Branch point control at malonyl-CoA node: A computational framework to uncover the design principles of an ideal genetic-metabolic switch
Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered...
Saved in:
Published in | Metabolic engineering communications Vol. 10; p. e00127 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-0301 2214-0301 |
DOI | 10.1016/j.mec.2020.e00127 |
Cover
Abstract | Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.
•Metabolic engineer can engineer both the chemistry and control modules in the cell.•9 differential equations used to define a previously engineered malonyl-CoA switch.•Optimal control architecture of metabolic source and sink pathways were determined.•Models were used to unravel the design principles underlying an ideal metabolic switch.•Stable oscillation of metabolic intermediates permits alternating ON-OFF genetic control. |
---|---|
AbstractList | Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in
. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. •Metabolic engineer can engineer both the chemistry and control modules in the cell.•9 differential equations used to define a previously engineered malonyl-CoA switch.•Optimal control architecture of metabolic source and sink pathways were determined.•Models were used to unravel the design principles underlying an ideal metabolic switch.•Stable oscillation of metabolic intermediates permits alternating ON-OFF genetic control. Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli . By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. • Metabolic engineer can engineer both the chemistry and control modules in the cell. • 9 differential equations used to define a previously engineered malonyl-CoA switch. • Optimal control architecture of metabolic source and sink pathways were determined. • Models were used to unravel the design principles underlying an ideal metabolic switch. • Stable oscillation of metabolic intermediates permits alternating ON-OFF genetic control. Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models are important tools to uncover the design rules underlying complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch (Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles underlying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically accessible parameter space, we have determined the optimal controller architecture to configure both the metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, medium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcriptional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function. |
ArticleNumber | e00127 |
Author | Xu, Peng |
Author_xml | – sequence: 1 givenname: Peng surname: Xu fullname: Xu, Peng email: pengxu@umbc.edu organization: Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32455112$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUs1uEzEYXKEiWkofgAvykcsG_3sDElKI-KlUiQucLa_9beLgtYPXadVH4K1x2Ra1HCpOtvzNjEffzPPmKKYITfOS4AXBRL7ZLUawC4opXgDGhKonzQmlhLeYYXJ0737cnE3TDlcMk4QT8qw5ZpQLQQg9aX59yCbaLdonHwuyKZacAjIFjSakeB3adVqhmBy8Ras6HveHYopP0QQ0ZDPCVco_UEnoEG26hIzKFpCDyW8i2mcfrd8HmFAakInIO6i0DUQo3rYjFNOn4C2arnyx2xfN08GECc5uz9Pm-6eP39Zf2ouvn8_Xq4vWCoFLK6TAyglnReeU7figlsDloDrKup4IJYlkvSAKRMcpM_2yk8K6wS25MbY3hp0257OuS2anq8nR5GudjNd_HlLeaJOrwQCadxzjjimKieBicD1nQy8ABoV7CYpVrfez1v7Qj-As1PWZ8ED04ST6rd6kS60ok1iSKvD6ViCnnweYih79ZCEEEyEdJk05WzJVf1r-BxQrRqRUvEJf3bf1189d7BWgZoDNaZoyDNr6Odfq0gdNsL7pmN7p2jF90zE9d6wyyT_MO_HHOO9mDtRYLz1kPVkP0YLzGWype_ePsH8D_HPqeQ |
CitedBy_id | crossref_primary_10_1021_acssynbio_1c00391 crossref_primary_10_1021_acs_jafc_3c06528 crossref_primary_10_1016_j_copbio_2020_06_006 crossref_primary_10_1002_bit_27562 crossref_primary_10_1038_s41598_024_76029_1 crossref_primary_10_1016_j_synbio_2020_07_003 crossref_primary_10_1016_j_ymben_2020_08_015 |
Cites_doi | 10.1126/science.1200705 10.1016/j.ymben.2011.09.004 10.1038/s41467-019-13232-z 10.1111/febs.12820 10.1098/rsif.2012.0671 10.1038/35002131 10.1529/biophysj.106.101717 10.1038/nmeth.4635 10.1016/j.tim.2019.07.005 10.1073/pnas.1808567115 10.1016/j.ymben.2019.08.017 10.1073/pnas.1607295113 10.1038/s41589-018-0091-7 10.1073/pnas.1716888115 10.1016/j.copbio.2018.08.013 10.1007/s11693-010-9052-5 10.1038/nbt.2149 10.1016/j.biotechadv.2019.04.015 10.1002/bit.260431124 10.1038/s41467-018-05882-2 10.1021/cb400623m 10.1038/s41586-019-0978-9 10.1038/s41467-018-03232-w 10.1038/ncomms1516 10.1016/j.cell.2019.02.023 10.1002/bit.26285 10.1016/j.ymben.2014.02.008 10.1038/nature09565 10.1016/j.bej.2019.02.005 10.1021/acssynbio.5b00069 10.1038/s41589-019-0357-8 10.1126/science.aau8287 10.1016/j.bpj.2008.10.028 10.1126/science.1193990 10.1073/pnas.1718622115 10.1002/bit.27230 10.1021/ja100060k 10.1016/j.cbpa.2015.05.013 10.3389/fmolb.2016.00064 10.1038/35002125 10.1038/nature03508 10.1021/sb400158w 10.1016/j.automatica.2018.10.046 10.1038/nature11516 10.1038/ncomms2425 10.1098/rsif.2015.0618 10.3389/fmicb.2012.00360 10.1016/j.copbio.2012.08.010 10.1021/acssynbio.6b00257 10.1021/acssynbio.5b00161 10.1016/S0006-3495(00)76667-7 10.1073/pnas.1716920115 10.1016/j.ymben.2019.03.009 10.1016/j.cbpa.2016.05.011 10.1016/j.cell.2011.02.020 10.1016/S0006-3495(03)70013-7 10.1038/s41467-019-11793-7 10.15252/msb.20188777 10.1128/JB.183.4.1499-1503.2001 10.1038/s41467-018-05466-0 10.1016/j.copbio.2017.10.009 10.1038/msb4100073 10.1111/j.1432-1033.1968.tb00175.x 10.1016/j.copbio.2014.12.022 10.1038/nchembio.2046 10.1038/nbt.3763 10.1002/bit.26340 10.1038/nbt.3796 10.1073/pnas.1406401111 10.1186/s12934-019-1111-3 10.1016/j.chembiol.2012.08.018 |
ContentType | Journal Article |
Copyright | 2020 The Author 2020 The Author. 2020 The Author 2020 |
Copyright_xml | – notice: 2020 The Author – notice: 2020 The Author. – notice: 2020 The Author 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.mec.2020.e00127 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-0301 |
ExternalDocumentID | oai_doaj_org_article_48400837201545fdb43fb5eef70b6e73 PMC7236061 32455112 10_1016_j_mec_2020_e00127 S2214030119300495 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-56507d5dc58d7c84f79e46f78238b1576163b517e58423ab9865cdfd94aacbaa3 |
IEDL.DBID | DOA |
ISSN | 2214-0301 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 17:26:08 EDT 2025 Fri Jul 11 14:28:20 EDT 2025 Fri Jul 11 06:46:48 EDT 2025 Thu Jan 02 22:41:37 EST 2025 Thu Apr 24 23:00:36 EDT 2025 Tue Jul 01 04:03:42 EDT 2025 Tue Jul 25 21:03:16 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metabolic switches Metabolic engineering Synthetic biology Autonomous oscillation Biophysical models Controller architecture |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Author. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-56507d5dc58d7c84f79e46f78238b1576163b517e58423ab9865cdfd94aacbaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/48400837201545fdb43fb5eef70b6e73 |
PMID | 32455112 |
PQID | 2407316674 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48400837201545fdb43fb5eef70b6e73 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7236061 proquest_miscellaneous_2439377339 proquest_miscellaneous_2407316674 pubmed_primary_32455112 crossref_citationtrail_10_1016_j_mec_2020_e00127 crossref_primary_10_1016_j_mec_2020_e00127 elsevier_sciencedirect_doi_10_1016_j_mec_2020_e00127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Metabolic engineering communications |
PublicationTitleAlternate | Metab Eng Commun |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chandra, Buzi, Doyle (bib10) 2011; 333 Xiao, Bowen, Liu, Zhang (bib59) 2016; 12 Gupta, Reizman, Reisch, Prather (bib26) 2017; 35 Rugbjerg, Sarup-Lytzen, Nagy, Sommer (bib44) 2018; 115 Lv, Qian, Du, Chen, Zhou, Xu (bib35) 2019; 54 Kong, Meldgin, Collins, Lu (bib30) 2018; 14 Benzinger, Khammash (bib5) 2018; 9 Harrison, Dunlop (bib28) 2012; 3 Bothfeld, Kapov, Tyo (bib7) 2017; 6 Qiao, Wasylenko, Zhou, Xu, Stephanopoulos (bib42) 2017; 35 Xu, Li, Zhang, Stephanopoulos, Koffas (bib66) 2014; 111 Moon, Lou, Tamsir, Stanton, Voigt (bib38) 2012; 491 Albanesi, de Mendoza (bib1) 2016; 3 Xia, Ling, Foo, Chang (bib58) 2019; 37 Oyarzún, Stan (bib41) 2013; 10 Shaw, Yamauchi, Mead, Gowers, Bell, Öling, Larsson, Wigglesworth, Ladds, Ellis (bib47) 2019; 177 Dai, Lee, Roberts, Sysoeva, Huang, Dzuricky, Yang, Zhang, Liu, Chilkoti, You (bib13) 2019; 15 Xu, Qiao, Ahn, Stephanopoulos (bib67) 2016; 113 Venayak, Anesiadis, Cluett, Mahadevan (bib54) 2015; 34 Elowitz, Leibler (bib19) 2000; 403 Zhang, Jensen, Keasling (bib74) 2015; 28 Bashor, Patel, Choubey, Beyzavi, Kondev, Collins, Khalil (bib4) 2019; 364 Sel’kov (bib46) 1968; 4 Aris, Borhani, Cahn, O’Donnell, Tan, Xu (bib3) 2019; 144 Michener, Thodey, Liang, Smolke (bib36) 2012; 14 Xu, Wang, Li, Bhan, Zhang, Koffas (bib69) 2014; 9 Fehér, Libis, Carbonell, Faulon (bib20) 2015; 3 Gao, Hou, Xu, Guo, Chen, Hu, Ye, Edwards, Chen, Chen, Liu (bib22) 2019; 10 Milo, Jorgensen, Moran, Weber, Springer (bib37) 2009; 38 Liu, Marsafari, Wang, Deng, Xu (bib33) 2019; 56 Ceroni, Boo, Furini, Gorochowski, Borkowski, Ladak, Awan, Gilbert, Stan, Ellis (bib9) 2018; 15 Stamatakis, Mantzaris (bib51) 2009; 96 Smolke, Silver (bib48) 2011; 144 Xu, Gu, Wang, Wong, Bower, Collins, Koffas (bib65) 2013; 4 Grozinger, Amos, Gorochowski, Carbonell, Oyarzún, Stoof, Fellermann, Zuliani, Tas, Goñi-Moreno (bib25) 2019; 10 Tamsir, Tabor, Voigt (bib52) 2011; 469 Wang, Dunlop (bib57) 2019; 57 Doong, Gupta, Prather (bib16) 2018; 115 Li, Si, Wang, Zhao (bib31) 2015; 4 Yang, Kim, Yoo, Choi, Ha, Lee, Lee (bib70) 2018; 115 Gao, Xu, Ye, Chen, Liu (bib23) 2019; 27 Solomon, Prather (bib49) 2011 Chen, Bailey (bib12) 1994; 43 Ellis, Wolfgang (bib18) 2012; 19 Calles, Goñi-Moreno, de Lorenzo (bib8) 2019; 15 Nikel, Chavarría, Danchin, de Lorenzo (bib39) 2016; 34 Liu, Xiao, Evans, Zhang (bib32) 2015; 4 Oyarzún, Chaves (bib40) 2015; 12 Rugbjerg, Myling-Petersen, Porse, Sarup-Lytzen, Sommer (bib43) 2018; 9 Davis, Cronan (bib15) 2001; 183 David, Nielsen, Siewers (bib14) 2016; 5 Xu (bib62) 2020; 117 Xu, Bhan, Koffas (bib64) 2013; 24 Xu, Qiao, Stephanopoulos (bib68) 2017; 114 Zhang, Carothers, Keasling (bib73) 2012; 30 Yildirim, Mackey (bib72) 2003; 84 Fung, Wong, Suen, Bulter, Lee, Liao (bib21) 2005; 435 Yang, Lin, Wang, Wu, Zhang, Cheng, Shen, Wang, Chen, Li, Yuan, Yan (bib71) 2018; 9 Soma, Tsuruno, Wada, Yokota, Hanai (bib50) 2014; 23 Andrianantoandro, Basu, Karig, Weiss (bib2) 2006; 2 Gustavsson, van Niekerk, Adiels, Kooi, Goksör, Snoep (bib27) 2014; 281 Keasling (bib29) 2010; 330 Wan, Marsafari, Xu (bib55) 2019; 18 Bier, Bakker, Westerhoff (bib6) 2000; 78 Luo, Reiter, d’Espaux, Wong, Denby, Lechner, Zhang, Grzybowski, Harth, Lin, Lee, Yu, Shin, Deng, Benites, Wang, Baidoo, Chen, Dev, Petzold, Keasling (bib34) 2019; 567 Tsoi, Wu, Zhang, Bewick, Karig, You (bib53) 2018; 115 Xu (bib61) 2018; 53 Gardner, Cantor, Collins (bib24) 2000; 403 Wang, Kitney, Joly, Buck (bib56) 2011; 2 Dunlop, Keasling, Mukhopadhyay (bib17) 2010; 4 Santillán, Mackey, Zeron (bib45) 2007; 92 Xiu, Jang, Jones, Zill Nicholas, Linhardt Robert, Yuan, Jung Gyoo, Koffas Mattheos (bib60) 2017; 114 Chaves, Oyarzún (bib11) 2019; 99 Xu (bib63) 2020 Zhou, Qiao, Gao, Meehan, Li, Zhao, Dorrestein, Vederas, Tang (bib75) 2010 Dai (10.1016/j.mec.2020.e00127_bib13) 2019; 15 Xu (10.1016/j.mec.2020.e00127_bib68) 2017; 114 Doong (10.1016/j.mec.2020.e00127_bib16) 2018; 115 Lv (10.1016/j.mec.2020.e00127_bib35) 2019; 54 Xu (10.1016/j.mec.2020.e00127_bib65) 2013; 4 Gustavsson (10.1016/j.mec.2020.e00127_bib27) 2014; 281 Milo (10.1016/j.mec.2020.e00127_bib37) 2009; 38 Li (10.1016/j.mec.2020.e00127_bib31) 2015; 4 Soma (10.1016/j.mec.2020.e00127_bib50) 2014; 23 Michener (10.1016/j.mec.2020.e00127_bib36) 2012; 14 Wang (10.1016/j.mec.2020.e00127_bib56) 2011; 2 Zhang (10.1016/j.mec.2020.e00127_bib73) 2012; 30 Gao (10.1016/j.mec.2020.e00127_bib22) 2019; 10 Keasling (10.1016/j.mec.2020.e00127_bib29) 2010; 330 Xu (10.1016/j.mec.2020.e00127_bib63) 2020 Andrianantoandro (10.1016/j.mec.2020.e00127_bib2) 2006; 2 Yang (10.1016/j.mec.2020.e00127_bib71) 2018; 9 Gao (10.1016/j.mec.2020.e00127_bib23) 2019; 27 Rugbjerg (10.1016/j.mec.2020.e00127_bib44) 2018; 115 Fehér (10.1016/j.mec.2020.e00127_bib20) 2015; 3 Shaw (10.1016/j.mec.2020.e00127_bib47) 2019; 177 Benzinger (10.1016/j.mec.2020.e00127_bib5) 2018; 9 Oyarzún (10.1016/j.mec.2020.e00127_bib41) 2013; 10 Albanesi (10.1016/j.mec.2020.e00127_bib1) 2016; 3 Gupta (10.1016/j.mec.2020.e00127_bib26) 2017; 35 Tsoi (10.1016/j.mec.2020.e00127_bib53) 2018; 115 Gardner (10.1016/j.mec.2020.e00127_bib24) 2000; 403 Calles (10.1016/j.mec.2020.e00127_bib8) 2019; 15 Oyarzún (10.1016/j.mec.2020.e00127_bib40) 2015; 12 Grozinger (10.1016/j.mec.2020.e00127_bib25) 2019; 10 Xu (10.1016/j.mec.2020.e00127_bib67) 2016; 113 Xu (10.1016/j.mec.2020.e00127_bib62) 2020; 117 Zhou (10.1016/j.mec.2020.e00127_bib75) 2010 Yildirim (10.1016/j.mec.2020.e00127_bib72) 2003; 84 Aris (10.1016/j.mec.2020.e00127_bib3) 2019; 144 Bashor (10.1016/j.mec.2020.e00127_bib4) 2019; 364 Chen (10.1016/j.mec.2020.e00127_bib12) 1994; 43 Qiao (10.1016/j.mec.2020.e00127_bib42) 2017; 35 Liu (10.1016/j.mec.2020.e00127_bib33) 2019; 56 Rugbjerg (10.1016/j.mec.2020.e00127_bib43) 2018; 9 Bothfeld (10.1016/j.mec.2020.e00127_bib7) 2017; 6 Smolke (10.1016/j.mec.2020.e00127_bib48) 2011; 144 Nikel (10.1016/j.mec.2020.e00127_bib39) 2016; 34 Davis (10.1016/j.mec.2020.e00127_bib15) 2001; 183 Kong (10.1016/j.mec.2020.e00127_bib30) 2018; 14 Ceroni (10.1016/j.mec.2020.e00127_bib9) 2018; 15 Xia (10.1016/j.mec.2020.e00127_bib58) 2019; 37 Xu (10.1016/j.mec.2020.e00127_bib69) 2014; 9 David (10.1016/j.mec.2020.e00127_bib14) 2016; 5 Solomon (10.1016/j.mec.2020.e00127_bib49) 2011 Xu (10.1016/j.mec.2020.e00127_bib61) 2018; 53 Xiao (10.1016/j.mec.2020.e00127_bib59) 2016; 12 Venayak (10.1016/j.mec.2020.e00127_bib54) 2015; 34 Santillán (10.1016/j.mec.2020.e00127_bib45) 2007; 92 Ellis (10.1016/j.mec.2020.e00127_bib18) 2012; 19 Zhang (10.1016/j.mec.2020.e00127_bib74) 2015; 28 Fung (10.1016/j.mec.2020.e00127_bib21) 2005; 435 Liu (10.1016/j.mec.2020.e00127_bib32) 2015; 4 Elowitz (10.1016/j.mec.2020.e00127_bib19) 2000; 403 Wan (10.1016/j.mec.2020.e00127_bib55) 2019; 18 Xu (10.1016/j.mec.2020.e00127_bib66) 2014; 111 Sel’kov (10.1016/j.mec.2020.e00127_bib46) 1968; 4 Chandra (10.1016/j.mec.2020.e00127_bib10) 2011; 333 Stamatakis (10.1016/j.mec.2020.e00127_bib51) 2009; 96 Chaves (10.1016/j.mec.2020.e00127_bib11) 2019; 99 Bier (10.1016/j.mec.2020.e00127_bib6) 2000; 78 Yang (10.1016/j.mec.2020.e00127_bib70) 2018; 115 Moon (10.1016/j.mec.2020.e00127_bib38) 2012; 491 Xiu (10.1016/j.mec.2020.e00127_bib60) 2017; 114 Xu (10.1016/j.mec.2020.e00127_bib64) 2013; 24 Dunlop (10.1016/j.mec.2020.e00127_bib17) 2010; 4 Harrison (10.1016/j.mec.2020.e00127_bib28) 2012; 3 Luo (10.1016/j.mec.2020.e00127_bib34) 2019; 567 Tamsir (10.1016/j.mec.2020.e00127_bib52) 2011; 469 Wang (10.1016/j.mec.2020.e00127_bib57) 2019; 57 |
References_xml | – volume: 37 start-page: 107393 year: 2019 ident: bib58 article-title: Synthetic genetic circuits for programmable biological functionalities publication-title: Biotechnol. Adv. – volume: 491 start-page: 249 year: 2012 end-page: 253 ident: bib38 article-title: Genetic programs constructed from layered logic gates in single cells publication-title: Nature – volume: 364 start-page: 593 year: 2019 ident: bib4 article-title: Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies publication-title: Science – volume: 99 start-page: 323 year: 2019 end-page: 332 ident: bib11 article-title: Dynamics of complex feedback architectures in metabolic pathways publication-title: Automatica – volume: 113 start-page: 10848 year: 2016 end-page: 10853 ident: bib67 article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – start-page: 4530 year: 2010 ident: bib75 article-title: Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases involved in hypothemycin biosynthesis publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 354 year: 2012 end-page: 359 ident: bib73 article-title: Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids publication-title: Nat. Biotechnol. – volume: 403 start-page: 335 year: 2000 end-page: 338 ident: bib19 article-title: A synthetic oscillatory network of transcriptional regulators publication-title: Nature – volume: 56 start-page: 60 year: 2019 end-page: 68 ident: bib33 article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica publication-title: Metab. Eng. – volume: 281 start-page: 2784 year: 2014 end-page: 2793 ident: bib27 article-title: Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells publication-title: FEBS J. – volume: 35 start-page: 273 year: 2017 end-page: 279 ident: bib26 article-title: Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit publication-title: Nat. Biotechnol. – volume: 10 start-page: 5250 year: 2019 ident: bib25 article-title: Pathways to cellular supremacy in biocomputing publication-title: Nat. Commun. – volume: 330 start-page: 1355 year: 2010 end-page: 1358 ident: bib29 article-title: Manufacturing molecules through metabolic engineering publication-title: Science – volume: 5 start-page: 224 year: 2016 end-page: 233 ident: bib14 article-title: Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae publication-title: ACS Synth. Biol. – volume: 333 start-page: 187 year: 2011 ident: bib10 article-title: Glycolytic oscillations and limits on robust efficiency publication-title: Science – volume: 10 start-page: 3751 year: 2019 ident: bib22 article-title: Programmable biomolecular switches for rewiring flux in Escherichia coli publication-title: Nat. Commun. – volume: 4 start-page: 132 year: 2015 end-page: 140 ident: bib32 article-title: Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor–actuator publication-title: ACS Synth. Biol. – volume: 114 start-page: 1521 year: 2017 end-page: 1530 ident: bib68 article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica publication-title: Biotechnol. Bioeng. – volume: 18 start-page: 61 year: 2019 ident: bib55 article-title: Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives publication-title: Microb. Cell Factories – volume: 43 start-page: 1190 year: 1994 end-page: 1193 ident: bib12 article-title: Application of the cross-regulation system As A metabolic switch publication-title: Biotechnol. Bioeng. – volume: 12 start-page: 20150618 year: 2015 ident: bib40 article-title: Design of a bistable switch to control cellular uptake publication-title: J. R. Soc. Interface – volume: 24 start-page: 291 year: 2013 end-page: 299 ident: bib64 article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology publication-title: Curr. Opin. Biotechnol. – volume: 9 start-page: 787 year: 2018 ident: bib43 article-title: Diverse genetic error modes constrain large-scale bio-based production publication-title: Nat. Commun. – volume: 4 start-page: 1409 year: 2013 ident: bib65 article-title: Modular optimization of multi-gene pathways for fatty acids production in E. coli publication-title: Nat. Commun. – volume: 14 start-page: 212 year: 2012 end-page: 222 ident: bib36 article-title: Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways publication-title: Metab. Eng. – volume: 115 start-page: 2347 year: 2018 ident: bib44 article-title: Synthetic addiction extends the productive life time of engineered <em>Escherichia coli</em> populations publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 111 start-page: 11299 year: 2014 end-page: 11304 ident: bib66 article-title: Improving fatty acids production by engineering dynamic pathway regulation and metabolic control publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 27 start-page: 1011 year: 2019 end-page: 1024 ident: bib23 article-title: Genetic circuit-assisted smart microbial engineering publication-title: Trends Microbiol. – volume: 469 start-page: 212 year: 2011 end-page: 215 ident: bib52 article-title: Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ publication-title: Nature – volume: 6 start-page: 1296 year: 2017 end-page: 1304 ident: bib7 article-title: A glucose-sensing toggle switch for autonomous, high productivity genetic control publication-title: ACS Synth. Biol. – volume: 3 start-page: 360 year: 2012 ident: bib28 article-title: Synthetic feedback loop model for increasing microbial biofuel production using a biosensor publication-title: Front. Microbiol. – volume: 92 start-page: 3830 year: 2007 end-page: 3842 ident: bib45 article-title: Origin of bistability in the lac operon publication-title: Biophys. J. – volume: 96 start-page: 887 year: 2009 end-page: 906 ident: bib51 article-title: Comparison of deterministic and stochastic models of the lac operon genetic network publication-title: Biophys. J. – volume: 9 start-page: 3521 year: 2018 ident: bib5 article-title: Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation publication-title: Nat. Commun. – volume: 567 start-page: 123 year: 2019 end-page: 126 ident: bib34 article-title: Complete biosynthesis of cannabinoids and their unnatural analogues in yeast publication-title: Nature – volume: 35 start-page: 173 year: 2017 end-page: 177 ident: bib42 article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism publication-title: Nat. Biotechnol. – volume: 177 start-page: 782 year: 2019 end-page: 796 ident: bib47 article-title: Engineering a model cell for rational tuning of GPCR signaling publication-title: Cell – volume: 19 start-page: 1333 year: 2012 end-page: 1339 ident: bib18 article-title: A genetically encoded metabolite sensor for malonyl-CoA publication-title: Chem. Biol. – volume: 57 start-page: 10 year: 2019 end-page: 16 ident: bib57 article-title: Controlling and exploiting cell-to-cell variation in metabolic engineering publication-title: Curr. Opin. Biotechnol. – volume: 115 start-page: 2526 year: 2018 ident: bib53 article-title: Metabolic division of labor in microbial systems publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 9 start-page: 451 year: 2014 end-page: 458 ident: bib69 article-title: Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli publication-title: ACS Chem. Biol. – volume: 4 start-page: 95 year: 2010 end-page: 104 ident: bib17 article-title: A model for improving microbial biofuel production using a synthetic feedback loop publication-title: Syst. Synth. Biol. – volume: 144 start-page: 855 year: 2011 end-page: 859 ident: bib48 article-title: Informing biological design by integration of systems and synthetic biology publication-title: Cell – volume: 10 start-page: 20120671 year: 2013 ident: bib41 article-title: Synthetic gene circuits for metabolic control: design trade-offs and constraints publication-title: J. R. Soc. Interface – volume: 15 start-page: 387 year: 2018 end-page: 393 ident: bib9 article-title: Burden-driven feedback control of gene expression publication-title: Nat. Methods – volume: 14 start-page: 821 year: 2018 end-page: 829 ident: bib30 article-title: Designing microbial consortia with defined social interactions publication-title: Nat. Chem. Biol. – volume: 38 start-page: D750 year: 2009 end-page: D753 ident: bib37 article-title: BioNumbers—the database of key numbers in molecular and cell biology publication-title: Nucleic Acids Res. – volume: 2 start-page: 2006 year: 2006 ident: bib2 article-title: Synthetic biology: new engineering rules for an emerging discipline publication-title: Mol. Syst. Biol. – volume: 3 start-page: 64 year: 2016 ident: bib1 article-title: FapR: from control of membrane lipid homeostasis to a biotechnological tool publication-title: Front. Mol. Biosci. – volume: 78 start-page: 1087 year: 2000 end-page: 1093 ident: bib6 article-title: How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment publication-title: Biophys. J. – volume: 115 start-page: 2964 year: 2018 ident: bib16 article-title: Layered dynamic regulation for improving metabolic pathway productivity in <em>Escherichia coli</em> publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 34 start-page: 142 year: 2015 end-page: 152 ident: bib54 article-title: Engineering metabolism through dynamic control publication-title: Curr. Opin. Biotechnol. – volume: 4 start-page: 1308 year: 2015 end-page: 1315 ident: bib31 article-title: Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening publication-title: ACS Synth. Biol. – volume: 4 start-page: 79 year: 1968 end-page: 86 ident: bib46 article-title: Self-oscillations in glycolysis. 1. A simple kinetic model publication-title: Eur. J. Biochem. – volume: 114 start-page: 2235 year: 2017 end-page: 2244 ident: bib60 article-title: Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures publication-title: Biotechnol. Bioeng. – volume: 2 year: 2011 ident: bib56 article-title: Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology publication-title: Nat. Commun. – volume: 9 start-page: 3043 year: 2018 ident: bib71 article-title: Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis publication-title: Nat. Commun. – volume: 53 start-page: 12 year: 2018 end-page: 19 ident: bib61 article-title: Production of chemicals using dynamic control of metabolic fluxes publication-title: Curr. Opin. Biotechnol. – volume: 403 start-page: 339 year: 2000 end-page: 342 ident: bib24 article-title: Construction of a genetic toggle switch in Escherichia coli publication-title: Nature – volume: 54 start-page: 109 year: 2019 end-page: 116 ident: bib35 article-title: Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction publication-title: Metab. Eng. – volume: 117 start-page: 873 year: 2020 end-page: 878 ident: bib62 article-title: Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture publication-title: Biotechnol. Bioeng. – volume: 3 start-page: 46 year: 2015 ident: bib20 article-title: A sense of balance: experimental investigation and modeling of a malonyl-CoA sensor in Escherichia coli publication-title: Front. Bioeng. Biotechnol. – volume: 144 start-page: 209 year: 2019 end-page: 216 ident: bib3 article-title: Modeling transcriptional factor cross-talk to understand parabolic kinetics, bimodal gene expression and retroactivity in biosensor design publication-title: Biochem. Eng. J. – volume: 15 year: 2019 ident: bib8 article-title: Digitalizing heterologous gene expression in Gram-negative bacteria with a portable on/off module publication-title: Mol. Syst. Biol. – volume: 12 start-page: 339 year: 2016 end-page: 344 ident: bib59 article-title: Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis publication-title: Nat. Chem. Biol. – volume: 115 start-page: 9835 year: 2018 ident: bib70 article-title: Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – year: 2020 ident: bib63 article-title: Dynamics of microbial competition, commensalism and cooperation and its implications for coculture and microbiome engineering publication-title: bioRxiv – volume: 23 start-page: 175 year: 2014 end-page: 184 ident: bib50 article-title: Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch publication-title: Metab. Eng. – volume: 183 start-page: 1499 year: 2001 end-page: 1503 ident: bib15 article-title: Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein publication-title: J. Bacteriol. – volume: 28 start-page: 1 year: 2015 end-page: 8 ident: bib74 article-title: Development of biosensors and their application in metabolic engineering publication-title: Curr. Opin. Chem. Biol. – volume: 34 start-page: 20 year: 2016 end-page: 29 ident: bib39 article-title: From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions publication-title: Curr. Opin. Chem. Biol. – volume: 84 start-page: 2841 year: 2003 end-page: 2851 ident: bib72 article-title: Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data publication-title: Biophys. J. – year: 2011 ident: bib49 article-title: Dynamic Tuning of Glycolytic Flux for Heterologous Production with a Glucose Valve – volume: 15 start-page: 1017 year: 2019 end-page: 1024 ident: bib13 article-title: Versatile biomanufacturing through stimulus-responsive cell–material feedback publication-title: Nat. Chem. Biol. – volume: 435 start-page: 118 year: 2005 end-page: 122 ident: bib21 article-title: A synthetic gene-metabolic oscillator publication-title: Nature – volume: 333 start-page: 187 issue: 6039 year: 2011 ident: 10.1016/j.mec.2020.e00127_bib10 article-title: Glycolytic oscillations and limits on robust efficiency publication-title: Science doi: 10.1126/science.1200705 – volume: 3 start-page: 46 year: 2015 ident: 10.1016/j.mec.2020.e00127_bib20 article-title: A sense of balance: experimental investigation and modeling of a malonyl-CoA sensor in Escherichia coli publication-title: Front. Bioeng. Biotechnol. – volume: 14 start-page: 212 issue: 3 year: 2012 ident: 10.1016/j.mec.2020.e00127_bib36 article-title: Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways publication-title: Metab. Eng. doi: 10.1016/j.ymben.2011.09.004 – volume: 10 start-page: 5250 issue: 1 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib25 article-title: Pathways to cellular supremacy in biocomputing publication-title: Nat. Commun. doi: 10.1038/s41467-019-13232-z – volume: 281 start-page: 2784 issue: 12 year: 2014 ident: 10.1016/j.mec.2020.e00127_bib27 article-title: Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells publication-title: FEBS J. doi: 10.1111/febs.12820 – volume: 10 start-page: 20120671 issue: 78 year: 2013 ident: 10.1016/j.mec.2020.e00127_bib41 article-title: Synthetic gene circuits for metabolic control: design trade-offs and constraints publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0671 – volume: 403 start-page: 339 issue: 6767 year: 2000 ident: 10.1016/j.mec.2020.e00127_bib24 article-title: Construction of a genetic toggle switch in Escherichia coli publication-title: Nature doi: 10.1038/35002131 – volume: 92 start-page: 3830 issue: 11 year: 2007 ident: 10.1016/j.mec.2020.e00127_bib45 article-title: Origin of bistability in the lac operon publication-title: Biophys. J. doi: 10.1529/biophysj.106.101717 – volume: 15 start-page: 387 issue: 5 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib9 article-title: Burden-driven feedback control of gene expression publication-title: Nat. Methods doi: 10.1038/nmeth.4635 – volume: 27 start-page: 1011 issue: 12 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib23 article-title: Genetic circuit-assisted smart microbial engineering publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.07.005 – volume: 115 start-page: 9835 issue: 40 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib70 article-title: Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1808567115 – volume: 56 start-page: 60 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib33 article-title: Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.08.017 – volume: 113 start-page: 10848 issue: 39 year: 2016 ident: 10.1016/j.mec.2020.e00127_bib67 article-title: Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1607295113 – volume: 14 start-page: 821 issue: 8 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib30 article-title: Designing microbial consortia with defined social interactions publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0091-7 – volume: 115 start-page: 2526 issue: 10 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib53 article-title: Metabolic division of labor in microbial systems publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1716888115 – volume: 57 start-page: 10 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib57 article-title: Controlling and exploiting cell-to-cell variation in metabolic engineering publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.08.013 – volume: 4 start-page: 95 issue: 2 year: 2010 ident: 10.1016/j.mec.2020.e00127_bib17 article-title: A model for improving microbial biofuel production using a synthetic feedback loop publication-title: Syst. Synth. Biol. doi: 10.1007/s11693-010-9052-5 – volume: 30 start-page: 354 issue: 4 year: 2012 ident: 10.1016/j.mec.2020.e00127_bib73 article-title: Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2149 – volume: 37 start-page: 107393 issue: 6 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib58 article-title: Synthetic genetic circuits for programmable biological functionalities publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2019.04.015 – volume: 43 start-page: 1190 issue: 11 year: 1994 ident: 10.1016/j.mec.2020.e00127_bib12 article-title: Application of the cross-regulation system As A metabolic switch publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260431124 – volume: 9 start-page: 3521 issue: 1 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib5 article-title: Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation publication-title: Nat. Commun. doi: 10.1038/s41467-018-05882-2 – volume: 9 start-page: 451 issue: 2 year: 2014 ident: 10.1016/j.mec.2020.e00127_bib69 article-title: Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli publication-title: ACS Chem. Biol. doi: 10.1021/cb400623m – volume: 567 start-page: 123 issue: 7746 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib34 article-title: Complete biosynthesis of cannabinoids and their unnatural analogues in yeast publication-title: Nature doi: 10.1038/s41586-019-0978-9 – volume: 9 start-page: 787 issue: 1 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib43 article-title: Diverse genetic error modes constrain large-scale bio-based production publication-title: Nat. Commun. doi: 10.1038/s41467-018-03232-w – volume: 2 year: 2011 ident: 10.1016/j.mec.2020.e00127_bib56 article-title: Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology publication-title: Nat. Commun. doi: 10.1038/ncomms1516 – volume: 177 start-page: 782 issue: 3 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib47 article-title: Engineering a model cell for rational tuning of GPCR signaling publication-title: Cell doi: 10.1016/j.cell.2019.02.023 – volume: 114 start-page: 1521 issue: 7 year: 2017 ident: 10.1016/j.mec.2020.e00127_bib68 article-title: Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26285 – year: 2011 ident: 10.1016/j.mec.2020.e00127_bib49 – year: 2020 ident: 10.1016/j.mec.2020.e00127_bib63 article-title: Dynamics of microbial competition, commensalism and cooperation and its implications for coculture and microbiome engineering publication-title: bioRxiv – volume: 23 start-page: 175 year: 2014 ident: 10.1016/j.mec.2020.e00127_bib50 article-title: Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.02.008 – volume: 469 start-page: 212 issue: 7329 year: 2011 ident: 10.1016/j.mec.2020.e00127_bib52 article-title: Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ publication-title: Nature doi: 10.1038/nature09565 – volume: 144 start-page: 209 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib3 article-title: Modeling transcriptional factor cross-talk to understand parabolic kinetics, bimodal gene expression and retroactivity in biosensor design publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2019.02.005 – volume: 4 start-page: 1308 issue: 12 year: 2015 ident: 10.1016/j.mec.2020.e00127_bib31 article-title: Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00069 – volume: 15 start-page: 1017 issue: 10 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib13 article-title: Versatile biomanufacturing through stimulus-responsive cell–material feedback publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0357-8 – volume: 364 start-page: 593 issue: 6440 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib4 article-title: Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies publication-title: Science doi: 10.1126/science.aau8287 – volume: 96 start-page: 887 issue: 3 year: 2009 ident: 10.1016/j.mec.2020.e00127_bib51 article-title: Comparison of deterministic and stochastic models of the lac operon genetic network publication-title: Biophys. J. doi: 10.1016/j.bpj.2008.10.028 – volume: 330 start-page: 1355 issue: 6009 year: 2010 ident: 10.1016/j.mec.2020.e00127_bib29 article-title: Manufacturing molecules through metabolic engineering publication-title: Science doi: 10.1126/science.1193990 – volume: 115 start-page: 2347 issue: 10 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib44 article-title: Synthetic addiction extends the productive life time of engineered Escherichia coli populations publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1718622115 – volume: 117 start-page: 873 issue: 3 year: 2020 ident: 10.1016/j.mec.2020.e00127_bib62 article-title: Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27230 – start-page: 4530 year: 2010 ident: 10.1016/j.mec.2020.e00127_bib75 article-title: Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases involved in hypothemycin biosynthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100060k – volume: 28 start-page: 1 year: 2015 ident: 10.1016/j.mec.2020.e00127_bib74 article-title: Development of biosensors and their application in metabolic engineering publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2015.05.013 – volume: 3 start-page: 64 year: 2016 ident: 10.1016/j.mec.2020.e00127_bib1 article-title: FapR: from control of membrane lipid homeostasis to a biotechnological tool publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2016.00064 – volume: 403 start-page: 335 issue: 6767 year: 2000 ident: 10.1016/j.mec.2020.e00127_bib19 article-title: A synthetic oscillatory network of transcriptional regulators publication-title: Nature doi: 10.1038/35002125 – volume: 435 start-page: 118 issue: 7038 year: 2005 ident: 10.1016/j.mec.2020.e00127_bib21 article-title: A synthetic gene-metabolic oscillator publication-title: Nature doi: 10.1038/nature03508 – volume: 4 start-page: 132 issue: 2 year: 2015 ident: 10.1016/j.mec.2020.e00127_bib32 article-title: Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor–actuator publication-title: ACS Synth. Biol. doi: 10.1021/sb400158w – volume: 99 start-page: 323 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib11 article-title: Dynamics of complex feedback architectures in metabolic pathways publication-title: Automatica doi: 10.1016/j.automatica.2018.10.046 – volume: 491 start-page: 249 issue: 7423 year: 2012 ident: 10.1016/j.mec.2020.e00127_bib38 article-title: Genetic programs constructed from layered logic gates in single cells publication-title: Nature doi: 10.1038/nature11516 – volume: 4 start-page: 1409 year: 2013 ident: 10.1016/j.mec.2020.e00127_bib65 article-title: Modular optimization of multi-gene pathways for fatty acids production in E. coli publication-title: Nat. Commun. doi: 10.1038/ncomms2425 – volume: 12 start-page: 20150618 issue: 113 year: 2015 ident: 10.1016/j.mec.2020.e00127_bib40 article-title: Design of a bistable switch to control cellular uptake publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.0618 – volume: 3 start-page: 360 year: 2012 ident: 10.1016/j.mec.2020.e00127_bib28 article-title: Synthetic feedback loop model for increasing microbial biofuel production using a biosensor publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00360 – volume: 24 start-page: 291 issue: 2 year: 2013 ident: 10.1016/j.mec.2020.e00127_bib64 article-title: Engineering plant metabolism into microbes: from systems biology to synthetic biology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2012.08.010 – volume: 6 start-page: 1296 issue: 7 year: 2017 ident: 10.1016/j.mec.2020.e00127_bib7 article-title: A glucose-sensing toggle switch for autonomous, high productivity genetic control publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00257 – volume: 5 start-page: 224 issue: 3 year: 2016 ident: 10.1016/j.mec.2020.e00127_bib14 article-title: Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00161 – volume: 78 start-page: 1087 issue: 3 year: 2000 ident: 10.1016/j.mec.2020.e00127_bib6 article-title: How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76667-7 – volume: 115 start-page: 2964 issue: 12 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib16 article-title: Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1716920115 – volume: 54 start-page: 109 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib35 article-title: Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.03.009 – volume: 34 start-page: 20 year: 2016 ident: 10.1016/j.mec.2020.e00127_bib39 article-title: From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.05.011 – volume: 144 start-page: 855 issue: 6 year: 2011 ident: 10.1016/j.mec.2020.e00127_bib48 article-title: Informing biological design by integration of systems and synthetic biology publication-title: Cell doi: 10.1016/j.cell.2011.02.020 – volume: 84 start-page: 2841 issue: 5 year: 2003 ident: 10.1016/j.mec.2020.e00127_bib72 article-title: Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)70013-7 – volume: 10 start-page: 3751 issue: 1 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib22 article-title: Programmable biomolecular switches for rewiring flux in Escherichia coli publication-title: Nat. Commun. doi: 10.1038/s41467-019-11793-7 – volume: 15 issue: 12 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib8 article-title: Digitalizing heterologous gene expression in Gram-negative bacteria with a portable on/off module publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188777 – volume: 183 start-page: 1499 issue: 4 year: 2001 ident: 10.1016/j.mec.2020.e00127_bib15 article-title: Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein publication-title: J. Bacteriol. doi: 10.1128/JB.183.4.1499-1503.2001 – volume: 9 start-page: 3043 issue: 1 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib71 article-title: Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis publication-title: Nat. Commun. doi: 10.1038/s41467-018-05466-0 – volume: 53 start-page: 12 year: 2018 ident: 10.1016/j.mec.2020.e00127_bib61 article-title: Production of chemicals using dynamic control of metabolic fluxes publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.10.009 – volume: 2 start-page: 2006 year: 2006 ident: 10.1016/j.mec.2020.e00127_bib2 article-title: Synthetic biology: new engineering rules for an emerging discipline publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100073 – volume: 4 start-page: 79 issue: 1 year: 1968 ident: 10.1016/j.mec.2020.e00127_bib46 article-title: Self-oscillations in glycolysis. 1. A simple kinetic model publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1968.tb00175.x – volume: 34 start-page: 142 issue: Suppl. C year: 2015 ident: 10.1016/j.mec.2020.e00127_bib54 article-title: Engineering metabolism through dynamic control publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.12.022 – volume: 12 start-page: 339 issue: 5 year: 2016 ident: 10.1016/j.mec.2020.e00127_bib59 article-title: Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2046 – volume: 35 start-page: 173 issue: 2 year: 2017 ident: 10.1016/j.mec.2020.e00127_bib42 article-title: Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3763 – volume: 114 start-page: 2235 issue: 10 year: 2017 ident: 10.1016/j.mec.2020.e00127_bib60 article-title: Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26340 – volume: 35 start-page: 273 issue: 3 year: 2017 ident: 10.1016/j.mec.2020.e00127_bib26 article-title: Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3796 – volume: 111 start-page: 11299 issue: 31 year: 2014 ident: 10.1016/j.mec.2020.e00127_bib66 article-title: Improving fatty acids production by engineering dynamic pathway regulation and metabolic control publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1406401111 – volume: 18 start-page: 61 issue: 1 year: 2019 ident: 10.1016/j.mec.2020.e00127_bib55 article-title: Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives publication-title: Microb. Cell Factories doi: 10.1186/s12934-019-1111-3 – volume: 19 start-page: 1333 issue: 10 year: 2012 ident: 10.1016/j.mec.2020.e00127_bib18 article-title: A genetically encoded metabolite sensor for malonyl-CoA publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2012.08.018 – volume: 38 start-page: D750 issue: Suppl. l_1 year: 2009 ident: 10.1016/j.mec.2020.e00127_bib37 article-title: BioNumbers—the database of key numbers in molecular and cell biology publication-title: Nucleic Acids Res. |
SSID | ssj0001361411 |
Score | 2.1794562 |
Snippet | Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-controlled biological functions. Biophysical models... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e00127 |
SubjectTerms | artificial intelligence Autonomous oscillation binding capacity Biophysical models Controller architecture differential equation enzymes Escherichia coli fatty acids gene expression malonyl coenzyme A Metabolic engineering Metabolic switches protein degradation repressor proteins Special issue on The Natural Product Issue edited by Greg Stephanopoulos, Anthony Sinskey and Kang Zhou Synthetic biology transactivators |
Title | Branch point control at malonyl-CoA node: A computational framework to uncover the design principles of an ideal genetic-metabolic switch |
URI | https://dx.doi.org/10.1016/j.mec.2020.e00127 https://www.ncbi.nlm.nih.gov/pubmed/32455112 https://www.proquest.com/docview/2407316674 https://www.proquest.com/docview/2439377339 https://pubmed.ncbi.nlm.nih.gov/PMC7236061 https://doaj.org/article/48400837201545fdb43fb5eef70b6e73 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQucAB8U0oVIPECSmQxHaccNtWVBUVHBAVvVn-VFPtJis2Fb-h_5qxk6w2IC0XrrvOrux5ybyxX94Q8pbr3FJv61QUlqb4wMPnoPUmzU3FKxMcp3x4d_jL1_Lsgn2-5Jc7rb6CJmywBx4W7gPDCgRpgihisvdWM-o1d86LTJdORJ_PrM52iqm4u0Ix7cTmu0WRszTw_ulIM4q7Vi7YFxbZexfPXmdJKXr3z3LT39zzTwnlTk46fUgejGQSFsMkHpE7rn1M7u9YDD4ht8ehc8YVrLum7WEUpoPqYaWWQZSennQLaDvrPsICTGzxMG4Pgp90W9B3gOkviD0B-SLYqPqA9bRPv4HOg2qhscg6AREZXoxMV65HgC0bA5tfDWLjKbk4_fT95Cwd2y-kBsuWPkWqlwnLreGVFaZiXtSOlR4pBa10jnUKUjnNc-GQwxRU6boqubEYd6aU0UrRZ-Sg7Vr3gkBtPKPOU0wMmtWFr7koMHYWg-iorlVCsmn9pRm9yUOLjKWcRGjXEkMmQ8jkELKEvNtesh6MOfYNPg5B3Q4MntrxA0SaHJEm_4W0hLAJEnKkJwPtwJ9q9v33mwk-Em_dcB6jWtfdbGQopmleloLtGxMcCwWldUKeD5DbzgK5MA98OSFiBsbZNOfftM1VtBAXBcXKNX_5P9blkNwL0x30c6_IQf_zxr1GptbrI3J3cf7tx_lRvDl_A2wkPS4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Branch+point+control+at+malonyl-CoA+node%3A+A+computational+framework+to+uncover+the+design+principles+of+an+ideal+genetic-metabolic+switch&rft.jtitle=Metabolic+engineering+communications&rft.au=Xu%2C+Peng&rft.date=2020-06-01&rft.eissn=2214-0301&rft.volume=10&rft.spage=e00127&rft_id=info:doi/10.1016%2Fj.mec.2020.e00127&rft_id=info%3Apmid%2F32455112&rft.externalDocID=32455112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon |