Branch point control at malonyl-CoA node: A computational framework to uncover the design principles of an ideal genetic-metabolic switch

Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering communications Vol. 10; p. e00127
Main Author Xu, Peng
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2214-0301
2214-0301
DOI10.1016/j.mec.2020.e00127

Cover

Abstract Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. •Metabolic engineer can engineer both the chemistry and control modules in the cell.•9 differential equations used to define a previously engineered malonyl-CoA switch.•Optimal control architecture of metabolic source and sink pathways were determined.•Models were used to unravel the design principles underlying an ideal metabolic switch.•Stable oscillation of metabolic intermediates permits alternating ON-OFF genetic control.
AbstractList Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in . By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.
Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.
Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. •Metabolic engineer can engineer both the chemistry and control modules in the cell.•9 differential equations used to define a previously engineered malonyl-CoA switch.•Optimal control architecture of metabolic source and sink pathways were determined.•Models were used to unravel the design principles underlying an ideal metabolic switch.•Stable oscillation of metabolic intermediates permits alternating ON-OFF genetic control.
Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli . By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. • Metabolic engineer can engineer both the chemistry and control modules in the cell. • 9 differential equations used to define a previously engineered malonyl-CoA switch. • Optimal control architecture of metabolic source and sink pathways were determined. • Models were used to unravel the design principles underlying an ideal metabolic switch. • Stable oscillation of metabolic intermediates permits alternating ON-OFF genetic control.
Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.
Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.
ArticleNumber e00127
Author Xu, Peng
Author_xml – sequence: 1
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  email: pengxu@umbc.edu
  organization: Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32455112$$D View this record in MEDLINE/PubMed
BookMark eNqNUs1uEzEYXKEiWkofgAvykcsG_3sDElKI-KlUiQucLa_9beLgtYPXadVH4K1x2Ra1HCpOtvzNjEffzPPmKKYITfOS4AXBRL7ZLUawC4opXgDGhKonzQmlhLeYYXJ0737cnE3TDlcMk4QT8qw5ZpQLQQg9aX59yCbaLdonHwuyKZacAjIFjSakeB3adVqhmBy8Ras6HveHYopP0QQ0ZDPCVco_UEnoEG26hIzKFpCDyW8i2mcfrd8HmFAakInIO6i0DUQo3rYjFNOn4C2arnyx2xfN08GECc5uz9Pm-6eP39Zf2ouvn8_Xq4vWCoFLK6TAyglnReeU7figlsDloDrKup4IJYlkvSAKRMcpM_2yk8K6wS25MbY3hp0257OuS2anq8nR5GudjNd_HlLeaJOrwQCadxzjjimKieBicD1nQy8ABoV7CYpVrfez1v7Qj-As1PWZ8ED04ST6rd6kS60ok1iSKvD6ViCnnweYih79ZCEEEyEdJk05WzJVf1r-BxQrRqRUvEJf3bf1189d7BWgZoDNaZoyDNr6Odfq0gdNsL7pmN7p2jF90zE9d6wyyT_MO_HHOO9mDtRYLz1kPVkP0YLzGWype_ePsH8D_HPqeQ
CitedBy_id crossref_primary_10_1021_acssynbio_1c00391
crossref_primary_10_1021_acs_jafc_3c06528
crossref_primary_10_1016_j_copbio_2020_06_006
crossref_primary_10_1002_bit_27562
crossref_primary_10_1038_s41598_024_76029_1
crossref_primary_10_1016_j_synbio_2020_07_003
crossref_primary_10_1016_j_ymben_2020_08_015
Cites_doi 10.1126/science.1200705
10.1016/j.ymben.2011.09.004
10.1038/s41467-019-13232-z
10.1111/febs.12820
10.1098/rsif.2012.0671
10.1038/35002131
10.1529/biophysj.106.101717
10.1038/nmeth.4635
10.1016/j.tim.2019.07.005
10.1073/pnas.1808567115
10.1016/j.ymben.2019.08.017
10.1073/pnas.1607295113
10.1038/s41589-018-0091-7
10.1073/pnas.1716888115
10.1016/j.copbio.2018.08.013
10.1007/s11693-010-9052-5
10.1038/nbt.2149
10.1016/j.biotechadv.2019.04.015
10.1002/bit.260431124
10.1038/s41467-018-05882-2
10.1021/cb400623m
10.1038/s41586-019-0978-9
10.1038/s41467-018-03232-w
10.1038/ncomms1516
10.1016/j.cell.2019.02.023
10.1002/bit.26285
10.1016/j.ymben.2014.02.008
10.1038/nature09565
10.1016/j.bej.2019.02.005
10.1021/acssynbio.5b00069
10.1038/s41589-019-0357-8
10.1126/science.aau8287
10.1016/j.bpj.2008.10.028
10.1126/science.1193990
10.1073/pnas.1718622115
10.1002/bit.27230
10.1021/ja100060k
10.1016/j.cbpa.2015.05.013
10.3389/fmolb.2016.00064
10.1038/35002125
10.1038/nature03508
10.1021/sb400158w
10.1016/j.automatica.2018.10.046
10.1038/nature11516
10.1038/ncomms2425
10.1098/rsif.2015.0618
10.3389/fmicb.2012.00360
10.1016/j.copbio.2012.08.010
10.1021/acssynbio.6b00257
10.1021/acssynbio.5b00161
10.1016/S0006-3495(00)76667-7
10.1073/pnas.1716920115
10.1016/j.ymben.2019.03.009
10.1016/j.cbpa.2016.05.011
10.1016/j.cell.2011.02.020
10.1016/S0006-3495(03)70013-7
10.1038/s41467-019-11793-7
10.15252/msb.20188777
10.1128/JB.183.4.1499-1503.2001
10.1038/s41467-018-05466-0
10.1016/j.copbio.2017.10.009
10.1038/msb4100073
10.1111/j.1432-1033.1968.tb00175.x
10.1016/j.copbio.2014.12.022
10.1038/nchembio.2046
10.1038/nbt.3763
10.1002/bit.26340
10.1038/nbt.3796
10.1073/pnas.1406401111
10.1186/s12934-019-1111-3
10.1016/j.chembiol.2012.08.018
ContentType Journal Article
Copyright 2020 The Author
2020 The Author.
2020 The Author 2020
Copyright_xml – notice: 2020 The Author
– notice: 2020 The Author.
– notice: 2020 The Author 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.mec.2020.e00127
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed



AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-0301
ExternalDocumentID oai_doaj_org_article_48400837201545fdb43fb5eef70b6e73
PMC7236061
32455112
10_1016_j_mec_2020_e00127
S2214030119300495
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-56507d5dc58d7c84f79e46f78238b1576163b517e58423ab9865cdfd94aacbaa3
IEDL.DBID DOA
ISSN 2214-0301
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Aug 21 17:26:08 EDT 2025
Fri Jul 11 14:28:20 EDT 2025
Fri Jul 11 06:46:48 EDT 2025
Thu Jan 02 22:41:37 EST 2025
Thu Apr 24 23:00:36 EDT 2025
Tue Jul 01 04:03:42 EDT 2025
Tue Jul 25 21:03:16 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metabolic switches
Metabolic engineering
Synthetic biology
Autonomous oscillation
Biophysical models
Controller architecture
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Author.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-56507d5dc58d7c84f79e46f78238b1576163b517e58423ab9865cdfd94aacbaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/48400837201545fdb43fb5eef70b6e73
PMID 32455112
PQID 2407316674
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_48400837201545fdb43fb5eef70b6e73
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7236061
proquest_miscellaneous_2439377339
proquest_miscellaneous_2407316674
pubmed_primary_32455112
crossref_citationtrail_10_1016_j_mec_2020_e00127
crossref_primary_10_1016_j_mec_2020_e00127
elsevier_sciencedirect_doi_10_1016_j_mec_2020_e00127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Metabolic engineering communications
PublicationTitleAlternate Metab Eng Commun
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chandra, Buzi, Doyle (bib10) 2011; 333
Xiao, Bowen, Liu, Zhang (bib59) 2016; 12
Gupta, Reizman, Reisch, Prather (bib26) 2017; 35
Rugbjerg, Sarup-Lytzen, Nagy, Sommer (bib44) 2018; 115
Lv, Qian, Du, Chen, Zhou, Xu (bib35) 2019; 54
Kong, Meldgin, Collins, Lu (bib30) 2018; 14
Benzinger, Khammash (bib5) 2018; 9
Harrison, Dunlop (bib28) 2012; 3
Bothfeld, Kapov, Tyo (bib7) 2017; 6
Qiao, Wasylenko, Zhou, Xu, Stephanopoulos (bib42) 2017; 35
Xu, Li, Zhang, Stephanopoulos, Koffas (bib66) 2014; 111
Moon, Lou, Tamsir, Stanton, Voigt (bib38) 2012; 491
Albanesi, de Mendoza (bib1) 2016; 3
Xia, Ling, Foo, Chang (bib58) 2019; 37
Oyarzún, Stan (bib41) 2013; 10
Shaw, Yamauchi, Mead, Gowers, Bell, Öling, Larsson, Wigglesworth, Ladds, Ellis (bib47) 2019; 177
Dai, Lee, Roberts, Sysoeva, Huang, Dzuricky, Yang, Zhang, Liu, Chilkoti, You (bib13) 2019; 15
Xu, Qiao, Ahn, Stephanopoulos (bib67) 2016; 113
Venayak, Anesiadis, Cluett, Mahadevan (bib54) 2015; 34
Elowitz, Leibler (bib19) 2000; 403
Zhang, Jensen, Keasling (bib74) 2015; 28
Bashor, Patel, Choubey, Beyzavi, Kondev, Collins, Khalil (bib4) 2019; 364
Sel’kov (bib46) 1968; 4
Aris, Borhani, Cahn, O’Donnell, Tan, Xu (bib3) 2019; 144
Michener, Thodey, Liang, Smolke (bib36) 2012; 14
Xu, Wang, Li, Bhan, Zhang, Koffas (bib69) 2014; 9
Fehér, Libis, Carbonell, Faulon (bib20) 2015; 3
Gao, Hou, Xu, Guo, Chen, Hu, Ye, Edwards, Chen, Chen, Liu (bib22) 2019; 10
Milo, Jorgensen, Moran, Weber, Springer (bib37) 2009; 38
Liu, Marsafari, Wang, Deng, Xu (bib33) 2019; 56
Ceroni, Boo, Furini, Gorochowski, Borkowski, Ladak, Awan, Gilbert, Stan, Ellis (bib9) 2018; 15
Stamatakis, Mantzaris (bib51) 2009; 96
Smolke, Silver (bib48) 2011; 144
Xu, Gu, Wang, Wong, Bower, Collins, Koffas (bib65) 2013; 4
Grozinger, Amos, Gorochowski, Carbonell, Oyarzún, Stoof, Fellermann, Zuliani, Tas, Goñi-Moreno (bib25) 2019; 10
Tamsir, Tabor, Voigt (bib52) 2011; 469
Wang, Dunlop (bib57) 2019; 57
Doong, Gupta, Prather (bib16) 2018; 115
Li, Si, Wang, Zhao (bib31) 2015; 4
Yang, Kim, Yoo, Choi, Ha, Lee, Lee (bib70) 2018; 115
Gao, Xu, Ye, Chen, Liu (bib23) 2019; 27
Solomon, Prather (bib49) 2011
Chen, Bailey (bib12) 1994; 43
Ellis, Wolfgang (bib18) 2012; 19
Calles, Goñi-Moreno, de Lorenzo (bib8) 2019; 15
Nikel, Chavarría, Danchin, de Lorenzo (bib39) 2016; 34
Liu, Xiao, Evans, Zhang (bib32) 2015; 4
Oyarzún, Chaves (bib40) 2015; 12
Rugbjerg, Myling-Petersen, Porse, Sarup-Lytzen, Sommer (bib43) 2018; 9
Davis, Cronan (bib15) 2001; 183
David, Nielsen, Siewers (bib14) 2016; 5
Xu (bib62) 2020; 117
Xu, Bhan, Koffas (bib64) 2013; 24
Xu, Qiao, Stephanopoulos (bib68) 2017; 114
Zhang, Carothers, Keasling (bib73) 2012; 30
Yildirim, Mackey (bib72) 2003; 84
Fung, Wong, Suen, Bulter, Lee, Liao (bib21) 2005; 435
Yang, Lin, Wang, Wu, Zhang, Cheng, Shen, Wang, Chen, Li, Yuan, Yan (bib71) 2018; 9
Soma, Tsuruno, Wada, Yokota, Hanai (bib50) 2014; 23
Andrianantoandro, Basu, Karig, Weiss (bib2) 2006; 2
Gustavsson, van Niekerk, Adiels, Kooi, Goksör, Snoep (bib27) 2014; 281
Keasling (bib29) 2010; 330
Wan, Marsafari, Xu (bib55) 2019; 18
Bier, Bakker, Westerhoff (bib6) 2000; 78
Luo, Reiter, d’Espaux, Wong, Denby, Lechner, Zhang, Grzybowski, Harth, Lin, Lee, Yu, Shin, Deng, Benites, Wang, Baidoo, Chen, Dev, Petzold, Keasling (bib34) 2019; 567
Tsoi, Wu, Zhang, Bewick, Karig, You (bib53) 2018; 115
Xu (bib61) 2018; 53
Gardner, Cantor, Collins (bib24) 2000; 403
Wang, Kitney, Joly, Buck (bib56) 2011; 2
Dunlop, Keasling, Mukhopadhyay (bib17) 2010; 4
Santillán, Mackey, Zeron (bib45) 2007; 92
Xiu, Jang, Jones, Zill Nicholas, Linhardt Robert, Yuan, Jung Gyoo, Koffas Mattheos (bib60) 2017; 114
Chaves, Oyarzún (bib11) 2019; 99
Xu (bib63) 2020
Zhou, Qiao, Gao, Meehan, Li, Zhao, Dorrestein, Vederas, Tang (bib75) 2010
Dai (10.1016/j.mec.2020.e00127_bib13) 2019; 15
Xu (10.1016/j.mec.2020.e00127_bib68) 2017; 114
Doong (10.1016/j.mec.2020.e00127_bib16) 2018; 115
Lv (10.1016/j.mec.2020.e00127_bib35) 2019; 54
Xu (10.1016/j.mec.2020.e00127_bib65) 2013; 4
Gustavsson (10.1016/j.mec.2020.e00127_bib27) 2014; 281
Milo (10.1016/j.mec.2020.e00127_bib37) 2009; 38
Li (10.1016/j.mec.2020.e00127_bib31) 2015; 4
Soma (10.1016/j.mec.2020.e00127_bib50) 2014; 23
Michener (10.1016/j.mec.2020.e00127_bib36) 2012; 14
Wang (10.1016/j.mec.2020.e00127_bib56) 2011; 2
Zhang (10.1016/j.mec.2020.e00127_bib73) 2012; 30
Gao (10.1016/j.mec.2020.e00127_bib22) 2019; 10
Keasling (10.1016/j.mec.2020.e00127_bib29) 2010; 330
Xu (10.1016/j.mec.2020.e00127_bib63) 2020
Andrianantoandro (10.1016/j.mec.2020.e00127_bib2) 2006; 2
Yang (10.1016/j.mec.2020.e00127_bib71) 2018; 9
Gao (10.1016/j.mec.2020.e00127_bib23) 2019; 27
Rugbjerg (10.1016/j.mec.2020.e00127_bib44) 2018; 115
Fehér (10.1016/j.mec.2020.e00127_bib20) 2015; 3
Shaw (10.1016/j.mec.2020.e00127_bib47) 2019; 177
Benzinger (10.1016/j.mec.2020.e00127_bib5) 2018; 9
Oyarzún (10.1016/j.mec.2020.e00127_bib41) 2013; 10
Albanesi (10.1016/j.mec.2020.e00127_bib1) 2016; 3
Gupta (10.1016/j.mec.2020.e00127_bib26) 2017; 35
Tsoi (10.1016/j.mec.2020.e00127_bib53) 2018; 115
Gardner (10.1016/j.mec.2020.e00127_bib24) 2000; 403
Calles (10.1016/j.mec.2020.e00127_bib8) 2019; 15
Oyarzún (10.1016/j.mec.2020.e00127_bib40) 2015; 12
Grozinger (10.1016/j.mec.2020.e00127_bib25) 2019; 10
Xu (10.1016/j.mec.2020.e00127_bib67) 2016; 113
Xu (10.1016/j.mec.2020.e00127_bib62) 2020; 117
Zhou (10.1016/j.mec.2020.e00127_bib75) 2010
Yildirim (10.1016/j.mec.2020.e00127_bib72) 2003; 84
Aris (10.1016/j.mec.2020.e00127_bib3) 2019; 144
Bashor (10.1016/j.mec.2020.e00127_bib4) 2019; 364
Chen (10.1016/j.mec.2020.e00127_bib12) 1994; 43
Qiao (10.1016/j.mec.2020.e00127_bib42) 2017; 35
Liu (10.1016/j.mec.2020.e00127_bib33) 2019; 56
Rugbjerg (10.1016/j.mec.2020.e00127_bib43) 2018; 9
Bothfeld (10.1016/j.mec.2020.e00127_bib7) 2017; 6
Smolke (10.1016/j.mec.2020.e00127_bib48) 2011; 144
Nikel (10.1016/j.mec.2020.e00127_bib39) 2016; 34
Davis (10.1016/j.mec.2020.e00127_bib15) 2001; 183
Kong (10.1016/j.mec.2020.e00127_bib30) 2018; 14
Ceroni (10.1016/j.mec.2020.e00127_bib9) 2018; 15
Xia (10.1016/j.mec.2020.e00127_bib58) 2019; 37
Xu (10.1016/j.mec.2020.e00127_bib69) 2014; 9
David (10.1016/j.mec.2020.e00127_bib14) 2016; 5
Solomon (10.1016/j.mec.2020.e00127_bib49) 2011
Xu (10.1016/j.mec.2020.e00127_bib61) 2018; 53
Xiao (10.1016/j.mec.2020.e00127_bib59) 2016; 12
Venayak (10.1016/j.mec.2020.e00127_bib54) 2015; 34
Santillán (10.1016/j.mec.2020.e00127_bib45) 2007; 92
Ellis (10.1016/j.mec.2020.e00127_bib18) 2012; 19
Zhang (10.1016/j.mec.2020.e00127_bib74) 2015; 28
Fung (10.1016/j.mec.2020.e00127_bib21) 2005; 435
Liu (10.1016/j.mec.2020.e00127_bib32) 2015; 4
Elowitz (10.1016/j.mec.2020.e00127_bib19) 2000; 403
Wan (10.1016/j.mec.2020.e00127_bib55) 2019; 18
Xu (10.1016/j.mec.2020.e00127_bib66) 2014; 111
Sel’kov (10.1016/j.mec.2020.e00127_bib46) 1968; 4
Chandra (10.1016/j.mec.2020.e00127_bib10) 2011; 333
Stamatakis (10.1016/j.mec.2020.e00127_bib51) 2009; 96
Chaves (10.1016/j.mec.2020.e00127_bib11) 2019; 99
Bier (10.1016/j.mec.2020.e00127_bib6) 2000; 78
Yang (10.1016/j.mec.2020.e00127_bib70) 2018; 115
Moon (10.1016/j.mec.2020.e00127_bib38) 2012; 491
Xiu (10.1016/j.mec.2020.e00127_bib60) 2017; 114
Xu (10.1016/j.mec.2020.e00127_bib64) 2013; 24
Dunlop (10.1016/j.mec.2020.e00127_bib17) 2010; 4
Harrison (10.1016/j.mec.2020.e00127_bib28) 2012; 3
Luo (10.1016/j.mec.2020.e00127_bib34) 2019; 567
Tamsir (10.1016/j.mec.2020.e00127_bib52) 2011; 469
Wang (10.1016/j.mec.2020.e00127_bib57) 2019; 57
References_xml – volume: 37
  start-page: 107393
  year: 2019
  ident: bib58
  article-title: Synthetic genetic circuits for programmable biological functionalities
  publication-title: Biotechnol. Adv.
– volume: 491
  start-page: 249
  year: 2012
  end-page: 253
  ident: bib38
  article-title: Genetic programs constructed from layered logic gates in single cells
  publication-title: Nature
– volume: 364
  start-page: 593
  year: 2019
  ident: bib4
  article-title: Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies
  publication-title: Science
– volume: 99
  start-page: 323
  year: 2019
  end-page: 332
  ident: bib11
  article-title: Dynamics of complex feedback architectures in metabolic pathways
  publication-title: Automatica
– volume: 113
  start-page: 10848
  year: 2016
  end-page: 10853
  ident: bib67
  article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– start-page: 4530
  year: 2010
  ident: bib75
  article-title: Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases involved in hypothemycin biosynthesis
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 354
  year: 2012
  end-page: 359
  ident: bib73
  article-title: Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
  publication-title: Nat. Biotechnol.
– volume: 403
  start-page: 335
  year: 2000
  end-page: 338
  ident: bib19
  article-title: A synthetic oscillatory network of transcriptional regulators
  publication-title: Nature
– volume: 56
  start-page: 60
  year: 2019
  end-page: 68
  ident: bib33
  article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica
  publication-title: Metab. Eng.
– volume: 281
  start-page: 2784
  year: 2014
  end-page: 2793
  ident: bib27
  article-title: Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells
  publication-title: FEBS J.
– volume: 35
  start-page: 273
  year: 2017
  end-page: 279
  ident: bib26
  article-title: Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit
  publication-title: Nat. Biotechnol.
– volume: 10
  start-page: 5250
  year: 2019
  ident: bib25
  article-title: Pathways to cellular supremacy in biocomputing
  publication-title: Nat. Commun.
– volume: 330
  start-page: 1355
  year: 2010
  end-page: 1358
  ident: bib29
  article-title: Manufacturing molecules through metabolic engineering
  publication-title: Science
– volume: 5
  start-page: 224
  year: 2016
  end-page: 233
  ident: bib14
  article-title: Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae
  publication-title: ACS Synth. Biol.
– volume: 333
  start-page: 187
  year: 2011
  ident: bib10
  article-title: Glycolytic oscillations and limits on robust efficiency
  publication-title: Science
– volume: 10
  start-page: 3751
  year: 2019
  ident: bib22
  article-title: Programmable biomolecular switches for rewiring flux in Escherichia coli
  publication-title: Nat. Commun.
– volume: 4
  start-page: 132
  year: 2015
  end-page: 140
  ident: bib32
  article-title: Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor–actuator
  publication-title: ACS Synth. Biol.
– volume: 114
  start-page: 1521
  year: 2017
  end-page: 1530
  ident: bib68
  article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica
  publication-title: Biotechnol. Bioeng.
– volume: 18
  start-page: 61
  year: 2019
  ident: bib55
  article-title: Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives
  publication-title: Microb. Cell Factories
– volume: 43
  start-page: 1190
  year: 1994
  end-page: 1193
  ident: bib12
  article-title: Application of the cross-regulation system As A metabolic switch
  publication-title: Biotechnol. Bioeng.
– volume: 12
  start-page: 20150618
  year: 2015
  ident: bib40
  article-title: Design of a bistable switch to control cellular uptake
  publication-title: J. R. Soc. Interface
– volume: 24
  start-page: 291
  year: 2013
  end-page: 299
  ident: bib64
  article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology
  publication-title: Curr. Opin. Biotechnol.
– volume: 9
  start-page: 787
  year: 2018
  ident: bib43
  article-title: Diverse genetic error modes constrain large-scale bio-based production
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1409
  year: 2013
  ident: bib65
  article-title: Modular optimization of multi-gene pathways for fatty acids production in E. coli
  publication-title: Nat. Commun.
– volume: 14
  start-page: 212
  year: 2012
  end-page: 222
  ident: bib36
  article-title: Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways
  publication-title: Metab. Eng.
– volume: 115
  start-page: 2347
  year: 2018
  ident: bib44
  article-title: Synthetic addiction extends the productive life time of engineered <em>Escherichia coli</em> populations
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 111
  start-page: 11299
  year: 2014
  end-page: 11304
  ident: bib66
  article-title: Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 27
  start-page: 1011
  year: 2019
  end-page: 1024
  ident: bib23
  article-title: Genetic circuit-assisted smart microbial engineering
  publication-title: Trends Microbiol.
– volume: 469
  start-page: 212
  year: 2011
  end-page: 215
  ident: bib52
  article-title: Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’
  publication-title: Nature
– volume: 6
  start-page: 1296
  year: 2017
  end-page: 1304
  ident: bib7
  article-title: A glucose-sensing toggle switch for autonomous, high productivity genetic control
  publication-title: ACS Synth. Biol.
– volume: 3
  start-page: 360
  year: 2012
  ident: bib28
  article-title: Synthetic feedback loop model for increasing microbial biofuel production using a biosensor
  publication-title: Front. Microbiol.
– volume: 92
  start-page: 3830
  year: 2007
  end-page: 3842
  ident: bib45
  article-title: Origin of bistability in the lac operon
  publication-title: Biophys. J.
– volume: 96
  start-page: 887
  year: 2009
  end-page: 906
  ident: bib51
  article-title: Comparison of deterministic and stochastic models of the lac operon genetic network
  publication-title: Biophys. J.
– volume: 9
  start-page: 3521
  year: 2018
  ident: bib5
  article-title: Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation
  publication-title: Nat. Commun.
– volume: 567
  start-page: 123
  year: 2019
  end-page: 126
  ident: bib34
  article-title: Complete biosynthesis of cannabinoids and their unnatural analogues in yeast
  publication-title: Nature
– volume: 35
  start-page: 173
  year: 2017
  end-page: 177
  ident: bib42
  article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
  publication-title: Nat. Biotechnol.
– volume: 177
  start-page: 782
  year: 2019
  end-page: 796
  ident: bib47
  article-title: Engineering a model cell for rational tuning of GPCR signaling
  publication-title: Cell
– volume: 19
  start-page: 1333
  year: 2012
  end-page: 1339
  ident: bib18
  article-title: A genetically encoded metabolite sensor for malonyl-CoA
  publication-title: Chem. Biol.
– volume: 57
  start-page: 10
  year: 2019
  end-page: 16
  ident: bib57
  article-title: Controlling and exploiting cell-to-cell variation in metabolic engineering
  publication-title: Curr. Opin. Biotechnol.
– volume: 115
  start-page: 2526
  year: 2018
  ident: bib53
  article-title: Metabolic division of labor in microbial systems
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 9
  start-page: 451
  year: 2014
  end-page: 458
  ident: bib69
  article-title: Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli
  publication-title: ACS Chem. Biol.
– volume: 4
  start-page: 95
  year: 2010
  end-page: 104
  ident: bib17
  article-title: A model for improving microbial biofuel production using a synthetic feedback loop
  publication-title: Syst. Synth. Biol.
– volume: 144
  start-page: 855
  year: 2011
  end-page: 859
  ident: bib48
  article-title: Informing biological design by integration of systems and synthetic biology
  publication-title: Cell
– volume: 10
  start-page: 20120671
  year: 2013
  ident: bib41
  article-title: Synthetic gene circuits for metabolic control: design trade-offs and constraints
  publication-title: J. R. Soc. Interface
– volume: 15
  start-page: 387
  year: 2018
  end-page: 393
  ident: bib9
  article-title: Burden-driven feedback control of gene expression
  publication-title: Nat. Methods
– volume: 14
  start-page: 821
  year: 2018
  end-page: 829
  ident: bib30
  article-title: Designing microbial consortia with defined social interactions
  publication-title: Nat. Chem. Biol.
– volume: 38
  start-page: D750
  year: 2009
  end-page: D753
  ident: bib37
  article-title: BioNumbers—the database of key numbers in molecular and cell biology
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: 2006
  year: 2006
  ident: bib2
  article-title: Synthetic biology: new engineering rules for an emerging discipline
  publication-title: Mol. Syst. Biol.
– volume: 3
  start-page: 64
  year: 2016
  ident: bib1
  article-title: FapR: from control of membrane lipid homeostasis to a biotechnological tool
  publication-title: Front. Mol. Biosci.
– volume: 78
  start-page: 1087
  year: 2000
  end-page: 1093
  ident: bib6
  article-title: How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment
  publication-title: Biophys. J.
– volume: 115
  start-page: 2964
  year: 2018
  ident: bib16
  article-title: Layered dynamic regulation for improving metabolic pathway productivity in <em>Escherichia coli</em>
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 34
  start-page: 142
  year: 2015
  end-page: 152
  ident: bib54
  article-title: Engineering metabolism through dynamic control
  publication-title: Curr. Opin. Biotechnol.
– volume: 4
  start-page: 1308
  year: 2015
  end-page: 1315
  ident: bib31
  article-title: Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening
  publication-title: ACS Synth. Biol.
– volume: 4
  start-page: 79
  year: 1968
  end-page: 86
  ident: bib46
  article-title: Self-oscillations in glycolysis. 1. A simple kinetic model
  publication-title: Eur. J. Biochem.
– volume: 114
  start-page: 2235
  year: 2017
  end-page: 2244
  ident: bib60
  article-title: Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures
  publication-title: Biotechnol. Bioeng.
– volume: 2
  year: 2011
  ident: bib56
  article-title: Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3043
  year: 2018
  ident: bib71
  article-title: Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis
  publication-title: Nat. Commun.
– volume: 53
  start-page: 12
  year: 2018
  end-page: 19
  ident: bib61
  article-title: Production of chemicals using dynamic control of metabolic fluxes
  publication-title: Curr. Opin. Biotechnol.
– volume: 403
  start-page: 339
  year: 2000
  end-page: 342
  ident: bib24
  article-title: Construction of a genetic toggle switch in Escherichia coli
  publication-title: Nature
– volume: 54
  start-page: 109
  year: 2019
  end-page: 116
  ident: bib35
  article-title: Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction
  publication-title: Metab. Eng.
– volume: 117
  start-page: 873
  year: 2020
  end-page: 878
  ident: bib62
  article-title: Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture
  publication-title: Biotechnol. Bioeng.
– volume: 3
  start-page: 46
  year: 2015
  ident: bib20
  article-title: A sense of balance: experimental investigation and modeling of a malonyl-CoA sensor in Escherichia coli
  publication-title: Front. Bioeng. Biotechnol.
– volume: 144
  start-page: 209
  year: 2019
  end-page: 216
  ident: bib3
  article-title: Modeling transcriptional factor cross-talk to understand parabolic kinetics, bimodal gene expression and retroactivity in biosensor design
  publication-title: Biochem. Eng. J.
– volume: 15
  year: 2019
  ident: bib8
  article-title: Digitalizing heterologous gene expression in Gram-negative bacteria with a portable on/off module
  publication-title: Mol. Syst. Biol.
– volume: 12
  start-page: 339
  year: 2016
  end-page: 344
  ident: bib59
  article-title: Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis
  publication-title: Nat. Chem. Biol.
– volume: 115
  start-page: 9835
  year: 2018
  ident: bib70
  article-title: Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– year: 2020
  ident: bib63
  article-title: Dynamics of microbial competition, commensalism and cooperation and its implications for coculture and microbiome engineering
  publication-title: bioRxiv
– volume: 23
  start-page: 175
  year: 2014
  end-page: 184
  ident: bib50
  article-title: Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch
  publication-title: Metab. Eng.
– volume: 183
  start-page: 1499
  year: 2001
  end-page: 1503
  ident: bib15
  article-title: Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein
  publication-title: J. Bacteriol.
– volume: 28
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib74
  article-title: Development of biosensors and their application in metabolic engineering
  publication-title: Curr. Opin. Chem. Biol.
– volume: 34
  start-page: 20
  year: 2016
  end-page: 29
  ident: bib39
  article-title: From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions
  publication-title: Curr. Opin. Chem. Biol.
– volume: 84
  start-page: 2841
  year: 2003
  end-page: 2851
  ident: bib72
  article-title: Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data
  publication-title: Biophys. J.
– year: 2011
  ident: bib49
  article-title: Dynamic Tuning of Glycolytic Flux for Heterologous Production with a Glucose Valve
– volume: 15
  start-page: 1017
  year: 2019
  end-page: 1024
  ident: bib13
  article-title: Versatile biomanufacturing through stimulus-responsive cell–material feedback
  publication-title: Nat. Chem. Biol.
– volume: 435
  start-page: 118
  year: 2005
  end-page: 122
  ident: bib21
  article-title: A synthetic gene-metabolic oscillator
  publication-title: Nature
– volume: 333
  start-page: 187
  issue: 6039
  year: 2011
  ident: 10.1016/j.mec.2020.e00127_bib10
  article-title: Glycolytic oscillations and limits on robust efficiency
  publication-title: Science
  doi: 10.1126/science.1200705
– volume: 3
  start-page: 46
  year: 2015
  ident: 10.1016/j.mec.2020.e00127_bib20
  article-title: A sense of balance: experimental investigation and modeling of a malonyl-CoA sensor in Escherichia coli
  publication-title: Front. Bioeng. Biotechnol.
– volume: 14
  start-page: 212
  issue: 3
  year: 2012
  ident: 10.1016/j.mec.2020.e00127_bib36
  article-title: Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2011.09.004
– volume: 10
  start-page: 5250
  issue: 1
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib25
  article-title: Pathways to cellular supremacy in biocomputing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13232-z
– volume: 281
  start-page: 2784
  issue: 12
  year: 2014
  ident: 10.1016/j.mec.2020.e00127_bib27
  article-title: Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells
  publication-title: FEBS J.
  doi: 10.1111/febs.12820
– volume: 10
  start-page: 20120671
  issue: 78
  year: 2013
  ident: 10.1016/j.mec.2020.e00127_bib41
  article-title: Synthetic gene circuits for metabolic control: design trade-offs and constraints
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0671
– volume: 403
  start-page: 339
  issue: 6767
  year: 2000
  ident: 10.1016/j.mec.2020.e00127_bib24
  article-title: Construction of a genetic toggle switch in Escherichia coli
  publication-title: Nature
  doi: 10.1038/35002131
– volume: 92
  start-page: 3830
  issue: 11
  year: 2007
  ident: 10.1016/j.mec.2020.e00127_bib45
  article-title: Origin of bistability in the lac operon
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.101717
– volume: 15
  start-page: 387
  issue: 5
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib9
  article-title: Burden-driven feedback control of gene expression
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4635
– volume: 27
  start-page: 1011
  issue: 12
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib23
  article-title: Genetic circuit-assisted smart microbial engineering
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2019.07.005
– volume: 115
  start-page: 9835
  issue: 40
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib70
  article-title: Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1808567115
– volume: 56
  start-page: 60
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib33
  article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.08.017
– volume: 113
  start-page: 10848
  issue: 39
  year: 2016
  ident: 10.1016/j.mec.2020.e00127_bib67
  article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1607295113
– volume: 14
  start-page: 821
  issue: 8
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib30
  article-title: Designing microbial consortia with defined social interactions
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0091-7
– volume: 115
  start-page: 2526
  issue: 10
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib53
  article-title: Metabolic division of labor in microbial systems
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1716888115
– volume: 57
  start-page: 10
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib57
  article-title: Controlling and exploiting cell-to-cell variation in metabolic engineering
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.08.013
– volume: 4
  start-page: 95
  issue: 2
  year: 2010
  ident: 10.1016/j.mec.2020.e00127_bib17
  article-title: A model for improving microbial biofuel production using a synthetic feedback loop
  publication-title: Syst. Synth. Biol.
  doi: 10.1007/s11693-010-9052-5
– volume: 30
  start-page: 354
  issue: 4
  year: 2012
  ident: 10.1016/j.mec.2020.e00127_bib73
  article-title: Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2149
– volume: 37
  start-page: 107393
  issue: 6
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib58
  article-title: Synthetic genetic circuits for programmable biological functionalities
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2019.04.015
– volume: 43
  start-page: 1190
  issue: 11
  year: 1994
  ident: 10.1016/j.mec.2020.e00127_bib12
  article-title: Application of the cross-regulation system As A metabolic switch
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260431124
– volume: 9
  start-page: 3521
  issue: 1
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib5
  article-title: Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05882-2
– volume: 9
  start-page: 451
  issue: 2
  year: 2014
  ident: 10.1016/j.mec.2020.e00127_bib69
  article-title: Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb400623m
– volume: 567
  start-page: 123
  issue: 7746
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib34
  article-title: Complete biosynthesis of cannabinoids and their unnatural analogues in yeast
  publication-title: Nature
  doi: 10.1038/s41586-019-0978-9
– volume: 9
  start-page: 787
  issue: 1
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib43
  article-title: Diverse genetic error modes constrain large-scale bio-based production
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03232-w
– volume: 2
  year: 2011
  ident: 10.1016/j.mec.2020.e00127_bib56
  article-title: Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1516
– volume: 177
  start-page: 782
  issue: 3
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib47
  article-title: Engineering a model cell for rational tuning of GPCR signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.023
– volume: 114
  start-page: 1521
  issue: 7
  year: 2017
  ident: 10.1016/j.mec.2020.e00127_bib68
  article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26285
– year: 2011
  ident: 10.1016/j.mec.2020.e00127_bib49
– year: 2020
  ident: 10.1016/j.mec.2020.e00127_bib63
  article-title: Dynamics of microbial competition, commensalism and cooperation and its implications for coculture and microbiome engineering
  publication-title: bioRxiv
– volume: 23
  start-page: 175
  year: 2014
  ident: 10.1016/j.mec.2020.e00127_bib50
  article-title: Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.02.008
– volume: 469
  start-page: 212
  issue: 7329
  year: 2011
  ident: 10.1016/j.mec.2020.e00127_bib52
  article-title: Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’
  publication-title: Nature
  doi: 10.1038/nature09565
– volume: 144
  start-page: 209
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib3
  article-title: Modeling transcriptional factor cross-talk to understand parabolic kinetics, bimodal gene expression and retroactivity in biosensor design
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2019.02.005
– volume: 4
  start-page: 1308
  issue: 12
  year: 2015
  ident: 10.1016/j.mec.2020.e00127_bib31
  article-title: Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.5b00069
– volume: 15
  start-page: 1017
  issue: 10
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib13
  article-title: Versatile biomanufacturing through stimulus-responsive cell–material feedback
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0357-8
– volume: 364
  start-page: 593
  issue: 6440
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib4
  article-title: Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies
  publication-title: Science
  doi: 10.1126/science.aau8287
– volume: 96
  start-page: 887
  issue: 3
  year: 2009
  ident: 10.1016/j.mec.2020.e00127_bib51
  article-title: Comparison of deterministic and stochastic models of the lac operon genetic network
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2008.10.028
– volume: 330
  start-page: 1355
  issue: 6009
  year: 2010
  ident: 10.1016/j.mec.2020.e00127_bib29
  article-title: Manufacturing molecules through metabolic engineering
  publication-title: Science
  doi: 10.1126/science.1193990
– volume: 115
  start-page: 2347
  issue: 10
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib44
  article-title: Synthetic addiction extends the productive life time of engineered Escherichia coli populations
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1718622115
– volume: 117
  start-page: 873
  issue: 3
  year: 2020
  ident: 10.1016/j.mec.2020.e00127_bib62
  article-title: Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27230
– start-page: 4530
  year: 2010
  ident: 10.1016/j.mec.2020.e00127_bib75
  article-title: Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases involved in hypothemycin biosynthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100060k
– volume: 28
  start-page: 1
  year: 2015
  ident: 10.1016/j.mec.2020.e00127_bib74
  article-title: Development of biosensors and their application in metabolic engineering
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2015.05.013
– volume: 3
  start-page: 64
  year: 2016
  ident: 10.1016/j.mec.2020.e00127_bib1
  article-title: FapR: from control of membrane lipid homeostasis to a biotechnological tool
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2016.00064
– volume: 403
  start-page: 335
  issue: 6767
  year: 2000
  ident: 10.1016/j.mec.2020.e00127_bib19
  article-title: A synthetic oscillatory network of transcriptional regulators
  publication-title: Nature
  doi: 10.1038/35002125
– volume: 435
  start-page: 118
  issue: 7038
  year: 2005
  ident: 10.1016/j.mec.2020.e00127_bib21
  article-title: A synthetic gene-metabolic oscillator
  publication-title: Nature
  doi: 10.1038/nature03508
– volume: 4
  start-page: 132
  issue: 2
  year: 2015
  ident: 10.1016/j.mec.2020.e00127_bib32
  article-title: Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor–actuator
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb400158w
– volume: 99
  start-page: 323
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib11
  article-title: Dynamics of complex feedback architectures in metabolic pathways
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.10.046
– volume: 491
  start-page: 249
  issue: 7423
  year: 2012
  ident: 10.1016/j.mec.2020.e00127_bib38
  article-title: Genetic programs constructed from layered logic gates in single cells
  publication-title: Nature
  doi: 10.1038/nature11516
– volume: 4
  start-page: 1409
  year: 2013
  ident: 10.1016/j.mec.2020.e00127_bib65
  article-title: Modular optimization of multi-gene pathways for fatty acids production in E. coli
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2425
– volume: 12
  start-page: 20150618
  issue: 113
  year: 2015
  ident: 10.1016/j.mec.2020.e00127_bib40
  article-title: Design of a bistable switch to control cellular uptake
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.0618
– volume: 3
  start-page: 360
  year: 2012
  ident: 10.1016/j.mec.2020.e00127_bib28
  article-title: Synthetic feedback loop model for increasing microbial biofuel production using a biosensor
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00360
– volume: 24
  start-page: 291
  issue: 2
  year: 2013
  ident: 10.1016/j.mec.2020.e00127_bib64
  article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2012.08.010
– volume: 6
  start-page: 1296
  issue: 7
  year: 2017
  ident: 10.1016/j.mec.2020.e00127_bib7
  article-title: A glucose-sensing toggle switch for autonomous, high productivity genetic control
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00257
– volume: 5
  start-page: 224
  issue: 3
  year: 2016
  ident: 10.1016/j.mec.2020.e00127_bib14
  article-title: Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.5b00161
– volume: 78
  start-page: 1087
  issue: 3
  year: 2000
  ident: 10.1016/j.mec.2020.e00127_bib6
  article-title: How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76667-7
– volume: 115
  start-page: 2964
  issue: 12
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib16
  article-title: Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1716920115
– volume: 54
  start-page: 109
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib35
  article-title: Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.03.009
– volume: 34
  start-page: 20
  year: 2016
  ident: 10.1016/j.mec.2020.e00127_bib39
  article-title: From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2016.05.011
– volume: 144
  start-page: 855
  issue: 6
  year: 2011
  ident: 10.1016/j.mec.2020.e00127_bib48
  article-title: Informing biological design by integration of systems and synthetic biology
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.020
– volume: 84
  start-page: 2841
  issue: 5
  year: 2003
  ident: 10.1016/j.mec.2020.e00127_bib72
  article-title: Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)70013-7
– volume: 10
  start-page: 3751
  issue: 1
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib22
  article-title: Programmable biomolecular switches for rewiring flux in Escherichia coli
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11793-7
– volume: 15
  issue: 12
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib8
  article-title: Digitalizing heterologous gene expression in Gram-negative bacteria with a portable on/off module
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188777
– volume: 183
  start-page: 1499
  issue: 4
  year: 2001
  ident: 10.1016/j.mec.2020.e00127_bib15
  article-title: Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.4.1499-1503.2001
– volume: 9
  start-page: 3043
  issue: 1
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib71
  article-title: Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05466-0
– volume: 53
  start-page: 12
  year: 2018
  ident: 10.1016/j.mec.2020.e00127_bib61
  article-title: Production of chemicals using dynamic control of metabolic fluxes
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.10.009
– volume: 2
  start-page: 2006
  year: 2006
  ident: 10.1016/j.mec.2020.e00127_bib2
  article-title: Synthetic biology: new engineering rules for an emerging discipline
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100073
– volume: 4
  start-page: 79
  issue: 1
  year: 1968
  ident: 10.1016/j.mec.2020.e00127_bib46
  article-title: Self-oscillations in glycolysis. 1. A simple kinetic model
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1968.tb00175.x
– volume: 34
  start-page: 142
  issue: Suppl. C
  year: 2015
  ident: 10.1016/j.mec.2020.e00127_bib54
  article-title: Engineering metabolism through dynamic control
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.12.022
– volume: 12
  start-page: 339
  issue: 5
  year: 2016
  ident: 10.1016/j.mec.2020.e00127_bib59
  article-title: Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2046
– volume: 35
  start-page: 173
  issue: 2
  year: 2017
  ident: 10.1016/j.mec.2020.e00127_bib42
  article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3763
– volume: 114
  start-page: 2235
  issue: 10
  year: 2017
  ident: 10.1016/j.mec.2020.e00127_bib60
  article-title: Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26340
– volume: 35
  start-page: 273
  issue: 3
  year: 2017
  ident: 10.1016/j.mec.2020.e00127_bib26
  article-title: Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3796
– volume: 111
  start-page: 11299
  issue: 31
  year: 2014
  ident: 10.1016/j.mec.2020.e00127_bib66
  article-title: Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1406401111
– volume: 18
  start-page: 61
  issue: 1
  year: 2019
  ident: 10.1016/j.mec.2020.e00127_bib55
  article-title: Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-019-1111-3
– volume: 19
  start-page: 1333
  issue: 10
  year: 2012
  ident: 10.1016/j.mec.2020.e00127_bib18
  article-title: A genetically encoded metabolite sensor for malonyl-CoA
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2012.08.018
– volume: 38
  start-page: D750
  issue: Suppl. l_1
  year: 2009
  ident: 10.1016/j.mec.2020.e00127_bib37
  article-title: BioNumbers—the database of key numbers in molecular and cell biology
  publication-title: Nucleic Acids Res.
SSID ssj0001361411
Score 2.1794562
Snippet Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e00127
SubjectTerms artificial intelligence
Autonomous oscillation
binding capacity
Biophysical models
Controller architecture
differential equation
enzymes
Escherichia coli
fatty acids
gene expression
malonyl coenzyme A
Metabolic engineering
Metabolic switches
protein degradation
repressor proteins
Special issue on The Natural Product Issue edited by Greg Stephanopoulos, Anthony Sinskey and Kang Zhou
Synthetic biology
transactivators
Title Branch point control at malonyl-CoA node: A computational framework to uncover the design principles of an ideal genetic-metabolic switch
URI https://dx.doi.org/10.1016/j.mec.2020.e00127
https://www.ncbi.nlm.nih.gov/pubmed/32455112
https://www.proquest.com/docview/2407316674
https://www.proquest.com/docview/2439377339
https://pubmed.ncbi.nlm.nih.gov/PMC7236061
https://doaj.org/article/48400837201545fdb43fb5eef70b6e73
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQucAB8U0oVIPECSmQxHaccNtWVBUVHBAVvVn-VFPtJis2Fb-h_5qxk6w2IC0XrrvOrux5ybyxX94Q8pbr3FJv61QUlqb4wMPnoPUmzU3FKxMcp3x4d_jL1_Lsgn2-5Jc7rb6CJmywBx4W7gPDCgRpgihisvdWM-o1d86LTJdORJ_PrM52iqm4u0Ix7cTmu0WRszTw_ulIM4q7Vi7YFxbZexfPXmdJKXr3z3LT39zzTwnlTk46fUgejGQSFsMkHpE7rn1M7u9YDD4ht8ehc8YVrLum7WEUpoPqYaWWQZSennQLaDvrPsICTGzxMG4Pgp90W9B3gOkviD0B-SLYqPqA9bRPv4HOg2qhscg6AREZXoxMV65HgC0bA5tfDWLjKbk4_fT95Cwd2y-kBsuWPkWqlwnLreGVFaZiXtSOlR4pBa10jnUKUjnNc-GQwxRU6boqubEYd6aU0UrRZ-Sg7Vr3gkBtPKPOU0wMmtWFr7koMHYWg-iorlVCsmn9pRm9yUOLjKWcRGjXEkMmQ8jkELKEvNtesh6MOfYNPg5B3Q4MntrxA0SaHJEm_4W0hLAJEnKkJwPtwJ9q9v33mwk-Em_dcB6jWtfdbGQopmleloLtGxMcCwWldUKeD5DbzgK5MA98OSFiBsbZNOfftM1VtBAXBcXKNX_5P9blkNwL0x30c6_IQf_zxr1GptbrI3J3cf7tx_lRvDl_A2wkPS4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Branch+point+control+at+malonyl-CoA+node%3A+A+computational+framework+to+uncover+the+design+principles+of+an+ideal+genetic-metabolic+switch&rft.jtitle=Metabolic+engineering+communications&rft.au=Xu%2C+Peng&rft.date=2020-06-01&rft.eissn=2214-0301&rft.volume=10&rft.spage=e00127&rft_id=info:doi/10.1016%2Fj.mec.2020.e00127&rft_id=info%3Apmid%2F32455112&rft.externalDocID=32455112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon