Discovery of farnesoid X receptor and its role in bile acid metabolism

In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular endocrinology Vol. 548; p. 111618
Main Authors Chiang, John Y.L., Ferrell, Jessica M.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 15.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases. •FXR is a bile acid-activated receptor that acts as a metabolic sensor.•FXR plays a central role in the regulation of liver homeostasis.•Dysregulation of bile acid and lipid homeostasis causes dysbiosis and contributes to metabolic disease.•Drugs targeting bile acids and FXR are in clinical trials for non-alcoholic fatty liver diseases, diabetes, and obesity.
AbstractList In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.
In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases. •FXR is a bile acid-activated receptor that acts as a metabolic sensor.•FXR plays a central role in the regulation of liver homeostasis.•Dysregulation of bile acid and lipid homeostasis causes dysbiosis and contributes to metabolic disease.•Drugs targeting bile acids and FXR are in clinical trials for non-alcoholic fatty liver diseases, diabetes, and obesity.
In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7α-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.
In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.
ArticleNumber 111618
Author Chiang, John Y.L.
Ferrell, Jessica M.
Author_xml – sequence: 1
  givenname: John Y.L.
  surname: Chiang
  fullname: Chiang, John Y.L.
  email: jchiang@neomed.edu
– sequence: 2
  givenname: Jessica M.
  orcidid: 0000-0003-3691-3330
  surname: Ferrell
  fullname: Ferrell, Jessica M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35283218$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrGzEUhUVJaJzHD-gmaNnNOHpYIw2BQnFehUA3DWQnNNKdVmZGciXZkH8fGaeh7SJkdRb3nMO99ztGByEGQOgTJXNKaHuxmk8W5owwNqeUtlR9QDOqJGsUEfIAzQgnvJGMyCN0nPOKECIFUx_REa_CGVUzdHPls41bSE84DngwKUCO3uFHnMDCusSETXDYl4xTHAH7gHtf1dhqmqCYPo4-T6focDBjhrMXPUEPN9c_lnfN_ffbb8uv940VgpSmo5IL0TsiXOegZa103eAAjJV2kFy6vmWGA7eUVN_AXBVjJFf9IEGYnp-gL_ve9aafwFkIJZlRr5OfTHrS0Xj97yT4X_pn3OqOcNUqWQs-vxSk-HsDueipPgDG0QSIm6xZu1BKqAUV77By1S2Y6nat53-v9brPnz9XA90bbIo5JxheLZToHUu90pWl3rHUe5Y1I__LWF9M8XF3mR_fTF7uk1BRbD0kna2HYMH5SrVoF_0b6WfLDbix
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_126247
crossref_primary_10_1002_fsn3_70023
crossref_primary_10_1021_acs_jafc_4c04630
crossref_primary_10_3390_biomedicines10112686
crossref_primary_10_1016_j_ejphar_2023_176137
crossref_primary_10_1016_j_biopha_2022_113577
crossref_primary_10_1016_j_tox_2022_153278
crossref_primary_10_1016_j_jhazmat_2024_134821
crossref_primary_10_3389_fphar_2022_1027731
crossref_primary_10_3390_biom14070841
crossref_primary_10_3390_microorganisms13020241
crossref_primary_10_1002_cphc_202400783
crossref_primary_10_3389_fmicb_2023_1123716
crossref_primary_10_1007_s10517_024_06238_1
crossref_primary_10_1016_j_aninu_2024_03_008
crossref_primary_10_31857_S0233475523050109
crossref_primary_10_3390_cimb45120600
crossref_primary_10_3389_fphar_2024_1520158
crossref_primary_10_3390_ani14243554
crossref_primary_10_3389_fendo_2023_1268865
crossref_primary_10_1002_mnfr_202400147
crossref_primary_10_1210_endocr_bqaf031
crossref_primary_10_1016_j_phrs_2023_106943
crossref_primary_10_1002_biot_202400518
crossref_primary_10_1016_j_intimp_2024_111812
crossref_primary_10_1016_j_nbd_2024_106428
crossref_primary_10_1016_j_ijbiomac_2024_136393
crossref_primary_10_3390_pathogens13080702
crossref_primary_10_1038_s41522_024_00610_9
crossref_primary_10_1016_j_ijbiomac_2024_136154
crossref_primary_10_1016_j_bbadis_2024_167037
crossref_primary_10_3390_ph17081073
crossref_primary_10_3389_fimmu_2024_1431990
crossref_primary_10_1002_oby_24135
crossref_primary_10_1002_ptr_8005
crossref_primary_10_1016_j_phymed_2024_155919
crossref_primary_10_3390_cancers16071368
crossref_primary_10_1016_j_jgg_2023_05_013
crossref_primary_10_1097_MCO_0000000000000845
crossref_primary_10_3390_antiox13121532
crossref_primary_10_1016_j_cmet_2022_09_017
crossref_primary_10_1016_j_jep_2022_115682
crossref_primary_10_3390_ijms23137229
crossref_primary_10_3390_molecules29174080
crossref_primary_10_3390_molecules30051010
crossref_primary_10_3390_cimb44080235
crossref_primary_10_1016_j_ajpath_2024_07_023
crossref_primary_10_1111_liv_70027
crossref_primary_10_1016_j_phymed_2023_155291
crossref_primary_10_3390_metabo13070836
crossref_primary_10_3390_cimb46020078
crossref_primary_10_1371_journal_pone_0303786
crossref_primary_10_1002_med_21991
crossref_primary_10_1186_s40168_023_01743_3
crossref_primary_10_3389_fnut_2023_1121203
crossref_primary_10_1515_mr_2024_0020
crossref_primary_10_1016_j_biopha_2024_116400
crossref_primary_10_1016_j_scitotenv_2023_164307
crossref_primary_10_1051_medsci_2023125
crossref_primary_10_37349_eemd_2025_101425
crossref_primary_10_1016_j_plipres_2022_101210
crossref_primary_10_3389_fnut_2024_1447878
crossref_primary_10_1016_j_lfs_2023_121919
crossref_primary_10_3390_biology13070498
crossref_primary_10_3389_fnut_2022_991812
crossref_primary_10_3389_fendo_2023_1142177
crossref_primary_10_1016_j_micpath_2024_106767
crossref_primary_10_1016_j_heliyon_2024_e27819
crossref_primary_10_1016_j_intimp_2024_112799
crossref_primary_10_1016_j_scitotenv_2024_173795
crossref_primary_10_3390_ijms26041759
crossref_primary_10_1002_advs_202409107
crossref_primary_10_1097_HEP_0000000000000182
crossref_primary_10_1124_jpet_123_001900
crossref_primary_10_1016_j_psj_2024_104422
crossref_primary_10_1016_j_toxlet_2022_06_004
crossref_primary_10_1016_j_pharmthera_2023_108529
crossref_primary_10_1002_fsn3_4279
crossref_primary_10_1186_s40364_024_00694_7
crossref_primary_10_3390_ijms25084387
crossref_primary_10_1002_ptr_7926
crossref_primary_10_1016_j_jep_2024_118209
crossref_primary_10_1016_j_livres_2025_01_001
crossref_primary_10_3390_ijms252413656
crossref_primary_10_26599_FSHW_2022_9250252
crossref_primary_10_2147_CIA_S431220
crossref_primary_10_3390_ijms25073728
crossref_primary_10_1016_j_lfs_2024_122823
crossref_primary_10_1097_IM9_0000000000000137
crossref_primary_10_1002_ptr_8326
crossref_primary_10_1016_j_bioorg_2024_107940
crossref_primary_10_3390_biom14101227
crossref_primary_10_1186_s13023_024_03166_1
crossref_primary_10_1080_19490976_2022_2132903
crossref_primary_10_1007_s11010_024_05162_2
crossref_primary_10_1002_mnfr_202300148
crossref_primary_10_1186_s41232_023_00315_0
crossref_primary_10_1038_s41574_024_01067_8
crossref_primary_10_1016_j_tox_2024_153900
crossref_primary_10_3390_ijms26072972
crossref_primary_10_1134_S1990747823050100
crossref_primary_10_1016_j_phymed_2023_155124
crossref_primary_10_1080_14787210_2024_2376153
crossref_primary_10_1111_liv_16236
crossref_primary_10_1016_j_taap_2023_116550
crossref_primary_10_1016_j_jcmgh_2024_101392
crossref_primary_10_1016_j_csbj_2023_05_026
crossref_primary_10_1021_acs_analchem_4c03743
crossref_primary_10_1021_acsbiomedchemau_4c00105
crossref_primary_10_3389_fendo_2025_1551100
crossref_primary_10_1186_s13020_024_00889_y
crossref_primary_10_3389_fphar_2025_1533141
crossref_primary_10_3390_foods12234308
Cites_doi 10.1038/s41575-019-0145-7
10.1007/s11695-012-0673-5
10.1194/jlr.D600032-JLR200
10.1002/hep.29569
10.3389/fimmu.2020.609060
10.1016/j.cell.2006.06.049
10.1016/S0022-2275(20)33481-7
10.1016/j.livres.2017.05.001
10.1038/nature11225
10.1038/s41591-018-0222-4
10.1016/S0022-2275(20)31482-6
10.1016/j.cmet.2005.08.010
10.1146/annurev.biochem.72.121801.161712
10.1016/j.soard.2017.05.024
10.1016/j.jhep.2014.12.034
10.1016/j.jceh.2013.10.005
10.1161/01.ATV.0000195793.73118.b4
10.1126/scitranslmed.aba4448
10.1053/j.gastro.2014.12.005
10.1016/S1097-2765(00)80348-2
10.1038/ncomms3384
10.1016/j.cmet.2015.05.004
10.1016/S0022-2275(20)40050-1
10.1016/j.jcmgh.2016.10.002
10.1002/hep.31622
10.1002/hep.24702
10.1038/ncomms10166
10.1128/mSystems.00070-16
10.1016/j.cld.2007.11.010
10.1002/hep.31265
10.1002/hep.22891
10.1002/hep.28689
10.1194/jlr.M064709
10.1016/S1097-2765(00)00051-4
10.1371/journal.pone.0025637
10.1056/NEJMra1713263
10.1016/j.jsbmb.2019.01.011
10.1371/journal.pone.0093567
10.3389/fncel.2017.00191
10.1016/j.jcmgh.2020.10.011
10.1016/S0140-6736(14)61933-4
10.1146/annurev-nutr-082018-124344
10.1016/j.cmet.2021.04.009
10.1002/cld.1143
10.1128/MCB.20.1.187-195.2000
10.4161/gmic.25723
10.1016/j.jhep.2008.02.011
10.1038/nature13949
10.1096/fj.202101397R
10.1007/s11938-020-00290-2
10.1002/hep.21183
10.1007/978-1-4614-0887-1_11
10.1002/hep.25740
10.1002/hep.30590
10.1161/ATVBAHA.113.301565
10.1038/nm1501
10.1016/j.jhep.2018.10.035
10.1016/j.jhep.2009.05.012
10.1371/journal.pone.0151829
10.1002/hep.23032
10.1016/0016-5085(95)90083-7
10.1016/j.bbadis.2010.01.002
10.1016/0092-8674(95)90199-X
10.1016/j.cmet.2014.05.020
10.1002/hep.30513
10.1038/ncomms10713
10.1053/j.gastro.2008.03.003
10.1136/gutjnl-2015-309871
10.1194/jlr.M071183
10.1074/jbc.M510713200
10.1038/nrgastro.2015.12
10.1016/S0006-291X(02)02550-0
10.1111/hepr.13001
10.1016/j.bbadis.2018.05.011
10.1126/science.284.5418.1365
10.1210/en.2011-2145
10.1016/S0092-8674(00)00062-3
10.1016/S0022-2275(20)39723-6
10.1002/hep.26463
10.1111/imm.12045
10.1021/jm025529g
10.1152/ajpgi.00223.2019
10.1152/ajpgi.00258.2004
10.1126/science.284.5418.1362
10.1074/jbc.M111.305789
10.1038/nature13135
10.1016/S1534-5807(02)00154-5
10.1053/j.gastro.2017.01.055
10.1002/hep.22363
10.1002/hep.22627
10.1016/S1097-2765(00)00050-2
10.1038/s41575-020-0269-9
10.1038/nature07976
10.1016/j.jhep.2020.10.030
10.1152/ajpgi.00300.2018
10.1002/hep.29325
10.1172/JCI25604
10.1016/j.jhep.2020.07.028
10.1074/jbc.M105117200
10.1002/hep.21458
10.1021/jm501052c
10.2337/db13-0639
10.1038/s41589-020-0604-z
10.1016/j.jhep.2018.01.019
10.1074/jbc.275.15.10918
10.1126/science.1204265
10.2174/092986706778521823
10.1016/S0021-9258(17)32469-9
10.1074/jbc.M103270200
10.1002/hep.21878
10.1126/science.1198363
10.1172/JCI76738
10.1210/me.2011-0033
10.1172/JCI0215387
10.1074/jbc.R100029200
10.1016/j.bbrc.2008.04.171
10.2337/db16-0663
10.1053/j.gastro.2018.08.022
10.1146/annurev-pathol-012615-044224
10.1210/me.2007-0527
10.1194/jlr.RA119000395
10.1016/j.bbalip.2019.07.006
10.1002/hep.28709
10.1002/hep.27085
10.4161/auto.25063
10.1074/jbc.M405423200
10.1002/hep.20973
10.1016/j.jhep.2021.03.029
10.1038/sj.emboj.7600728
10.1074/jbc.M117.784322
10.1172/JCI76289
10.1515/hsz-2018-0379
10.1101/gad.184788.111
10.1038/mi.2016.42
10.1136/gutjnl-2015-309458
10.1172/JCI21025
10.1038/nm.3760
10.1371/journal.ppat.1007581
10.1002/hep.27804
10.1016/j.cmet.2013.01.003
10.1016/S0022-2275(20)30029-8
10.1038/s41575-020-00404-2
10.1124/pr.113.008201
10.1002/j.1460-2075.1992.tb05139.x
10.1016/j.metabol.2021.154844
10.1080/19490976.2021.1888673
10.1016/j.cmet.2010.04.005
10.1074/jbc.M501931200
10.1002/hep.29076
10.1038/nrgastro.2017.109
10.1053/j.gastro.2011.07.046
10.2337/dbi17-0007
10.1002/hep.22196
10.1002/hep.29359
10.1053/j.gastro.2013.05.042
10.1074/jbc.M000996200
10.1053/j.gastro.2003.12.013
10.1016/S2210-7401(12)70015-3
10.1194/jlr.R900009-JLR200
10.1053/gast.2001.25503
10.1007/s11695-018-3216-x
10.1074/jbc.M704075200
10.1126/science.1121435
10.1002/hep4.1814
10.1038/s41574-019-0156-z
10.1016/j.jhep.2017.05.009
10.1194/jlr.M087239
10.1152/ajpgi.00207.2004
10.1002/hep.30509
10.12688/f1000research.12449.1
10.1073/pnas.0506982103
10.1002/cld.861
10.1016/S1534-5807(02)00187-9
10.1194/jlr.R900010-JLR200
10.1074/jbc.M209706200
10.1074/jbc.M109.083899
10.1002/hep.27592
10.1194/jlr.M700330-JLR200
10.1006/mgme.2000.3106
10.1002/hep.23450
10.1038/nature13961
10.1056/NEJMoa1509840
10.1038/s41467-018-04697-5
10.1038/nrgastro.2010.21
10.1172/JCI0214505
10.1074/jbc.M010878200
10.2337/db11-0030
10.1073/pnas.0509592103
10.1074/jbc.M011610200
10.1136/gut.2010.212159
10.1038/nrd2619
10.1210/me.2007-0113
10.1038/ncpgasthep0521
10.1016/j.immuni.2016.10.009
10.1002/hep.24681
10.1053/j.gastro.2016.08.057
10.1002/hep.29857
10.1016/0092-8674(95)90530-8
10.1016/j.cmet.2011.11.006
10.1016/j.tips.2009.08.001
10.1002/hep.510280422
10.1074/jbc.C000275200
10.1128/MCB.01076-09
10.1016/j.cmet.2005.09.001
10.1210/me.2010-0460
10.1016/j.cmet.2009.08.001
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.mce.2022.111618
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-8057
EndPage 111618
ExternalDocumentID PMC9038687
35283218
10_1016_j_mce_2022_111618
S030372072200065X
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R37 DK058379
– fundername: NIDDK NIH HHS
  grantid: R01 DK044442
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LX3
LZ1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSU
SSZ
T5K
WH7
~G-
.55
.GJ
29M
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HDZ
HLW
HMK
HMO
HVGLF
HZ~
J5H
MVM
R2-
RIG
SAE
SBG
SEW
WUQ
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-917355bd05d9de6267d9fdeeac7cf737db62a3e3c10355f2d035aa738bf7e5ab3
IEDL.DBID .~1
ISSN 0303-7207
1872-8057
IngestDate Thu Aug 21 18:37:22 EDT 2025
Thu Jul 10 23:10:05 EDT 2025
Sun Aug 24 03:48:18 EDT 2025
Thu Apr 03 07:01:06 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Tue Jul 01 03:48:50 EDT 2025
Fri Feb 23 02:40:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FXR
NAFLD
NR
UDCA
CYP7A1
Metabolic disease
PBC
Bile acid receptors
CA
CDCA
PSC
DCA
HCC
MCA
LCA
CYP7B1
NASH
OCA
CYP27A1
TGR5
FGF15
PFIC
FGF19
FGFR4
Fatty liver diseases
Cholestasis
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-917355bd05d9de6267d9fdeeac7cf737db62a3e3c10355f2d035aa738bf7e5ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3691-3330
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9038687
PMID 35283218
PQID 2638942897
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9038687
proquest_miscellaneous_2648858415
proquest_miscellaneous_2638942897
pubmed_primary_35283218
crossref_primary_10_1016_j_mce_2022_111618
crossref_citationtrail_10_1016_j_mce_2022_111618
elsevier_sciencedirect_doi_10_1016_j_mce_2022_111618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Molecular and cellular endocrinology
PublicationTitleAlternate Mol Cell Endocrinol
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bookout, Jeong, Downes, Yu, Evans, Mangelsdorf (bib9) 2006; 126
Song, Li, Owsley, Strom, Chiang (bib180) 2009; 49
Foley, O'Flaherty, Barrangou, Theriot (bib58) 2019; 15
Kjaergaard, Frisch, Sorensen, Munk, Hofmann, Horsager, Schacht, Erickson, Shapiro, Keiding (bib104) 2021; 74
Zhang, Chiang (bib207) 2001; 276
Potthoff, Kliewer, Mangelsdorf (bib155) 2012; 26
Kir, Beddow, Samuel, Miller, Previs, Suino-Powell, Xu, Shulman, Kliewer, Mangelsdorf (bib103) 2011; 331
Perino, Pols, Nomura, Stein, Pellicciari, Schoonjans (bib153) 2014; 124
Jones (bib93) 2012; 728
Wang, Yang, Chen, Huang, Lai, Forman, Huang (bib196) 2008; 22
Hoofnagle (bib82) 2020; 72
Russell (bib167) 2003; 72
Chaudhari, Luo, Harris, Aliakbarian, Yao, Paik, Subramaniam, Adhikari, Vernon, Kilic, Weiss, Huh, Sheu, Devlin (bib18) 2020
Chavez-Talavera, Tailleux, Lefebvre, Staels (bib20) 2017; 152
Liu, Zhao, Zhou, Liang, Campbell, Zhang, Zhang, Shi, Wang, Pandak, Sirica, Hylemon, Zhou (bib120) 2014; 60
Pathak, Cen, Nichols, Ferrell, Boehme, Krausz, Patterson, Gonzalez, Chiang (bib150) 2018; 68
Forman, Goode, Chen, Oro, Bradley, Perlmann, Noonan, Burka, McMorris, Lamph, Evans, Weinberger (bib59) 1995; 81
Gonzalez, Jiang, Patterson (bib66) 2016; 151
Hirschfield, Chazouilleres, Drenth, Thorburn, Harrison, Landis, Mayo, Muir, Trotter, Leeming, Karsdal, Jaros, Ling, Kim, Rossi, Somaratne, DePaoli, Beuers (bib78) 2019; 70
Prawitt, Abdelkarim, Stroeve, Popescu, Duez, Velagapudi, Dumont, Bouchaert, van Dijk, Lucas, Dorchies, Daoudi, Lestavel, Gonzalez, Oresic, Cariou, Kuipers, Caron, Staels (bib158) 2011; 60
Simonen, Dali-Youcef, Kaminska, Venesmaa, Kakela, Paakkonen, Hallikainen, Kolehmainen, Uusitupa, Moilanen, Laakso, Gylling, Patti, Auwerx, Pihlajamaki (bib173) 2012; 22
Nevens, Andreone, Mazzella, Strasser, Bowlus, Invernizzi, Drenth, Pockros, Regula, Beuers, Trauner, Jones, Floreani, Hohenester, Luketic, Shiffman, van Erpecum, Vargas, Vincent, Hirschfield, Shah, Hansen, Lindor, Marschall, Kowdley, Hooshmand-Rad, Marmon, Sheeron, Pencek, MacConell, Pruzanski, Shapiro, Group (bib144) 2016; 375
Srivastava (bib181) 2014; 4
Francis, Forman (bib60) 2021; 18
Kowdley, Luketic, Chapman, Hirschfield, Poupon, Schramm, Vincent, Rust, Pares, Mason, Marschall, Shapiro, Adorini, Sciacca, Beecher-Jones, Bohm, Pencek, Jones, Obeticholic Acid (bib106) 2018; 67
Marchiano, Biagioli, Roselli, Zampella, Di Giorgio, Bordoni, Bellini, Morretta, Monti, Distrutti, Fiorucci (bib127) 2022; 36
Denson, Sturm, Echevarria, Zimmerman, Makishima, Mangelsdorf, Karpen (bib43) 2001; 121
Loomba, Noureddin, Kowdley, Kohli, Sheikh, Neff, Bhandari, Gunn, Caldwell, Goodman, Wapinski, Resnick, Beck, Ding, Jia, Chuang, Huss, Chung, Subramanian, Myers, Patel, Borg, Ghalib, Kabler, Poulos, Younes, Elkhashab, Hassanein, Iyer, Ruane, Shiffman, Strasser, Wong, Alkhouri, Investigators (bib121) 2021; 73
Thomas, Gioiello, Noriega, Strehle, Oury, Rizzo, Macchiarulo, Yamamoto, Mataki, Pruzanski, Pellicciari, Auwerx, Schoonjans (bib188) 2009; 10
Finn, Rodriguez, Kohler, Jiang, Wan, Blanco, King, Chen, Bell, Dragoli, Jacobs, Jain, Leadbetter, Siegel, Carreras, Koo-McCoy, Shaw, Le, Vanegas, Hsu, Kozuka, Okamoto, Caldwell, Lewis (bib56) 2019; 316
Reich, Deutschmann, Sommerfeld, Klindt, Kluge, Kubitz, Ullmer, Knoefel, Herebian, Mayatepek, Haussinger, Keitel (bib162) 2016; 65
Guo, Xie, Chi, Zhang, Liu, Zhang, Zheng, Zhang, Xia, Ke, Lu, Wang (bib69) 2016; 45
Li, Holmstrom, Kir, Umetani, Schmidt, Kliewer, Mangelsdorf (bib116) 2011; 25
Dawson (bib40) 2017; 66
Dyson, Hirschfield, Adams, Beuers, Mann, Lindor, Jones (bib48) 2015; 12
Claudel, Sturm, Duez, Torra, Sirvent, Kosykh, Fruchart, Dallongeville, Hum, Kuipers, Staels (bib34) 2002; 109
Ryan, Tremaroli, Clemmensen, Kovatcheva-Datchary, Myronovych, Karns, Wilson-Perez, Sandoval, Kohli, Backhed, Seeley (bib169) 2014; 509
Jiang, Xie, Lv, Li, Krausz, Shi, Brocker, Desai, Amin, Bisson, Liu, Gavrilova, Patterson, Gonzalez (bib91) 2015; 6
Inagaki, Choi, Moschetta, Peng, Cummins, McDonald, Luo, Jones, Goodwin, Richardson, Gerard, Repa, Mangelsdorf, Kliewer (bib86) 2005; 2
Wang, Lee, Bundman, Han, Thevananther, Kim, Chua, Wei, Heyman, Karin, Moore (bib194) 2002; 2
Chiang, Li (bib28) 2004
Friedman, Li, Shen, Jiang, Chau, Adorini, Babakhani, Edwards, Shapiro, Zhao, Carr, Bittinger, Li, Wu (bib62) 2018; 155
Lu, Makishima, Repa, Schoonjans, Kerr, Auwerx, Mangelsdorf (bib123) 2000; 6
Yan, Khambu, Chen, Dong, Guo, Yin (bib202) 2021; 11
Smith, Lear, Erickson (bib176) 1995; 36
Wang, Aoki, Yang, Peng, Liu, Li, Qiang, Sun, Gurley, Lai, Zhang, Liang, Nagahashi, Takabe, Pandak, Hylemon, Zhou (bib198) 2017; 65
Kida, Tsubosaka, Hori, Ozaki, Murata (bib101) 2013; 33
Amaral, Castro, Sola, Steer, Rodrigues (bib2) 2007; 282
Crestani, Stroup, Chiang (bib36) 1995; 36
Kakiyama, Marques, Takei, Nittono, Erickson, Fuchs, Rodriguez-Agudo, Gil, Hylemon, Zhou, Bajaj, Pandak (bib94) 2019; 189
Chiang, Chen, Zhang, Cowsley, Yang (bib31) 2001; 120
Zhang, Soto, Park, Viswanath, Kuwada, Abel, Wang (bib210) 2010; 30
Nemati, Lu, Dokpuang, Booth, Plank, Murphy (bib142) 2018
Zhang, Lee, Barrera, Lee, Vales, Gonzalez, Willson, Edwards (bib208) 2006; 103
Chiang (bib24) 2017; 6
Risstad, Kristinsson, Fagerland, le Roux, Birkeland, Gulseth, Thorsby, Vincent, Engstrom, Olbers, Mala (bib166) 2017; 13
Massimi, Lear, Huling, Jones, Erickson (bib129) 1998; 28
Mouzaki, Wang, Bandsma, Comelli, Arendt, Zhang, Fung, Fischer, McGilvray, Allard (bib137) 2016; 11
Friedman (bib61) 2008; 134
Pandak, Heuman, Hylemon, Chiang, Vlahcevic (bib146) 1995; 108
Zhang, Yin, Anderson, Ma, Gonzalez, Willson, Edwards (bib209) 2010; 285
Kucukoglu, Sowa, Mazzolini, Syn, Canbay (bib107) 2021; 74
Yang, Lee, Kim, Lee, Ryu, Fukuda, Hase, Yang, Lim, Kim, Kim, Ahn, Kwon, Ko, Kweon (bib204) 2017; 10
Chiang, Stroup (bib29) 1994; 269
Lou, Ma, Fu, Meng, Zhang, Wang, Van Ness, Yu, Xu, Huang (bib122) 2014; 9
Farrell, Larter (bib51) 2006; 43
Jahan, Chiang (bib89) 2005; 288
Park, Qatanani, Chua, LaRey, Johnson, Watanabe, Moore, Lee (bib147) 2008; 47
Hirschfield, Mason, Luketic, Lindor, Gordon, Mayo, Kowdley, Vincent, Bodhenheimer, Pares, Trauner, Marschall, Adorini, Sciacca, Beecher-Jones, Castelloe, Bohm, Shapiro (bib77) 2015; 148
Cipriani, Mencarelli, Chini, Distrutti, Renga, Bifulco, Baldelli, Donini, Fiorucci (bib33) 2011; 6
Czaja, Ding, Donohue, Friedman, Kim, Komatsu, Lemasters, Lemoine, Lin, Ou, Perlmutter, Randall, Ray, Tsung, Yin (bib38) 2013; 9
Ikegami, Honda (bib85) 2018; 48
Katafuchi, Esterhazy, Lemoff, Ding, Sondhi, Kliewer, Mirzaei, Mangelsdorf (bib95) 2015; 21
Miao, Fang, Bae, Kemper (bib132) 2006; 281
Honda, Yamashita, Numazawa, Ikegami, Doy, Matsuzaki, Miyazaki (bib80) 2007; 48
Reich, Spomer, Klindt, Fuchs, Stindt, Deutschmann, Hohne, Liaskou, Hov, Karlsen, Beuers, Verheij, Ferreira-Gonzalez, Hirschfield, Forbes, Schramm, Esposito, Nierhoff, Fickert, Fuchs, Trauner, Garcia-Beccaria, Gabernet, Nahnsen, Mallm, Vogel, Schoonjans, Lautwein, Kohrer, Haussinger, Luedde, Heikenwalder, Keitel (bib163) 2021; 75
Nagahashi, Takabe, Liu, Peng, Wang, Wang, Hait, Wang, Allegood, Yamada, Aoyagi, Liang, Pandak, Spiegel, Hylemon, Zhou (bib140) 2015; 61
Arab, Karpen, Dawson, Arrese, Trauner (bib5) 2017; 65
Halilbasic, Fiorotto, Fickert, Marschall, Moustafa, Spirli, Fuchsbichler, Gumhold, Silbert, Zatloukal, Langner, Maitra, Denk, Hofmann, Strazzabosco, Trauner (bib73) 2009; 49
Lee, Hong, Kim, Shim, Sung Lee, Lee, Soo Choi, Kim, Park (bib111) 2015; 62
Chiang, Ferrell (bib27) 2020; 15
Miyake, Wang, Davis (bib134) 2000; 275
Choi, Moschetta, Bookout, Peng, Umetani, Holmstrom, Suino-Powell, Xu, Richardson, Gerard, Mangelsdorf, Kliewer (bib32) 2006; 12
Thomas, Hart, Kong, Fang, Zhong, Guo (bib189) 2010; 51
Gege, Hambruch, Hambruch, Kinzel, Kremoser, Ligands (bib64) 2019
Thomas, Pellicciari, Pruzanski, Auwerx, Schoonjans (bib187) 2008; 7
Li, Dawson (bib114) 2019; 1865
Haeusler, Astiarraga, Camastra, Accili, Ferrannini (bib72) 2013; 62
McMillin, Frampton, Grant, Khan, Diocares, Petrescu, Wyatt, Kain, Jefferson, DeMorrow (bib131) 2017; 11
Nawrot, Peschard, Lestavel, Staels (bib141) 2021; 123
Ferrell, Boehme, Li, Chiang (bib53) 2016; 57
Li, Jiang, Krausz, Li, Albert, Hao, Fabre, Mitchell, Patterson, Gonzalez (bib118) 2013; 4
Fiorucci, Mencarelli, Palladino, Cipriani (bib57) 2009; 30
Watanabe, Houten, Wang, Moschetta, Mangelsdorf, Heyman, Moore, Auwerx (bib199) 2004; 113
Li, Chiang (bib113) 2014; 66
Makishima, Okamoto, Repa, Tu, Learned, Luk, Hull, Lustig, Mangelsdorf, Shan (bib125) 1999; 284
Poupon (bib156) 2012; 36
Neuschwander-Tetri, Loomba, Sanyal, Lavine, Van Natta, Abdelmalek, Chalasani, Dasarathy, Diehl, Hameed, Kowdley, McCullough, Terrault, Clark, Tonascia, Brunt, Kleiner, Doo, Network (bib143) 2015; 385
del Castillo-Olivares, Gil (bib42) 2000; 275
Canfora, Meex, Venema, Blaak (bib15) 2019; 15
Govaere, Cockell, Tiniakos, Queen, Younes, Vacca, Alexander, Ravaioli, Palmer, Petta, Boursier, Rosso, Johnson, Wonders, Day, Ekstedt, Oresic, Darlay, Cordell, Marra, Vidal-Puig, Bedossa, Schattenberg, Clement, Allison, Bugianesi, Ratziu, Daly, Anstee (bib68) 2020; 12
Huang, Ma, Zhang, Qatanani, Cuvillier, Liu, Dong, Huang, Moore (bib84) 2006; 312
Stroup, Crestani, Chiang (bib182) 1997; 273
Ridlon, Alves, Hylemon, Bajaj (bib165) 2013; 4
Chiang, Ferrell (bib26) 2020; 318
De Fabiani, Mitro, Anzulovich, Pinelli, Galli, Crestani (bib41) 2001; 276
Ding, Sousa, Jin, Dong, Kim, Ramirez, Xiao, Gu, Yang, Wang, Yu, Pigazzi, Schones, Yang, Moore, Wang, Huang (bib45) 2016; 64
Laudet, Hanni, Coll, Catzeflis, Stehelin (bib108) 1992; 11
Pols, Nomura, Harach, Lo Sasso, Oosterveer, Thomas, Rizzo, Gioiello, Adorini, Pellicciari, Auwerx, Schoonjans (bib154) 2011; 14
Ruuskanen, Aberg, Mannisto, Havulinna, Meric, Liu, Loomba, Vazquez-Baeza, Tripathi, Valsta, Inouye, Jousilahti, Salomaa, Jain, Knight, Lahti, Niiranen (bib168) 2021; 13
Chen, Ananthanarayanan, Emre, Neimark, Bull, Knisely, Strautnieks, Thompson, Magid, Gordon, Balasubramanian, Suchy, Shneider (bib21) 2004; 126
Gutierrez, Ratliff, Andres, Huang, McKeehan, Davis (bib71) 2006; 26
Gadaleta, van Erpecum, Oldenburg, Willemsen, Renooij, Murzilli, Klo
Hirschfield (10.1016/j.mce.2022.111618_bib77) 2015; 148
Bozadjieva (10.1016/j.mce.2022.111618_bib11) 2018; 67
Harrison (10.1016/j.mce.2022.111618_bib76) 2019; 71
Kowdley (10.1016/j.mce.2022.111618_bib106) 2018; 67
Ryan (10.1016/j.mce.2022.111618_bib169) 2014; 509
Miao (10.1016/j.mce.2022.111618_bib132) 2006; 281
Sun (10.1016/j.mce.2022.111618_bib185) 2021; 18
del Castillo-Olivares (10.1016/j.mce.2022.111618_bib42) 2000; 275
Sola (10.1016/j.mce.2022.111618_bib177) 2006; 13
Smith (10.1016/j.mce.2022.111618_bib176) 1995; 36
Gonzalez (10.1016/j.mce.2022.111618_bib66) 2016; 151
Shi (10.1016/j.mce.2022.111618_bib172) 2020; 11
Li (10.1016/j.mce.2022.111618_bib115) 2006; 43
Wouters (10.1016/j.mce.2022.111618_bib200) 2008; 48
Pathak (10.1016/j.mce.2022.111618_bib149) 2017; 292
Czaja (10.1016/j.mce.2022.111618_bib38) 2013; 9
Makishima (10.1016/j.mce.2022.111618_bib125) 1999; 284
Stroup (10.1016/j.mce.2022.111618_bib182) 1997; 273
Arab (10.1016/j.mce.2022.111618_bib5) 2017; 65
Seok (10.1016/j.mce.2022.111618_bib171) 2014; 516
Cohen (10.1016/j.mce.2022.111618_bib35) 2011; 332
Jahan (10.1016/j.mce.2022.111618_bib89) 2005; 288
Yang (10.1016/j.mce.2022.111618_bib203) 2010; 11
Finn (10.1016/j.mce.2022.111618_bib56) 2019; 316
Govaere (10.1016/j.mce.2022.111618_bib68) 2020; 12
Srivastava (10.1016/j.mce.2022.111618_bib181) 2014; 4
Prawitt (10.1016/j.mce.2022.111618_bib158) 2011; 60
Zhang (10.1016/j.mce.2022.111618_bib210) 2010; 30
Pathak (10.1016/j.mce.2022.111618_bib150) 2018; 68
Huang (10.1016/j.mce.2022.111618_bib84) 2006; 312
Duane (10.1016/j.mce.2022.111618_bib46) 1999; 40
Massimi (10.1016/j.mce.2022.111618_bib129) 1998; 28
Ridlon (10.1016/j.mce.2022.111618_bib165) 2013; 4
Gupta (10.1016/j.mce.2022.111618_bib70) 2001; 276
Perino (10.1016/j.mce.2022.111618_bib153) 2014; 124
McGavigan (10.1016/j.mce.2022.111618_bib130) 2015; 66
Davis (10.1016/j.mce.2022.111618_bib39) 2002; 43
Wang (10.1016/j.mce.2022.111618_bib194) 2002; 2
Nagahashi (10.1016/j.mce.2022.111618_bib140) 2015; 61
Thomas (10.1016/j.mce.2022.111618_bib188) 2009; 10
Sinal (10.1016/j.mce.2022.111618_bib174) 2000; 102
Claudel (10.1016/j.mce.2022.111618_bib34) 2002; 109
Laudet (10.1016/j.mce.2022.111618_bib108) 1992; 11
Chaudhari (10.1016/j.mce.2022.111618_bib19) 2021; 17
Hall (10.1016/j.mce.2022.111618_bib74) 2001; 276
Kucukoglu (10.1016/j.mce.2022.111618_bib107) 2021; 74
Li (10.1016/j.mce.2022.111618_bib113) 2014; 66
Pols (10.1016/j.mce.2022.111618_bib154) 2011; 14
Beuers (10.1016/j.mce.2022.111618_bib7) 2006; 3
Lee (10.1016/j.mce.2022.111618_bib109) 2000; 20
Singh (10.1016/j.mce.2022.111618_bib175) 2009; 458
McMillin (10.1016/j.mce.2022.111618_bib131) 2017; 11
Zhang (10.1016/j.mce.2022.111618_bib207) 2001; 276
Wagner (10.1016/j.mce.2022.111618_bib192) 2009; 51
Mangelsdorf (10.1016/j.mce.2022.111618_bib126) 1995; 83
Nevens (10.1016/j.mce.2022.111618_bib144) 2016; 375
Ding (10.1016/j.mce.2022.111618_bib45) 2016; 64
Fickert (10.1016/j.mce.2022.111618_bib55) 2017; 67
Jensen (10.1016/j.mce.2022.111618_bib90) 2018; 68
Choi (10.1016/j.mce.2022.111618_bib32) 2006; 12
Miyazaki-Anzai (10.1016/j.mce.2022.111618_bib135) 2018; 59
Gomez-Ospina (10.1016/j.mce.2022.111618_bib65) 2016; 7
Haeusler (10.1016/j.mce.2022.111618_bib72) 2013; 62
Mouzaki (10.1016/j.mce.2022.111618_bib136) 2020; 18
Byun (10.1016/j.mce.2022.111618_bib14) 2018; 9
Li (10.1016/j.mce.2022.111618_bib117) 2012; 287
Kida (10.1016/j.mce.2022.111618_bib101) 2013; 33
Mueller (10.1016/j.mce.2022.111618_bib139) 2015; 62
Jones (10.1016/j.mce.2022.111618_bib93) 2012; 728
Kerr (10.1016/j.mce.2022.111618_bib100) 2002; 2
Forman (10.1016/j.mce.2022.111618_bib59) 1995; 81
Hirschfield (10.1016/j.mce.2022.111618_bib78) 2019; 70
Chiang (10.1016/j.mce.2022.111618_bib23) 2017; 1
Ikegami (10.1016/j.mce.2022.111618_bib85) 2018; 48
Maruyama (10.1016/j.mce.2022.111618_bib128) 2002; 298
Zollner (10.1016/j.mce.2022.111618_bib212) 2008; 12
Dawson (10.1016/j.mce.2022.111618_bib40) 2017; 66
Fang (10.1016/j.mce.2022.111618_bib50) 2015; 21
Pean (10.1016/j.mce.2022.111618_bib151) 2013; 58
Trauner (10.1016/j.mce.2022.111618_bib190) 2019; 70
Gege (10.1016/j.mce.2022.111618_bib64) 2019
Kim (10.1016/j.mce.2022.111618_bib102) 2007; 48
Song (10.1016/j.mce.2022.111618_bib178) 2007; 46
Francis (10.1016/j.mce.2022.111618_bib60) 2021; 18
Wang (10.1016/j.mce.2022.111618_bib195) 2005; 2
Chiang (10.1016/j.mce.2022.111618_bib25) 2019; 39
Gadaleta (10.1016/j.mce.2022.111618_bib63) 2011; 60
Pandak (10.1016/j.mce.2022.111618_bib146) 1995; 108
Duran-Sandoval (10.1016/j.mce.2022.111618_bib47) 2005; 280
Dyson (10.1016/j.mce.2022.111618_bib48) 2015; 12
Fan (10.1016/j.mce.2022.111618_bib49) 2019; 400
Alkhouri (10.1016/j.mce.2022.111618_bib1) 2021; 5
Honda (10.1016/j.mce.2022.111618_bib80) 2007; 48
Li (10.1016/j.mce.2022.111618_bib114) 2019; 1865
Li (10.1016/j.mce.2022.111618_bib119) 2014; 20
Puri (10.1016/j.mce.2022.111618_bib160) 2018; 67
Boulias (10.1016/j.mce.2022.111618_bib10) 2005; 24
Islam (10.1016/j.mce.2022.111618_bib88) 2011; 141
Song (10.1016/j.mce.2022.111618_bib179) 2009; 2
Friedman (10.1016/j.mce.2022.111618_bib61) 2008; 134
Chaudhari (10.1016/j.mce.2022.111618_bib18) 2020
Chiang (10.1016/j.mce.2022.111618_bib31) 2001; 120
Miyake (10.1016/j.mce.2022.111618_bib134) 2000; 275
Thomas (10.1016/j.mce.2022.111618_bib187) 2008; 7
Anstee (10.1016/j.mce.2022.111618_bib4) 2019; 16
Song (10.1016/j.mce.2022.111618_bib180) 2009; 49
Potthoff (10.1016/j.mce.2022.111618_bib155) 2012; 26
Reich (10.1016/j.mce.2022.111618_bib163) 2021; 75
Mouzaki (10.1016/j.mce.2022.111618_bib137) 2016; 11
Poupon (10.1016/j.mce.2022.111618_bib156) 2012; 36
Kir (10.1016/j.mce.2022.111618_bib103) 2011; 331
Pullinger (10.1016/j.mce.2022.111618_bib159) 2002; 110
Pournaras (10.1016/j.mce.2022.111618_bib157) 2012; 153
Katafuchi (10.1016/j.mce.2022.111618_bib95) 2015; 21
Bramlett (10.1016/j.mce.2022.111618_bib12) 2000; 71
Nemati (10.1016/j.mce.2022.111618_bib142) 2018
Chiang (10.1016/j.mce.2022.111618_bib28) 2004
Watanabe (10.1016/j.mce.2022.111618_bib199) 2004; 113
Kjaergaard (10.1016/j.mce.2022.111618_bib104) 2021; 74
Canfora (10.1016/j.mce.2022.111618_bib15) 2019; 15
Fiorucci (10.1016/j.mce.2022.111618_bib57) 2009; 30
Bhalla (10.1016/j.mce.2022.111618_bib8) 2004; 279
Studer (10.1016/j.mce.2022.111618_bib183) 2012; 55
Amaral (10.1016/j.mce.2022.111618_bib2) 2007; 282
Simonen (10.1016/j.mce.2022.111618_bib173) 2012; 22
Sayin (10.1016/j.mce.2022.111618_bib170) 2013; 17
Hoofnagle (10.1016/j.mce.2022.111618_bib82) 2020; 72
Foley (10.1016/j.mce.2022.111618_bib58) 2019; 15
Hardy (10.1016/j.mce.2022.111618_bib75) 2016; 11
Brunt (10.1016/j.mce.2022.111618_bib13) 2010; 7
Li (10.1016/j.mce.2022.111618_bib116) 2011; 25
Lee (10.1016/j.mce.2022.111618_bib110) 2014; 516
Chiang (10.1016/j.mce.2022.111618_bib26) 2020; 318
Houten (10.1016/j.mce.2022.111618_bib83) 2007; 21
Ouyang (10.1016/j.mce.2022.111618_bib145) 2008; 48
Ma (10.1016/j.mce.2022.111618_bib124) 2006; 116
Castellanos-Jankiewicz (10.1016/j.mce.2022.111618_bib17) 2021; 33
Rao (10.1016/j.mce.2022.111618_bib161) 1997; 38
Chen (10.1016/j.mce.2022.111618_bib21) 2004; 126
Wang (10.1016/j.mce.2022.111618_bib198) 2017; 65
Aron-Wisnewsky (10.1016/j.mce.2022.111618_bib6) 2020; 17
Zweers (10.1016/j.mce.2022.111618_bib213) 2012; 55
De Fabiani (10.1016/j.mce.2022.111618_bib41) 2001; 276
Nawrot (10.1016/j.mce.2022.111618_bib141) 2021; 123
Li (10.1016/j.mce.2022.111618_bib118) 2013; 4
Ferrell (10.1016/j.mce.2022.111618_bib53) 2016; 57
Chiang (10.1016/j.mce.2022.111618_bib29) 1994; 269
Marchiano (10.1016/j.mce.2022.111618_bib127) 2022; 36
Keitel (10.1016/j.mce.2022.111618_bib98) 2008; 372
Takahashi (10.1016/j.mce.2022.111618_bib186) 2016; 57
Chiang (10.1016/j.mce.2022.111618_bib24) 2017; 6
Pellicciari (10.1016/j.mce.2022.111618_bib152) 2002; 45
Park (10.1016/j.mce.2022.111618_bib147) 2008; 47
Devkota (10.1016/j.mce.2022.111618_bib44) 2012; 487
Kakiyama (10.1016/j.mce.2022.111618_bib94) 2019; 189
Yoneno (10.1016/j.mce.2022.111618_bib205) 2013; 139
Yan (10.1016/j.mce.2022.111618_bib202) 2021; 11
Zhang (10.1016/j.mce.2022.111618_bib208) 2006; 103
Friedman (10.1016/j.mce.2022.111618_bib62) 2018; 155
Crestani (10.1016/j.mce.2022.111618_bib36) 1995; 36
Guo (10.1016/j.mce.2022.111618_bib69) 2016; 45
Honda (10.1016/j.mce.2022.111618_bib81) 2020; 61
Cui (10.1016/j.mce.2022.111618_bib37) 2002; 9
Chiang (10.1016/j.mce.2022.111618_bib27) 2020; 15
Sun (10.1016/j.mce.2022.111618_bib184) 2018; 24
Ferdinandusse (10.1016/j.mce.2022.111618_bib52) 2009; 50
Liu (10.1016/j.mce.2022.111618_bib120) 2014; 60
Lee (10.1016/j.mce.2022.111618_bib111) 2015; 62
Bookout (10.1016/j.mce.2022.111618_bib9) 2006; 126
Denson (10.1016/j.mce.2022.111618_bib43) 2001; 121
Zhang (10.1016/j.mce.2022.111618_bib209) 2010; 285
Gutierrez (10.1016/j.mce.2022.111618_bib71) 2006; 26
Loomba (10.1016/j.mce.2022.111618_bib121) 2021; 73
Cipriani (10.1016/j.mce.2022.111618_bib33) 2011; 6
Renga (10.1016/j.mce.2022.111618_bib164) 2010
Keitel (10.1016/j.mce.2022.111618_bib99) 2009; 50
Jiang (10.1016/j.mce.2022.111618_bib92) 2015; 125
Wang (10.1016/j.mce.2022.111618_bib193) 1999; 3
Zhang (10.1016/j.mce.2022.111618_bib211) 2016; 1
Ferrell (10.1016/j.mce.2022.111618_bib54) 2019; 70
Inagaki (10.1016/j.mce.2022.111618_bib86) 2005; 2
Halilbasic (10.1016/j.mce.2022.111618_bib73) 2009; 49
Hogenauer (10.1016/j.mce.2022.111618_bib79) 2014; 57
Li (10.1016/j.mce.2022.111618_bib112) 2005; 288
Mudaliar (10.1016/j.mce.2022.111618_bib138) 2013; 145
Reich (10.1016/j.mce.2022.111618_bib162) 2016; 65
Wang (10.1016/j.mce.2022.111618_bib196) 2008; 22
Farrell (10.1016/j.mce.2022.111618_bib51) 2006; 43
Russell (10.1016/j.mce.2022.111618_bib167) 2003; 72
Xie (10.1016/j.mce.2022.111618_bib201) 2017; 66
Younossi (10.1016/j.mce.2022.111618_bib206) 2018; 15
Jiang (10.1016/j.mce.2022.111618_bib91) 2015; 6
Chiang (10.1016/j.mce.2022.111618_bib30) 2000; 275
Parks (10.1016/j.mce.2022.111618_bib148) 1999; 284
Lu (10.1016/j.mce.2022.111618_bib123) 2000; 6
Inagaki (10.1016/j.mce.2022.111618_bib87) 2006; 103
Villanueva (10.1016/j.mce.2022.111618_bib191) 2019; 380
Yang (10.1016/j.mce.2022.111618_bib204) 2017; 10
Keitel (10.1016/j.mce.2022.111618_bib97) 2007; 45
Lou (10.1016/j.mce.2022.111618_bib122) 2014; 9
Neuschwander-Tetri (10.1016/j.mce.2022.11161
References_xml – volume: 269
  start-page: 17502
  year: 1994
  end-page: 17507
  ident: bib29
  article-title: Identification and characterization of a putative bile acid responsive element in cholesterol 7a-hydroxylase gene promoter
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 609060
  year: 2020
  ident: bib172
  article-title: TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation
  publication-title: Front. Immunol.
– volume: 21
  start-page: 159
  year: 2015
  end-page: 165
  ident: bib50
  article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
  publication-title: Nat. Med.
– volume: 50
  start-page: 861
  year: 2009
  end-page: 870
  ident: bib99
  article-title: The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders
  publication-title: Hepatology
– volume: 13
  start-page: 1544
  year: 2017
  end-page: 1553
  ident: bib166
  article-title: Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial
  publication-title: Surg. Obes. Relat. Dis.
– volume: 21
  start-page: 898
  year: 2015
  end-page: 904
  ident: bib95
  article-title: Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry
  publication-title: Cell Metabol.
– volume: 74
  start-page: 442
  year: 2021
  end-page: 457
  ident: bib107
  article-title: Hepatokines and adipokines in NASH-related hepatocellular carcinoma
  publication-title: J. Hepatol.
– volume: 1865
  start-page: 895
  year: 2019
  end-page: 911
  ident: bib114
  article-title: Animal models to study bile acid metabolism
  publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.
– volume: 70
  start-page: 483
  year: 2019
  end-page: 493
  ident: bib78
  article-title: Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial
  publication-title: J. Hepatol.
– volume: 64
  start-page: 760
  year: 2016
  end-page: 773
  ident: bib45
  article-title: Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice
  publication-title: Hepatology
– volume: 11
  start-page: 1003
  year: 1992
  end-page: 1013
  ident: bib108
  article-title: Evolution of the nuclear receptor gene superfamily
  publication-title: EMBO J.
– volume: 20
  start-page: 320
  year: 2014
  end-page: 332
  ident: bib119
  article-title: Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis
  publication-title: Cell Metabol.
– volume: 153
  start-page: 3613
  year: 2012
  end-page: 3619
  ident: bib157
  article-title: The role of bile after roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control
  publication-title: Endocrinology
– volume: 1864
  start-page: 1422
  year: 2019
  end-page: 1437
  ident: bib16
  article-title: Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
– volume: 375
  start-page: 631
  year: 2016
  end-page: 643
  ident: bib144
  article-title: A placebo-controlled trial of obeticholic acid in primary biliary cholangitis
  publication-title: N. Engl. J. Med.
– volume: 124
  start-page: 5424
  year: 2014
  end-page: 5436
  ident: bib153
  article-title: TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation
  publication-title: J. Clin. Invest.
– volume: 39
  start-page: 175
  year: 2019
  end-page: 200
  ident: bib25
  article-title: Bile acids as metabolic regulators and nutrient sensors
  publication-title: Annu. Rev. Nutr.
– volume: 108
  start-page: 533
  year: 1995
  end-page: 544
  ident: bib146
  article-title: Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7 alpha-hydroxylase in rats with biliary fistulas
  publication-title: Gastroenterology
– volume: 6
  start-page: 10166
  year: 2015
  ident: bib91
  article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction
  publication-title: Nat. Commun.
– volume: 2
  start-page: 217
  year: 2005
  end-page: 225
  ident: bib86
  article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
  publication-title: Cell Metabol.
– volume: 280
  start-page: 29971
  year: 2005
  end-page: 29979
  ident: bib47
  article-title: The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition
  publication-title: J. Biol. Chem.
– volume: 48
  start-page: 474
  year: 2008
  end-page: 486
  ident: bib200
  article-title: Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  ident: bib175
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
– volume: 17
  start-page: 279
  year: 2020
  end-page: 297
  ident: bib6
  article-title: Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 189
  start-page: 36
  year: 2019
  end-page: 47
  ident: bib94
  article-title: Mitochondrial oxysterol biosynthetic pathway gives evidence for CYP7B1 as controller of regulatory oxysterols
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 45
  start-page: 695
  year: 2007
  end-page: 704
  ident: bib97
  article-title: The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells
  publication-title: Hepatology
– volume: 71
  start-page: 609
  year: 2000
  end-page: 615
  ident: bib12
  article-title: Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7alpha-hydroxylase gene repression by bile acids [In Process Citation]
  publication-title: Mol. Genet. Metabol.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 22
  ident: bib168
  article-title: Links between gut microbiome composition and fatty liver disease in a large population sample
  publication-title: Gut Microb.
– volume: 13
  start-page: 3039
  year: 2006
  end-page: 3051
  ident: bib177
  article-title: Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors
  publication-title: Curr. Med. Chem.
– volume: 43
  start-page: 533
  year: 2002
  end-page: 543
  ident: bib39
  article-title: Regulation of cholesterol-7alpha-hydroxylase. Barely missing a shp
  publication-title: J. Lipid Res.
– volume: 11
  start-page: 191
  year: 2017
  ident: bib131
  article-title: Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice
  publication-title: Front. Cell. Neurosci.
– volume: 2
  start-page: 275
  year: 2009
  end-page: 285
  ident: bib179
  article-title: Gene expression profiling reveals a diverse array of pathways inhibited by nuclear receptor SHP during adipogenesis
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 288
  start-page: G685
  year: 2005
  end-page: G695
  ident: bib89
  article-title: Cytokine regulation of human sterol 12{alpha}-hydroxylase (CYP8B1) gene
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 56
  start-page: 1034
  year: 2012
  end-page: 1043
  ident: bib105
  article-title: Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice
  publication-title: Hepatology
– volume: 1
  start-page: 3
  year: 2017
  end-page: 9
  ident: bib23
  article-title: Bile acid metabolism and signaling in liver disease and therapy
  publication-title: Liver Res
– year: 2004
  ident: bib28
  article-title: PXR Regulation of Bile Acid Synthesis and Drug Metabolism, DRUG METABOLISM REVIEWS
– volume: 6
  start-page: 517
  year: 2000
  end-page: 526
  ident: bib67
  article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis
  publication-title: Mol. Cell.
– volume: 275
  start-page: 21805
  year: 2000
  end-page: 21808
  ident: bib134
  article-title: Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase
  publication-title: J. Biol. Chem.
– volume: 278
  start-page: 9435
  year: 2003
  end-page: 9440
  ident: bib96
  article-title: A G protein-coupled receptor responsive to bile acids
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 225
  year: 2013
  end-page: 235
  ident: bib170
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metabol.
– volume: 30
  start-page: 1341
  year: 2010
  end-page: 1356
  ident: bib210
  article-title: Nuclear receptor SHP, a death receptor that targets mitochondria, induces apoptosis and inhibits tumor growth
  publication-title: Mol. Cell Biol.
– volume: 285
  start-page: 3035
  year: 2010
  end-page: 3043
  ident: bib209
  article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia
  publication-title: J. Biol. Chem.
– volume: 57
  start-page: 2130
  year: 2016
  end-page: 2137
  ident: bib186
  article-title: Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans
  publication-title: J. Lipid Res.
– volume: 9
  start-page: 9
  year: 2002
  ident: bib37
  article-title: The amino acid residues Asn354 and Ile372 of human FXR confer the receptor with high sensitivity to chenodeoxycholate
  publication-title: J. Biol. Chem.
– volume: 61
  start-page: 1216
  year: 2015
  end-page: 1226
  ident: bib140
  article-title: Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression
  publication-title: Hepatology
– volume: 67
  start-page: 1890
  year: 2018
  end-page: 1902
  ident: bib106
  article-title: A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis
  publication-title: Hepatology
– volume: 48
  start-page: 993
  year: 2008
  end-page: 999
  ident: bib145
  article-title: Fructose consumption as a risk factor for non-alcoholic fatty liver disease
  publication-title: J. Hepatol.
– year: 2019
  ident: bib64
  article-title: Current Status and Clinical Applications
– volume: 275
  start-page: 10918
  year: 2000
  end-page: 10924
  ident: bib30
  article-title: FXR responds to bile acids and represses cholesterol 7a-hydroxylase gene (CYP7A1) transcription
  publication-title: J. Biol. Chem.
– volume: 47
  start-page: 1578
  year: 2008
  end-page: 1586
  ident: bib147
  article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis
  publication-title: Hepatology
– volume: 60
  start-page: 463
  year: 2011
  end-page: 472
  ident: bib63
  article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease
  publication-title: Gut
– volume: 276
  start-page: 30708
  year: 2001
  end-page: 30716
  ident: bib41
  article-title: The negative effects of bile acids and tumor necrosis factor on the transcription of cholesterol 7a-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4. A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 570
  year: 2009
  end-page: 580
  ident: bib57
  article-title: Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders
  publication-title: Trends Pharmacol. Sci.
– volume: 312
  start-page: 233
  year: 2006
  end-page: 236
  ident: bib84
  article-title: Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration
  publication-title: Science
– volume: 2
  start-page: 713
  year: 2002
  end-page: 720
  ident: bib100
  article-title: Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis
  publication-title: Dev. Cell
– volume: 15
  start-page: 11
  year: 2018
  end-page: 20
  ident: bib206
  article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– year: 2020
  ident: bib18
  article-title: A Microbial Metabolite Remodels the Gut-Liver axis Following Bariatric Surgery
– volume: 62
  start-page: 1398
  year: 2015
  end-page: 1404
  ident: bib139
  article-title: Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity
  publication-title: J. Hepatol.
– volume: 516
  start-page: 108
  year: 2014
  end-page: 111
  ident: bib171
  article-title: Transcriptional regulation of autophagy by an FXR-CREB axis
  publication-title: Nature
– volume: 11
  start-page: 467
  year: 2010
  end-page: 478
  ident: bib203
  article-title: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
  publication-title: Cell Metabol.
– volume: 24
  start-page: 2624
  year: 2005
  end-page: 2633
  ident: bib10
  article-title: Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP
  publication-title: EMBO J.
– volume: 148
  start-page: 751
  year: 2015
  end-page: 761 e8
  ident: bib77
  article-title: Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid
  publication-title: Gastroenterology
– volume: 284
  start-page: 1362
  year: 1999
  end-page: 1365
  ident: bib125
  article-title: Identification of a nuclear receptor for bile acids
  publication-title: Science
– volume: 18
  start-page: 270
  year: 2020
  end-page: 280
  ident: bib136
  article-title: An update on the role of the microbiome in non-alcoholic fatty liver disease pathogenesis, diagnosis, and treatment
  publication-title: Curr. Treat. Options Gastroenterol.
– volume: 55
  start-page: 267
  year: 2012
  end-page: 276
  ident: bib183
  article-title: Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes
  publication-title: Hepatology
– volume: 2
  start-page: 227
  year: 2005
  end-page: 238
  ident: bib195
  article-title: The orphan nuclear receptor SHP regulates PGC-1alpha expression and energy production in brown adipocytes
  publication-title: Cell Metabol.
– volume: 15
  start-page: 261
  year: 2019
  end-page: 273
  ident: bib15
  article-title: Gut microbial metabolites in obesity, NAFLD and T2DM
  publication-title: Nat. Rev. Endocrinol.
– volume: 51
  start-page: 1410
  year: 2010
  end-page: 1419
  ident: bib189
  article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine
  publication-title: Hepatology
– volume: 125
  start-page: 386
  year: 2015
  end-page: 402
  ident: bib92
  article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
  publication-title: J. Clin. Invest.
– volume: 12
  start-page: 1
  year: 2008
  end-page: 26
  ident: bib212
  article-title: Mechanisms of cholestasis
  publication-title: Clin. Liver Dis.
– volume: 9
  start-page: 1131
  year: 2013
  end-page: 1158
  ident: bib38
  article-title: Functions of autophagy in normal and diseased liver
  publication-title: Autophagy
– volume: 155
  start-page: 1741
  year: 2018
  end-page: 1752
  ident: bib62
  article-title: FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid
  publication-title: Gastroenterology
– volume: 372
  start-page: 78
  year: 2008
  end-page: 84
  ident: bib98
  article-title: Expression and function of the bile acid receptor TGR5 in Kupffer cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 66
  start-page: 1384
  year: 2017
  end-page: 1386
  ident: bib40
  article-title: Hepatic bile acid uptake in humans and mice: multiple pathways and expanding potential role for gut-liver signaling
  publication-title: Hepatology
– volume: 70
  start-page: 788
  year: 2019
  end-page: 801
  ident: bib190
  article-title: The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis
  publication-title: Hepatology
– volume: 11
  start-page: 973
  year: 2021
  end-page: 997
  ident: bib202
  article-title: Hepatic autophagy deficiency remodels gut microbiota for adaptive protection via FGF15-FGFR4 signaling
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
– volume: 66
  start-page: 613
  year: 2017
  end-page: 626
  ident: bib201
  article-title: An intestinal farnesoid X receptor-ceramide signaling Axis modulates hepatic gluconeogenesis in mice
  publication-title: Diabetes
– volume: 45
  start-page: 944
  year: 2016
  ident: bib69
  article-title: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome
  publication-title: Immunity
– volume: 67
  start-page: 1720
  year: 2018
  end-page: 1728
  ident: bib11
  article-title: Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery
  publication-title: Diabetes
– volume: 3
  start-page: 318
  year: 2006
  end-page: 328
  ident: bib7
  article-title: Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis
  publication-title: Nat. Clin. Pract. Gastroenterol. Hepatol.
– volume: 81
  start-page: 687
  year: 1995
  end-page: 693
  ident: bib59
  article-title: Identification of a nuclear receptor that is activated by farnesol metabolites
  publication-title: Cell
– volume: 6
  start-page: 507
  year: 2000
  end-page: 515
  ident: bib123
  article-title: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors
  publication-title: Mol. Cell.
– volume: 145
  start-page: 574
  year: 2013
  end-page: 582 e1
  ident: bib138
  article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic Acid in patients with type 2 diabetes and nonalcoholic Fatty liver disease
  publication-title: Gastroenterology
– volume: 332
  start-page: 1519
  year: 2011
  end-page: 1523
  ident: bib35
  article-title: Human fatty liver disease: old questions and new insights
  publication-title: Science
– volume: 728
  start-page: 171
  year: 2012
  end-page: 182
  ident: bib93
  article-title: Physiology of FGF15/19
  publication-title: Adv. Exp. Med. Biol.
– volume: 71
  start-page: 1198
  year: 2019
  end-page: 1212
  ident: bib76
  article-title: NGM282 improves liver fibrosis and histology in 12 Weeks in patients with nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 83
  start-page: 835
  year: 1995
  end-page: 839
  ident: bib126
  article-title: The nuclear receptor superfamily: the second decade
  publication-title: Cell
– volume: 12
  start-page: 1253
  year: 2006
  end-page: 1255
  ident: bib32
  article-title: Identification of a hormonal basis for gallbladder filling
  publication-title: Nat. Med.
– volume: 487
  start-page: 104
  year: 2012
  end-page: 108
  ident: bib44
  article-title: Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice
  publication-title: Nature
– volume: 22
  start-page: 1622
  year: 2008
  end-page: 1632
  ident: bib196
  article-title: Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo
  publication-title: Mol. Endocrinol.
– volume: 276
  start-page: 41690
  year: 2001
  end-page: 41699
  ident: bib207
  article-title: Transcriptional regulation of the human sterol 12a-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4a (HNF4a) in mediating bile acid repression
  publication-title: J. Biol. Chem.
– volume: 287
  start-page: 1861
  year: 2012
  end-page: 1873
  ident: bib117
  article-title: Glucose and insulin induction of bile acid synthesis: mechanisms and implication IN diabetes and obesity
  publication-title: J. Biol. Chem.
– volume: 36
  start-page: S3
  year: 2012
  end-page: S12
  ident: bib156
  article-title: Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action
  publication-title: Clin Res Hepatol Gastroenterol
– volume: 4
  start-page: 382
  year: 2013
  end-page: 387
  ident: bib165
  article-title: Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship
  publication-title: Gut Microb.
– volume: 67
  start-page: 549
  year: 2017
  end-page: 558
  ident: bib55
  article-title: norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis
  publication-title: J. Hepatol.
– volume: 14
  start-page: 747
  year: 2011
  end-page: 757
  ident: bib154
  article-title: TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading
  publication-title: Cell Metabol.
– volume: 12
  start-page: 147
  year: 2015
  end-page: 158
  ident: bib48
  article-title: Novel therapeutic targets in primary biliary cirrhosis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 49
  start-page: 297
  year: 2009
  end-page: 305
  ident: bib180
  article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression
  publication-title: Hepatology
– volume: 103
  start-page: 3920
  year: 2006
  end-page: 3925
  ident: bib87
  article-title: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 110
  start-page: 109
  year: 2002
  end-page: 117
  ident: bib159
  article-title: Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype
  publication-title: J. Clin. Invest.
– volume: 276
  start-page: 15816
  year: 2001
  end-page: 15822
  ident: bib70
  article-title: Down-regulation of cholesterol 7alpha -hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-jun N-terminal kinase pathway
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 721
  year: 2002
  end-page: 731
  ident: bib194
  article-title: Redundant pathways for negative feedback regulation of bile Acid production
  publication-title: Dev. Cell
– volume: 126
  start-page: 789
  year: 2006
  end-page: 799
  ident: bib9
  article-title: Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network
  publication-title: Cell
– volume: 9
  year: 2014
  ident: bib122
  article-title: GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells
  publication-title: PLoS One
– volume: 273
  start-page: G508
  year: 1997
  end-page: G517
  ident: bib182
  article-title: Identification of a bile acid response element in the cholesterol 7 alpha-hydroxylase gene CYP7A
  publication-title: Am. J. Physiol.
– volume: 126
  start-page: 756
  year: 2004
  end-page: 764
  ident: bib21
  article-title: Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity
  publication-title: Gastroenterology
– volume: 26
  start-page: 301
  year: 2006
  end-page: 306
  ident: bib71
  article-title: Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 62
  start-page: 4184
  year: 2013
  end-page: 4191
  ident: bib72
  article-title: Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids
  publication-title: Diabetes
– volume: 116
  start-page: 1102
  year: 2006
  end-page: 1109
  ident: bib124
  article-title: Farnesoid X receptor is essential for normal glucose homeostasis
  publication-title: J. Clin. Invest.
– volume: 7
  start-page: 678
  year: 2008
  end-page: 693
  ident: bib187
  article-title: Targeting bile-acid signalling for metabolic diseases
  publication-title: Nat. Rev. Drug Discov.
– volume: 36
  year: 2022
  ident: bib127
  article-title: Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling
  publication-title: Faseb. J.
– volume: 7
  start-page: 195
  year: 2010
  end-page: 203
  ident: bib13
  article-title: Pathology of nonalcoholic fatty liver disease
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 9
  start-page: 2590
  year: 2018
  ident: bib14
  article-title: Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis
  publication-title: Nat. Commun.
– volume: 58
  start-page: 1451
  year: 2013
  end-page: 1460
  ident: bib151
  article-title: The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice
  publication-title: Hepatology
– volume: 22
  start-page: 1473
  year: 2012
  end-page: 1480
  ident: bib173
  article-title: Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass
  publication-title: Obes. Surg.
– volume: 59
  start-page: 1709
  year: 2018
  end-page: 1713
  ident: bib135
  article-title: Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation
  publication-title: J. Lipid Res.
– volume: 113
  start-page: 1408
  year: 2004
  end-page: 1418
  ident: bib199
  article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
  publication-title: J. Clin. Invest.
– volume: 141
  start-page: 1773
  year: 2011
  end-page: 1781
  ident: bib88
  article-title: Bile acid is a host factor that regulates the composition of the cecal microbiota in rats
  publication-title: Gastroenterology
– volume: 65
  start-page: 350
  year: 2017
  end-page: 362
  ident: bib5
  article-title: Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives
  publication-title: Hepatology
– volume: 318
  start-page: G554
  year: 2020
  end-page: G573
  ident: bib26
  article-title: Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 10
  start-page: 104
  year: 2017
  end-page: 116
  ident: bib204
  article-title: Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice
  publication-title: Mucosal Immunol.
– volume: 33
  start-page: 1483
  year: 2021
  end-page: 1492
  ident: bib17
  article-title: Hypothalamic bile acid-TGR5 signaling protects from obesity
  publication-title: Cell Metabol.
– volume: 36
  start-page: 2419
  year: 1995
  end-page: 2432
  ident: bib36
  article-title: Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7)
  publication-title: J. Lipid Res.
– volume: 288
  start-page: G74
  year: 2005
  end-page: G84
  ident: bib112
  article-title: Mechanism of rifampicin and pregnane X receptor (PXR) inhibition of human cholesterol 7{alpha}-hydroxylase gene (CYP7A1) transcription
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 57
  start-page: 10343
  year: 2014
  end-page: 10354
  ident: bib79
  article-title: G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype
  publication-title: J. Med. Chem.
– volume: 284
  start-page: 1365
  year: 1999
  end-page: 1368
  ident: bib148
  article-title: Bile acids: natural ligands for an orphan nuclear receptor
  publication-title: Science
– volume: 316
  start-page: G412
  year: 2019
  end-page: G424
  ident: bib56
  article-title: Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 43
  start-page: S99
  year: 2006
  end-page: S112
  ident: bib51
  article-title: Nonalcoholic fatty liver disease: from steatosis to cirrhosis
  publication-title: Hepatology
– volume: 18
  start-page: 335
  year: 2021
  end-page: 347
  ident: bib185
  article-title: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 61
  start-page: 54
  year: 2020
  end-page: 69
  ident: bib81
  article-title: Regulations of bile acid metabolism in mouse models with hydrophobic bile acid composition
  publication-title: J. Lipid Res.
– volume: 6
  start-page: 2029
  year: 2017
  ident: bib24
  article-title: Recent advances in understanding bile acid homeostasis
  publication-title: F1000Res
– volume: 281
  start-page: 14537
  year: 2006
  end-page: 14546
  ident: bib132
  article-title: Functional inhibitory cross-talk between car and HNF-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha
  publication-title: J. Biol. Chem.
– volume: 6
  year: 2011
  ident: bib33
  article-title: The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis
  publication-title: PLoS One
– volume: 275
  start-page: 17793
  year: 2000
  end-page: 17799
  ident: bib42
  article-title: a1-fetoprotein transcription factor is required for the expression of sterol 12a-hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid-mediated regulation of gene transcription
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 411
  year: 2019
  end-page: 428
  ident: bib4
  article-title: From NASH to HCC: current concepts and future challenges
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 65
  start-page: 487
  year: 2016
  end-page: 501
  ident: bib162
  article-title: TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro
  publication-title: Gut
– volume: 282
  start-page: 34250
  year: 2007
  end-page: 34259
  ident: bib2
  article-title: p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis
  publication-title: J. Biol. Chem.
– volume: 102
  start-page: 731
  year: 2000
  end-page: 744
  ident: bib174
  article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis
  publication-title: Cell
– volume: 1
  year: 2016
  ident: bib211
  article-title: Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism
  publication-title: mSystems
– volume: 15
  start-page: 91
  year: 2020
  end-page: 94
  ident: bib27
  article-title: Bile acid biology, pathophysiology, and therapeutics
  publication-title: Clin. Liver Dis.
– volume: 28
  start-page: 1064
  year: 1998
  end-page: 1072
  ident: bib129
  article-title: Cholesterol 7alpha-hydroxylase (CYP7A): patterns of messenger RNA expression during rat liver development [In Process Citation]
  publication-title: Hepatology
– volume: 51
  start-page: 565
  year: 2009
  end-page: 580
  ident: bib192
  article-title: New molecular insights into the mechanisms of cholestasis
  publication-title: J. Hepatol.
– volume: 72
  start-page: 1370174
  year: 2003
  ident: bib167
  article-title: The enzymes, regulation, and genetics of bile acid synthesis
  publication-title: Annu. Rev. Biochem.
– volume: 21
  start-page: 1312
  year: 2007
  end-page: 1323
  ident: bib83
  article-title: In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue
  publication-title: Mol. Endocrinol.
– volume: 20
  start-page: 187
  year: 2000
  end-page: 195
  ident: bib109
  article-title: The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression
  publication-title: Mol. Cell Biol.
– volume: 67
  start-page: 534
  year: 2018
  end-page: 548
  ident: bib160
  article-title: The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids
  publication-title: Hepatology
– volume: 109
  start-page: 961
  year: 2002
  end-page: 971
  ident: bib34
  article-title: Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element
  publication-title: J. Clin. Invest.
– volume: 298
  start-page: 714
  year: 2002
  end-page: 719
  ident: bib128
  article-title: Identification of membrane-type receptor for bile acids (M-BAR)
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 25
  start-page: 1159
  year: 2011
  end-page: 1169
  ident: bib133
  article-title: Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes
  publication-title: Mol. Endocrinol.
– volume: 50
  start-page: 1955
  year: 2009
  end-page: 1966
  ident: bib22
  article-title: Bile acids: regulation of synthesis
  publication-title: J. Lipid Res.
– start-page: 363
  year: 2010
  end-page: 372
  ident: bib164
  article-title: The bile acid sensor FXR regulates insulin transcription and secretion
  publication-title: Biochim. Biophys. Acta.
– volume: 400
  start-page: 625
  year: 2019
  end-page: 628
  ident: bib49
  article-title: Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1
  publication-title: Biol. Chem.
– volume: 509
  start-page: 183
  year: 2014
  end-page: 188
  ident: bib169
  article-title: FXR is a molecular target for the effects of vertical sleeve gastrectomy
  publication-title: Nature
– volume: 46
  start-page: 1993
  year: 2007
  end-page: 2002
  ident: bib178
  article-title: Hepatocyte growth factor signaling pathway inhibits cholesterol 7alpha-hydroxylase and bile acid synthesis in human hepatocytes
  publication-title: Hepatology
– volume: 276
  start-page: 36869
  year: 2001
  end-page: 36872
  ident: bib74
  article-title: The multifaceted mechanisms of estradiol and estrogen receptor signaling
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 245
  year: 2017
  end-page: 260
  ident: bib197
  article-title: Targeting the enterohepatic bile acid signaling induces hepatic autophagy via a CYP7A1-AKT-mTOR Axis in mice
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
– volume: 25
  start-page: 1066
  year: 2011
  end-page: 1071
  ident: bib116
  article-title: The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling
  publication-title: Mol. Endocrinol.
– volume: 72
  start-page: 1
  year: 2020
  end-page: 3
  ident: bib82
  article-title: FXR agonists as therapy for liver disease
  publication-title: Hepatology
– volume: 65
  start-page: 2005
  year: 2017
  end-page: 2018
  ident: bib198
  article-title: The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice
  publication-title: Hepatology
– volume: 49
  start-page: 1972
  year: 2009
  end-page: 1981
  ident: bib73
  article-title: Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2-/- mice
  publication-title: Hepatology
– year: 2018
  ident: bib142
  article-title: Increased bile acids and FGF19 after sleeve gastrectomy and roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial
  publication-title: Obes. Surg.
– volume: 48
  start-page: 2664
  year: 2007
  end-page: 2672
  ident: bib102
  article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine
  publication-title: J. Lipid Res.
– volume: 292
  start-page: 11055
  year: 2017
  end-page: 11069
  ident: bib149
  article-title: Farnesoid X receptor induces Takeda G-protein receptor 5 crosstalk to regulate bile acid synthesis and hepatic metabolism
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 543
  year: 1999
  end-page: 553
  ident: bib193
  article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR
  publication-title: Mol. Cell.
– volume: 4
  start-page: 25
  year: 2014
  end-page: 36
  ident: bib181
  article-title: Progressive familial intrahepatic cholestasis
  publication-title: J. Clin. Exp. Hepatol.
– volume: 385
  start-page: 956
  year: 2015
  end-page: 965
  ident: bib143
  article-title: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial
  publication-title: Lancet
– volume: 18
  start-page: 280
  year: 2021
  end-page: 287
  ident: bib60
  article-title: Statins show promise against progression of liver disease
  publication-title: Clin. Liver Dis.
– volume: 103
  start-page: 1006
  year: 2006
  end-page: 1011
  ident: bib208
  article-title: Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 20
  year: 2021
  end-page: 29
  ident: bib19
  article-title: Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects
  publication-title: Nat. Chem. Biol.
– volume: 38
  start-page: 2446
  year: 1997
  end-page: 2454
  ident: bib161
  article-title: Activation of protein kinase Ca and d by bile acids: correlation with bile acid structure and diacylglycerol formation
  publication-title: J. Lipid Res.
– volume: 60
  start-page: 1861
  year: 2011
  end-page: 1871
  ident: bib158
  article-title: Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity
  publication-title: Diabetes
– volume: 40
  start-page: 1194
  year: 1999
  end-page: 1199
  ident: bib46
  article-title: Production rates in normal human subjects
  publication-title: J. Lipid Res.
– volume: 36
  start-page: 641
  year: 1995
  end-page: 652
  ident: bib176
  article-title: Developmental expression of elements of hepatic cholesterol metabolism in the rat
  publication-title: J. Lipid Res.
– volume: 55
  start-page: 575
  year: 2012
  end-page: 583
  ident: bib213
  article-title: The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract
  publication-title: Hepatology
– volume: 276
  start-page: 28857
  year: 2001
  end-page: 28865
  ident: bib3
  article-title: Human bile salt export pump (BSEP) promoter is transactivated by the farnesoid X receptor/bile acid receptor (FXR/BAR)
  publication-title: J. Biol. Chem.
– volume: 74
  start-page: 58
  year: 2021
  end-page: 65
  ident: bib104
  article-title: Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis
  publication-title: J. Hepatol.
– volume: 60
  start-page: 908
  year: 2014
  end-page: 918
  ident: bib120
  article-title: Conjugated bile acids promote cholangiocarcinoma cell invasive growth via activation of sphingosine 1-phosphate receptor 2
  publication-title: Hepatology
– volume: 152
  start-page: 1679
  year: 2017
  end-page: 1694
  ident: bib20
  article-title: Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease
  publication-title: Gastroenterology
– volume: 62
  start-page: 135
  year: 2015
  end-page: 146
  ident: bib111
  article-title: Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice
  publication-title: Hepatology
– volume: 121
  start-page: 140
  year: 2001
  end-page: 147
  ident: bib43
  article-title: The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp
  publication-title: Gastroenterology
– volume: 66
  start-page: 948
  year: 2014
  end-page: 983
  ident: bib113
  article-title: Bile acid signaling in metabolic disease and drug therapy
  publication-title: Pharmacol. Rev.
– volume: 5
  start-page: 1810
  year: 2021
  end-page: 1823
  ident: bib1
  article-title: What does the future hold for patients with nonalcoholic steatohepatitis: diagnostic strategies and treatment options in 2021 and beyond?
  publication-title: Hepatol Commun
– volume: 120
  start-page: 17
  year: 2001
  ident: bib31
  article-title: Nuclear receptor regulation of the human cholesterol 7a-hydroxylase, sterol 27-hydroxylase and sterol 12a-hydroxylase genes in bile acid synthesis
  publication-title: Biol. Bile Acid. Health. Dis.
– volume: 70
  start-page: 955
  year: 2019
  end-page: 970
  ident: bib54
  article-title: Deficiency of both farnesoid X receptor and Takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice
  publication-title: Hepatology
– volume: 15
  year: 2019
  ident: bib58
  article-title: Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract
  publication-title: PLoS Pathog.
– volume: 123
  start-page: 154844
  year: 2021
  ident: bib141
  article-title: Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease
  publication-title: Metabolism
– volume: 516
  start-page: 112
  year: 2014
  end-page: 115
  ident: bib110
  article-title: Nutrient-sensing nuclear receptors coordinate autophagy
  publication-title: Nature
– volume: 139
  start-page: 19
  year: 2013
  end-page: 29
  ident: bib205
  article-title: TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease
  publication-title: Immunology
– volume: 73
  start-page: 625
  year: 2021
  end-page: 643
  ident: bib121
  article-title: Combination therapies including cilofexor and Firsocostat for bridging fibrosis and cirrhosis attributable to NASH
  publication-title: Hepatology
– volume: 151
  start-page: 845
  year: 2016
  end-page: 859
  ident: bib66
  article-title: An intestinal microbiota-farnesoid X receptor Axis modulates metabolic disease
  publication-title: Gastroenterology
– volume: 66
  start-page: 226
  year: 2015
  end-page: 234
  ident: bib130
  article-title: TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice
  publication-title: Gut
– volume: 57
  start-page: 1144
  year: 2016
  end-page: 1154
  ident: bib53
  article-title: Cholesterol 7{alpha}-hydroxylase-deficient mice are protected from high fat/high cholesterol diet-induced metabolic disorders
  publication-title: J. Lipid Res.
– volume: 68
  start-page: 1063
  year: 2018
  end-page: 1075
  ident: bib90
  article-title: A major mediator of non-alcoholic fatty liver disease
  publication-title: J. Hepatol.
– volume: 10
  start-page: 167
  year: 2009
  end-page: 177
  ident: bib188
  article-title: TGR5-mediated bile acid sensing controls glucose homeostasis
  publication-title: Cell Metabol.
– volume: 50
  start-page: 2139
  year: 2009
  end-page: 2147
  ident: bib52
  article-title: Bile acids: role of peroxisomes
  publication-title: J. Lipid Res.
– volume: 26
  start-page: 312
  year: 2012
  end-page: 324
  ident: bib155
  article-title: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine
  publication-title: Gene Dev.
– volume: 134
  start-page: 1655
  year: 2008
  end-page: 1669
  ident: bib61
  article-title: Mechanisms of hepatic fibrogenesis
  publication-title: Gastroenterology
– volume: 75
  start-page: 634
  year: 2021
  end-page: 646
  ident: bib163
  article-title: Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis
  publication-title: J. Hepatol.
– volume: 48
  start-page: 15
  year: 2018
  end-page: 27
  ident: bib85
  article-title: Reciprocal interactions between bile acids and gut microbiota in human liver diseases
  publication-title: Hepatol. Res.
– volume: 7
  start-page: 10713
  year: 2016
  ident: bib65
  article-title: Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis
  publication-title: Nat. Commun.
– volume: 12
  year: 2020
  ident: bib68
  article-title: Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis
  publication-title: Sci. Transl. Med.
– volume: 279
  start-page: 45139
  year: 2004
  end-page: 45147
  ident: bib8
  article-title: Ligand-activated PXR interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha : functional implications in hepatic cholesterol and glucose metabolism
  publication-title: J. Biol. Chem.
– volume: 48
  start-page: 458
  year: 2007
  end-page: 464
  ident: bib80
  article-title: Highly sensitive quantification of 7alpha-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS
  publication-title: J. Lipid Res.
– volume: 33
  start-page: 1663
  year: 2013
  end-page: 1669
  ident: bib101
  article-title: Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 68
  start-page: 1574
  year: 2018
  end-page: 1588
  ident: bib150
  article-title: Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism
  publication-title: Hepatology
– volume: 331
  start-page: 1621
  year: 2011
  end-page: 1624
  ident: bib103
  article-title: FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
  publication-title: Science
– volume: 380
  start-page: 1450
  year: 2019
  end-page: 1462
  ident: bib191
  article-title: Hepatocellular carcinoma
  publication-title: N. Engl. J. Med.
– volume: 11
  year: 2016
  ident: bib137
  article-title: Bile acids and dysbiosis in non-alcoholic fatty liver disease
  publication-title: PLoS One
– volume: 45
  start-page: 3569
  year: 2002
  end-page: 3572
  ident: bib152
  article-title: 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity
  publication-title: J. Med. Chem.
– volume: 24
  start-page: 1919
  year: 2018
  end-page: 1929
  ident: bib184
  article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin
  publication-title: Nat. Med.
– volume: 11
  start-page: 451
  year: 2016
  end-page: 496
  ident: bib75
  article-title: Nonalcoholic fatty liver disease: pathogenesis and disease spectrum
  publication-title: Annu. Rev. Pathol.
– volume: 43
  start-page: 1202
  year: 2006
  end-page: 1210
  ident: bib115
  article-title: Bile acids and cytokines inhibit the human cholesterol 7alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells
  publication-title: Hepatology
– volume: 4
  start-page: 2384
  year: 2013
  ident: bib118
  article-title: Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity
  publication-title: Nat. Commun.
– volume: 16
  start-page: 411
  issue: 7
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib4
  article-title: From NASH to HCC: current concepts and future challenges
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0145-7
– volume: 22
  start-page: 1473
  issue: 9
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib173
  article-title: Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass
  publication-title: Obes. Surg.
  doi: 10.1007/s11695-012-0673-5
– volume: 48
  start-page: 458
  issue: 2
  year: 2007
  ident: 10.1016/j.mce.2022.111618_bib80
  article-title: Highly sensitive quantification of 7alpha-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.D600032-JLR200
– year: 2019
  ident: 10.1016/j.mce.2022.111618_bib64
– volume: 67
  start-page: 1890
  issue: 5
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib106
  article-title: A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis
  publication-title: Hepatology
  doi: 10.1002/hep.29569
– volume: 11
  start-page: 609060
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib172
  article-title: TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.609060
– volume: 120
  start-page: 17
  year: 2001
  ident: 10.1016/j.mce.2022.111618_bib31
  article-title: Nuclear receptor regulation of the human cholesterol 7a-hydroxylase, sterol 27-hydroxylase and sterol 12a-hydroxylase genes in bile acid synthesis
  publication-title: Biol. Bile Acid. Health. Dis.
– volume: 126
  start-page: 789
  issue: 4
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib9
  article-title: Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.049
– volume: 40
  start-page: 1194
  issue: 7
  year: 1999
  ident: 10.1016/j.mce.2022.111618_bib46
  article-title: Production rates in normal human subjects
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)33481-7
– volume: 1
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib23
  article-title: Bile acid metabolism and signaling in liver disease and therapy
  publication-title: Liver Res
  doi: 10.1016/j.livres.2017.05.001
– volume: 487
  start-page: 104
  issue: 7405
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib44
  article-title: Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice
  publication-title: Nature
  doi: 10.1038/nature11225
– volume: 24
  start-page: 1919
  issue: 12
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib184
  article-title: Gut microbiota and intestinal FXR mediate the clinical benefits of metformin
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0222-4
– volume: 43
  start-page: 533
  issue: 4
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib39
  article-title: Regulation of cholesterol-7alpha-hydroxylase. Barely missing a shp
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)31482-6
– volume: 2
  start-page: 227
  issue: 4
  year: 2005
  ident: 10.1016/j.mce.2022.111618_bib195
  article-title: The orphan nuclear receptor SHP regulates PGC-1alpha expression and energy production in brown adipocytes
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2005.08.010
– volume: 72
  start-page: 1370174
  year: 2003
  ident: 10.1016/j.mce.2022.111618_bib167
  article-title: The enzymes, regulation, and genetics of bile acid synthesis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.72.121801.161712
– volume: 13
  start-page: 1544
  issue: 9
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib166
  article-title: Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial
  publication-title: Surg. Obes. Relat. Dis.
  doi: 10.1016/j.soard.2017.05.024
– volume: 62
  start-page: 1398
  issue: 6
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib139
  article-title: Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2014.12.034
– volume: 4
  start-page: 25
  issue: 1
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib181
  article-title: Progressive familial intrahepatic cholestasis
  publication-title: J. Clin. Exp. Hepatol.
  doi: 10.1016/j.jceh.2013.10.005
– volume: 26
  start-page: 301
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib71
  article-title: Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000195793.73118.b4
– volume: 12
  issue: 572
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib68
  article-title: Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aba4448
– volume: 148
  start-page: 751
  issue: 4
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib77
  article-title: Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2014.12.005
– volume: 3
  start-page: 543
  year: 1999
  ident: 10.1016/j.mce.2022.111618_bib193
  article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(00)80348-2
– volume: 4
  start-page: 2384
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib118
  article-title: Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3384
– volume: 21
  start-page: 898
  issue: 6
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib95
  article-title: Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2015.05.004
– volume: 36
  start-page: 641
  year: 1995
  ident: 10.1016/j.mce.2022.111618_bib176
  article-title: Developmental expression of elements of hepatic cholesterol metabolism in the rat
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)40050-1
– volume: 3
  start-page: 245
  issue: 2
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib197
  article-title: Targeting the enterohepatic bile acid signaling induces hepatic autophagy via a CYP7A1-AKT-mTOR Axis in mice
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2016.10.002
– volume: 73
  start-page: 625
  issue: 2
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib121
  article-title: Combination therapies including cilofexor and Firsocostat for bridging fibrosis and cirrhosis attributable to NASH
  publication-title: Hepatology
  doi: 10.1002/hep.31622
– year: 2004
  ident: 10.1016/j.mce.2022.111618_bib28
– volume: 55
  start-page: 575
  issue: 2
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib213
  article-title: The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract
  publication-title: Hepatology
  doi: 10.1002/hep.24702
– volume: 6
  start-page: 10166
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib91
  article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10166
– volume: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib211
  article-title: Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism
  publication-title: mSystems
  doi: 10.1128/mSystems.00070-16
– volume: 9
  start-page: 9
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib37
  article-title: The amino acid residues Asn354 and Ile372 of human FXR confer the receptor with high sensitivity to chenodeoxycholate
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib212
  article-title: Mechanisms of cholestasis
  publication-title: Clin. Liver Dis.
  doi: 10.1016/j.cld.2007.11.010
– volume: 72
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib82
  article-title: FXR agonists as therapy for liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.31265
– volume: 49
  start-page: 1972
  issue: 6
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib73
  article-title: Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2-/- mice
  publication-title: Hepatology
  doi: 10.1002/hep.22891
– volume: 64
  start-page: 760
  issue: 3
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib45
  article-title: Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice
  publication-title: Hepatology
  doi: 10.1002/hep.28689
– volume: 57
  start-page: 1144
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib53
  article-title: Cholesterol 7{alpha}-hydroxylase-deficient mice are protected from high fat/high cholesterol diet-induced metabolic disorders
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M064709
– volume: 6
  start-page: 517
  issue: 3
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib67
  article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(00)00051-4
– volume: 6
  issue: 10
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib33
  article-title: The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025637
– volume: 380
  start-page: 1450
  issue: 15
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib191
  article-title: Hepatocellular carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1713263
– volume: 189
  start-page: 36
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib94
  article-title: Mitochondrial oxysterol biosynthetic pathway gives evidence for CYP7B1 as controller of regulatory oxysterols
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2019.01.011
– volume: 9
  issue: 4
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib122
  article-title: GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093567
– volume: 11
  start-page: 191
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib131
  article-title: Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2017.00191
– volume: 11
  start-page: 973
  issue: 4
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib202
  article-title: Hepatic autophagy deficiency remodels gut microbiota for adaptive protection via FGF15-FGFR4 signaling
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2020.10.011
– volume: 385
  start-page: 956
  issue: 9972
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib143
  article-title: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61933-4
– volume: 39
  start-page: 175
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib25
  article-title: Bile acids as metabolic regulators and nutrient sensors
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-082018-124344
– volume: 33
  start-page: 1483
  issue: 7
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib17
  article-title: Hypothalamic bile acid-TGR5 signaling protects from obesity
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2021.04.009
– volume: 273
  start-page: G508
  issue: 2 Pt 1
  year: 1997
  ident: 10.1016/j.mce.2022.111618_bib182
  article-title: Identification of a bile acid response element in the cholesterol 7 alpha-hydroxylase gene CYP7A
  publication-title: Am. J. Physiol.
– volume: 18
  start-page: 280
  issue: 6
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib60
  article-title: Statins show promise against progression of liver disease
  publication-title: Clin. Liver Dis.
  doi: 10.1002/cld.1143
– volume: 20
  start-page: 187
  issue: 1
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib109
  article-title: The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.20.1.187-195.2000
– volume: 4
  start-page: 382
  issue: 5
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib165
  article-title: Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship
  publication-title: Gut Microb.
  doi: 10.4161/gmic.25723
– volume: 48
  start-page: 993
  issue: 6
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib145
  article-title: Fructose consumption as a risk factor for non-alcoholic fatty liver disease
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2008.02.011
– volume: 516
  start-page: 108
  issue: 7529
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib171
  article-title: Transcriptional regulation of autophagy by an FXR-CREB axis
  publication-title: Nature
  doi: 10.1038/nature13949
– volume: 36
  issue: 1
  year: 2022
  ident: 10.1016/j.mce.2022.111618_bib127
  article-title: Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling
  publication-title: Faseb. J.
  doi: 10.1096/fj.202101397R
– volume: 18
  start-page: 270
  issue: 2
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib136
  article-title: An update on the role of the microbiome in non-alcoholic fatty liver disease pathogenesis, diagnosis, and treatment
  publication-title: Curr. Treat. Options Gastroenterol.
  doi: 10.1007/s11938-020-00290-2
– volume: 43
  start-page: 1202
  issue: 6
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib115
  article-title: Bile acids and cytokines inhibit the human cholesterol 7alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells
  publication-title: Hepatology
  doi: 10.1002/hep.21183
– volume: 728
  start-page: 171
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib93
  article-title: Physiology of FGF15/19
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4614-0887-1_11
– volume: 56
  start-page: 1034
  issue: 3
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib105
  article-title: Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.25740
– volume: 71
  start-page: 1198
  issue: 4
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib76
  article-title: NGM282 improves liver fibrosis and histology in 12 Weeks in patients with nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.30590
– volume: 33
  start-page: 1663
  issue: 7
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib101
  article-title: Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.113.301565
– volume: 12
  start-page: 1253
  issue: 11
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib32
  article-title: Identification of a hormonal basis for gallbladder filling
  publication-title: Nat. Med.
  doi: 10.1038/nm1501
– volume: 70
  start-page: 483
  issue: 3
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib78
  article-title: Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.10.035
– volume: 51
  start-page: 565
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib192
  article-title: New molecular insights into the mechanisms of cholestasis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2009.05.012
– volume: 11
  issue: 5
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib137
  article-title: Bile acids and dysbiosis in non-alcoholic fatty liver disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151829
– volume: 50
  start-page: 861
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib99
  article-title: The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders
  publication-title: Hepatology
  doi: 10.1002/hep.23032
– volume: 108
  start-page: 533
  issue: 2
  year: 1995
  ident: 10.1016/j.mce.2022.111618_bib146
  article-title: Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7 alpha-hydroxylase in rats with biliary fistulas
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(95)90083-7
– start-page: 363
  issue: 3
  year: 2010
  ident: 10.1016/j.mce.2022.111618_bib164
  article-title: The bile acid sensor FXR regulates insulin transcription and secretion
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbadis.2010.01.002
– volume: 83
  start-page: 835
  year: 1995
  ident: 10.1016/j.mce.2022.111618_bib126
  article-title: The nuclear receptor superfamily: the second decade
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90199-X
– year: 2020
  ident: 10.1016/j.mce.2022.111618_bib18
– volume: 20
  start-page: 320
  issue: 2
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib119
  article-title: Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2014.05.020
– volume: 70
  start-page: 955
  issue: 3
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib54
  article-title: Deficiency of both farnesoid X receptor and Takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.30513
– volume: 7
  start-page: 10713
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib65
  article-title: Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10713
– volume: 134
  start-page: 1655
  issue: 6
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib61
  article-title: Mechanisms of hepatic fibrogenesis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.03.003
– volume: 66
  start-page: 226
  issue: 2
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib130
  article-title: TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309871
– volume: 57
  start-page: 2130
  issue: 12
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib186
  article-title: Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M071183
– volume: 281
  start-page: 14537
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib132
  article-title: Functional inhibitory cross-talk between car and HNF-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M510713200
– volume: 2
  start-page: 275
  issue: 3
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib179
  article-title: Gene expression profiling reveals a diverse array of pathways inhibited by nuclear receptor SHP during adipogenesis
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 12
  start-page: 147
  issue: 3
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib48
  article-title: Novel therapeutic targets in primary biliary cirrhosis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2015.12
– volume: 298
  start-page: 714
  issue: 5
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib128
  article-title: Identification of membrane-type receptor for bile acids (M-BAR)
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(02)02550-0
– volume: 48
  start-page: 15
  issue: 1
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib85
  article-title: Reciprocal interactions between bile acids and gut microbiota in human liver diseases
  publication-title: Hepatol. Res.
  doi: 10.1111/hepr.13001
– volume: 1865
  start-page: 895
  issue: 5
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib114
  article-title: Animal models to study bile acid metabolism
  publication-title: Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2018.05.011
– volume: 284
  start-page: 1365
  year: 1999
  ident: 10.1016/j.mce.2022.111618_bib148
  article-title: Bile acids: natural ligands for an orphan nuclear receptor
  publication-title: Science
  doi: 10.1126/science.284.5418.1365
– volume: 153
  start-page: 3613
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib157
  article-title: The role of bile after roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control
  publication-title: Endocrinology
  doi: 10.1210/en.2011-2145
– volume: 102
  start-page: 731
  issue: 6
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib174
  article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00062-3
– volume: 36
  start-page: 2419
  issue: 11
  year: 1995
  ident: 10.1016/j.mce.2022.111618_bib36
  article-title: Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7)
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)39723-6
– volume: 58
  start-page: 1451
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib151
  article-title: The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice
  publication-title: Hepatology
  doi: 10.1002/hep.26463
– volume: 139
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib205
  article-title: TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease
  publication-title: Immunology
  doi: 10.1111/imm.12045
– volume: 45
  start-page: 3569
  issue: 17
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib152
  article-title: 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity
  publication-title: J. Med. Chem.
  doi: 10.1021/jm025529g
– volume: 318
  start-page: G554
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib26
  article-title: Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00223.2019
– volume: 288
  start-page: G74
  year: 2005
  ident: 10.1016/j.mce.2022.111618_bib112
  article-title: Mechanism of rifampicin and pregnane X receptor (PXR) inhibition of human cholesterol 7{alpha}-hydroxylase gene (CYP7A1) transcription
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00258.2004
– volume: 284
  start-page: 1362
  year: 1999
  ident: 10.1016/j.mce.2022.111618_bib125
  article-title: Identification of a nuclear receptor for bile acids
  publication-title: Science
  doi: 10.1126/science.284.5418.1362
– volume: 287
  start-page: 1861
  issue: 3
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib117
  article-title: Glucose and insulin induction of bile acid synthesis: mechanisms and implication IN diabetes and obesity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.305789
– volume: 509
  start-page: 183
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib169
  article-title: FXR is a molecular target for the effects of vertical sleeve gastrectomy
  publication-title: Nature
  doi: 10.1038/nature13135
– volume: 2
  start-page: 713
  issue: 6
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib100
  article-title: Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(02)00154-5
– volume: 152
  start-page: 1679
  issue: 7
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib20
  article-title: Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.01.055
– volume: 48
  start-page: 474
  issue: 2
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib200
  article-title: Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.22363
– volume: 49
  start-page: 297
  issue: 1
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib180
  article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression
  publication-title: Hepatology
  doi: 10.1002/hep.22627
– volume: 6
  start-page: 507
  issue: 3
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib123
  article-title: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(00)00050-2
– volume: 17
  start-page: 279
  issue: 5
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib6
  article-title: Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-0269-9
– volume: 458
  start-page: 1131
  issue: 7242
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib175
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
  doi: 10.1038/nature07976
– volume: 74
  start-page: 442
  issue: 2
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib107
  article-title: Hepatokines and adipokines in NASH-related hepatocellular carcinoma
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.10.030
– volume: 316
  start-page: G412
  issue: 3
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib56
  article-title: Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00300.2018
– volume: 66
  start-page: 1384
  issue: 5
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib40
  article-title: Hepatic bile acid uptake in humans and mice: multiple pathways and expanding potential role for gut-liver signaling
  publication-title: Hepatology
  doi: 10.1002/hep.29325
– volume: 116
  start-page: 1102
  issue: 4
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib124
  article-title: Farnesoid X receptor is essential for normal glucose homeostasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI25604
– volume: 74
  start-page: 58
  issue: 1
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib104
  article-title: Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.07.028
– volume: 276
  start-page: 41690
  year: 2001
  ident: 10.1016/j.mce.2022.111618_bib207
  article-title: Transcriptional regulation of the human sterol 12a-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4a (HNF4a) in mediating bile acid repression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M105117200
– volume: 45
  start-page: 695
  issue: 3
  year: 2007
  ident: 10.1016/j.mce.2022.111618_bib97
  article-title: The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells
  publication-title: Hepatology
  doi: 10.1002/hep.21458
– volume: 57
  start-page: 10343
  issue: 24
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib79
  article-title: G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype
  publication-title: J. Med. Chem.
  doi: 10.1021/jm501052c
– volume: 62
  start-page: 4184
  issue: 12
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib72
  article-title: Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids
  publication-title: Diabetes
  doi: 10.2337/db13-0639
– volume: 17
  start-page: 20
  issue: 1
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib19
  article-title: Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0604-z
– volume: 68
  start-page: 1063
  issue: 5
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib90
  article-title: A major mediator of non-alcoholic fatty liver disease
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.01.019
– volume: 275
  start-page: 10918
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib30
  article-title: FXR responds to bile acids and represses cholesterol 7a-hydroxylase gene (CYP7A1) transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.15.10918
– volume: 332
  start-page: 1519
  issue: 6037
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib35
  article-title: Human fatty liver disease: old questions and new insights
  publication-title: Science
  doi: 10.1126/science.1204265
– volume: 13
  start-page: 3039
  issue: 25
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib177
  article-title: Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986706778521823
– volume: 269
  start-page: 17502
  year: 1994
  ident: 10.1016/j.mce.2022.111618_bib29
  article-title: Identification and characterization of a putative bile acid responsive element in cholesterol 7a-hydroxylase gene promoter
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)32469-9
– volume: 276
  start-page: 30708
  year: 2001
  ident: 10.1016/j.mce.2022.111618_bib41
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103270200
– volume: 46
  start-page: 1993
  issue: 6
  year: 2007
  ident: 10.1016/j.mce.2022.111618_bib178
  article-title: Hepatocyte growth factor signaling pathway inhibits cholesterol 7alpha-hydroxylase and bile acid synthesis in human hepatocytes
  publication-title: Hepatology
  doi: 10.1002/hep.21878
– volume: 331
  start-page: 1621
  issue: 6024
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib103
  article-title: FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
  publication-title: Science
  doi: 10.1126/science.1198363
– volume: 125
  start-page: 386
  issue: 1
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib92
  article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI76738
– volume: 25
  start-page: 1159
  issue: 7
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib133
  article-title: Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2011-0033
– volume: 110
  start-page: 109
  issue: 1
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib159
  article-title: Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215387
– volume: 276
  start-page: 36869
  issue: 40
  year: 2001
  ident: 10.1016/j.mce.2022.111618_bib74
  article-title: The multifaceted mechanisms of estradiol and estrogen receptor signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R100029200
– volume: 372
  start-page: 78
  issue: 1
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib98
  article-title: Expression and function of the bile acid receptor TGR5 in Kupffer cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.04.171
– volume: 66
  start-page: 613
  issue: 3
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib201
  article-title: An intestinal farnesoid X receptor-ceramide signaling Axis modulates hepatic gluconeogenesis in mice
  publication-title: Diabetes
  doi: 10.2337/db16-0663
– volume: 155
  start-page: 1741
  issue: 6
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib62
  article-title: FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.08.022
– volume: 11
  start-page: 451
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib75
  article-title: Nonalcoholic fatty liver disease: pathogenesis and disease spectrum
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-012615-044224
– volume: 22
  start-page: 1622
  issue: 7
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib196
  article-title: Farnesoid X receptor protects liver cells from apoptosis induced by serum deprivation in vitro and fasting in vivo
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2007-0527
– volume: 61
  start-page: 54
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib81
  article-title: Regulations of bile acid metabolism in mouse models with hydrophobic bile acid composition
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.RA119000395
– volume: 1864
  start-page: 1422
  issue: 10
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib16
  article-title: Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2019.07.006
– volume: 65
  start-page: 350
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib5
  article-title: Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives
  publication-title: Hepatology
  doi: 10.1002/hep.28709
– volume: 60
  start-page: 908
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib120
  article-title: Conjugated bile acids promote cholangiocarcinoma cell invasive growth via activation of sphingosine 1-phosphate receptor 2
  publication-title: Hepatology
  doi: 10.1002/hep.27085
– volume: 9
  start-page: 1131
  issue: 8
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib38
  article-title: Functions of autophagy in normal and diseased liver
  publication-title: Autophagy
  doi: 10.4161/auto.25063
– volume: 279
  start-page: 45139
  year: 2004
  ident: 10.1016/j.mce.2022.111618_bib8
  article-title: Ligand-activated PXR interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha : functional implications in hepatic cholesterol and glucose metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M405423200
– volume: 43
  start-page: S99
  issue: 2 Suppl. 1
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib51
  article-title: Nonalcoholic fatty liver disease: from steatosis to cirrhosis
  publication-title: Hepatology
  doi: 10.1002/hep.20973
– volume: 75
  start-page: 634
  issue: 3
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib163
  article-title: Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2021.03.029
– volume: 24
  start-page: 2624
  year: 2005
  ident: 10.1016/j.mce.2022.111618_bib10
  article-title: Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600728
– volume: 292
  start-page: 11055
  issue: 26
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib149
  article-title: Farnesoid X receptor induces Takeda G-protein receptor 5 crosstalk to regulate bile acid synthesis and hepatic metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.784322
– volume: 124
  start-page: 5424
  issue: 12
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib153
  article-title: TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI76289
– volume: 400
  start-page: 625
  issue: 5
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib49
  article-title: Conversion of chenodeoxycholic acid to cholic acid by human CYP8B1
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2018-0379
– volume: 26
  start-page: 312
  issue: 4
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib155
  article-title: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine
  publication-title: Gene Dev.
  doi: 10.1101/gad.184788.111
– volume: 10
  start-page: 104
  issue: 1
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib204
  article-title: Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2016.42
– volume: 65
  start-page: 487
  issue: 3
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib162
  article-title: TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309458
– volume: 113
  start-page: 1408
  issue: 10
  year: 2004
  ident: 10.1016/j.mce.2022.111618_bib199
  article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI21025
– volume: 21
  start-page: 159
  issue: 2
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib50
  article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
  publication-title: Nat. Med.
  doi: 10.1038/nm.3760
– volume: 15
  issue: 3
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib58
  article-title: Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007581
– volume: 62
  start-page: 135
  issue: 1
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib111
  article-title: Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice
  publication-title: Hepatology
  doi: 10.1002/hep.27804
– volume: 17
  start-page: 225
  issue: 2
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib170
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2013.01.003
– volume: 38
  start-page: 2446
  year: 1997
  ident: 10.1016/j.mce.2022.111618_bib161
  article-title: Activation of protein kinase Ca and d by bile acids: correlation with bile acid structure and diacylglycerol formation
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)30029-8
– volume: 18
  start-page: 335
  issue: 5
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib185
  article-title: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-00404-2
– volume: 66
  start-page: 948
  issue: 4
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib113
  article-title: Bile acid signaling in metabolic disease and drug therapy
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.113.008201
– volume: 11
  start-page: 1003
  year: 1992
  ident: 10.1016/j.mce.2022.111618_bib108
  article-title: Evolution of the nuclear receptor gene superfamily
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05139.x
– volume: 123
  start-page: 154844
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib141
  article-title: Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2021.154844
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib168
  article-title: Links between gut microbiome composition and fatty liver disease in a large population sample
  publication-title: Gut Microb.
  doi: 10.1080/19490976.2021.1888673
– volume: 11
  start-page: 467
  issue: 6
  year: 2010
  ident: 10.1016/j.mce.2022.111618_bib203
  article-title: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2010.04.005
– volume: 280
  start-page: 29971
  issue: 33
  year: 2005
  ident: 10.1016/j.mce.2022.111618_bib47
  article-title: The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M501931200
– volume: 65
  start-page: 2005
  issue: 6
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib198
  article-title: The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice
  publication-title: Hepatology
  doi: 10.1002/hep.29076
– volume: 15
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib206
  article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.109
– volume: 141
  start-page: 1773
  issue: 5
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib88
  article-title: Bile acid is a host factor that regulates the composition of the cecal microbiota in rats
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.07.046
– volume: 67
  start-page: 1720
  issue: 9
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib11
  article-title: Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery
  publication-title: Diabetes
  doi: 10.2337/dbi17-0007
– volume: 47
  start-page: 1578
  issue: 5
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib147
  article-title: Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis
  publication-title: Hepatology
  doi: 10.1002/hep.22196
– volume: 67
  start-page: 534
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib160
  article-title: The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids
  publication-title: Hepatology
  doi: 10.1002/hep.29359
– volume: 145
  start-page: 574
  issue: 3
  year: 2013
  ident: 10.1016/j.mce.2022.111618_bib138
  article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic Acid in patients with type 2 diabetes and nonalcoholic Fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.05.042
– volume: 275
  start-page: 17793
  issue: 23
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib42
  article-title: a1-fetoprotein transcription factor is required for the expression of sterol 12a-hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid-mediated regulation of gene transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M000996200
– volume: 126
  start-page: 756
  issue: 3
  year: 2004
  ident: 10.1016/j.mce.2022.111618_bib21
  article-title: Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2003.12.013
– volume: 36
  start-page: S3
  issue: Suppl. 1
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib156
  article-title: Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action
  publication-title: Clin Res Hepatol Gastroenterol
  doi: 10.1016/S2210-7401(12)70015-3
– volume: 50
  start-page: 2139
  issue: 11
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib52
  article-title: Bile acids: role of peroxisomes
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R900009-JLR200
– volume: 121
  start-page: 140
  issue: 1
  year: 2001
  ident: 10.1016/j.mce.2022.111618_bib43
  article-title: The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp
  publication-title: Gastroenterology
  doi: 10.1053/gast.2001.25503
– year: 2018
  ident: 10.1016/j.mce.2022.111618_bib142
  article-title: Increased bile acids and FGF19 after sleeve gastrectomy and roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial
  publication-title: Obes. Surg.
  doi: 10.1007/s11695-018-3216-x
– volume: 282
  start-page: 34250
  issue: 47
  year: 2007
  ident: 10.1016/j.mce.2022.111618_bib2
  article-title: p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704075200
– volume: 312
  start-page: 233
  issue: 5771
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib84
  article-title: Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration
  publication-title: Science
  doi: 10.1126/science.1121435
– volume: 5
  start-page: 1810
  issue: 11
  year: 2021
  ident: 10.1016/j.mce.2022.111618_bib1
  article-title: What does the future hold for patients with nonalcoholic steatohepatitis: diagnostic strategies and treatment options in 2021 and beyond?
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1814
– volume: 15
  start-page: 261
  issue: 5
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib15
  article-title: Gut microbial metabolites in obesity, NAFLD and T2DM
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-019-0156-z
– volume: 67
  start-page: 549
  issue: 3
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib55
  article-title: norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.05.009
– volume: 59
  start-page: 1709
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib135
  article-title: Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M087239
– volume: 288
  start-page: G685
  year: 2005
  ident: 10.1016/j.mce.2022.111618_bib89
  article-title: Cytokine regulation of human sterol 12{alpha}-hydroxylase (CYP8B1) gene
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00207.2004
– volume: 70
  start-page: 788
  issue: 3
  year: 2019
  ident: 10.1016/j.mce.2022.111618_bib190
  article-title: The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis
  publication-title: Hepatology
  doi: 10.1002/hep.30509
– volume: 6
  start-page: 2029
  year: 2017
  ident: 10.1016/j.mce.2022.111618_bib24
  article-title: Recent advances in understanding bile acid homeostasis
  publication-title: F1000Res
  doi: 10.12688/f1000research.12449.1
– volume: 103
  start-page: 1006
  issue: 4
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib208
  article-title: Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0506982103
– volume: 15
  start-page: 91
  issue: 3
  year: 2020
  ident: 10.1016/j.mce.2022.111618_bib27
  article-title: Bile acid biology, pathophysiology, and therapeutics
  publication-title: Clin. Liver Dis.
  doi: 10.1002/cld.861
– volume: 2
  start-page: 721
  issue: 6
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib194
  article-title: Redundant pathways for negative feedback regulation of bile Acid production
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(02)00187-9
– volume: 50
  start-page: 1955
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib22
  article-title: Bile acids: regulation of synthesis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R900010-JLR200
– volume: 278
  start-page: 9435
  year: 2003
  ident: 10.1016/j.mce.2022.111618_bib96
  article-title: A G protein-coupled receptor responsive to bile acids
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209706200
– volume: 285
  start-page: 3035
  issue: 5
  year: 2010
  ident: 10.1016/j.mce.2022.111618_bib209
  article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.083899
– volume: 61
  start-page: 1216
  issue: 4
  year: 2015
  ident: 10.1016/j.mce.2022.111618_bib140
  article-title: Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression
  publication-title: Hepatology
  doi: 10.1002/hep.27592
– volume: 48
  start-page: 2664
  year: 2007
  ident: 10.1016/j.mce.2022.111618_bib102
  article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M700330-JLR200
– volume: 71
  start-page: 609
  issue: 4
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib12
  article-title: Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7alpha-hydroxylase gene repression by bile acids [In Process Citation]
  publication-title: Mol. Genet. Metabol.
  doi: 10.1006/mgme.2000.3106
– volume: 51
  start-page: 1410
  issue: 4
  year: 2010
  ident: 10.1016/j.mce.2022.111618_bib189
  article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine
  publication-title: Hepatology
  doi: 10.1002/hep.23450
– volume: 516
  start-page: 112
  issue: 7529
  year: 2014
  ident: 10.1016/j.mce.2022.111618_bib110
  article-title: Nutrient-sensing nuclear receptors coordinate autophagy
  publication-title: Nature
  doi: 10.1038/nature13961
– volume: 375
  start-page: 631
  issue: 7
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib144
  article-title: A placebo-controlled trial of obeticholic acid in primary biliary cholangitis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1509840
– volume: 9
  start-page: 2590
  issue: 1
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib14
  article-title: Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04697-5
– volume: 7
  start-page: 195
  issue: 4
  year: 2010
  ident: 10.1016/j.mce.2022.111618_bib13
  article-title: Pathology of nonalcoholic fatty liver disease
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2010.21
– volume: 109
  start-page: 961
  issue: 7
  year: 2002
  ident: 10.1016/j.mce.2022.111618_bib34
  article-title: Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0214505
– volume: 276
  start-page: 15816
  issue: 19
  year: 2001
  ident: 10.1016/j.mce.2022.111618_bib70
  article-title: Down-regulation of cholesterol 7alpha -hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-jun N-terminal kinase pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M010878200
– volume: 60
  start-page: 1861
  issue: 7
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib158
  article-title: Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity
  publication-title: Diabetes
  doi: 10.2337/db11-0030
– volume: 103
  start-page: 3920
  issue: 10
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib87
  article-title: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0509592103
– volume: 276
  start-page: 28857
  year: 2001
  ident: 10.1016/j.mce.2022.111618_bib3
  article-title: Human bile salt export pump (BSEP) promoter is transactivated by the farnesoid X receptor/bile acid receptor (FXR/BAR)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M011610200
– volume: 60
  start-page: 463
  issue: 4
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib63
  article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease
  publication-title: Gut
  doi: 10.1136/gut.2010.212159
– volume: 7
  start-page: 678
  issue: 8
  year: 2008
  ident: 10.1016/j.mce.2022.111618_bib187
  article-title: Targeting bile-acid signalling for metabolic diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2619
– volume: 21
  start-page: 1312
  issue: 6
  year: 2007
  ident: 10.1016/j.mce.2022.111618_bib83
  article-title: In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2007-0113
– volume: 3
  start-page: 318
  issue: 6
  year: 2006
  ident: 10.1016/j.mce.2022.111618_bib7
  article-title: Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis
  publication-title: Nat. Clin. Pract. Gastroenterol. Hepatol.
  doi: 10.1038/ncpgasthep0521
– volume: 45
  start-page: 944
  issue: 4
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib69
  article-title: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.10.009
– volume: 55
  start-page: 267
  issue: 1
  year: 2012
  ident: 10.1016/j.mce.2022.111618_bib183
  article-title: Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes
  publication-title: Hepatology
  doi: 10.1002/hep.24681
– volume: 151
  start-page: 845
  issue: 5
  year: 2016
  ident: 10.1016/j.mce.2022.111618_bib66
  article-title: An intestinal microbiota-farnesoid X receptor Axis modulates metabolic disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.08.057
– volume: 68
  start-page: 1574
  year: 2018
  ident: 10.1016/j.mce.2022.111618_bib150
  article-title: Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism
  publication-title: Hepatology
  doi: 10.1002/hep.29857
– volume: 81
  start-page: 687
  year: 1995
  ident: 10.1016/j.mce.2022.111618_bib59
  article-title: Identification of a nuclear receptor that is activated by farnesol metabolites
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90530-8
– volume: 14
  start-page: 747
  issue: 6
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib154
  article-title: TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2011.11.006
– volume: 30
  start-page: 570
  issue: 11
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib57
  article-title: Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2009.08.001
– volume: 28
  start-page: 1064
  issue: 4 Pt 2 Suppl. l
  year: 1998
  ident: 10.1016/j.mce.2022.111618_bib129
  article-title: Cholesterol 7alpha-hydroxylase (CYP7A): patterns of messenger RNA expression during rat liver development [In Process Citation]
  publication-title: Hepatology
  doi: 10.1002/hep.510280422
– volume: 275
  start-page: 21805
  issue: 29
  year: 2000
  ident: 10.1016/j.mce.2022.111618_bib134
  article-title: Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C000275200
– volume: 30
  start-page: 1341
  issue: 6
  year: 2010
  ident: 10.1016/j.mce.2022.111618_bib210
  article-title: Nuclear receptor SHP, a death receptor that targets mitochondria, induces apoptosis and inhibits tumor growth
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01076-09
– volume: 2
  start-page: 217
  issue: 4
  year: 2005
  ident: 10.1016/j.mce.2022.111618_bib86
  article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2005.09.001
– volume: 25
  start-page: 1066
  issue: 6
  year: 2011
  ident: 10.1016/j.mce.2022.111618_bib116
  article-title: The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2010-0460
– volume: 10
  start-page: 167
  issue: 3
  year: 2009
  ident: 10.1016/j.mce.2022.111618_bib188
  article-title: TGR5-mediated bile acid sensing controls glucose homeostasis
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2009.08.001
SSID ssj0007528
Score 2.6564555
SecondaryResourceType review_article
Snippet In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111618
SubjectTerms adrenal glands
Animals
bile
Bile acid receptors
bile acids
Bile Acids and Salts - metabolism
Cholestasis
cholesterol
diabetes
drugs
endocrinology
energy
energy metabolism
enzymes
farnesol
fatty liver
Fatty liver diseases
FXR
glucose
Glucose - metabolism
homeostasis
intestinal microorganisms
intestines
kidneys
ligands
Lipid Metabolism
Lipids
liver
Liver - metabolism
Metabolic disease
obesity
Rats
Receptors, Cytoplasmic and Nuclear - metabolism
resorption
secretion
Title Discovery of farnesoid X receptor and its role in bile acid metabolism
URI https://dx.doi.org/10.1016/j.mce.2022.111618
https://www.ncbi.nlm.nih.gov/pubmed/35283218
https://www.proquest.com/docview/2638942897
https://www.proquest.com/docview/2648858415
https://pubmed.ncbi.nlm.nih.gov/PMC9038687
Volume 548
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCWKDih2GbZ2H9naQgWGHQZ4cSxLso9BuyDtsF62ArkJsiRjLhonaNxDL_vtJWU7W7Yih56MODSikBT1aD2RAB_LWHlE3j4aWZlHqRQep1RcRl5gGie9imUZqn1eyulVejETsx047c_CEK2yi_1tTA_Rursz7LQ5XFbV8Ae6J7VYUUk4bSJmdII9VeTlX37_oXkoEfqrknBE0v3OZuB4zS1VykwSChyS-n48vjb9jz3_pVD-tSZNXsKLDkyycTveV7Dj6304GNeYSM_v2ScW6J3hvfk-7H3vdtEPYHJWrSxRN-_ZomSlucVwt6gcmzFUhV9iFs5M7VjVrBiRD1lVswKDBzMWhea-Qb-5qVbz13A1-frzdBp1_RQii3lIg0ZQiC4KFwuXO4-ZjHJ56TyGXqpNxJUrZGK453YUo1yZOLwYo3hWlMoLU_A3sFsvav8OGPdZ7LLUWMHz1Iqs4Igb0GS5lQg5TT6AuNektl2xcep5caN7Vtm1RuVrUr5ulT-Az-tHlm2ljW3CaW8eveEuGleCbY-d9KbUOI1ob8TUfnG30gkhN0zFcrVNBqMdAraRGMDb1vzrkYYiOQn9gtpwjLUAlfHe_KaufoVy3nnMM5mp90_7Sx_gOX0iQsNIHMJuc3vnjxAnNcVxmAjH8Gx8_m16-QCQdBFS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTgJeEGz8KD-NhHhAiprGsZ08VoOqY1tf2KS-WY7taEFrWq3Zw_577pykooD6wFOl5qymd_bn7-LLdwCfylh5ZN4-GluZR6kUHpdUXEZeYBonvYplGdQ-53J2lX5fiMUBnPTvwlBZZYf9LaYHtO6-GXXeHK2ravQDpye1WFFJeNtELB7AIalTiQEcTk7PZvMtICsRWqySfUQD-sPNUOa1tCSWmSSEHZJaf_x7e_qbfv5ZRfnbtjR9Ck86Pskm7S0_gwNfH8HxpMZcennPPrNQ4RkenR_Bw4vuIP0Ypl-rjaXqzXu2KllpbhHxVpVjC4be8GtMxJmpHauaDaP6Q1bVrED8YMai0dI3OHVuqs3yOVxNv12ezKKupUJkMRVpMA4KCUbhYuFy5zGZUS4vnUf0JXkirlwhE8M9t-MY7crE4YcximdFqbwwBX8Bg3pV-1fAuM9il6XGCp6nVmQFR-qAUcutRNZp8iHEvSe17fTGqe3Fje4Ly35qdL4m5-vW-UP4sh2ybsU29hmnfXj0zozRuBnsG_axD6XGlUTHI6b2q7uNToi8YTaWq302CHjI2cZiCC_b8G_vNOjkJPQLamdibA1IyXv3Sl1dB0XvPOaZzNTr__tLH-DR7PLiXJ-fzs_ewGO6QvUNY_EWBs3tnX-HtKkp3nfL4hfiNhQD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+farnesoid+X+receptor+and+its+role+in+bile+acid+metabolism&rft.jtitle=Molecular+and+cellular+endocrinology&rft.au=Chiang%2C+John+Y.L.&rft.au=Ferrell%2C+Jessica+M.&rft.date=2022-05-15&rft.issn=0303-7207&rft.volume=548+p.111618-&rft_id=info:doi/10.1016%2Fj.mce.2022.111618&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-7207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-7207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-7207&client=summon