CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool
With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound throughout the global co...
Saved in:
Published in | Journal of molecular biology Vol. 431; no. 1; pp. 88 - 101 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
04.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound throughout the global community about the appropriate scope of the systems' use. Here we review fundamental ethical issues including the following: 1) the extent to which CRISPR use should be permitted; 2) access to CRISPR applications; 3) whether a regulatory framework(s) for clinical research involving human subjects might accommodate all types of human genome editing, including editing of the germline; and 4) whether international regulations governing inappropriate CRISPR utilization should be crafted and publicized. We conclude that moral decision making should evolve as the science of genomic engineering advances and hold that it would be reasonable for national and supranational legislatures to consider evidence-based regulation of certain CRISPR applications for the betterment of human health and progress. |
---|---|
AbstractList | With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound throughout the global community about the appropriate scope of the systems' use. Here we review fundamental ethical issues including the following: 1) the extent to which CRISPR use should be permitted; 2) access to CRISPR applications; 3) whether a regulatory framework(s) for clinical research involving human subjects might accommodate all types of human genome editing, including editing of the germline; and 4) whether international regulations governing inappropriate CRISPR utilization should be crafted and publicized. We conclude that moral decision making should evolve as the science of genomic engineering advances and hold that it would be reasonable for national and supranational legislatures to consider evidence-based regulation of certain CRISPR applications for the betterment of human health and progress. With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound throughout the global community about the appropriate scope of the systems' use. Here we review fundamental ethical issues including the following: 1) the extent to which CRISPR use should be permitted; 2) access to CRISPR applications; 3) whether a regulatory framework(s) for clinical research involving human subjects might accommodate all types of human genome editing, including editing of the germline; and 4) whether international regulations governing inappropriate CRISPR utilization should be crafted and publicized. We conclude that moral decision making should evolve as the science of genomic engineering advances and hold that it would be reasonable for national and supranational legislatures to consider evidence-based regulation of certain CRISPR applications for the betterment of human health and progress.With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound throughout the global community about the appropriate scope of the systems' use. Here we review fundamental ethical issues including the following: 1) the extent to which CRISPR use should be permitted; 2) access to CRISPR applications; 3) whether a regulatory framework(s) for clinical research involving human subjects might accommodate all types of human genome editing, including editing of the germline; and 4) whether international regulations governing inappropriate CRISPR utilization should be crafted and publicized. We conclude that moral decision making should evolve as the science of genomic engineering advances and hold that it would be reasonable for national and supranational legislatures to consider evidence-based regulation of certain CRISPR applications for the betterment of human health and progress. With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As application areas of CRISPR are exceeding beyond research and biomedical therapies, new and existing ethical concerns abound throughout the global community about the appropriate scope of the systems’ use. Here we review fundamental ethical issues including the following: 1) the extent to which CRISPR use should be permitted; 2) access to CRISPR applications; 3) whether a regulatory framework(s) for clinical research involving human subjects might accommodate all types of human genome editing, including editing of the germline; and 4) whether international regulations governing inappropriate CRISPR use should be crafted and publicized. We conclude that moral decision making should evolve as CRISPR science advances and hold that it would be reasonable for national and supranational legislatures to consider evidence-based regulation of certain CRISPR applications for the betterment of human health and progress. |
Author | Adli, Mazhar Brokowski, Carolyn |
AuthorAffiliation | 1 Department of Emergency Medicine, Yale School of Medicine, 464 Congress Avenue, New Haven, CT 06519-1362 2 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park AvenueCharlottesville, VA 22908 |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park AvenueCharlottesville, VA 22908 – name: 1 Department of Emergency Medicine, Yale School of Medicine, 464 Congress Avenue, New Haven, CT 06519-1362 |
Author_xml | – sequence: 1 givenname: Carolyn surname: Brokowski fullname: Brokowski, Carolyn organization: Department of Emergency Medicine, Yale School of Medicine, 464 Congress Avenue, New Haven, CT 06519-1362, USA – sequence: 2 givenname: Mazhar surname: Adli fullname: Adli, Mazhar email: adli@virginia.edu organization: Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29885329$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAYhC1URLfb_gAuKEcuCa_t2HFAQqpWpVRqRdWPs-U4r6lX2Xixs63497jdLQIO5WTLfmY0mjkge2MYkZC3FCoKVH5YVstVVzGgqgJRQV2_IjMKqi2V5GqPzAAYK5nicp8cpLQEAMFr9Ybss1YpwVk7I6eLq7Pry6viZLrzNn0sLkI0Q7EIY_I9RjP5fCtciMXxej14u3sIrjDFZXjA6DZDcRPCcEheOzMkPNqdc3L75eRm8bU8_3Z6tjg-L60QMJWNcaJuhJHomoYb2TIqLbNIO9f1oqt5z2vBhOxE34JRphat4xKVqEWXmZ7Pyeet73rTrbC3OE45sF5HvzLxpw7G679_Rn-nv4d7LZmSLHcxJ-93BjH82GCa9Moni8NgRgybpBljFARjLfs_mjkFqhGQ0Xd_xvqd57noDDRbwMaQUkSnrZ-e2swp_aAp6MdJ9VLnSfXjpBqEzpNmJf1H-Wz-kubTVoN5inuPUSfrcbTY-4h20n3wL6h_AQZkuIg |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116333 crossref_primary_10_1007_s00439_021_02272_5 crossref_primary_10_1080_21655979_2021_1969831 crossref_primary_10_1093_femsec_fiz127 crossref_primary_10_3390_ph18010104 crossref_primary_10_3390_ijms21249604 crossref_primary_10_1080_17576180_2025_2459520 crossref_primary_10_3390_genes14081584 crossref_primary_10_5294_pebi_2021_25_2_9 crossref_primary_10_1186_s12910_020_00527_w crossref_primary_10_7759_cureus_64324 crossref_primary_10_1021_acssynbio_1c00455 crossref_primary_10_3390_cells11060999 crossref_primary_10_2147_JHC_S456683 crossref_primary_10_1056_NEJMp1900504 crossref_primary_10_3390_plants12122306 crossref_primary_10_1128_jmbe_v20i2_1666 crossref_primary_10_1007_s12291_024_01242_8 crossref_primary_10_1186_s12910_021_00615_5 crossref_primary_10_3390_nu12051355 crossref_primary_10_17803_2313_5395_2021_1_15_115_128 crossref_primary_10_1098_rstb_2019_0101 crossref_primary_10_3390_cancers12092378 crossref_primary_10_1038_s41585_024_00901_y crossref_primary_10_1002_sd_2072 crossref_primary_10_2174_1566523221666210622164133 crossref_primary_10_54709_joebs_1641221 crossref_primary_10_3390_ijms21124354 crossref_primary_10_1055_s_0044_1791803 crossref_primary_10_1002_bit_28603 crossref_primary_10_26637_MJM0804_0014 crossref_primary_10_1097_MOP_0000000000001168 crossref_primary_10_1007_s12033_022_00501_4 crossref_primary_10_3390_plants12040773 crossref_primary_10_7202_1089787ar crossref_primary_10_1186_s13059_020_02206_w crossref_primary_10_1371_journal_pntd_0007833 crossref_primary_10_1016_j_jtcvs_2020_03_176 crossref_primary_10_1016_j_jdiacomp_2023_108524 crossref_primary_10_1007_s12010_023_04708_2 crossref_primary_10_69709_GenomC_2025_161795 crossref_primary_10_1089_crispr_2021_0094 crossref_primary_10_3389_fbioe_2022_949280 crossref_primary_10_3390_biologics3040014 crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1080_00219266_2021_1909640 crossref_primary_10_1097_MS9_0000000000002146 crossref_primary_10_1016_j_brs_2023_04_020 crossref_primary_10_1126_science_add8643 crossref_primary_10_3390_cells10050969 crossref_primary_10_1111_jore_12403 crossref_primary_10_2147_IDR_S494327 crossref_primary_10_2174_0929866527666200407112432 crossref_primary_10_1016_j_gene_2023_147870 crossref_primary_10_1080_20477724_2020_1731667 crossref_primary_10_1007_s12015_019_09897_0 crossref_primary_10_1016_j_wpi_2021_102038 crossref_primary_10_3389_fpls_2025_1565635 crossref_primary_10_1039_D4BM00054D crossref_primary_10_31083_j_rcm2312392 crossref_primary_10_1016_j_ymeth_2019_08_009 crossref_primary_10_1093_toxres_tfae105 crossref_primary_10_1007_s12161_024_02754_y crossref_primary_10_1186_s12943_021_01487_4 crossref_primary_10_51973_head_1209563 crossref_primary_10_3389_fmed_2022_943631 crossref_primary_10_2147_JMDH_S303881 crossref_primary_10_3389_fcvm_2021_760140 crossref_primary_10_1089_crispr_2019_0033 crossref_primary_10_1089_crispr_2024_0030 crossref_primary_10_1093_pnasnexus_pgad170 crossref_primary_10_1136_jme_2022_108888 crossref_primary_10_2174_1389201022666210910102516 crossref_primary_10_1088_2516_1091_abbf5e crossref_primary_10_3390_genes12050723 crossref_primary_10_1097_ACM_0000000000003037 crossref_primary_10_1155_2019_1369682 crossref_primary_10_1007_s12033_022_00550_9 crossref_primary_10_3390_brainsci9010017 crossref_primary_10_1007_s41649_021_00167_1 crossref_primary_10_3389_fmicb_2021_657981 crossref_primary_10_1016_j_jclepro_2023_139512 crossref_primary_10_1016_j_sjbs_2021_10_020 crossref_primary_10_1089_hum_2023_139 crossref_primary_10_1016_j_trac_2025_118164 crossref_primary_10_1080_14636778_2023_2237177 crossref_primary_10_3389_fcell_2021_639699 crossref_primary_10_3389_fgeed_2023_1284547 crossref_primary_10_1021_acs_jchemed_0c00095 crossref_primary_10_2174_0115665232275754231204072320 crossref_primary_10_1007_s12519_024_00843_w crossref_primary_10_1021_acs_jchemed_9b01154 crossref_primary_10_1161_ATVBAHA_122_318354 crossref_primary_10_3390_biotech12010001 crossref_primary_10_3389_fcimb_2021_639108 crossref_primary_10_1016_j_sbsr_2023_100601 crossref_primary_10_1057_s41599_024_04044_8 crossref_primary_10_1016_j_btre_2022_e00731 crossref_primary_10_3390_ijms23073976 crossref_primary_10_3389_fmed_2024_1356578 crossref_primary_10_1093_nar_gkab126 crossref_primary_10_1002_nano_202400015 crossref_primary_10_61186_JCT_14_3_241 crossref_primary_10_2174_0113816128298080240328053845 crossref_primary_10_3390_ijms20174294 crossref_primary_10_1089_crispr_2018_0053 crossref_primary_10_3390_thalassrep13010006 crossref_primary_10_18231_j_aprd_2025_003 crossref_primary_10_3389_frym_2021_600133 crossref_primary_10_1111_pbi_13383 |
Cites_doi | 10.1038/nature.2016.20988 10.1111/febs.13586 10.1073/pnas.1521077112 10.1016/j.cell.2013.02.022 10.3727/096368911X627552 10.1016/j.cell.2013.04.025 10.1186/s12915-017-0391-5 10.1038/cr.2013.114 10.1186/s12711-016-0280-3 10.1038/nmeth.4293 10.1038/nature17946 10.1038/gt.2017.35 10.1016/j.stem.2013.11.002 10.1038/nbt.3853 10.1186/s13045-017-0489-9 10.1016/j.mib.2017.05.008 10.1093/femsre/fuv023 10.1056/NEJMoa0801066 10.1038/nmeth.4327 10.1007/s10815-016-0710-8 10.1126/science.aaq0179 10.1016/j.celrep.2016.05.005 10.1126/science.286.5448.2244 10.1016/j.biotechadv.2016.12.003 10.1038/nbt.3439 10.1038/nature21059 10.1104/pp.15.00793 10.1155/2014/307160 10.1038/510189a 10.1038/cr.2014.160 10.1089/crispr.2017.0024 10.1038/s41598-017-17968-w 10.1038/cr.2015.64 10.1155/2016/5052369 10.1038/nature23270 10.1016/j.pt.2017.10.002 10.1056/NEJMoa1708538 10.1038/nature23017 10.1007/978-1-4939-2727-2_15 10.1038/nature23305 10.1038/nature14299 10.1002/jcp.25970 10.1038/cr.2017.81 10.1080/00243639.2017.1299896 10.1038/nbt.3412 10.1038/nrmicro.2016.184 10.1126/sciadv.aar3952 10.1126/science.aar6245 10.1016/j.cell.2017.10.025 10.1038/nature19322 10.1126/science.aan3708 10.7554/eLife.32724 10.1038/533169a 10.1186/s13059-016-0963-7 10.1126/science.aad5227 10.1016/S0140-6736(18)30153-3 10.1038/nrmicro2577 10.1056/NEJMp1710370 10.1080/21645698.2016.1270489 10.1038/s41467-017-01836-2 10.1073/pnas.1611064114 10.1038/srep28496 10.1093/nar/gkt135 10.1038/nprot.2013.143 10.1159/000487159 10.1038/s41598-017-10633-2 10.1126/science.1231143 10.1038/nmeth.2532 10.1073/pnas.1708149114 10.1038/nature15544 10.1038/nchembio.1551 10.1038/nature26155 10.1371/journal.pntd.0003655 10.1016/j.molcel.2017.09.029 10.1038/ncomms11694 10.1038/nature24049 10.1080/07388551.2016.1271768 10.1016/j.bone.2014.09.005 10.4269/ajtmh.18-0083 10.1126/science.1225829 10.1056/NEJMp1704907 10.1099/mic.0.000635 10.1073/pnas.1512503112 10.1038/nrmicro3569 10.1126/scisignal.aab3729 10.1146/annurev-food-072816-024723 10.1038/srep42081 10.1038/nature16166 10.1007/s00705-017-3553-4 10.1038/70986 10.1111/jipb.12620 10.1038/nbt.2675 10.1038/nature14592 10.1038/cr.2014.11 10.1038/nature09937 10.1097/BCR.0b013e3182331d1c 10.1038/d41586-018-03270-w 10.1038/35047594 10.1126/science.aaa5945 10.1016/j.cell.2014.02.001 10.1016/j.cell.2017.04.005 10.1038/nature13769 10.1126/science.aat7183 10.1038/nn.4620 10.1126/science.aao3130 10.4103/0976-500X.189661 10.1126/science.aab1028 10.1038/mt.2015.118 10.1534/genetics.113.152710 10.1089/crispr.2018.29012.mon 10.7554/eLife.03401 10.1242/dev.115584 10.1016/j.jgg.2017.09.005 10.1111/cge.12606 10.1089/scd.2017.0058 10.1371/journal.pcbi.0010060 10.1016/j.tibtech.2013.04.004 10.1073/pnas.022438099 10.1016/j.jbiotec.2015.11.005 10.1126/science.aan4672 10.1089/omi.2015.0023 10.1016/j.cell.2015.02.038 10.1056/NEJMoa063842 10.1038/nature24644 10.1534/g3.117.300557 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jmb.2018.05.044 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
EndPage | 101 |
ExternalDocumentID | PMC6286228 29885329 10_1016_j_jmb_2018_05_044 S0022283618305862 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA211648 |
GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HLW HMG HX~ IH2 IHE J1W KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 186 29L 3O- AAEDT AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HVGLF HZ~ H~9 K-O MVM NEJ R2- SBG SEW SIN SSH UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-7af5475a6ef773a69216c2ce1bfbd5b43d345256b5d90a8a459f36e8545b1bfd3 |
IEDL.DBID | .~1 |
ISSN | 0022-2836 1089-8638 |
IngestDate | Thu Aug 21 13:49:10 EDT 2025 Fri Jul 11 17:02:01 EDT 2025 Tue Aug 05 11:43:36 EDT 2025 Mon Jul 21 05:56:28 EDT 2025 Tue Jul 01 03:50:25 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 23 02:36:55 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genome editing CRISPR NASEM Cas9 research ethics CRISPR–Cas9 genetic engineering bioengineering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-7af5475a6ef773a69216c2ce1bfbd5b43d345256b5d90a8a459f36e8545b1bfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6286228 |
PMID | 29885329 |
PQID | 2052808750 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6286228 proquest_miscellaneous_2221052292 proquest_miscellaneous_2052808750 pubmed_primary_29885329 crossref_citationtrail_10_1016_j_jmb_2018_05_044 crossref_primary_10_1016_j_jmb_2018_05_044 elsevier_sciencedirect_doi_10_1016_j_jmb_2018_05_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-04 |
PublicationDateYYYYMMDD | 2019-01-04 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bb0060) 2017 U.S. CONST. amend. 1791, 1. Frank, Hogarth, Miller, Mandal, Mease, Samulski (bb0770) 2009; 361 Hai, Teng, Guo, Li, Zhou (bb0295) 2014; 24 Tu, Yang, Yan, Yin, Gao, Liu (bb0205) 2017; 7 (bb0040) 2015 Guo, Li (bb0200) 2015; 25 Lu, Xiang, Li (bb0350) 2015; 88 Basgall, Goetting, Goeckel, Giersch, Roggenkamp, Schrock (bb0680) 2018; 164 Charo (bb0400) 1995; 6 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bb0140) 2013; 8 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bb0130) 2012; 337 Kimmelman (bb0245) 2015; 1317 Irion, Krauss, Nusslein-Volhard (bb0285) 2014; 141 (bb0395) 2017 Zischewski, Fischer, Bortesi (bb0215) 2017; 35 Hamrahi, Goverman, Jung, Wu, Fischman, Tompkins (bb0425) 2012; 33 (bb0800) 2017 (bb0820) 2016 Komor, Kim, Packer, Zuris, Liu (bb0150) 2016; 533 Lluis, Jennifer, François, Marion, Pierre, Bernard, Cyril, Hervé (bb0845) 2018; 1 (bb0795) 2017 Schwank, Koo, Sasselli, Dekkers, Heo, Demircan (bb0495) 2013; 13 Code of Federal Regulations: Food and Drugs, 21 C.F.R. Greene, Padula (bb0760) 2017; 377 (bb0785) 2017 2017. Many countries and international decision-making bodies, including the Nuffield Council on Bioethics, the European Society of Human Genetics, and the European Society of Reproduction have issued reports and statements about ethical issues in genomic engineering, focusing specifically on the moral permissibility of germline editing. However, to date, the U.S. NASEM report (2017) is the most robust. Sternberg, LaFrance, Kaplan, Doudna (bb0745) 2015; 527 Kraus, Aman, Technau, Genikhovich (bb0275) 2016; 7 Wong, Cohn (bb0480) 2017; 17 Brinegar, A, Choi, Vallillo, Ruiz-Esparza, Prabhakar (bb0605) 2017; 37 Feng, Zhang, Ding, Liu, Yang, Wei (bb0290) 2013; 23 Gantz, Jasinskiene, Tatarenkova, Fazekas, Macias, Bier (bb0555) 2015; 112 Wang, Yang, Shivalila, Dawlaty, Cheng, Zhang (bb0710) 2013; 153 Jasanoff, Hurlbut (bb0850) 2018; 555 Commission on Genetic Modification and the Health Council of the Netherlands (bb0810) 2017 Wen, Tao, Hao, Zu (bb0490) 2017; 10 Zuo, Cai, Li, Wei, Wang, Sun (bb0305) 2017; 27 United Nations (bb0835) 1975 James, Collins, Welkhoff, Emerson, Godfray, Gottlieb (bb0645) 2018; 98 (bb0055) 2017 The (bb0020) 2018; 391 Charpentier, Richter, van der Oost, White (bb0355) 2015; 39 Suntharalingam, Perry, Ward, Brett, Castello-Cortes, Brunner (bb0510) 2006; 355 Chu, Galicia-Vazquez, Cencic, Mills, Katigbak, Porco (bb0455) 2016; 15 Windbichler, Menichelli, Papathanos, Thyme, Li, Ulge (bb0635) 2011; 473 Eckhoff, Wenger, Godfray, Burt (bb0640) 2017; 114 Sokolow, Wood, Jones, Lafferty, Kuris, Hsieh (bb0660) 2018; 34 (bb0540) 1927 Smith, Nelson (bb0545) 1989 Church (bb0825) 2017; 377 (bb0235) 2017 National Academies of Sciences Engineering and Medicine (U.S.) (bb0045) 2017 Nishimasu, Ran, Hsu, Konermann, Shehata, Dohmae (bb0115) 2014; 156 Tang, Liu, Wang, Sun, Tian, Cai (bb0250) 2017; 162 Abudayyeh, Gootenberg, Essletzbichler, Han, Joung, Belanto (bb0170) 2017; 550 Haft, Selengut, Mongodin, Nelson (bb0080) 2005; 1 Moreno-Mateos, Fernandez, Rouet, Vejnar, Lane, Mis (bb0735) 2017; 8 Hu, Miller, Geurts, Tang, Chen, Sun (bb0110) 2018; 556 Du, Zeng, Zhao, Cui, Wang, Yang (bb0595) 2016; 217 Shmakov, Smargon, Scott, Cox, Pyzocha, Yan (bb0100) 2017; 15 Drost, van Boxtel, Blokzijl, Mizutani, Sasaki, Sasselli (bb0450) 2017; 358 Makarova, Haft, Barrangou, Brouns, Charpentier, Horvath (bb0085) 2011; 9 Gaj, Gersbach, Barbas (bb0320) 2013; 31 Makarova, Wolf, Alkhnbashi, Costa, Shah, Saunders (bb0090) 2015; 13 (bb0815) 2017 Hess, Tycko, Yao, Bassik (bb0155) 2017; 68 Russell, Theriot, Sood, Marshall, Landweber, Fritz-Laylin (bb0330) 2017; 15 ClinicalTrials.gov (bb0015) 2018 Gaj, Ojala, Ekman, Byrne, Limsirichai, Schaffer (bb0485) 2017; 3 Manguso, Pope, Zimmer, Brown, Yates, Miller (bb0445) 2017; 547 DiCarlo, Chavez, Dietz, Esvelt, Church (bb0670) 2015; 33 (bb0780) 2017 (bb0790) 2017 DiCarlo, Norville, Mali, Rios, Aach, Church (bb0270) 2013; 41 National Academies of Sciences Engineering and Medicine (U.S.) (bb0630) 2016 Moro, Byrne, Kennedy, Campbell, Tizard (bb0665) 2018; 13 White (bb0695) 2017; 72 Huang, Tomitaka, Raymond, Nair (bb0465) 2017; 24 Achee, Gould, Perkins, Reiner, Morrison, Ritchie (bb0650) 2015; 9 Ma, Marti-Gutierrez, Park, Wu, Lee, Suzuki (bb0310) 2017; 548 Nakamura, Gehrke, Lemberg, Szymaszek, Shubin (bb0325) 2016; 537 Roggenkamp, Giersch, Schrock, Turnquist, Halloran, Finnigan (bb0675) 2018; 8 Qi, Larson, Gilbert, Doudna, Weissman, Arkin (bb0120) 2013; 152 Gonen, Jenko, Gorjanc, Mileham, Whitelaw, Hickey (bb0615) 2017; 49 O'Connell, Oakes, Sternberg, East-Seletsky, Kaplan, Doudna (bb0755) 2014; 516 Busardo, Gulino, Napoletano, Zaami, Frati (bb0435) 2014; 2014 Georges, Ray (bb0610) 2017; 8 Hough, Ajetunmobi, Brody, Humphryes-Kirilov, Perello (bb0460) 2016; 13 Chi, Weiss, Wang (bb0375) 2016; 2016 Enserink (bb0840) 2018 Koonin, Makarova, Zhang (bb0095) 2017; 37 Szikriszt, Poti, Pipek, Krzystanek, Kanu, Molnar (bb0520) 2016; 17 Cyranoski (bb0005) 2016; 539 Brokowski (bb0030) 2018; 1 Gaudelli, Komor, Rees, Packer, Badran, Bryson (bb0145) 2017; 551 Chow, Guzman, Wang, Schmidt, Youngblood, Ye (bb0725) 2017; 20 Lombardo (bb0550) 2008 World Health Organization (bb0570) (bb0240) 2017 (bb0180) 2018; 360 Shipman, Nivala, Macklis, Church (bb0255) 2017; 547 (bb0505) 2017 Schaefer, Wu, Colgan, Tsang, Bassuk, Mahajan (bb0210) 2017; 14 Bjorklund, Sanchez-Pernaute, Chung, Andersson, Chen, McNaught (bb0420) 2002; 99 CRISPR to debut in clinical trials, Kwon (bb0010) 2017 Dajani (bb0440) 2014; 510 Geneva Convention (bb0830) 1925 Savulescu, Bostrom (bb0560) 2009 Singla, Ahmed, Singla, Yan (bb0430) 2012; 21 Cong, Ran, Cox, Lin, Barretto, Habib (bb0700) 2013; 339 Rajendran, Yau, Pandey, Kumar (bb0590) 2015; 19 George, Sullivan, Giermasz, Rasko, Samelson-Jones, Ducore (bb0470) 2017; 377 Wang, Niu, Zhou, Yu, Kou, Lei (bb0530) 2016; 6 Chen, Sanjana, Zheng, Shalem, Lee, Shi (bb0705) 2015; 160 Doudna, Mason (bb0730) 2017 Klann, Black, Chellappan, Safi, Song, Hilton (bb0360) 2017; 35 Mali, Aach, Stranges, Esvelt, Moosburner, Kosuri (bb0135) 2013; 31 Dong, Lin, Held, Clem, Passarelli, Franz (bb0265) 2015; 10 Bohaciakova, Renzova, Fedorova, Barak, Kunova Bosakova, Hampl (bb0195) 2017; 26 Wu, Powers, Zhu, Hannun (bb0225) 2016; 529 Scheufele, Xenos, Howell, Rose, Brossard, Hardy (bb0025) 2017; 357 McDonald, Liu, Qu, Liu, Mickey, Turetsky (bb0415) 1999; 5 Gratz, Cummings, Nguyen, Hamm, Donohue, Harrison (bb0260) 2013; 194 Atanes, Ruz-Maldonado, Hawkes, Liu, Persaud, Amisten (bb0370) 2018; 45 bb0070 Schumann, Lin, Boyer, Simeonov, Subramaniam, Gate (bb0750) 2015; 112 Kang, He, Huang, Yu, Chen, Gao (bb0315) 2016; 33 Komor, Badran, Liu (bb0165) 2017; 169 Vella, Gunning, Lloyd, Gould (bb0685) 2017; 7 Gootenberg, Abudayyeh, Kellner, Joung, Collins, Zhang (bb0185) 2018; 360 Esvelt, Smidler, Catteruccia, Church (bb0655) 2014; 3 Gantz, Bier (bb0620) 2015; 348 Yang, Zhang, Stevens, Gibson (bb0345) 2014; 69 Hammond, Galizi, Kyrou, Simoni, Siniscalchi, Katsanos (bb0625) 2016; 34 Slaymaker, Gao, Zetsche, Scott, Yan, Zhang (bb0720) 2016; 351 Stout, Klaenhammer, Barrangou (bb0575) 2017; 8 Friedland, Tzur, Esvelt, Colaiacovo, Church, Calarco (bb0280) 2013; 10 Housden, Valvezan, Kelley, Sopko, Hu, Roesel (bb0385) 2015; 8 Miklavcic, Flaman (bb0410) 2017; 84 Kaur, Sidhu, Singh (bb0515) 2016; 7 Strutt, Torrez, Kaya, Negrete, Doudna (bb0175) 2018; 7 Marshall (bb0765) 1999; 286 Hyun, Wilkerson, Johnston (bb0390) 2016; 533 United Nations (bb0565) Svitashev, Young, Schwartz, Gao, Falco, Targeted Mutagenesis (bb0600) 2015; 169 Demirci, Zhang, Unver (bb0580) 2018; 233 Robertson (bb0075) 2001; 2 Friedmann, Jonlin, NMP, Torbett, Wivel, Kaneda (bb0525) 2015; 23 Kasap, Elemento, Kapoor (bb0380) 2014; 10 Dunbar, High, Joung, Kohn, Ozawa, Sadelain (bb0775) 2018; 359 Jelenkovic, Sund, Hur, Yokoyama, Hjelmborg, Moller (bb0220) 2016; 6 Brokowski, Pollack, Pollack (bb0535) 2015; 6 Mazo-Vargas, Concha, Livraghi, Massardo, Wallbank, Zhang (bb0365) 2017; 114 Wei, Wang, Liu, Zhao, Yang, Li (bb0475) 2018; 17 Baltimore, Berg, Botchan, Carroll, Charo, Church (bb0035) 2015; 348 Peng, Lin, Li (bb0190) 2016; 283 Liao, Hatanaka, Araoka, Reddy, Wu, Sui (bb0340) 2017; 171 Kleinstiver, Prew, Tsai, Topkar, Nguyen, Zheng (bb0105) 2015; 523 Kuscu, Parlak, Tufan, Yang, Szlachta, Wei (bb0160) 2017; 14 Zhang, Zhang, Botella, Zhu (bb0585) 2018; 60 Ran, Cong, Yan, Scott, Gootenberg, Kriz (bb0715) 2015; 520 Adli (bb0125) 1911; 2018 Wu, Zhou, Fan, Zhang, Zhang, Wang (bb0500) 2015; 25 Ikeda, Matsuyama, Akagi, Ohkoshi, Nakamura, Minabe (bb0300) 2017; 7 (bb0065) 2017 Shang, Wang, Fan, Wang (bb0335) 2017; 44 Wennergren (bb0405) 1991; 2 bb0805 Burstein, Harrington, Strutt, Probst, Anantharaman, Thomas (bb0740) 2017; 542 Nishimasu (10.1016/j.jmb.2018.05.044_bb0115) 2014; 156 DiCarlo (10.1016/j.jmb.2018.05.044_bb0670) 2015; 33 Huang (10.1016/j.jmb.2018.05.044_bb0465) 2017; 24 (10.1016/j.jmb.2018.05.044_bb0780) 2017 Yang (10.1016/j.jmb.2018.05.044_bb0345) 2014; 69 Sternberg (10.1016/j.jmb.2018.05.044_bb0745) 2015; 527 Shipman (10.1016/j.jmb.2018.05.044_bb0255) 2017; 547 Mali (10.1016/j.jmb.2018.05.044_bb0135) 2013; 31 Moro (10.1016/j.jmb.2018.05.044_bb0665) 2018; 13 Hough (10.1016/j.jmb.2018.05.044_bb0460) 2016; 13 Peng (10.1016/j.jmb.2018.05.044_bb0190) 2016; 283 O'Connell (10.1016/j.jmb.2018.05.044_bb0755) 2014; 516 United Nations (10.1016/j.jmb.2018.05.044_bb0835) Liao (10.1016/j.jmb.2018.05.044_bb0340) 2017; 171 White (10.1016/j.jmb.2018.05.044_bb0695) 2017; 72 National Academies of Sciences Engineering and Medicine (U.S.) (10.1016/j.jmb.2018.05.044_bb0045) 2017 Gratz (10.1016/j.jmb.2018.05.044_bb0260) 2013; 194 Savulescu (10.1016/j.jmb.2018.05.044_bb0560) 2009 Atanes (10.1016/j.jmb.2018.05.044_bb0370) 2018; 45 (10.1016/j.jmb.2018.05.044_bb0235) 2017 Nakamura (10.1016/j.jmb.2018.05.044_bb0325) 2016; 537 Strutt (10.1016/j.jmb.2018.05.044_bb0175) 2018; 7 Hai (10.1016/j.jmb.2018.05.044_bb0295) 2014; 24 Makarova (10.1016/j.jmb.2018.05.044_bb0090) 2015; 13 Charo (10.1016/j.jmb.2018.05.044_bb0400) 1995; 6 Busardo (10.1016/j.jmb.2018.05.044_bb0435) 2014; 2014 Gootenberg (10.1016/j.jmb.2018.05.044_bb0185) 2018; 360 Baltimore (10.1016/j.jmb.2018.05.044_bb0035) 2015; 348 Sokolow (10.1016/j.jmb.2018.05.044_bb0660) 2018; 34 Church (10.1016/j.jmb.2018.05.044_bb0825) 2017; 377 (10.1016/j.jmb.2018.05.044_bb0800) 2017 Hu (10.1016/j.jmb.2018.05.044_bb0110) 2018; 556 Basgall (10.1016/j.jmb.2018.05.044_bb0680) 2018; 164 (10.1016/j.jmb.2018.05.044_bb0790) 2017 Gantz (10.1016/j.jmb.2018.05.044_bb0620) 2015; 348 Szikriszt (10.1016/j.jmb.2018.05.044_bb0520) 2016; 17 (10.1016/j.jmb.2018.05.044_bb0795) 2017 Gonen (10.1016/j.jmb.2018.05.044_bb0615) 2017; 49 Chen (10.1016/j.jmb.2018.05.044_bb0705) 2015; 160 Chow (10.1016/j.jmb.2018.05.044_bb0725) 2017; 20 Du (10.1016/j.jmb.2018.05.044_bb0595) 2016; 217 Dajani (10.1016/j.jmb.2018.05.044_bb0440) 2014; 510 Ma (10.1016/j.jmb.2018.05.044_bb0310) 2017; 548 Wen (10.1016/j.jmb.2018.05.044_bb0490) 2017; 10 Eckhoff (10.1016/j.jmb.2018.05.044_bb0640) 2017; 114 Chi (10.1016/j.jmb.2018.05.044_bb0375) 2016; 2016 Cyranoski (10.1016/j.jmb.2018.05.044_bb0005) 2016; 539 (10.1016/j.jmb.2018.05.044_bb0240) 2017 Wei (10.1016/j.jmb.2018.05.044_bb0475) 2018; 17 Wong (10.1016/j.jmb.2018.05.044_bb0480) 2017; 17 Moreno-Mateos (10.1016/j.jmb.2018.05.044_bb0735) 2017; 8 Housden (10.1016/j.jmb.2018.05.044_bb0385) 2015; 8 (10.1016/j.jmb.2018.05.044_bb0060) 2017 Manguso (10.1016/j.jmb.2018.05.044_bb0445) 2017; 547 The (10.1016/j.jmb.2018.05.044_bb0020) 2018; 391 George (10.1016/j.jmb.2018.05.044_bb0470) 2017; 377 Koonin (10.1016/j.jmb.2018.05.044_bb0095) 2017; 37 Suntharalingam (10.1016/j.jmb.2018.05.044_bb0510) 2006; 355 (10.1016/j.jmb.2018.05.044_bb0065) 2017 Stout (10.1016/j.jmb.2018.05.044_bb0575) 2017; 8 Wang (10.1016/j.jmb.2018.05.044_bb0710) 2013; 153 10.1016/j.jmb.2018.05.044_bb0230 Gaj (10.1016/j.jmb.2018.05.044_bb0320) 2013; 31 CRISPR to debut in clinical trials (10.1016/j.jmb.2018.05.044_bb0010) Chu (10.1016/j.jmb.2018.05.044_bb0455) 2016; 15 Wennergren (10.1016/j.jmb.2018.05.044_bb0405) 1991; 2 Svitashev (10.1016/j.jmb.2018.05.044_bb0600) 2015; 169 (10.1016/j.jmb.2018.05.044_bb0395) 2017 Kraus (10.1016/j.jmb.2018.05.044_bb0275) 2016; 7 Mazo-Vargas (10.1016/j.jmb.2018.05.044_bb0365) 2017; 114 Smith (10.1016/j.jmb.2018.05.044_bb0545) 1989 Slaymaker (10.1016/j.jmb.2018.05.044_bb0720) 2016; 351 Dunbar (10.1016/j.jmb.2018.05.044_bb0775) 2018; 359 Brokowski (10.1016/j.jmb.2018.05.044_bb0030) 2018; 1 Irion (10.1016/j.jmb.2018.05.044_bb0285) 2014; 141 Rajendran (10.1016/j.jmb.2018.05.044_bb0590) 2015; 19 Kuscu (10.1016/j.jmb.2018.05.044_bb0160) 2017; 14 Russell (10.1016/j.jmb.2018.05.044_bb0330) 2017; 15 Qi (10.1016/j.jmb.2018.05.044_bb0120) 2013; 152 Burstein (10.1016/j.jmb.2018.05.044_bb0740) 2017; 542 Demirci (10.1016/j.jmb.2018.05.044_bb0580) 2018; 233 Brinegar (10.1016/j.jmb.2018.05.044_bb0605) 2017; 37 Schumann (10.1016/j.jmb.2018.05.044_bb0750) 2015; 112 Marshall (10.1016/j.jmb.2018.05.044_bb0765) 1999; 286 Jinek (10.1016/j.jmb.2018.05.044_bb0130) 2012; 337 Geneva Convention (10.1016/j.jmb.2018.05.044_bb0830) Hyun (10.1016/j.jmb.2018.05.044_bb0390) 2016; 533 Hamrahi (10.1016/j.jmb.2018.05.044_bb0425) 2012; 33 10.1016/j.jmb.2018.05.044_bb0690 Lluis (10.1016/j.jmb.2018.05.044_bb0845) 2018; 1 10.1016/j.jmb.2018.05.044_bb0050 Gantz (10.1016/j.jmb.2018.05.044_bb0555) 2015; 112 Georges (10.1016/j.jmb.2018.05.044_bb0610) 2017; 8 Kang (10.1016/j.jmb.2018.05.044_bb0315) 2016; 33 (10.1016/j.jmb.2018.05.044_bb0505) 2017 Frank (10.1016/j.jmb.2018.05.044_bb0770) 2009; 361 Makarova (10.1016/j.jmb.2018.05.044_bb0085) 2011; 9 Lu (10.1016/j.jmb.2018.05.044_bb0350) 2015; 88 Kaur (10.1016/j.jmb.2018.05.044_bb0515) 2016; 7 Wang (10.1016/j.jmb.2018.05.044_bb0530) 2016; 6 Bjorklund (10.1016/j.jmb.2018.05.044_bb0420) 2002; 99 Doudna (10.1016/j.jmb.2018.05.044_bb0730) 2017 Jelenkovic (10.1016/j.jmb.2018.05.044_bb0220) 2016; 6 Friedmann (10.1016/j.jmb.2018.05.044_bb0525) 2015; 23 Scheufele (10.1016/j.jmb.2018.05.044_bb0025) 2017; 357 (10.1016/j.jmb.2018.05.044_bb0815) 2017 Enserink (10.1016/j.jmb.2018.05.044_bb0840) 2018 Friedland (10.1016/j.jmb.2018.05.044_bb0280) 2013; 10 Schwank (10.1016/j.jmb.2018.05.044_bb0495) 2013; 13 (10.1016/j.jmb.2018.05.044_bb0180) 2018; 360 World Health Organization (10.1016/j.jmb.2018.05.044_bb0570) Hammond (10.1016/j.jmb.2018.05.044_bb0625) 2016; 34 Commission on Genetic Modification and the Health Council of the Netherlands (10.1016/j.jmb.2018.05.044_bb0810) 2017 McDonald (10.1016/j.jmb.2018.05.044_bb0415) 1999; 5 Adli (10.1016/j.jmb.2018.05.044_bb0125) 1911; 2018 Ikeda (10.1016/j.jmb.2018.05.044_bb0300) 2017; 7 Komor (10.1016/j.jmb.2018.05.044_bb0150) 2016; 533 Brokowski (10.1016/j.jmb.2018.05.044_bb0535) 2015; 6 Zhang (10.1016/j.jmb.2018.05.044_bb0585) 2018; 60 DiCarlo (10.1016/j.jmb.2018.05.044_bb0270) 2013; 41 Lombardo (10.1016/j.jmb.2018.05.044_bb0550) 2008 Kasap (10.1016/j.jmb.2018.05.044_bb0380) 2014; 10 Guo (10.1016/j.jmb.2018.05.044_bb0200) 2015; 25 Komor (10.1016/j.jmb.2018.05.044_bb0165) 2017; 169 (10.1016/j.jmb.2018.05.044_bb0785) 2017 Drost (10.1016/j.jmb.2018.05.044_bb0450) 2017; 358 Greene (10.1016/j.jmb.2018.05.044_bb0760) 2017; 377 James (10.1016/j.jmb.2018.05.044_bb0645) 2018; 98 Bohaciakova (10.1016/j.jmb.2018.05.044_bb0195) 2017; 26 Windbichler (10.1016/j.jmb.2018.05.044_bb0635) 2011; 473 Feng (10.1016/j.jmb.2018.05.044_bb0290) 2013; 23 Ran (10.1016/j.jmb.2018.05.044_bb0140) 2013; 8 Tang (10.1016/j.jmb.2018.05.044_bb0250) 2017; 162 Shang (10.1016/j.jmb.2018.05.044_bb0335) 2017; 44 Cong (10.1016/j.jmb.2018.05.044_bb0700) 2013; 339 Ran (10.1016/j.jmb.2018.05.044_bb0715) 2015; 520 Zuo (10.1016/j.jmb.2018.05.044_bb0305) 2017; 27 Kimmelman (10.1016/j.jmb.2018.05.044_bb0245) 2015; 1317 Robertson (10.1016/j.jmb.2018.05.044_bb0075) 2001; 2 Wu (10.1016/j.jmb.2018.05.044_bb0500) 2015; 25 Zischewski (10.1016/j.jmb.2018.05.044_bb0215) 2017; 35 Achee (10.1016/j.jmb.2018.05.044_bb0650) 2015; 9 Abudayyeh (10.1016/j.jmb.2018.05.044_bb0170) 2017; 550 Dong (10.1016/j.jmb.2018.05.044_bb0265) 2015; 10 Klann (10.1016/j.jmb.2018.05.044_bb0360) 2017; 35 (10.1016/j.jmb.2018.05.044_bb0040) 2015 Haft (10.1016/j.jmb.2018.05.044_bb0080) 2005; 1 Wu (10.1016/j.jmb.2018.05.044_bb0225) 2016; 529 Miklavcic (10.1016/j.jmb.2018.05.044_bb0410) 2017; 84 Singla (10.1016/j.jmb.2018.05.044_bb0430) 2012; 21 Vella (10.1016/j.jmb.2018.05.044_bb0685) 2017; 7 ClinicalTrials.gov (10.1016/j.jmb.2018.05.044_bb0015) Gaudelli (10.1016/j.jmb.2018.05.044_bb0145) 2017; 551 Roggenkamp (10.1016/j.jmb.2018.05.044_bb0675) 2018; 8 Hess (10.1016/j.jmb.2018.05.044_bb0155) 2017; 68 Tu (10.1016/j.jmb.2018.05.044_bb0205) 2017; 7 Schaefer (10.1016/j.jmb.2018.05.044_bb0210) 2017; 14 Gaj (10.1016/j.jmb.2018.05.044_bb0485) 2017; 3 Esvelt (10.1016/j.jmb.2018.05.044_bb0655) 2014; 3 Jasanoff (10.1016/j.jmb.2018.05.044_bb0850) 2018; 555 Shmakov (10.1016/j.jmb.2018.05.044_bb0100) 2017; 15 Kleinstiver (10.1016/j.jmb.2018.05.044_bb0105) 2015; 523 National Academies of Sciences Engineering and Medicine (U.S.) (10.1016/j.jmb.2018.05.044_bb0630) 2016 Charpentier (10.1016/j.jmb.2018.05.044_bb0355) 2015; 39 United Nations (10.1016/j.jmb.2018.05.044_bb0565) (10.1016/j.jmb.2018.05.044_bb0540) 1927 |
References_xml | – year: 2017 ident: bb0065 publication-title: United States Code: Institutional Review Boards; Ethics Guidance Program, 42 U.S. Code Sect 289 – volume: 359 year: 2018 ident: bb0775 article-title: Gene therapy comes of age publication-title: Science – volume: 164 start-page: 464 year: 2018 end-page: 474 ident: bb0680 article-title: Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in publication-title: Microbiology – year: 2017 ident: bb0785 publication-title: Code of Federal Regulations: Protection of Human Subjects, 45 C.F.R. Sect 46 – ident: bb0805 article-title: NIH to launch genome editing research program – volume: 351 start-page: 84 year: 2016 end-page: 88 ident: bb0720 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science – volume: 516 start-page: 263 year: 2014 end-page: 266 ident: bb0755 article-title: Programmable RNA recognition and cleavage by CRISPR/Cas9 publication-title: Nature – volume: 8 start-page: 413 year: 2017 end-page: 437 ident: bb0575 article-title: CRISPR–Cas technologies and applications in food bacteria publication-title: Annu. Rev. Food Sci. Technol. – volume: 68 start-page: 26 year: 2017 end-page: 43 ident: bb0155 article-title: Methods and applications of CRISPR-mediated base editing in eukaryotic genomes publication-title: Mol. Cell – volume: 358 start-page: 234 year: 2017 end-page: 238 ident: bb0450 article-title: Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer publication-title: Science – volume: 556 start-page: 57 year: 2018 end-page: 63 ident: bb0110 article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity publication-title: Nature – volume: 45 start-page: 656 year: 2018 end-page: 666 ident: bb0370 article-title: Identifying signalling pathways regulated by GPRC5B in beta-cells by CRISPR–Cas9-mediated genome editing publication-title: Cell. Physiol. Biochem. – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bb0130 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – year: 2018 ident: bb0840 article-title: Interested in responsible genome editing? Join the new club publication-title: Science – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bb0140 article-title: Genome engineering using the CRISPR–Cas9 system publication-title: Nat. Protoc. – reference: Code of Federal Regulations: Food and Drugs, 21 C.F.R. ( – year: 1927 ident: bb0540 publication-title: Buck v. Bell, 274 U.S. 200 – volume: 72 start-page: 189 year: 2017 end-page: 224 ident: bb0695 article-title: Killing U.S. slowly: curing the epidemic rise of cancer drug prices publication-title: Food Drug Law J. – year: 1989 ident: bb0545 article-title: The Sterilization of Carrie Buck – volume: 527 start-page: 110 year: 2015 end-page: 113 ident: bb0745 article-title: Conformational control of DNA target cleavage by CRISPR–Cas9 publication-title: Nature – volume: 6 start-page: 11 year: 1995 end-page: 37 ident: bb0400 article-title: The hunting of the snark: the moral status of embryos, right-to-lifers, and Third World women publication-title: Stanf. Law Pol. Rev. – volume: 3 year: 2014 ident: bb0655 article-title: Concerning RNA-guided gene drives for the alteration of wild populations publication-title: elife – volume: 548 start-page: 413 year: 2017 end-page: 419 ident: bb0310 article-title: Correction of a pathogenic gene mutation in human embryos publication-title: Nature – volume: 533 start-page: 169 year: 2016 end-page: 171 ident: bb0390 article-title: Embryology policy: revisit the 14-day rule publication-title: Nature – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: bb0715 article-title: In vivo genome editing using publication-title: Nature – volume: 33 start-page: e49 year: 2012 end-page: e54 ident: bb0425 article-title: In vivo molecular imaging of murine embryonic stem cells delivered to a burn wound surface via Integra(R) scaffolding publication-title: J. Burn Care Res. – volume: 162 start-page: 3881 year: 2017 end-page: 3886 ident: bb0250 article-title: Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication publication-title: Arch. Virol. – volume: 34 start-page: 78 year: 2016 end-page: 83 ident: bb0625 article-title: A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector publication-title: Nat. Biotechnol. – year: 2017 ident: bb0235 publication-title: United States Code: Regulation of Biological Products, 42 U.S. Code Sect 262 – volume: 510 start-page: 189 year: 2014 ident: bb0440 article-title: Jordan's stem-cell law can guide the Middle East publication-title: Nature – volume: 7 start-page: 120 year: 2016 end-page: 126 ident: bb0515 article-title: What failed BIA 10-2474 Phase I clinical trial? Global speculations and recommendations for future Phase I trials publication-title: J. Pharmacol. Pharmacother. – volume: 88 start-page: 32 year: 2015 end-page: 33 ident: bb0350 article-title: CRISPR screen: a high-throughput approach for cancer genetic research publication-title: Clin. Genet. – volume: 7 year: 2018 ident: bb0175 article-title: RNA-dependent RNA targeting by CRISPR–Cas9 publication-title: elife – volume: 3 start-page: eaar3952 year: 2017 ident: bb0485 article-title: In vivo genome editing improves motor function and extends survival in a mouse model of ALS publication-title: Sci. Adv. – volume: 84 start-page: 130 year: 2017 end-page: 144 ident: bb0410 article-title: Personhood status of the human zygote, embryo, fetus publication-title: Linacre Q. – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bb0700 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – year: 2016 ident: bb0630 article-title: Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research With Public VALUes – volume: 9 start-page: 467 year: 2011 end-page: 477 ident: bb0085 article-title: Evolution and classification of the CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. – year: 2017 ident: bb0780 publication-title: Code of Federal Regulations: Food and Drugs, Institutional Review Boards, 21 C.F.R. 56 – year: 2017 ident: bb0395 publication-title: Human embryo culture: discussions concerning the statutory time limit for maintaining human embryos in culture in light of some recent scientific developments – volume: 547 start-page: 413 year: 2017 end-page: 418 ident: bb0445 article-title: In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target publication-title: Nature – volume: 8 start-page: 1 year: 2017 end-page: 12 ident: bb0610 article-title: Genome editing of crops: a renewed opportunity for food security publication-title: GM Crops Food. – volume: 112 start-page: 10437 year: 2015 end-page: 10442 ident: bb0750 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – reference: U.S. CONST. amend. 1791, 1. – volume: 360 start-page: 439 year: 2018 end-page: 444 ident: bb0185 article-title: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 publication-title: Science – volume: 23 start-page: 1229 year: 2013 end-page: 1232 ident: bb0290 article-title: Efficient genome editing in plants using a CRISPR/Cas system publication-title: Cell Res. – volume: 25 start-page: 67 year: 2015 end-page: 79 ident: bb0500 article-title: Correction of a genetic disease by CRISPR–Cas9-mediated gene editing in mouse spermatogonial stem cells publication-title: Cell Res. – volume: 99 start-page: 2344 year: 2002 end-page: 2349 ident: bb0420 article-title: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 551 start-page: 464 year: 2017 end-page: 471 ident: bb0145 article-title: Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage publication-title: Nature – volume: 6 year: 2016 ident: bb0220 article-title: Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts publication-title: Sci. Rep. – volume: 21 start-page: 1919 year: 2012 end-page: 1930 ident: bb0430 article-title: Embryonic stem cells improve cardiac function in doxorubicin-induced cardiomyopathy mediated through multiple mechanisms publication-title: Cell Transplant. – volume: 7 year: 2017 ident: bb0205 article-title: Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos publication-title: Sci. Rep. – volume: 1 start-page: 115 year: 2018 end-page: 125 ident: bb0030 article-title: Do CRISPR germline ethics statements cut it? publication-title: CRISPR J. – reference: ), 2017. – volume: 19 start-page: 261 year: 2015 end-page: 275 ident: bb0590 article-title: CRISPR–Cas9 based genome engineering: opportunities in agri-food-nutrition and healthcare publication-title: OMICS – volume: 9 year: 2015 ident: bb0650 article-title: A critical assessment of vector control for dengue prevention publication-title: PLoS Negl. Trop. Dis. – volume: 35 start-page: 561 year: 2017 end-page: 568 ident: bb0360 article-title: CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome publication-title: Nat. Biotechnol. – ident: bb0070 article-title: Consolidated Appropriations Act of 2016 [statute on the internet] c2017 – volume: 2 start-page: 74 year: 2001 end-page: 78 ident: bb0075 article-title: Human embryonic stem cell research: ethical and legal issues publication-title: Nat. Rev. Genet. – volume: 14 start-page: 547 year: 2017 end-page: 548 ident: bb0210 article-title: Unexpected mutations after CRISPR–Cas9 editing in vivo publication-title: Nat. Methods – volume: 141 start-page: 4827 year: 2014 end-page: 4830 ident: bb0285 article-title: Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system publication-title: Development – volume: 169 start-page: 931 year: 2015 end-page: 945 ident: bb0600 article-title: Precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA publication-title: Plant Physiol. – volume: 169 start-page: 559 year: 2017 ident: bb0165 article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes publication-title: Cell – volume: 377 start-page: 1909 year: 2017 end-page: 1911 ident: bb0825 article-title: Compelling reasons for repairing human germlines publication-title: N. Engl. J. Med. – volume: 539 start-page: 479 year: 2016 ident: bb0005 article-title: CRISPR gene-editing tested in a person for the first time publication-title: Nature – year: 2017 ident: bb0055 article-title: With stringent oversight, heritable germline editing clinical trials could one day be permitted for serious conditions; non-heritable clinical trials should be limited to treating or preventing disease or disability at this time – year: 2017 ident: bb0045 article-title: Human Genome Editing: Science, Ethics, and Governance – volume: 15 start-page: 55 year: 2017 ident: bb0330 article-title: Non-model model organisms publication-title: BMC Biol. – volume: 2016 year: 2016 ident: bb0375 article-title: CRISPR-based toolbox for studying T cell signal transduction publication-title: Biomed. Res. Int. – reference: Many countries and international decision-making bodies, including the Nuffield Council on Bioethics, the European Society of Human Genetics, and the European Society of Reproduction have issued reports and statements about ethical issues in genomic engineering, focusing specifically on the moral permissibility of germline editing. However, to date, the U.S. NASEM report (2017) is the most robust. – volume: 6 start-page: 263 year: 2015 ident: bb0535 article-title: Cutting eugenics out of CRISPR–Cas9 publication-title: EBEM – volume: 550 start-page: 280 year: 2017 end-page: 284 ident: bb0170 article-title: RNA targeting with CRISPR–Cas13 publication-title: Nature – volume: 547 start-page: 345 year: 2017 end-page: 349 ident: bb0255 article-title: CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria publication-title: Nature – volume: 194 start-page: 1029 year: 2013 end-page: 1035 ident: bb0260 article-title: Genome engineering of publication-title: Genetics – year: 2015 ident: bb0040 publication-title: International Summit on Human Gene Editing: A Global Discussion [Internet] – volume: 37 start-page: 67 year: 2017 end-page: 78 ident: bb0095 article-title: Diversity, classification and evolution of CRISPR–Cas systems publication-title: Curr. Opin. Microbiol. – ident: bb0565 article-title: Food – year: 2017 ident: bb0505 publication-title: Code of Federal Regulations: Investigational New Drug, 21 C.F.R. Sec 312 – volume: 44 start-page: 439 year: 2017 end-page: 449 ident: bb0335 article-title: Key elements for designing and performing a CRISPR/Cas9-based genetic screen publication-title: J. Genet. Genomics – volume: 361 start-page: 161 year: 2009 end-page: 169 ident: bb0770 article-title: Investigation of the cause of death in a gene-therapy trial publication-title: N. Engl. J. Med. – volume: 555 start-page: 435 year: 2018 end-page: 437 ident: bb0850 article-title: A global observatory for gene editing publication-title: Nature – volume: 10 start-page: 119 year: 2017 ident: bb0490 article-title: Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing publication-title: J. Hematol. Oncol. – volume: 23 start-page: 1282 year: 2015 ident: bb0525 article-title: ASGCT and JSGT Joint position statement on human genomic editing publication-title: Mol. Ther. – volume: 34 start-page: 23 year: 2018 end-page: 40 ident: bb0660 article-title: To reduce the global burden of human schistosomiasis, use ‘old fashioned’ snail control publication-title: Trends Parasitol. – volume: 114 start-page: 10701 year: 2017 end-page: 10706 ident: bb0365 article-title: Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2 start-page: 46 year: 1991 end-page: 49 ident: bb0405 article-title: Human rights of an embryo publication-title: J. Int. Bioethique – volume: 6 year: 2016 ident: bb0530 article-title: Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep publication-title: Sci. Rep. – volume: 1 year: 2005 ident: bb0080 article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes publication-title: PLoS Comput. Biol. – volume: 7 year: 2016 ident: bb0275 article-title: Pre-bilaterian origin of the blastoporal axial organizer publication-title: Nat. Commun. – volume: 114 year: 2017 ident: bb0640 article-title: Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 348 start-page: 442 year: 2015 end-page: 444 ident: bb0620 article-title: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations publication-title: Science – year: 2017 ident: bb0800 publication-title: Code of Federal Regulations: Food and Drugs, Investigational Device, 21 C.F.R. 812 – volume: 13 start-page: 722 year: 2015 end-page: 736 ident: bb0090 article-title: An updated evolutionary classification of CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. – volume: 1317 start-page: 263 year: 2015 end-page: 285 ident: bb0245 article-title: Ethics of cancer gene transfer clinical research publication-title: Methods Mol. Biol. – volume: 7 year: 2017 ident: bb0685 article-title: Evaluating strategies for reversing CRISPR–Cas9 gene drives publication-title: Sci. Rep. – volume: 41 start-page: 4336 year: 2013 end-page: 4343 ident: bb0270 article-title: Genome engineering in publication-title: Nucleic Acids Res. – volume: 20 start-page: 1329 year: 2017 end-page: 1341 ident: bb0725 article-title: AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma publication-title: Nat. Neurosci. – volume: 537 start-page: 225 year: 2016 end-page: 228 ident: bb0325 article-title: Digits and fin rays share common developmental histories publication-title: Nature – year: 1925 ident: bb0830 article-title: Protocol for the prohibition of the use in war of asphyxiating, poisonous or other gases, and of bacteriological methods of warfare – volume: 31 start-page: 833 year: 2013 end-page: 838 ident: bb0135 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: bb0150 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature – volume: 355 start-page: 1018 year: 2006 end-page: 1028 ident: bb0510 article-title: Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412 publication-title: N. Engl. J. Med. – year: 2017 ident: bb0730 article-title: Federal Funding for Basic Research Led to the Gene-Editing Revolution. Don't Cut It – volume: 13 year: 2018 ident: bb0665 article-title: Identifying knowledge gaps for gene drive research to control invasive animal species: the next CRISPR step publication-title: Glob. Ecol. Conserv. – volume: 26 start-page: 1521 year: 2017 end-page: 1527 ident: bb0195 article-title: An efficient method for generation of knockout human embryonic stem cells using CRISPR/Cas9 System publication-title: Stem Cells Dev. – volume: 33 start-page: 581 year: 2016 end-page: 588 ident: bb0315 article-title: Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing publication-title: J. Assist. Reprod. Genet. – volume: 8 start-page: rs9 year: 2015 ident: bb0385 article-title: Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi publication-title: Sci. Signal. – volume: 10 start-page: 741 year: 2013 end-page: 743 ident: bb0280 article-title: Heritable genome editing in publication-title: Nat. Methods – volume: 7 year: 2017 ident: bb0300 article-title: Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle publication-title: Sci. Rep. – volume: 39 start-page: 428 year: 2015 end-page: 441 ident: bb0355 article-title: Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR–Cas adaptive immunity publication-title: FEMS Microbiol. Rev. – year: 2017 ident: bb0060 publication-title: Code of Federal Regulations: Research Involving Pregnant Women or Fetuses, 45 C.F.R. Sect 46 – volume: 286 start-page: 2244 year: 1999 end-page: 2245 ident: bb0765 article-title: Gene therapy death prompts review of adenovirus vector publication-title: Science – volume: 17 start-page: 99 year: 2016 ident: bb0520 article-title: A comprehensive survey of the mutagenic impact of common cancer cytotoxics publication-title: Genome Biol. – volume: 10 start-page: 626 year: 2014 end-page: 628 ident: bb0380 article-title: DrugTargetSeqR: a genomics- and CRISPR–Cas9-based method to analyze drug targets publication-title: Nat. Chem. Biol. – volume: 49 start-page: 3 year: 2017 ident: bb0615 article-title: Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs publication-title: Genet. Sel. Evol. – volume: 31 start-page: 397 year: 2013 end-page: 405 ident: bb0320 article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering publication-title: Trends Biotechnol. – volume: 8 start-page: 999 year: 2018 end-page: 1018 ident: bb0675 article-title: Tuning CRISPR–Cas9 gene drives in publication-title: G3 (Bethesda) – volume: 377 start-page: 101 year: 2017 end-page: 103 ident: bb0760 article-title: Targeting unconscionable prescription-drug prices—Maryland's Anti-Price-Gouging Law publication-title: N. Engl. J. Med. – volume: 473 start-page: 212 year: 2011 end-page: 215 ident: bb0635 article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito publication-title: Nature – year: 2018 ident: bb0015 article-title: U.S. National Library of medicine – year: 2017 ident: bb0810 article-title: Editing human DNA: moral and social implications of germline genetic modification – volume: 35 start-page: 95 year: 2017 end-page: 104 ident: bb0215 article-title: Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases publication-title: Biotechnol. Adv. – volume: 13 start-page: 517 year: 2016 end-page: 521 ident: bb0460 article-title: Desktop Genetics publication-title: Perinat. Med. – year: 2009 ident: bb0560 article-title: Human Enhancement – year: 2017 ident: bb0815 publication-title: The Academy of Medical Sciences' response to the Nuffield Council on Bioethics ‘Genome editing and human reproduction' – volume: 529 start-page: 43 year: 2016 end-page: 47 ident: bb0225 article-title: Substantial contribution of extrinsic risk factors to cancer development publication-title: Nature – year: 2017 ident: bb0795 publication-title: Code of Federal Regulations: Food and Drugs, Investigational New Drug Application, 21 C.F.R. 312 – volume: 171 year: 2017 ident: bb0340 article-title: In vivo target gene activation via CRISPR/Cas9-Mmdiated trans-epigenetic modulation publication-title: Cell – volume: 17 start-page: 2901 year: 2018 end-page: 2906 ident: bb0475 article-title: CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells publication-title: Mol. Med. Rep. – ident: bb0570 article-title: Nutrition – volume: 10 year: 2015 ident: bb0265 article-title: Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, publication-title: PLoS One – volume: 24 start-page: 372 year: 2014 end-page: 375 ident: bb0295 article-title: One-step generation of knockout pigs by zygote injection of CRISPR/Cas system publication-title: Cell Res. – year: 2017 ident: bb0790 publication-title: Code of Federal Regulations: Food and Drugs, Protection of Human Subjects, 21 C.F.R. 50 – volume: 15 start-page: 2340 year: 2016 end-page: 2347 ident: bb0455 article-title: CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A publication-title: Cell Rep. – volume: 13 start-page: 653 year: 2013 end-page: 658 ident: bb0495 article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients publication-title: Cell Stem Cell – year: 2016 ident: bb0820 article-title: Document on bioethics and gene editing in humans – year: 1975 ident: bb0835 article-title: Convention on the prohibition of the development, production and stockpiling of bacteriological (biological) and toxin weapons and on their destruction – volume: 5 start-page: 1410 year: 1999 end-page: 1412 ident: bb0415 article-title: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord publication-title: Nat. Med. – volume: 37 start-page: 924 year: 2017 end-page: 932 ident: bb0605 article-title: The commercialization of genome-editing technologies publication-title: Crit. Rev. Biotechnol. – volume: 391 start-page: 402 year: 2018 ident: bb0020 article-title: Editing the human genome: balancing safety and regulation publication-title: Lancet – volume: 17 start-page: 301 year: 2017 end-page: 308 ident: bb0480 article-title: Therapeutic applications of CRISPR/Cas for Duchenne muscular dystrophy publication-title: Curr. Gene Ther. – volume: 153 start-page: 910 year: 2013 end-page: 918 ident: bb0710 article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering publication-title: Cell – volume: 542 start-page: 237 year: 2017 end-page: 241 ident: bb0740 article-title: New CRISPR–Cas systems from uncultivated microbes publication-title: Nature – volume: 1 start-page: 128 year: 2018 end-page: 129 ident: bb0845 article-title: ARRIGE arrives: toward the responsible use of genome editing publication-title: CRISPR J. – volume: 2018 year: 1911 ident: bb0125 article-title: The CRISPR tool kit for genome editing and beyond publication-title: Nat. Commun. – volume: 357 start-page: 553 year: 2017 end-page: 554 ident: bb0025 article-title: U.S. attitudes on human genome editing publication-title: Science – volume: 60 start-page: 369 year: 2018 end-page: 375 ident: bb0585 article-title: Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties publication-title: J. Integr. Plant Biol. – volume: 360 start-page: 436 year: 2018 end-page: 439 ident: bb0180 publication-title: CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity – volume: 156 start-page: 935 year: 2014 end-page: 949 ident: bb0115 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell – volume: 25 start-page: 767 year: 2015 end-page: 768 ident: bb0200 article-title: Targeted genome editing in primate embryos publication-title: Cell Res. – year: 2017 ident: bb0240 publication-title: Such guidance is inapplicable to cells, tissues, and cellular- and tissue-based products regulated under United States Code: Regulations to Control Communicable Diseases, 42 U.S. Code Sect 264 – year: 2017 ident: bb0010 article-title: Israel Molecular Medicine – volume: 160 start-page: 1246 year: 2015 end-page: 1260 ident: bb0705 article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis publication-title: Cell – year: 2008 ident: bb0550 article-title: Three Generations, No Imbeciles: Eugenics, the Supreme Court, and Buck v. Bell – volume: 217 start-page: 90 year: 2016 end-page: 97 ident: bb0595 article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9 publication-title: J. Biotechnol. – volume: 8 start-page: 2024 year: 2017 ident: bb0735 article-title: CRISPR–Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing publication-title: Nat. Commun. – volume: 98 start-page: 1 year: 2018 end-page: 49 ident: bb0645 article-title: Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group publication-title: Am. J. Trop. Med. Hyg. – volume: 523 start-page: 481 year: 2015 end-page: 485 ident: bb0105 article-title: Engineered CRISPR–Cas9 nucleases with altered PAM specificities publication-title: Nature – volume: 27 start-page: 933 year: 2017 end-page: 945 ident: bb0305 article-title: One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs publication-title: Cell Res. – volume: 348 start-page: 36 year: 2015 end-page: 38 ident: bb0035 article-title: Biotechnology. A prudent path forward for genomic engineering and germline gene modification publication-title: Science – volume: 15 start-page: 169 year: 2017 end-page: 182 ident: bb0100 article-title: Diversity and evolution of class 2 CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. – volume: 112 start-page: E6736 year: 2015 end-page: E6743 ident: bb0555 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 710 year: 2017 end-page: 712 ident: bb0160 article-title: CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations publication-title: Nat. Methods – volume: 24 start-page: 377 year: 2017 end-page: 384 ident: bb0465 article-title: Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS publication-title: Gene Ther. – volume: 377 start-page: 2215 year: 2017 end-page: 2227 ident: bb0470 article-title: Hemophilia B gene therapy with a high-specific-activity factor IX variant publication-title: N. Engl. J. Med. – volume: 233 start-page: 1844 year: 2018 end-page: 1859 ident: bb0580 article-title: CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing publication-title: J. Cell. Physiol. – volume: 33 start-page: 1250 year: 2015 end-page: 1255 ident: bb0670 article-title: Safeguarding CRISPR–Cas9 gene drives in yeast publication-title: Nat. Biotechnol. – volume: 69 start-page: 118 year: 2014 end-page: 125 ident: bb0345 article-title: CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line publication-title: Bone – volume: 2014 year: 2014 ident: bb0435 article-title: The evolution of legislation in the field of medically assisted reproduction and embryo stem cell research in European union members publication-title: Biomed. Res. Int. – volume: 283 start-page: 1218 year: 2016 end-page: 1231 ident: bb0190 article-title: Potential pitfalls of CRISPR/Cas9-mediated genome editing publication-title: FEBS J. – volume: 152 start-page: 1173 year: 2013 end-page: 1183 ident: bb0120 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell – volume: 539 start-page: 479 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0005 article-title: CRISPR gene-editing tested in a person for the first time publication-title: Nature doi: 10.1038/nature.2016.20988 – volume: 283 start-page: 1218 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0190 article-title: Potential pitfalls of CRISPR/Cas9-mediated genome editing publication-title: FEBS J. doi: 10.1111/febs.13586 – volume: 112 start-page: E6736 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0555 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1521077112 – volume: 152 start-page: 1173 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0120 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 21 start-page: 1919 year: 2012 ident: 10.1016/j.jmb.2018.05.044_bb0430 article-title: Embryonic stem cells improve cardiac function in doxorubicin-induced cardiomyopathy mediated through multiple mechanisms publication-title: Cell Transplant. doi: 10.3727/096368911X627552 – volume: 153 start-page: 910 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0710 article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.04.025 – volume: 15 start-page: 55 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0330 article-title: Non-model model organisms publication-title: BMC Biol. doi: 10.1186/s12915-017-0391-5 – volume: 23 start-page: 1229 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0290 article-title: Efficient genome editing in plants using a CRISPR/Cas system publication-title: Cell Res. doi: 10.1038/cr.2013.114 – volume: 2 start-page: 46 year: 1991 ident: 10.1016/j.jmb.2018.05.044_bb0405 article-title: Human rights of an embryo publication-title: J. Int. Bioethique – volume: 49 start-page: 3 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0615 article-title: Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs publication-title: Genet. Sel. Evol. doi: 10.1186/s12711-016-0280-3 – ident: 10.1016/j.jmb.2018.05.044_bb0830 – volume: 14 start-page: 547 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0210 article-title: Unexpected mutations after CRISPR–Cas9 editing in vivo publication-title: Nat. Methods doi: 10.1038/nmeth.4293 – volume: 72 start-page: 189 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0695 article-title: Killing U.S. slowly: curing the epidemic rise of cancer drug prices publication-title: Food Drug Law J. – volume: 533 start-page: 420 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0150 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature doi: 10.1038/nature17946 – volume: 2018 issue: 9 year: 1911 ident: 10.1016/j.jmb.2018.05.044_bb0125 article-title: The CRISPR tool kit for genome editing and beyond publication-title: Nat. Commun. – volume: 24 start-page: 377 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0465 article-title: Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS publication-title: Gene Ther. doi: 10.1038/gt.2017.35 – year: 2009 ident: 10.1016/j.jmb.2018.05.044_bb0560 – volume: 13 start-page: 653 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0495 article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.002 – volume: 35 start-page: 561 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0360 article-title: CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3853 – volume: 10 start-page: 119 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0490 article-title: Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-017-0489-9 – volume: 37 start-page: 67 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0095 article-title: Diversity, classification and evolution of CRISPR–Cas systems publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2017.05.008 – volume: 39 start-page: 428 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0355 article-title: Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR–Cas adaptive immunity publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuv023 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0810 – volume: 361 start-page: 161 year: 2009 ident: 10.1016/j.jmb.2018.05.044_bb0770 article-title: Investigation of the cause of death in a gene-therapy trial publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0801066 – volume: 14 start-page: 710 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0160 article-title: CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations publication-title: Nat. Methods doi: 10.1038/nmeth.4327 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0505 – volume: 33 start-page: 581 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0315 article-title: Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-016-0710-8 – volume: 360 start-page: 439 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0185 article-title: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 publication-title: Science doi: 10.1126/science.aaq0179 – volume: 15 start-page: 2340 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0455 article-title: CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.005 – volume: 286 start-page: 2244 year: 1999 ident: 10.1016/j.jmb.2018.05.044_bb0765 article-title: Gene therapy death prompts review of adenovirus vector publication-title: Science doi: 10.1126/science.286.5448.2244 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0815 publication-title: Acad. Med. Sci. – volume: 35 start-page: 95 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0215 article-title: Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.12.003 – volume: 34 start-page: 78 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0625 article-title: A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3439 – volume: 542 start-page: 237 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0740 article-title: New CRISPR–Cas systems from uncultivated microbes publication-title: Nature doi: 10.1038/nature21059 – volume: 169 start-page: 931 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0600 article-title: Precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA publication-title: Plant Physiol. doi: 10.1104/pp.15.00793 – volume: 2014 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0435 article-title: The evolution of legislation in the field of medically assisted reproduction and embryo stem cell research in European union members publication-title: Biomed. Res. Int. doi: 10.1155/2014/307160 – volume: 510 start-page: 189 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0440 article-title: Jordan's stem-cell law can guide the Middle East publication-title: Nature doi: 10.1038/510189a – volume: 25 start-page: 67 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0500 article-title: Correction of a genetic disease by CRISPR–Cas9-mediated gene editing in mouse spermatogonial stem cells publication-title: Cell Res. doi: 10.1038/cr.2014.160 – volume: 1 start-page: 115 issue: 2 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0030 article-title: Do CRISPR germline ethics statements cut it? publication-title: CRISPR J. doi: 10.1089/crispr.2017.0024 – volume: 7 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0300 article-title: Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle publication-title: Sci. Rep. doi: 10.1038/s41598-017-17968-w – year: 1927 ident: 10.1016/j.jmb.2018.05.044_bb0540 – volume: 25 start-page: 767 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0200 article-title: Targeted genome editing in primate embryos publication-title: Cell Res. doi: 10.1038/cr.2015.64 – ident: 10.1016/j.jmb.2018.05.044_bb0690 – year: 1989 ident: 10.1016/j.jmb.2018.05.044_bb0545 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0795 – volume: 10 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0265 article-title: Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti publication-title: PLoS One – volume: 2016 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0375 article-title: CRISPR-based toolbox for studying T cell signal transduction publication-title: Biomed. Res. Int. doi: 10.1155/2016/5052369 – volume: 547 start-page: 413 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0445 article-title: In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target publication-title: Nature doi: 10.1038/nature23270 – volume: 34 start-page: 23 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0660 article-title: To reduce the global burden of human schistosomiasis, use ‘old fashioned’ snail control publication-title: Trends Parasitol. doi: 10.1016/j.pt.2017.10.002 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0800 – volume: 377 start-page: 2215 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0470 article-title: Hemophilia B gene therapy with a high-specific-activity factor IX variant publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1708538 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0240 – volume: 547 start-page: 345 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0255 article-title: CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria publication-title: Nature doi: 10.1038/nature23017 – volume: 1317 start-page: 263 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0245 article-title: Ethics of cancer gene transfer clinical research publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2727-2_15 – volume: 548 start-page: 413 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0310 article-title: Correction of a pathogenic gene mutation in human embryos publication-title: Nature doi: 10.1038/nature23305 – volume: 520 start-page: 186 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0715 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature doi: 10.1038/nature14299 – year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0630 – volume: 233 start-page: 1844 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0580 article-title: CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25970 – volume: 27 start-page: 933 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0305 article-title: One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs publication-title: Cell Res. doi: 10.1038/cr.2017.81 – ident: 10.1016/j.jmb.2018.05.044_bb0835 – volume: 84 start-page: 130 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0410 article-title: Personhood status of the human zygote, embryo, fetus publication-title: Linacre Q. doi: 10.1080/00243639.2017.1299896 – ident: 10.1016/j.jmb.2018.05.044_bb0570 – volume: 33 start-page: 1250 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0670 article-title: Safeguarding CRISPR–Cas9 gene drives in yeast publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3412 – ident: 10.1016/j.jmb.2018.05.044_bb0565 – volume: 15 start-page: 169 issue: 3 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0100 article-title: Diversity and evolution of class 2 CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.184 – volume: 3 start-page: eaar3952 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0485 article-title: In vivo genome editing improves motor function and extends survival in a mouse model of ALS publication-title: Sci. Adv. doi: 10.1126/sciadv.aar3952 – volume: 360 start-page: 436 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0180 publication-title: Science doi: 10.1126/science.aar6245 – volume: 171 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0340 article-title: In vivo target gene activation via CRISPR/Cas9-Mmdiated trans-epigenetic modulation publication-title: Cell doi: 10.1016/j.cell.2017.10.025 – volume: 537 start-page: 225 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0325 article-title: Digits and fin rays share common developmental histories publication-title: Nature doi: 10.1038/nature19322 – volume: 357 start-page: 553 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0025 article-title: U.S. attitudes on human genome editing publication-title: Science doi: 10.1126/science.aan3708 – volume: 7 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0175 article-title: RNA-dependent RNA targeting by CRISPR–Cas9 publication-title: elife doi: 10.7554/eLife.32724 – volume: 533 start-page: 169 issue: 7602 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0390 article-title: Embryology policy: revisit the 14-day rule publication-title: Nature doi: 10.1038/533169a – volume: 17 start-page: 99 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0520 article-title: A comprehensive survey of the mutagenic impact of common cancer cytotoxics publication-title: Genome Biol. doi: 10.1186/s13059-016-0963-7 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0780 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0785 – volume: 351 start-page: 84 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0720 article-title: Rationally engineered Cas9 nucleases with improved specificity publication-title: Science doi: 10.1126/science.aad5227 – volume: 13 start-page: 517 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0460 article-title: Desktop Genetics publication-title: Perinat. Med. – volume: 391 start-page: 402 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0020 article-title: Editing the human genome: balancing safety and regulation publication-title: Lancet doi: 10.1016/S0140-6736(18)30153-3 – volume: 9 start-page: 467 year: 2011 ident: 10.1016/j.jmb.2018.05.044_bb0085 article-title: Evolution and classification of the CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2577 – volume: 377 start-page: 1909 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0825 article-title: Compelling reasons for repairing human germlines publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1710370 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0610 article-title: Genome editing of crops: a renewed opportunity for food security publication-title: GM Crops Food. doi: 10.1080/21645698.2016.1270489 – volume: 8 start-page: 2024 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0735 article-title: CRISPR–Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing publication-title: Nat. Commun. doi: 10.1038/s41467-017-01836-2 – volume: 114 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0640 article-title: Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1611064114 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0065 – volume: 6 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0220 article-title: Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts publication-title: Sci. Rep. doi: 10.1038/srep28496 – volume: 17 start-page: 2901 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0475 article-title: CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells publication-title: Mol. Med. Rep. – volume: 41 start-page: 4336 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0270 article-title: Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt135 – volume: 6 start-page: 11 year: 1995 ident: 10.1016/j.jmb.2018.05.044_bb0400 article-title: The hunting of the snark: the moral status of embryos, right-to-lifers, and Third World women publication-title: Stanf. Law Pol. Rev. – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0140 article-title: Genome engineering using the CRISPR–Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 45 start-page: 656 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0370 article-title: Identifying signalling pathways regulated by GPRC5B in beta-cells by CRISPR–Cas9-mediated genome editing publication-title: Cell. Physiol. Biochem. doi: 10.1159/000487159 – volume: 7 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0685 article-title: Evaluating strategies for reversing CRISPR–Cas9 gene drives publication-title: Sci. Rep. doi: 10.1038/s41598-017-10633-2 – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0700 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – ident: 10.1016/j.jmb.2018.05.044_bb0050 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0395 – volume: 10 start-page: 741 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0280 article-title: Heritable genome editing in C. elegans via a CRISPR–Cas9 system publication-title: Nat. Methods doi: 10.1038/nmeth.2532 – volume: 114 start-page: 10701 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0365 article-title: Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1708149114 – volume: 527 start-page: 110 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0745 article-title: Conformational control of DNA target cleavage by CRISPR–Cas9 publication-title: Nature doi: 10.1038/nature15544 – volume: 10 start-page: 626 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0380 article-title: DrugTargetSeqR: a genomics- and CRISPR–Cas9-based method to analyze drug targets publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1551 – volume: 556 start-page: 57 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0110 article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity publication-title: Nature doi: 10.1038/nature26155 – volume: 9 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0650 article-title: A critical assessment of vector control for dengue prevention publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0003655 – volume: 68 start-page: 26 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0155 article-title: Methods and applications of CRISPR-mediated base editing in eukaryotic genomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.09.029 – volume: 7 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0275 article-title: Pre-bilaterian origin of the blastoporal axial organizer publication-title: Nat. Commun. doi: 10.1038/ncomms11694 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0790 – volume: 550 start-page: 280 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0170 article-title: RNA targeting with CRISPR–Cas13 publication-title: Nature doi: 10.1038/nature24049 – volume: 37 start-page: 924 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0605 article-title: The commercialization of genome-editing technologies publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2016.1271768 – volume: 69 start-page: 118 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0345 article-title: CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line publication-title: Bone doi: 10.1016/j.bone.2014.09.005 – volume: 98 start-page: 1 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0645 article-title: Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.18-0083 – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.jmb.2018.05.044_bb0130 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – year: 2008 ident: 10.1016/j.jmb.2018.05.044_bb0550 – volume: 377 start-page: 101 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0760 article-title: Targeting unconscionable prescription-drug prices—Maryland's Anti-Price-Gouging Law publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1704907 – volume: 164 start-page: 464 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0680 article-title: Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae publication-title: Microbiology doi: 10.1099/mic.0.000635 – volume: 112 start-page: 10437 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0750 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1512503112 – volume: 13 start-page: 722 issue: 11 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0090 article-title: An updated evolutionary classification of CRISPR–Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3569 – volume: 8 start-page: rs9 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0385 article-title: Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi publication-title: Sci. Signal. doi: 10.1126/scisignal.aab3729 – volume: 8 start-page: 413 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0575 article-title: CRISPR–Cas technologies and applications in food bacteria publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-072816-024723 – volume: 7 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0205 article-title: Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos publication-title: Sci. Rep. doi: 10.1038/srep42081 – volume: 529 start-page: 43 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0225 article-title: Substantial contribution of extrinsic risk factors to cancer development publication-title: Nature doi: 10.1038/nature16166 – volume: 162 start-page: 3881 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0250 article-title: Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication publication-title: Arch. Virol. doi: 10.1007/s00705-017-3553-4 – volume: 5 start-page: 1410 year: 1999 ident: 10.1016/j.jmb.2018.05.044_bb0415 article-title: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord publication-title: Nat. Med. doi: 10.1038/70986 – volume: 60 start-page: 369 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0585 article-title: Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12620 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0045 – volume: 31 start-page: 833 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0135 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0060 – volume: 523 start-page: 481 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0105 article-title: Engineered CRISPR–Cas9 nucleases with altered PAM specificities publication-title: Nature doi: 10.1038/nature14592 – volume: 24 start-page: 372 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0295 article-title: One-step generation of knockout pigs by zygote injection of CRISPR/Cas system publication-title: Cell Res. doi: 10.1038/cr.2014.11 – volume: 6 start-page: 263 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0535 article-title: Cutting eugenics out of CRISPR–Cas9 publication-title: EBEM – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0235 – volume: 473 start-page: 212 year: 2011 ident: 10.1016/j.jmb.2018.05.044_bb0635 article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito publication-title: Nature doi: 10.1038/nature09937 – year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0040 – volume: 33 start-page: e49 year: 2012 ident: 10.1016/j.jmb.2018.05.044_bb0425 article-title: In vivo molecular imaging of murine embryonic stem cells delivered to a burn wound surface via Integra(R) scaffolding publication-title: J. Burn Care Res. doi: 10.1097/BCR.0b013e3182331d1c – volume: 555 start-page: 435 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0850 article-title: A global observatory for gene editing publication-title: Nature doi: 10.1038/d41586-018-03270-w – volume: 2 start-page: 74 year: 2001 ident: 10.1016/j.jmb.2018.05.044_bb0075 article-title: Human embryonic stem cell research: ethical and legal issues publication-title: Nat. Rev. Genet. doi: 10.1038/35047594 – volume: 348 start-page: 442 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0620 article-title: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations publication-title: Science doi: 10.1126/science.aaa5945 – volume: 156 start-page: 935 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0115 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell doi: 10.1016/j.cell.2014.02.001 – volume: 169 start-page: 559 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0165 article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes publication-title: Cell doi: 10.1016/j.cell.2017.04.005 – volume: 516 start-page: 263 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0755 article-title: Programmable RNA recognition and cleavage by CRISPR/Cas9 publication-title: Nature doi: 10.1038/nature13769 – year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0840 article-title: Interested in responsible genome editing? Join the new club publication-title: Science doi: 10.1126/science.aat7183 – volume: 20 start-page: 1329 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0725 article-title: AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma publication-title: Nat. Neurosci. doi: 10.1038/nn.4620 – volume: 358 start-page: 234 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0450 article-title: Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer publication-title: Science doi: 10.1126/science.aao3130 – volume: 7 start-page: 120 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0515 article-title: What failed BIA 10-2474 Phase I clinical trial? Global speculations and recommendations for future Phase I trials publication-title: J. Pharmacol. Pharmacother. doi: 10.4103/0976-500X.189661 – volume: 348 start-page: 36 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0035 article-title: Biotechnology. A prudent path forward for genomic engineering and germline gene modification publication-title: Science doi: 10.1126/science.aab1028 – volume: 23 start-page: 1282 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0525 article-title: ASGCT and JSGT Joint position statement on human genomic editing publication-title: Mol. Ther. doi: 10.1038/mt.2015.118 – volume: 194 start-page: 1029 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0260 article-title: Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease publication-title: Genetics doi: 10.1534/genetics.113.152710 – volume: 1 start-page: 128 issue: 2 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0845 article-title: ARRIGE arrives: toward the responsible use of genome editing publication-title: CRISPR J. doi: 10.1089/crispr.2018.29012.mon – volume: 3 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0655 article-title: Concerning RNA-guided gene drives for the alteration of wild populations publication-title: elife doi: 10.7554/eLife.03401 – volume: 141 start-page: 4827 year: 2014 ident: 10.1016/j.jmb.2018.05.044_bb0285 article-title: Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system publication-title: Development doi: 10.1242/dev.115584 – volume: 44 start-page: 439 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0335 article-title: Key elements for designing and performing a CRISPR/Cas9-based genetic screen publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2017.09.005 – ident: 10.1016/j.jmb.2018.05.044_bb0015 – volume: 88 start-page: 32 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0350 article-title: CRISPR screen: a high-throughput approach for cancer genetic research publication-title: Clin. Genet. doi: 10.1111/cge.12606 – ident: 10.1016/j.jmb.2018.05.044_bb0010 – year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0730 – ident: 10.1016/j.jmb.2018.05.044_bb0230 – volume: 17 start-page: 301 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0480 article-title: Therapeutic applications of CRISPR/Cas for Duchenne muscular dystrophy publication-title: Curr. Gene Ther. – volume: 26 start-page: 1521 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0195 article-title: An efficient method for generation of knockout human embryonic stem cells using CRISPR/Cas9 System publication-title: Stem Cells Dev. doi: 10.1089/scd.2017.0058 – volume: 1 year: 2005 ident: 10.1016/j.jmb.2018.05.044_bb0080 article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010060 – volume: 31 start-page: 397 year: 2013 ident: 10.1016/j.jmb.2018.05.044_bb0320 article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.04.004 – volume: 99 start-page: 2344 year: 2002 ident: 10.1016/j.jmb.2018.05.044_bb0420 article-title: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.022438099 – volume: 217 start-page: 90 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0595 article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.11.005 – volume: 13 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0665 article-title: Identifying knowledge gaps for gene drive research to control invasive animal species: the next CRISPR step publication-title: Glob. Ecol. Conserv. – volume: 359 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0775 article-title: Gene therapy comes of age publication-title: Science doi: 10.1126/science.aan4672 – volume: 19 start-page: 261 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0590 article-title: CRISPR–Cas9 based genome engineering: opportunities in agri-food-nutrition and healthcare publication-title: OMICS doi: 10.1089/omi.2015.0023 – volume: 160 start-page: 1246 year: 2015 ident: 10.1016/j.jmb.2018.05.044_bb0705 article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis publication-title: Cell doi: 10.1016/j.cell.2015.02.038 – volume: 6 year: 2016 ident: 10.1016/j.jmb.2018.05.044_bb0530 article-title: Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep publication-title: Sci. Rep. – volume: 355 start-page: 1018 year: 2006 ident: 10.1016/j.jmb.2018.05.044_bb0510 article-title: Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa063842 – volume: 551 start-page: 464 year: 2017 ident: 10.1016/j.jmb.2018.05.044_bb0145 article-title: Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage publication-title: Nature doi: 10.1038/nature24644 – volume: 8 start-page: 999 year: 2018 ident: 10.1016/j.jmb.2018.05.044_bb0675 article-title: Tuning CRISPR–Cas9 gene drives in Saccharomyces cerevisiae publication-title: G3 (Bethesda) doi: 10.1534/g3.117.300557 |
SSID | ssj0005348 |
Score | 2.592928 |
SecondaryResourceType | review_article |
Snippet | With the emergence of CRISPR technology, targeted editing of a wide variety of genomes is no longer an abstract hypothetical, but occurs regularly. As... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | bioengineering biomedical research Clustered Regularly Interspaced Short Palindromic Repeats - genetics CRISPR-Cas Systems - genetics CRISPR–Cas9 decision making Decision Making - ethics ethics gene editing Gene Editing - ethics genetic engineering genome genome editing Genome, Human - genetics germ cells Humans research ethics Translational Research, Biomedical - ethics |
Title | CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool |
URI | https://dx.doi.org/10.1016/j.jmb.2018.05.044 https://www.ncbi.nlm.nih.gov/pubmed/29885329 https://www.proquest.com/docview/2052808750 https://www.proquest.com/docview/2221052292 https://pubmed.ncbi.nlm.nih.gov/PMC6286228 |
Volume | 431 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8h0LS9TMC-ygbypD1Nykgc27H3VlVA2QRCDCTeLDuxRVGXoNE-7GV_-85JXLVM6wOPSc6Wcz6dz3e_uwP4ZCqhMul4YgtfJnjeVomSPk8yX1LlUs9Y6xo4Oxfja_btht9swCjmwgRYZa_7O53eauv-zWHPzcP7ySTk-AbvRS5QKFMuWz3MWBGk_MufJZhHzmSsGB6oY2SzxXjd_bQB3SXb4p2M_e9s-tf2fAyhXDqTjrfhZW9MkmG33h3YcPUuPOvaS_7eheej2M3tFZyMLk9_XFySDt_-lZyFzHwS23V2bjuCBiwZLkW0SeOJIRehkZqfT8lV00xfw_Xx0dVonPRNFJISLx-zpDCes4Ib4XxR5EYomomSli6z3lbcsrzKQ2hTWF6p1EjDuPK5cBItK4s0Vf4GNuumdu-AMFU644WrMryEcM6twulwFmm4swW1A0gj-3TZVxgPjS6mOkLJ7jRyXAeO65Rr5PgAPi-G3HflNdYRs7gnekVGNKr_dcM-xv3TyPQQEDG1a-YPSMSpDCX90zU0FC_FaKQqOoC33Z4vVkqVRGuHqgEUK9KwIAi1u1e_1JPbtoZ3yAhG6d172i-9hxf4pFpXEPsAm7Nfc7ePxtHMHrTSfwBbw9Pv4_O_WEwOFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NndB4QTC-OgYYiSekaIljJ_beqorRsrWaRiftzbITW-tUkom1D_vvd07isoLoA6_x2UrOl_P5Pn4H8FmXmUyE5ZHJXRHheVtGUrg0SlxBpY0dY41rYDLNRpfs-xW_2oFhqIXxaZWd7m91eqOtuydHHTePbudzX-PrvRdphkIZc-H18K5Hp-I92B2MT0fT35keKRMBNNxPCMHNJs3r5qfxCV6iwe9k7F_H09_m559ZlI-OpZPn8KyzJ8mgfeUXsGOrfXjSdpi834e9YWjo9hK-DS_GP84vSJvifkwmvjifhI6dreeOoA1LBo-C2qR2RJNz30vNrRZkVteLV3B58nU2HEVdH4WowPvHMsq183zRmXV5nupM0iQraGET40zJDUvL1Ec3M8NLGWuhGZcuzaxA48ogTZm-hl5VV_YtECYLq11mywTvIZxzI3E5XEVobk1OTR_iwD5VdCDjvtfFQoVsshuFHFee4yrmCjnehy_rKbctwsY2Yhb2RG2IicITYNu0T2H_FDLdx0R0ZevVHRJxKjyqf7yFhuK9GO1USfvwpt3z9ZtSKdDgobIP-YY0rAk8fPfmSDW_bmC8fVEwCvDB_33SR9gbzSZn6mw8PX0HT3FENp4hdgi95a-VfY-20tJ86P6FB453EMU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR+Ethics%3A+Moral+Considerations+for+Applications+of+a+Powerful+Tool&rft.jtitle=Journal+of+molecular+biology&rft.au=Brokowski%2C+Carolyn&rft.au=Adli%2C+Mazhar&rft.date=2019-01-04&rft.issn=0022-2836&rft.volume=431&rft.issue=1+p.88-101&rft.spage=88&rft.epage=101&rft_id=info:doi/10.1016%2Fj.jmb.2018.05.044&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |