-title: Progressive familial intrahepatic cholestasis publication-title: J. Clin. Exp. Hepatol. doi: 10.1016/j.jceh.2013.10.005 – volume: 26 start-page: 301 year: 2006 ident: 10.1016/j.mce.2022.111618_bib71 article-title: Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000195793.73118.b4 – volume: 12 issue: 572 year: 2020 ident: 10.1016/j.mce.2022.111618_bib68 article-title: Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aba4448 – volume: 148 start-page: 751 issue: 4 year: 2015 ident: 10.1016/j.mce.2022.111618_bib77 article-title: Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.12.005 – volume: 3 start-page: 543 year: 1999 ident: 10.1016/j.mce.2022.111618_bib193 article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR publication-title: Mol. Cell. doi: 10.1016/S1097-2765(00)80348-2 – volume: 4 start-page: 2384 year: 2013 ident: 10.1016/j.mce.2022.111618_bib118 article-title: Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity publication-title: Nat. Commun. doi: 10.1038/ncomms3384 – volume: 21 start-page: 898 issue: 6 year: 2015 ident: 10.1016/j.mce.2022.111618_bib95 article-title: Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry publication-title: Cell Metabol. doi: 10.1016/j.cmet.2015.05.004 – volume: 36 start-page: 641 year: 1995 ident: 10.1016/j.mce.2022.111618_bib176 article-title: Developmental expression of elements of hepatic cholesterol metabolism in the rat publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)40050-1 – volume: 3 start-page: 245 issue: 2 year: 2017 ident: 10.1016/j.mce.2022.111618_bib197 article-title: Targeting the enterohepatic bile acid signaling induces hepatic autophagy via a CYP7A1-AKT-mTOR Axis in mice publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2016.10.002 – volume: 73 start-page: 625 issue: 2 year: 2021 ident: 10.1016/j.mce.2022.111618_bib121 article-title: Combination therapies including cilofexor and Firsocostat for bridging fibrosis and cirrhosis attributable to NASH publication-title: Hepatology doi: 10.1002/hep.31622 – year: 2004 ident: 10.1016/j.mce.2022.111618_bib28 – volume: 55 start-page: 575 issue: 2 year: 2012 ident: 10.1016/j.mce.2022.111618_bib213 article-title: The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract publication-title: Hepatology doi: 10.1002/hep.24702 – volume: 6 start-page: 10166 year: 2015 ident: 10.1016/j.mce.2022.111618_bib91 article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction publication-title: Nat. Commun. doi: 10.1038/ncomms10166 – volume: 1 issue: 5 year: 2016 ident: 10.1016/j.mce.2022.111618_bib211 article-title: Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism publication-title: mSystems doi: 10.1128/mSystems.00070-16 – volume: 9 start-page: 9 year: 2002 ident: 10.1016/j.mce.2022.111618_bib37 article-title: The amino acid residues Asn354 and Ile372 of human FXR confer the receptor with high sensitivity to chenodeoxycholate publication-title: J. Biol. Chem. – volume: 12 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.mce.2022.111618_bib212 article-title: Mechanisms of cholestasis publication-title: Clin. Liver Dis. doi: 10.1016/j.cld.2007.11.010 – volume: 72 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.mce.2022.111618_bib82 article-title: FXR agonists as therapy for liver disease publication-title: Hepatology doi: 10.1002/hep.31265 – volume: 49 start-page: 1972 issue: 6 year: 2009 ident: 10.1016/j.mce.2022.111618_bib73 article-title: Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2-/- mice publication-title: Hepatology doi: 10.1002/hep.22891 – volume: 64 start-page: 760 issue: 3 year: 2016 ident: 10.1016/j.mce.2022.111618_bib45 article-title: Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice publication-title: Hepatology doi: 10.1002/hep.28689 – volume: 57 start-page: 1144 year: 2016 ident: 10.1016/j.mce.2022.111618_bib53 article-title: Cholesterol 7{alpha}-hydroxylase-deficient mice are protected from high fat/high cholesterol diet-induced metabolic disorders publication-title: J. Lipid Res. doi: 10.1194/jlr.M064709 – volume: 6 start-page: 517 issue: 3 year: 2000 ident: 10.1016/j.mce.2022.111618_bib67 article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis publication-title: Mol. Cell. doi: 10.1016/S1097-2765(00)00051-4 – volume: 6 issue: 10 year: 2011 ident: 10.1016/j.mce.2022.111618_bib33 article-title: The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis publication-title: PLoS One doi: 10.1371/journal.pone.0025637 – volume: 380 start-page: 1450 issue: 15 year: 2019 ident: 10.1016/j.mce.2022.111618_bib191 article-title: Hepatocellular carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1713263 – volume: 189 start-page: 36 year: 2019 ident: 10.1016/j.mce.2022.111618_bib94 article-title: Mitochondrial oxysterol biosynthetic pathway gives evidence for CYP7B1 as controller of regulatory oxysterols publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2019.01.011 – volume: 9 issue: 4 year: 2014 ident: 10.1016/j.mce.2022.111618_bib122 article-title: GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells publication-title: PLoS One doi: 10.1371/journal.pone.0093567 – volume: 11 start-page: 191 year: 2017 ident: 10.1016/j.mce.2022.111618_bib131 article-title: Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2017.00191 – volume: 11 start-page: 973 issue: 4 year: 2021 ident: 10.1016/j.mce.2022.111618_bib202 article-title: Hepatic autophagy deficiency remodels gut microbiota for adaptive protection via FGF15-FGFR4 signaling publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2020.10.011 – volume: 385 start-page: 956 issue: 9972 year: 2015 ident: 10.1016/j.mce.2022.111618_bib143 article-title: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(14)61933-4 – volume: 39 start-page: 175 year: 2019 ident: 10.1016/j.mce.2022.111618_bib25 article-title: Bile acids as metabolic regulators and nutrient sensors publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-082018-124344 – volume: 33 start-page: 1483 issue: 7 year: 2021 ident: 10.1016/j.mce.2022.111618_bib17 article-title: Hypothalamic bile acid-TGR5 signaling protects from obesity publication-title: Cell Metabol. doi: 10.1016/j.cmet.2021.04.009 – volume: 273 start-page: G508 issue: 2 Pt 1 year: 1997 ident: 10.1016/j.mce.2022.111618_bib182 article-title: Identification of a bile acid response element in the cholesterol 7 alpha-hydroxylase gene CYP7A publication-title: Am. J. Physiol. – volume: 18 start-page: 280 issue: 6 year: 2021 ident: 10.1016/j.mce.2022.111618_bib60 article-title: Statins show promise against progression of liver disease publication-title: Clin. Liver Dis. doi: 10.1002/cld.1143 – volume: 20 start-page: 187 issue: 1 year: 2000 ident: 10.1016/j.mce.2022.111618_bib109 article-title: The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression publication-title: Mol. Cell Biol. doi: 10.1128/MCB.20.1.187-195.2000 – volume: 4 start-page: 382 issue: 5 year: 2013 ident: 10.1016/j.mce.2022.111618_bib165 article-title: Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship publication-title: Gut Microb. doi: 10.4161/gmic.25723 – volume: 48 start-page: 993 issue: 6 year: 2008 ident: 10.1016/j.mce.2022.111618_bib145 article-title: Fructose consumption as a risk factor for non-alcoholic fatty liver disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2008.02.011 – volume: 516 start-page: 108 issue: 7529 year: 2014 ident: 10.1016/j.mce.2022.111618_bib171 article-title: Transcriptional regulation of autophagy by an FXR-CREB axis publication-title: Nature doi: 10.1038/nature13949 – volume: 36 issue: 1 year: 2022 ident: 10.1016/j.mce.2022.111618_bib127 article-title: Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling publication-title: Faseb. J. doi: 10.1096/fj.202101397R – volume: 18 start-page: 270 issue: 2 year: 2020 ident: 10.1016/j.mce.2022.111618_bib136 article-title: An update on the role of the microbiome in non-alcoholic fatty liver disease pathogenesis, diagnosis, and treatment publication-title: Curr. Treat. Options Gastroenterol. doi: 10.1007/s11938-020-00290-2 – volume: 43 start-page: 1202 issue: 6 year: 2006 ident: 10.1016/j.mce.2022.111618_bib115 article-title: Bile acids and cytokines inhibit the human cholesterol 7alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells publication-title: Hepatology doi: 10.1002/hep.21183 – volume: 728 start-page: 171 year: 2012 ident: 10.1016/j.mce.2022.111618_bib93 article-title: Physiology of FGF15/19 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4614-0887-1_11 – volume: 56 start-page: 1034 issue: 3 year: 2012 ident: 10.1016/j.mce.2022.111618_bib105 article-title: Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice publication-title: Hepatology doi: 10.1002/hep.25740 – volume: 71 start-page: 1198 issue: 4 year: 2019 ident: 10.1016/j.mce.2022.111618_bib76 article-title: NGM282 improves liver fibrosis and histology in 12 Weeks in patients with nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.30590 – volume: 33 start-page: 1663 issue: 7 year: 2013 ident: 10.1016/j.mce.2022.111618_bib101 article-title: Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.113.301565 – volume: 12 start-page: 1253 issue: 11 year: 2006 ident: 10.1016/j.mce.2022.111618_bib32 article-title: Identification of a hormonal basis for gallbladder filling publication-title: Nat. Med. doi: 10.1038/nm1501 – volume: 70 start-page: 483 issue: 3 year: 2019 ident: 10.1016/j.mce.2022.111618_bib78 article-title: Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.10.035 – volume: 51 start-page: 565 year: 2009 ident: 10.1016/j.mce.2022.111618_bib192 article-title: New molecular insights into the mechanisms of cholestasis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2009.05.012 – volume: 11 issue: 5 year: 2016 ident: 10.1016/j.mce.2022.111618_bib137 article-title: Bile acids and dysbiosis in non-alcoholic fatty liver disease publication-title: PLoS One doi: 10.1371/journal.pone.0151829 – volume: 50 start-page: 861 year: 2009 ident: 10.1016/j.mce.2022.111618_bib99 article-title: The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders publication-title: Hepatology doi: 10.1002/hep.23032 – volume: 108 start-page: 533 issue: 2 year: 1995 ident: 10.1016/j.mce.2022.111618_bib146 article-title: Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7 alpha-hydroxylase in rats with biliary fistulas publication-title: Gastroenterology doi: 10.1016/0016-5085(95)90083-7 – start-page: 363 issue: 3 year: 2010 ident: 10.1016/j.mce.2022.111618_bib164 article-title: The bile acid sensor FXR regulates insulin transcription and secretion publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbadis.2010.01.002 – volume: 83 start-page: 835 year: 1995 ident: 10.1016/j.mce.2022.111618_bib126 article-title: The nuclear receptor superfamily: the second decade publication-title: Cell doi: 10.1016/0092-8674(95)90199-X – year: 2020 ident: 10.1016/j.mce.2022.111618_bib18 – volume: 20 start-page: 320 issue: 2 year: 2014 ident: 10.1016/j.mce.2022.111618_bib119 article-title: Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis publication-title: Cell Metabol. doi: 10.1016/j.cmet.2014.05.020 – volume: 70 start-page: 955 issue: 3 year: 2019 ident: 10.1016/j.mce.2022.111618_bib54 article-title: Deficiency of both farnesoid X receptor and Takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice publication-title: Hepatology doi: 10.1002/hep.30513 – volume: 7 start-page: 10713 year: 2016 ident: 10.1016/j.mce.2022.111618_bib65 article-title: Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis publication-title: Nat. Commun. doi: 10.1038/ncomms10713 – volume: 134 start-page: 1655 issue: 6 year: 2008 ident: 10.1016/j.mce.2022.111618_bib61 article-title: Mechanisms of hepatic fibrogenesis publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.03.003 – volume: 66 start-page: 226 issue: 2 year: 2015 ident: 10.1016/j.mce.2022.111618_bib130 article-title: TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice publication-title: Gut doi: 10.1136/gutjnl-2015-309871 – volume: 57 start-page: 2130 issue: 12 year: 2016 ident: 10.1016/j.mce.2022.111618_bib186 article-title: Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans publication-title: J. Lipid Res. doi: 10.1194/jlr.M071183 – volume: 281 start-page: 14537 year: 2006 ident: 10.1016/j.mce.2022.111618_bib132 article-title: Functional inhibitory cross-talk between car and HNF-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha publication-title: J. Biol. Chem. doi: 10.1074/jbc.M510713200 – volume: 2 start-page: 275 issue: 3 year: 2009 ident: 10.1016/j.mce.2022.111618_bib179 article-title: Gene expression profiling reveals a diverse array of pathways inhibited by nuclear receptor SHP during adipogenesis publication-title: Int. J. Clin. Exp. Pathol. – volume: 12 start-page: 147 issue: 3 year: 2015 ident: 10.1016/j.mce.2022.111618_bib48 article-title: Novel therapeutic targets in primary biliary cirrhosis publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2015.12 – volume: 298 start-page: 714 issue: 5 year: 2002 ident: 10.1016/j.mce.2022.111618_bib128 article-title: Identification of membrane-type receptor for bile acids (M-BAR) publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(02)02550-0 – volume: 48 start-page: 15 issue: 1 year: 2018 ident: 10.1016/j.mce.2022.111618_bib85 article-title: Reciprocal interactions between bile acids and gut microbiota in human liver diseases publication-title: Hepatol. Res. doi: 10.1111/hepr.13001 – volume: 1865 start-page: 895 issue: 5 year: 2019 ident: 10.1016/j.mce.2022.111618_bib114 article-title: Animal models to study bile acid metabolism publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. doi: 10.1016/j.bbadis.2018.05.011 – volume: 284 start-page: 1365 year: 1999 ident: 10.1016/j.mce.2022.111618_bib148 article-title: Bile acids: natural ligands for an orphan nuclear receptor publication-title: Science doi: 10.1126/science.284.5418.1365 – volume: 153 start-page: 3613 year: 2012 ident: 10.1016/j.mce.2022.111618_bib157 article-title: The role of bile after roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control publication-title: Endocrinology doi: 10.1210/en.2011-2145 – volume: 102 start-page: 731 issue: 6 year: 2000 ident: 10.1016/j.mce.2022.111618_bib174 article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis publication-title: Cell doi: 10.1016/S0092-8674(00)00062-3 – volume: 36 start-page: 2419 issue: 11 year: 1995 ident: 10.1016/j.mce.2022.111618_bib36 article-title: Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7) publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)39723-6 – volume: 58 start-page: 1451 year: 2013 ident: 10.1016/j.mce.2022.111618_bib151 article-title: The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice publication-title: Hepatology doi: 10.1002/hep.26463 – volume: 139 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.mce.2022.111618_bib205 article-title: TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease publication-title: Immunology doi: 10.1111/imm.12045 – volume: 45 start-page: 3569 issue: 17 year: 2002 ident: 10.1016/j.mce.2022.111618_bib152 article-title: 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity publication-title: J. Med. Chem. doi: 10.1021/jm025529g – volume: 318 start-page: G554 year: 2020 ident: 10.1016/j.mce.2022.111618_bib26 article-title: Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00223.2019 – volume: 288 start-page: G74 year: 2005 ident: 10.1016/j.mce.2022.111618_bib112 article-title: Mechanism of rifampicin and pregnane X receptor (PXR) inhibition of human cholesterol 7{alpha}-hydroxylase gene (CYP7A1) transcription publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00258.2004 – volume: 284 start-page: 1362 year: 1999 ident: 10.1016/j.mce.2022.111618_bib125 article-title: Identification of a nuclear receptor for bile acids publication-title: Science doi: 10.1126/science.284.5418.1362 – volume: 287 start-page: 1861 issue: 3 year: 2012 ident: 10.1016/j.mce.2022.111618_bib117 article-title: Glucose and insulin induction of bile acid synthesis: mechanisms and implication IN diabetes and obesity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.305789 – volume: 509 start-page: 183 year: 2014 ident: 10.1016/j.mce.2022.111618_bib169 article-title: FXR is a molecular target for the effects of vertical sleeve gastrectomy publication-title: Nature doi: 10.1038/nature13135 – volume: 2 start-page: 713 issue: 6 year: 2002 ident: 10.1016/j.mce.2022.111618_bib100 article-title: Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00154-5 – volume: 152 start-page: 1679 issue: 7 year: 2017 ident: 10.1016/j.mce.2022.111618_bib20 article-title: Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.01.055 – volume: 48 start-page: 474 issue: 2 year: 2008 ident: 10.1016/j.mce.2022.111618_bib200 article-title: Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1002/hep.22363 – volume: 49 start-page: 297 issue: 1 year: 2009 ident: 10.1016/j.mce.2022.111618_bib180 article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression publication-title: Hepatology doi: 10.1002/hep.22627 – volume: 6 start-page: 507 issue: 3 year: 2000 ident: 10.1016/j.mce.2022.111618_bib123 article-title: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors publication-title: Mol. Cell. doi: 10.1016/S1097-2765(00)00050-2 – volume: 17 start-page: 279 issue: 5 year: 2020 ident: 10.1016/j.mce.2022.111618_bib6 article-title: Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-0269-9 – volume: 458 start-page: 1131 issue: 7242 year: 2009 ident: 10.1016/j.mce.2022.111618_bib175 article-title: Autophagy regulates lipid metabolism publication-title: Nature doi: 10.1038/nature07976 – volume: 74 start-page: 442 issue: 2 year: 2021 ident: 10.1016/j.mce.2022.111618_bib107 article-title: Hepatokines and adipokines in NASH-related hepatocellular carcinoma publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.10.030 – volume: 316 start-page: G412 issue: 3 year: 2019 ident: 10.1016/j.mce.2022.111618_bib56 article-title: Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00300.2018 – volume: 66 start-page: 1384 issue: 5 year: 2017 ident: 10.1016/j.mce.2022.111618_bib40 article-title: Hepatic bile acid uptake in humans and mice: multiple pathways and expanding potential role for gut-liver signaling publication-title: Hepatology doi: 10.1002/hep.29325 – volume: 116 start-page: 1102 issue: 4 year: 2006 ident: 10.1016/j.mce.2022.111618_bib124 article-title: Farnesoid X receptor is essential for normal glucose homeostasis publication-title: J. Clin. Invest. doi: 10.1172/JCI25604 – volume: 74 start-page: 58 issue: 1 year: 2021 ident: 10.1016/j.mce.2022.111618_bib104 article-title: Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.07.028 – volume: 276 start-page: 41690 year: 2001 ident: 10.1016/j.mce.2022.111618_bib207 article-title: Transcriptional regulation of the human sterol 12a-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4a (HNF4a) in mediating bile acid repression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105117200 – volume: 45 start-page: 695 issue: 3 year: 2007 ident: 10.1016/j.mce.2022.111618_bib97 article-title: The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells publication-title: Hepatology doi: 10.1002/hep.21458 – volume: 57 start-page: 10343 issue: 24 year: 2014 ident: 10.1016/j.mce.2022.111618_bib79 article-title: G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype publication-title: J. Med. Chem. doi: 10.1021/jm501052c – volume: 62 start-page: 4184 issue: 12 year: 2013 ident: 10.1016/j.mce.2022.111618_bib72 article-title: Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids publication-title: Diabetes doi: 10.2337/db13-0639 – volume: 17 start-page: 20 issue: 1 year: 2021 ident: 10.1016/j.mce.2022.111618_bib19 article-title: Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0604-z – volume: 68 start-page: 1063 issue: 5 year: 2018 ident: 10.1016/j.mce.2022.111618_bib90 article-title: A major mediator of non-alcoholic fatty liver disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.01.019 – volume: 275 start-page: 10918 year: 2000 ident: 10.1016/j.mce.2022.111618_bib30 article-title: FXR responds to bile acids and represses cholesterol 7a-hydroxylase gene (CYP7A1) transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.15.10918 – volume: 332 start-page: 1519 issue: 6037 year: 2011 ident: 10.1016/j.mce.2022.111618_bib35 article-title: Human fatty liver disease: old questions and new insights publication-title: Science doi: 10.1126/science.1204265 – volume: 13 start-page: 3039 issue: 25 year: 2006 ident: 10.1016/j.mce.2022.111618_bib177 article-title: Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors publication-title: Curr. Med. Chem. doi: 10.2174/092986706778521823 – volume: 269 start-page: 17502 year: 1994 ident: 10.1016/j.mce.2022.111618_bib29 article-title: Identification and characterization of a putative bile acid responsive element in cholesterol 7a-hydroxylase gene promoter publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)32469-9 – volume: 276 start-page: 30708 year: 2001 ident: 10.1016/j.mce.2022.111618_bib41 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M103270200 – volume: 46 start-page: 1993 issue: 6 year: 2007 ident: 10.1016/j.mce.2022.111618_bib178 article-title: Hepatocyte growth factor signaling pathway inhibits cholesterol 7alpha-hydroxylase and bile acid synthesis in human hepatocytes publication-title: Hepatology doi: 10.1002/hep.21878 – volume: 331 start-page: 1621 issue: 6024 year: 2011 ident: 10.1016/j.mce.2022.111618_bib103 article-title: FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis publication-title: Science doi: 10.1126/science.1198363 – volume: 125 start-page: 386 issue: 1 year: 2015 ident: 10.1016/j.mce.2022.111618_bib92 article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease publication-title: J. Clin. Invest. doi: 10.1172/JCI76738 – volume: 25 start-page: 1159 issue: 7 year: 2011 ident: 10.1016/j.mce.2022.111618_bib133 article-title: Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes publication-title: Mol. Endocrinol. doi: 10.1210/me.2011-0033 – volume: 110 start-page: 109 issue: 1 year: 2002 ident: 10.1016/j.mce.2022.111618_bib159 article-title: Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype publication-title: J. Clin. Invest. doi: 10.1172/JCI0215387 – volume: 276 start-page: 36869 issue: 40 year: 2001 ident: 10.1016/j.mce.2022.111618_bib74 article-title: The multifaceted mechanisms of estradiol and estrogen receptor signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.R100029200 – volume: 372 start-page: 78 issue: 1 year: 2008 ident: 10.1016/j.mce.2022.111618_bib98 article-title: Expression and function of the bile acid receptor TGR5 in Kupffer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.04.171 – volume: 66 start-page: 613 issue: 3 year: 2017 ident: 10.1016/j.mce.2022.111618_bib201 article-title: An intestinal farnesoid X receptor-ceramide signaling Axis modulates hepatic gluconeogenesis in mice publication-title: Diabetes doi: 10.2337/db16-0663 – volume: 155 start-page: 1741 issue: 6 year: 2018 ident: 10.1016/j.mce.2022.111618_bib62 article-title: FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.08.022 – volume: 11 start-page: 451 year: 2016 ident: 10.1016/j.mce.2022.111618_bib75 article-title: Nonalcoholic fatty liver disease: pathogenesis and disease spectrum publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-012615-044224 – volume: 22 start-page: 1622 issue: 7 year: 2008 ident: 10.1016/j.mce.2022.111618_bib196 article-title: Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo publication-title: Mol. Endocrinol. doi: 10.1210/me.2007-0527 – volume: 61 start-page: 54 year: 2020 ident: 10.1016/j.mce.2022.111618_bib81 article-title: Regulations of bile acid metabolism in mouse models with hydrophobic bile acid composition publication-title: J. Lipid Res. doi: 10.1194/jlr.RA119000395 – volume: 1864 start-page: 1422 issue: 10 year: 2019 ident: 10.1016/j.mce.2022.111618_bib16 article-title: Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2019.07.006 – volume: 65 start-page: 350 year: 2017 ident: 10.1016/j.mce.2022.111618_bib5 article-title: Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives publication-title: Hepatology doi: 10.1002/hep.28709 – volume: 60 start-page: 908 year: 2014 ident: 10.1016/j.mce.2022.111618_bib120 article-title: Conjugated bile acids promote cholangiocarcinoma cell invasive growth via activation of sphingosine 1-phosphate receptor 2 publication-title: Hepatology doi: 10.1002/hep.27085 – volume: 9 start-page: 1131 issue: 8 year: 2013 ident: 10.1016/j.mce.2022.111618_bib38 article-title: Functions of autophagy in normal and diseased liver publication-title: Autophagy doi: 10.4161/auto.25063 – volume: 279 start-page: 45139 year: 2004 ident: 10.1016/j.mce.2022.111618_bib8 article-title: Ligand-activated PXR interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha : functional implications in hepatic cholesterol and glucose metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405423200 – volume: 43 start-page: S99 issue: 2 Suppl. 1 year: 2006 ident: 10.1016/j.mce.2022.111618_bib51 article-title: Nonalcoholic fatty liver disease: from steatosis to cirrhosis publication-title: Hepatology doi: 10.1002/hep.20973 – volume: 75 start-page: 634 issue: 3 year: 2021 ident: 10.1016/j.mce.2022.111618_bib163 article-title: Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2021.03.029 – volume: 24 start-page: 2624 year: 2005 ident: 10.1016/j.mce.2022.111618_bib10 article-title: Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP publication-title: EMBO J. doi: 10.1038/sj.emboj.7600728 – volume: 292 start-page: 11055 issue: 26 year: 2017 ident: 10.1016/j.mce.2022.111618_bib149 article-title: Farnesoid X receptor induces Takeda G-protein receptor 5 crosstalk to regulate bile acid synthesis and hepatic metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.784322 – volume: 124 start-page: 5424 issue: 12 year: 2014 ident: 10.1016/j.mce.2022.111618_bib153 article-title: TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation publication-title: J. Clin. Invest. doi: 10.1172/JCI76289 – volume: 400 start-page: 625 issue: 5 year: 2019 ident: 10.1016/j.mce.2022.111618_bib49 article-title: Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1 publication-title: Biol. Chem. doi: 10.1515/hsz-2018-0379 – volume: 26 start-page: 312 issue: 4 year: 2012 ident: 10.1016/j.mce.2022.111618_bib155 article-title: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine publication-title: Gene Dev. doi: 10.1101/gad.184788.111 – volume: 10 start-page: 104 issue: 1 year: 2017 ident: 10.1016/j.mce.2022.111618_bib204 article-title: Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice publication-title: Mucosal Immunol. doi: 10.1038/mi.2016.42 – volume: 65 start-page: 487 issue: 3 year: 2016 ident: 10.1016/j.mce.2022.111618_bib162 article-title: TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro publication-title: Gut doi: 10.1136/gutjnl-2015-309458 – volume: 113 start-page: 1408 issue: 10 year: 2004 ident: 10.1016/j.mce.2022.111618_bib199 article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c publication-title: J. Clin. Invest. doi: 10.1172/JCI21025 – volume: 21 start-page: 159 issue: 2 year: 2015 ident: 10.1016/j.mce.2022.111618_bib50 article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance publication-title: Nat. Med. doi: 10.1038/nm.3760 – volume: 15 issue: 3 year: 2019 ident: 10.1016/j.mce.2022.111618_bib58 article-title: Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007581 – volume: 62 start-page: 135 issue: 1 year: 2015 ident: 10.1016/j.mce.2022.111618_bib111 article-title: Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice publication-title: Hepatology doi: 10.1002/hep.27804 – volume: 17 start-page: 225 issue: 2 year: 2013 ident: 10.1016/j.mce.2022.111618_bib170 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metabol. doi: 10.1016/j.cmet.2013.01.003 – volume: 38 start-page: 2446 year: 1997 ident: 10.1016/j.mce.2022.111618_bib161 article-title: Activation of protein kinase Ca and d by bile acids: correlation with bile acid structure and diacylglycerol formation publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)30029-8 – volume: 18 start-page: 335 issue: 5 year: 2021 ident: 10.1016/j.mce.2022.111618_bib185 article-title: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-00404-2 – volume: 66 start-page: 948 issue: 4 year: 2014 ident: 10.1016/j.mce.2022.111618_bib113 article-title: Bile acid signaling in metabolic disease and drug therapy publication-title: Pharmacol. Rev. doi: 10.1124/pr.113.008201 – volume: 11 start-page: 1003 year: 1992 ident: 10.1016/j.mce.2022.111618_bib108 article-title: Evolution of the nuclear receptor gene superfamily publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05139.x – volume: 123 start-page: 154844 year: 2021 ident: 10.1016/j.mce.2022.111618_bib141 article-title: Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease publication-title: Metabolism doi: 10.1016/j.metabol.2021.154844 – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.mce.2022.111618_bib168 article-title: Links between gut microbiome composition and fatty liver disease in a large population sample publication-title: Gut Microb. doi: 10.1080/19490976.2021.1888673 – volume: 11 start-page: 467 issue: 6 year: 2010 ident: 10.1016/j.mce.2022.111618_bib203 article-title: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance publication-title: Cell Metabol. doi: 10.1016/j.cmet.2010.04.005 – volume: 280 start-page: 29971 issue: 33 year: 2005 ident: 10.1016/j.mce.2022.111618_bib47 article-title: The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition publication-title: J. Biol. Chem. doi: 10.1074/jbc.M501931200 – volume: 65 start-page: 2005 issue: 6 year: 2017 ident: 10.1016/j.mce.2022.111618_bib198 article-title: The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice publication-title: Hepatology doi: 10.1002/hep.29076 – volume: 15 start-page: 11 issue: 1 year: 2018 ident: 10.1016/j.mce.2022.111618_bib206 article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.109 – volume: 141 start-page: 1773 issue: 5 year: 2011 ident: 10.1016/j.mce.2022.111618_bib88 article-title: Bile acid is a host factor that regulates the composition of the cecal microbiota in rats publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.07.046 – volume: 67 start-page: 1720 issue: 9 year: 2018 ident: 10.1016/j.mce.2022.111618_bib11 article-title: Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery publication-title: Diabetes doi: 10.2337/dbi17-0007 – volume: 47 start-page: 1578 issue: 5 year: 2008 ident: 10.1016/j.mce.2022.111618_bib147 article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis publication-title: Hepatology doi: 10.1002/hep.22196 – volume: 67 start-page: 534 year: 2018 ident: 10.1016/j.mce.2022.111618_bib160 article-title: The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids publication-title: Hepatology doi: 10.1002/hep.29359 – volume: 145 start-page: 574 issue: 3 year: 2013 ident: 10.1016/j.mce.2022.111618_bib138 article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic Acid in patients with type 2 diabetes and nonalcoholic Fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.05.042 – volume: 275 start-page: 17793 issue: 23 year: 2000 ident: 10.1016/j.mce.2022.111618_bib42 article-title: a1-fetoprotein transcription factor is required for the expression of sterol 12a-hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid-mediated regulation of gene transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M000996200 – volume: 126 start-page: 756 issue: 3 year: 2004 ident: 10.1016/j.mce.2022.111618_bib21 article-title: Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity publication-title: Gastroenterology doi: 10.1053/j.gastro.2003.12.013 – volume: 36 start-page: S3 issue: Suppl. 1 year: 2012 ident: 10.1016/j.mce.2022.111618_bib156 article-title: Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action publication-title: Clin Res Hepatol Gastroenterol doi: 10.1016/S2210-7401(12)70015-3 – volume: 50 start-page: 2139 issue: 11 year: 2009 ident: 10.1016/j.mce.2022.111618_bib52 article-title: Bile acids: role of peroxisomes publication-title: J. Lipid Res. doi: 10.1194/jlr.R900009-JLR200 – volume: 121 start-page: 140 issue: 1 year: 2001 ident: 10.1016/j.mce.2022.111618_bib43 article-title: The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp publication-title: Gastroenterology doi: 10.1053/gast.2001.25503 – year: 2018 ident: 10.1016/j.mce.2022.111618_bib142 article-title: Increased bile acids and FGF19 after sleeve gastrectomy and roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial publication-title: Obes. Surg. doi: 10.1007/s11695-018-3216-x – volume: 282 start-page: 34250 issue: 47 year: 2007 ident: 10.1016/j.mce.2022.111618_bib2 article-title: p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704075200 – volume: 312 start-page: 233 issue: 5771 year: 2006 ident: 10.1016/j.mce.2022.111618_bib84 article-title: Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration publication-title: Science doi: 10.1126/science.1121435 – volume: 5 start-page: 1810 issue: 11 year: 2021 ident: 10.1016/j.mce.2022.111618_bib1 article-title: What does the future hold for patients with nonalcoholic steatohepatitis: diagnostic strategies and treatment options in 2021 and beyond? publication-title: Hepatol Commun doi: 10.1002/hep4.1814 – volume: 15 start-page: 261 issue: 5 year: 2019 ident: 10.1016/j.mce.2022.111618_bib15 article-title: Gut microbial metabolites in obesity, NAFLD and T2DM publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-019-0156-z – volume: 67 start-page: 549 issue: 3 year: 2017 ident: 10.1016/j.mce.2022.111618_bib55 article-title: norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.05.009 – volume: 59 start-page: 1709 year: 2018 ident: 10.1016/j.mce.2022.111618_bib135 article-title: Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation publication-title: J. Lipid Res. doi: 10.1194/jlr.M087239 – volume: 288 start-page: G685 year: 2005 ident: 10.1016/j.mce.2022.111618_bib89 article-title: Cytokine regulation of human sterol 12{alpha}-hydroxylase (CYP8B1) gene publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00207.2004 – volume: 70 start-page: 788 issue: 3 year: 2019 ident: 10.1016/j.mce.2022.111618_bib190 article-title: The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis publication-title: Hepatology doi: 10.1002/hep.30509 – volume: 6 start-page: 2029 year: 2017 ident: 10.1016/j.mce.2022.111618_bib24 article-title: Recent advances in understanding bile acid homeostasis publication-title: F1000Res doi: 10.12688/f1000research.12449.1 – volume: 103 start-page: 1006 issue: 4 year: 2006 ident: 10.1016/j.mce.2022.111618_bib208 article-title: Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0506982103 – volume: 15 start-page: 91 issue: 3 year: 2020 ident: 10.1016/j.mce.2022.111618_bib27 article-title: Bile acid biology, pathophysiology, and therapeutics publication-title: Clin. Liver Dis. doi: 10.1002/cld.861 – volume: 2 start-page: 721 issue: 6 year: 2002 ident: 10.1016/j.mce.2022.111618_bib194 article-title: Redundant pathways for negative feedback regulation of bile Acid production publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00187-9 – volume: 50 start-page: 1955 year: 2009 ident: 10.1016/j.mce.2022.111618_bib22 article-title: Bile acids: regulation of synthesis publication-title: J. Lipid Res. doi: 10.1194/jlr.R900010-JLR200 – volume: 278 start-page: 9435 year: 2003 ident: 10.1016/j.mce.2022.111618_bib96 article-title: A G protein-coupled receptor responsive to bile acids publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209706200 – volume: 285 start-page: 3035 issue: 5 year: 2010 ident: 10.1016/j.mce.2022.111618_bib209 article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.083899 – volume: 61 start-page: 1216 issue: 4 year: 2015 ident: 10.1016/j.mce.2022.111618_bib140 article-title: Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression publication-title: Hepatology doi: 10.1002/hep.27592 – volume: 48 start-page: 2664 year: 2007 ident: 10.1016/j.mce.2022.111618_bib102 article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine publication-title: J. Lipid Res. doi: 10.1194/jlr.M700330-JLR200 – volume: 71 start-page: 609 issue: 4 year: 2000 ident: 10.1016/j.mce.2022.111618_bib12 article-title: Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7alpha-hydroxylase gene repression by bile acids [In Process Citation] publication-title: Mol. Genet. Metabol. doi: 10.1006/mgme.2000.3106 – volume: 51 start-page: 1410 issue: 4 year: 2010 ident: 10.1016/j.mce.2022.111618_bib189 article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine publication-title: Hepatology doi: 10.1002/hep.23450 – volume: 516 start-page: 112 issue: 7529 year: 2014 ident: 10.1016/j.mce.2022.111618_bib110 article-title: Nutrient-sensing nuclear receptors coordinate autophagy publication-title: Nature doi: 10.1038/nature13961 – volume: 375 start-page: 631 issue: 7 year: 2016 ident: 10.1016/j.mce.2022.111618_bib144 article-title: A placebo-controlled trial of obeticholic acid in primary biliary cholangitis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1509840 – volume: 9 start-page: 2590 issue: 1 year: 2018 ident: 10.1016/j.mce.2022.111618_bib14 article-title: Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis publication-title: Nat. Commun. doi: 10.1038/s41467-018-04697-5 – volume: 7 start-page: 195 issue: 4 year: 2010 ident: 10.1016/j.mce.2022.111618_bib13 article-title: Pathology of nonalcoholic fatty liver disease publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2010.21 – volume: 109 start-page: 961 issue: 7 year: 2002 ident: 10.1016/j.mce.2022.111618_bib34 article-title: Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element publication-title: J. Clin. Invest. doi: 10.1172/JCI0214505 – volume: 276 start-page: 15816 issue: 19 year: 2001 ident: 10.1016/j.mce.2022.111618_bib70 article-title: Down-regulation of cholesterol 7alpha -hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-jun N-terminal kinase pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M010878200 – volume: 60 start-page: 1861 issue: 7 year: 2011 ident: 10.1016/j.mce.2022.111618_bib158 article-title: Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity publication-title: Diabetes doi: 10.2337/db11-0030 – volume: 103 start-page: 3920 issue: 10 year: 2006 ident: 10.1016/j.mce.2022.111618_bib87 article-title: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0509592103 – volume: 276 start-page: 28857 year: 2001 ident: 10.1016/j.mce.2022.111618_bib3 article-title: Human bile salt export pump (BSEP) promoter is transactivated by the farnesoid X receptor/bile acid receptor (FXR/BAR) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M011610200 – volume: 60 start-page: 463 issue: 4 year: 2011 ident: 10.1016/j.mce.2022.111618_bib63 article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease publication-title: Gut doi: 10.1136/gut.2010.212159 – volume: 7 start-page: 678 issue: 8 year: 2008 ident: 10.1016/j.mce.2022.111618_bib187 article-title: Targeting bile-acid signalling for metabolic diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2619 – volume: 21 start-page: 1312 issue: 6 year: 2007 ident: 10.1016/j.mce.2022.111618_bib83 article-title: In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue publication-title: Mol. Endocrinol. doi: 10.1210/me.2007-0113 – volume: 3 start-page: 318 issue: 6 year: 2006 ident: 10.1016/j.mce.2022.111618_bib7 article-title: Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis publication-title: Nat. Clin. Pract. Gastroenterol. Hepatol. doi: 10.1038/ncpgasthep0521 – volume: 45 start-page: 944 issue: 4 year: 2016 ident: 10.1016/j.mce.2022.111618_bib69 article-title: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome publication-title: Immunity doi: 10.1016/j.immuni.2016.10.009 – volume: 55 start-page: 267 issue: 1 year: 2012 ident: 10.1016/j.mce.2022.111618_bib183 article-title: Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes publication-title: Hepatology doi: 10.1002/hep.24681 – volume: 151 start-page: 845 issue: 5 year: 2016 ident: 10.1016/j.mce.2022.111618_bib66 article-title: An intestinal microbiota-farnesoid X receptor Axis modulates metabolic disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.08.057 – volume: 68 start-page: 1574 year: 2018 ident: 10.1016/j.mce.2022.111618_bib150 article-title: Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism publication-title: Hepatology doi: 10.1002/hep.29857 – volume: 81 start-page: 687 year: 1995 ident: 10.1016/j.mce.2022.111618_bib59 article-title: Identification of a nuclear receptor that is activated by farnesol metabolites publication-title: Cell doi: 10.1016/0092-8674(95)90530-8 – volume: 14 start-page: 747 issue: 6 year: 2011 ident: 10.1016/j.mce.2022.111618_bib154 article-title: TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading publication-title: Cell Metabol. doi: 10.1016/j.cmet.2011.11.006 – volume: 30 start-page: 570 issue: 11 year: 2009 ident: 10.1016/j.mce.2022.111618_bib57 article-title: Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2009.08.001 – volume: 28 start-page: 1064 issue: 4 Pt 2 Suppl. l year: 1998 ident: 10.1016/j.mce.2022.111618_bib129 article-title: Cholesterol 7alpha-hydroxylase (CYP7A): patterns of messenger RNA expression during rat liver development [In Process Citation] publication-title: Hepatology doi: 10.1002/hep.510280422 – volume: 275 start-page: 21805 issue: 29 year: 2000 ident: 10.1016/j.mce.2022.111618_bib134 article-title: Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase publication-title: J. Biol. Chem. doi: 10.1074/jbc.C000275200 – volume: 30 start-page: 1341 issue: 6 year: 2010 ident: 10.1016/j.mce.2022.111618_bib210 article-title: Nuclear receptor SHP, a death receptor that targets mitochondria, induces apoptosis and inhibits tumor growth publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01076-09 – volume: 2 start-page: 217 issue: 4 year: 2005 ident: 10.1016/j.mce.2022.111618_bib86 article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis publication-title: Cell Metabol. doi: 10.1016/j.cmet.2005.09.001 – volume: 25 start-page: 1066 issue: 6 year: 2011 ident: 10.1016/j.mce.2022.111618_bib116 article-title: The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling publication-title: Mol. Endocrinol. doi: 10.1210/me.2010-0460 – volume: 10 start-page: 167 issue: 3 year: 2009 ident: 10.1016/j.mce.2022.111618_bib188 article-title: TGR5-mediated bile acid sensing controls glucose homeostasis publication-title: Cell Metabol. doi: 10.1016/j.cmet.2009.08.001 |
SSID | ssj0007528 |
Score | 2.6564555 |
SecondaryResourceType | review_article |
Snippet | In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111618 |
SubjectTerms | adrenal glands Animals bile Bile acid receptors bile acids Bile Acids and Salts - metabolism Cholestasis cholesterol diabetes drugs endocrinology energy energy metabolism enzymes farnesol fatty liver Fatty liver diseases FXR glucose Glucose - metabolism homeostasis intestinal microorganisms intestines kidneys ligands Lipid Metabolism Lipids liver Liver - metabolism Metabolic disease obesity Rats Receptors, Cytoplasmic and Nuclear - metabolism resorption secretion |
Title | Discovery of farnesoid X receptor and its role in bile acid metabolism |
URI | https://dx.doi.org/10.1016/j.mce.2022.111618 https://www.ncbi.nlm.nih.gov/pubmed/35283218 https://www.proquest.com/docview/2638942897 https://www.proquest.com/docview/2648858415 https://pubmed.ncbi.nlm.nih.gov/PMC9038687 |
Volume | 548 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCWKDih2GbZ2H9naQgWGHQZ4cSxLso9BuyDtsF62ArkJsiRjLhonaNxDL_vtJWU7W7Yih56MODSikBT1aD2RAB_LWHlE3j4aWZlHqRQep1RcRl5gGie9imUZqn1eyulVejETsx047c_CEK2yi_1tTA_Rursz7LQ5XFbV8Ae6J7VYUUk4bSJmdII9VeTlX37_oXkoEfqrknBE0v3OZuB4zS1VykwSChyS-n48vjb9jz3_pVD-tSZNXsKLDkyycTveV7Dj6304GNeYSM_v2ScW6J3hvfk-7H3vdtEPYHJWrSxRN-_ZomSlucVwt6gcmzFUhV9iFs5M7VjVrBiRD1lVswKDBzMWhea-Qb-5qVbz13A1-frzdBp1_RQii3lIg0ZQiC4KFwuXO4-ZjHJ56TyGXqpNxJUrZGK453YUo1yZOLwYo3hWlMoLU_A3sFsvav8OGPdZ7LLUWMHz1Iqs4Igb0GS5lQg5TT6AuNektl2xcep5caN7Vtm1RuVrUr5ulT-Az-tHlm2ljW3CaW8eveEuGleCbY-d9KbUOI1ob8TUfnG30gkhN0zFcrVNBqMdAraRGMDb1vzrkYYiOQn9gtpwjLUAlfHe_KaufoVy3nnMM5mp90_7Sx_gOX0iQsNIHMJuc3vnjxAnNcVxmAjH8Gx8_m16-QCQdBFS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTgJeEGz8KD-NhHhAiprGsZ08VoOqY1tf2KS-WY7taEFrWq3Zw_577pykooD6wFOl5qymd_bn7-LLdwCfylh5ZN4-GluZR6kUHpdUXEZeYBonvYplGdQ-53J2lX5fiMUBnPTvwlBZZYf9LaYHtO6-GXXeHK2ravQDpye1WFFJeNtELB7AIalTiQEcTk7PZvMtICsRWqySfUQD-sPNUOa1tCSWmSSEHZJaf_x7e_qbfv5ZRfnbtjR9Ck86Pskm7S0_gwNfH8HxpMZcennPPrNQ4RkenR_Bw4vuIP0Ypl-rjaXqzXu2KllpbhHxVpVjC4be8GtMxJmpHauaDaP6Q1bVrED8YMai0dI3OHVuqs3yOVxNv12ezKKupUJkMRVpMA4KCUbhYuFy5zGZUS4vnUf0JXkirlwhE8M9t-MY7crE4YcximdFqbwwBX8Bg3pV-1fAuM9il6XGCp6nVmQFR-qAUcutRNZp8iHEvSe17fTGqe3Fje4Ly35qdL4m5-vW-UP4sh2ybsU29hmnfXj0zozRuBnsG_axD6XGlUTHI6b2q7uNToi8YTaWq302CHjI2cZiCC_b8G_vNOjkJPQLamdibA1IyXv3Sl1dB0XvPOaZzNTr__tLH-DR7PLiXJ-fzs_ewGO6QvUNY_EWBs3tnX-HtKkp3nfL4hfiNhQD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+farnesoid+X+receptor+and+its+role+in+bile+acid+metabolism&rft.jtitle=Molecular+and+cellular+endocrinology&rft.au=Chiang%2C+John+Y.L.&rft.au=Ferrell%2C+Jessica+M.&rft.date=2022-05-15&rft.issn=0303-7207&rft.volume=548+p.111618-&rft_id=info:doi/10.1016%2Fj.mce.2022.111618&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-7207&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-7207&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-7207&client=summon |