Hybrid anion exchanger for trace phosphate removal from water and wastewater
Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; t...
Saved in:
Published in | Water research (Oxford) Vol. 41; no. 7; pp. 1603 - 1613 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.2007
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico–chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid–base interactions. Experimental results demonstrate that HAIX's phosphate–sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity. |
---|---|
AbstractList | The development and performance of hybrid anion exchanger for trace phosphate removal from water and wastewater were studied. HAIX combined durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. The results showed that HAIX selectively removed phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. The results demonstrated that HAIX's phosphate-sulfate separation factor was over two orders of magnitude greater than that of currently available commercial ion exchange resins. The results concluded that phosphate removal by HAIX is practically independent of seasonal fluctuation in ambient temperature. Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity. Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity.Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity. |
Author | Blaney, Lee M. SenGupta, Arup K. Cinar, Suna |
Author_xml | – sequence: 1 givenname: Lee M. surname: Blaney fullname: Blaney, Lee M. – sequence: 2 givenname: Suna surname: Cinar fullname: Cinar, Suna – sequence: 3 givenname: Arup K. surname: SenGupta fullname: SenGupta, Arup K. email: arup.sengupta@lehigh.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18611769$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17306856$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS3Uik4Lb4BQNsAq6fVf4rCohCqgSCN1U9aWY98wHiXxYGcKfXtcMoDEYrqyLX_n-MrnnJOTKUxIyCsKFQVaX26rH2aOmCoG0FRAKwD1jKyoatqSCaFOyApA8JJyKc7IeUpbAGCMt8_JGW041ErWK7K-eeiid4WZfJgK_Gk3ZvqGsehDLOZoLBa7TUi7jZmxiDiGezMUfQxjkR_PmJlc3qUZfx9fkNPeDAlfHtYL8vXTx7vrm3J9-_nL9Yd1aaWEuZQcKfCms8y1CrEWqnacSyWFaPNFHpr3SrTCUIdtpwSaGpijJuuwY07yC_Ju8d3F8H2PadajTxaHwUwY9kk3UjRZ0taZfHucBCYVo-pJkIFoQTB4EqRCMZmjyODrA7jvRnR6F_1o4oP-8_cZeHMATLJm6KOZrE__OFVT2tRt5t4vnI0hpYi9tn42c84rB-QHTUE_FkJv9VII_VgIDVQvU4j_xH_9j8uuFhnmGO89Rp2sx8mi8xHtrF3wxw1-AegNz4k |
CODEN | WATRAG |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_112571 crossref_primary_10_1002_chem_202002170 crossref_primary_10_1016_j_cej_2021_131411 crossref_primary_10_1080_19443994_2015_1133327 crossref_primary_10_1007_s11270_013_1835_3 crossref_primary_10_1002_adma_201401376 crossref_primary_10_1002_wer_1498 crossref_primary_10_1016_j_jhazmat_2009_06_038 crossref_primary_10_1007_s13762_017_1360_9 crossref_primary_10_1007_s42114_024_00941_3 crossref_primary_10_1016_j_jclepro_2019_117770 crossref_primary_10_1016_j_colsurfa_2020_124417 crossref_primary_10_1016_j_watres_2011_06_009 crossref_primary_10_1016_j_cej_2012_11_067 crossref_primary_10_1016_j_cej_2021_132754 crossref_primary_10_1016_j_micromeso_2014_07_010 crossref_primary_10_1021_acsestengg_0c00253 crossref_primary_10_1039_C6EN00661B crossref_primary_10_1016_j_watres_2016_01_033 crossref_primary_10_1016_j_cej_2015_01_070 crossref_primary_10_1016_j_scitotenv_2019_05_380 crossref_primary_10_1016_j_comptc_2012_11_002 crossref_primary_10_1007_s11051_011_0521_x crossref_primary_10_1016_j_jclepro_2023_136451 crossref_primary_10_1039_C7EW00280G crossref_primary_10_1002_aic_11915 crossref_primary_10_1016_j_cej_2015_03_003 crossref_primary_10_1002_app_29363 crossref_primary_10_1038_s41545_021_00142_1 crossref_primary_10_1016_j_cej_2012_02_039 crossref_primary_10_1016_j_arabjc_2021_103354 crossref_primary_10_1016_j_jhazmat_2014_10_048 crossref_primary_10_53365_nrfhh_144289 crossref_primary_10_1039_c2ee21818f crossref_primary_10_1016_j_colsurfa_2015_10_017 crossref_primary_10_1002_jctb_4763 crossref_primary_10_1007_s42247_024_00734_w crossref_primary_10_1016_j_cscee_2020_100061 crossref_primary_10_19261_cjm_2019_650 crossref_primary_10_1016_j_jiec_2014_10_013 crossref_primary_10_1016_j_cej_2021_129913 crossref_primary_10_1021_acs_est_0c02272 crossref_primary_10_1007_s11270_024_07485_8 crossref_primary_10_1021_acsestwater_1c00126 crossref_primary_10_2965_jwet_2014_447 crossref_primary_10_1007_s11270_012_1241_2 crossref_primary_10_1002_wer_1395 crossref_primary_10_1016_j_ultsonch_2016_06_022 crossref_primary_10_1016_j_ijbiomac_2017_02_100 crossref_primary_10_1002_pol_20240966 crossref_primary_10_1080_01496395_2017_1378678 crossref_primary_10_1016_j_cej_2011_03_005 crossref_primary_10_1016_j_ecoleng_2014_09_112 crossref_primary_10_1016_j_watres_2018_08_040 crossref_primary_10_1016_j_colsurfa_2024_133476 crossref_primary_10_1016_j_jece_2024_112905 crossref_primary_10_1007_s11356_020_09400_0 crossref_primary_10_1021_acs_est_6b03021 crossref_primary_10_1039_C7EW00478H crossref_primary_10_1021_acs_accounts_8b00614 crossref_primary_10_1007_s10311_021_01239_2 crossref_primary_10_1016_j_wasman_2009_10_012 crossref_primary_10_1016_j_watres_2011_03_044 crossref_primary_10_1039_D1CE00935D crossref_primary_10_1080_10643389_2018_1443667 crossref_primary_10_1016_j_trac_2023_117233 crossref_primary_10_2166_wst_2020_023 crossref_primary_10_1016_j_jece_2015_11_032 crossref_primary_10_1007_s12665_013_2618_2 crossref_primary_10_1016_j_eti_2017_01_002 crossref_primary_10_1021_acs_est_3c04016 crossref_primary_10_1016_j_dyepig_2018_10_061 crossref_primary_10_1080_09593330_2017_1354076 crossref_primary_10_1016_j_chemosphere_2024_143351 crossref_primary_10_3390_w13040517 crossref_primary_10_1016_j_watres_2007_10_044 crossref_primary_10_1155_2022_9944126 crossref_primary_10_3390_ijms24119754 crossref_primary_10_1007_s11270_009_0221_7 crossref_primary_10_3390_w10070869 crossref_primary_10_1080_09593330_2011_632651 crossref_primary_10_3390_ijerph17207693 crossref_primary_10_3390_membranes2040804 crossref_primary_10_4028_www_scientific_net_SSP_299_316 crossref_primary_10_1039_D3RA08201F crossref_primary_10_1007_s11356_021_12681_8 crossref_primary_10_1039_C5CE02568K crossref_primary_10_1007_s10098_012_0527_9 crossref_primary_10_1016_j_rcradv_2023_200138 crossref_primary_10_1016_j_scitotenv_2017_10_077 crossref_primary_10_1016_j_scitotenv_2019_01_312 crossref_primary_10_1016_j_chemosphere_2014_02_024 crossref_primary_10_1016_j_jwpe_2020_101875 crossref_primary_10_1021_acssuschemeng_9b06915 crossref_primary_10_1080_20550324_2017_1329983 crossref_primary_10_31202_ecjse_948309 crossref_primary_10_1016_j_ese_2021_100078 crossref_primary_10_1016_j_jclepro_2019_02_020 crossref_primary_10_1016_j_colsurfa_2019_123881 crossref_primary_10_1016_j_jpba_2009_03_037 crossref_primary_10_1016_j_rser_2018_02_042 crossref_primary_10_1021_acs_est_5b04630 crossref_primary_10_1021_acs_est_5b00150 crossref_primary_10_1002_slct_202104577 crossref_primary_10_1002_wer_1469 crossref_primary_10_1016_j_watres_2023_120930 crossref_primary_10_1089_ees_2018_0436 crossref_primary_10_3389_fenvs_2023_1226101 crossref_primary_10_1016_j_chemosphere_2019_03_087 crossref_primary_10_1021_acs_est_6b01239 crossref_primary_10_1371_journal_pone_0290714 crossref_primary_10_1021_am404031q crossref_primary_10_1016_j_cej_2018_09_202 crossref_primary_10_1021_acssuschemeng_9b01357 crossref_primary_10_1016_j_jwpe_2020_101405 crossref_primary_10_1016_j_resconrec_2015_09_016 crossref_primary_10_1016_S1001_0742_10_60645_6 crossref_primary_10_3390_w15203541 crossref_primary_10_1080_01496395_2018_1547315 crossref_primary_10_1016_j_colsurfa_2019_123854 crossref_primary_10_1021_acs_estlett_8b00487 crossref_primary_10_1007_s11783_013_0508_1 crossref_primary_10_1016_j_desal_2011_07_047 crossref_primary_10_1039_c2cc33707j crossref_primary_10_1002_anie_201600185 crossref_primary_10_1016_j_jece_2017_02_005 crossref_primary_10_1016_j_cej_2011_11_096 crossref_primary_10_1016_j_watres_2014_11_052 crossref_primary_10_1016_j_jclepro_2020_124652 crossref_primary_10_1016_j_chemosphere_2016_12_051 crossref_primary_10_1080_09593330_2024_2362993 crossref_primary_10_1016_j_chemosphere_2015_07_023 crossref_primary_10_1021_cm302585r crossref_primary_10_1016_j_cherd_2014_05_001 crossref_primary_10_1016_j_matchemphys_2015_05_021 crossref_primary_10_1021_acs_est_9b05569 crossref_primary_10_1016_j_jece_2017_06_015 crossref_primary_10_1016_j_watres_2009_06_055 crossref_primary_10_1007_s00604_009_0252_1 crossref_primary_10_1080_10643389_2012_741311 crossref_primary_10_1080_19443994_2015_1088805 crossref_primary_10_1093_femsle_fnw240 crossref_primary_10_1016_j_jcis_2007_12_012 crossref_primary_10_1002_ange_201709197 crossref_primary_10_1016_j_cej_2015_01_051 crossref_primary_10_1016_j_scitotenv_2025_178829 crossref_primary_10_1080_19443994_2015_1100555 crossref_primary_10_1016_j_carbpol_2016_08_025 crossref_primary_10_1016_j_jenvman_2024_122719 crossref_primary_10_1021_acsestwater_0c00069 crossref_primary_10_1002_ange_201307650 crossref_primary_10_1016_j_jhazmat_2019_06_003 crossref_primary_10_1002_ange_201600185 crossref_primary_10_1016_j_colsurfa_2021_126813 crossref_primary_10_1016_j_clay_2018_08_018 crossref_primary_10_1016_j_desal_2013_05_014 crossref_primary_10_1016_j_jiec_2013_07_009 crossref_primary_10_1061_JSWBAY_0000914 crossref_primary_10_1007_s10450_010_9220_7 crossref_primary_10_3390_pr11010111 crossref_primary_10_1016_j_ccr_2018_08_014 crossref_primary_10_1016_j_jclepro_2019_01_215 crossref_primary_10_1007_s11356_019_04553_z crossref_primary_10_1039_D4EW00125G crossref_primary_10_1016_j_impact_2016_09_004 crossref_primary_10_1002_anie_201709197 crossref_primary_10_1016_j_colsurfa_2021_126260 crossref_primary_10_2166_wst_2015_438 crossref_primary_10_1016_j_jwpe_2024_106851 crossref_primary_10_1002_anie_201307650 crossref_primary_10_1016_j_cej_2012_04_036 crossref_primary_10_1016_j_jes_2021_05_041 crossref_primary_10_1021_acs_iecr_7b00352 crossref_primary_10_1021_acsami_0c16477 crossref_primary_10_1080_01919512_2016_1204225 crossref_primary_10_1016_j_watres_2013_08_015 crossref_primary_10_1061__ASCE_EE_1943_7870_0001934 crossref_primary_10_1007_s00289_018_2555_z crossref_primary_10_1016_j_cej_2023_141625 crossref_primary_10_1007_s11356_022_22525_8 crossref_primary_10_1016_j_cej_2024_157498 crossref_primary_10_1016_j_scitotenv_2022_159283 crossref_primary_10_1016_j_jcis_2013_07_038 crossref_primary_10_1016_j_pnsc_2023_12_016 crossref_primary_10_1016_j_watres_2013_05_037 crossref_primary_10_1016_j_jece_2020_104793 crossref_primary_10_1016_j_wroa_2018_09_003 crossref_primary_10_1139_er_2015_0080 crossref_primary_10_1016_j_jenvman_2020_111048 crossref_primary_10_1080_19443994_2013_811107 crossref_primary_10_1016_j_cej_2012_07_125 crossref_primary_10_5004_dwt_2017_20890 crossref_primary_10_1007_s00289_015_1479_0 crossref_primary_10_1016_j_chemosphere_2021_131581 crossref_primary_10_1016_j_cej_2021_129626 crossref_primary_10_1016_j_cej_2023_144683 crossref_primary_10_3390_ma17051168 crossref_primary_10_1016_j_ijbiomac_2013_09_020 crossref_primary_10_1016_j_cej_2020_127821 crossref_primary_10_1016_j_jhazmat_2020_122960 crossref_primary_10_1016_j_jclepro_2018_03_015 crossref_primary_10_1080_19443994_2014_915385 crossref_primary_10_1016_j_watres_2020_116299 crossref_primary_10_1016_j_seppur_2025_131433 crossref_primary_10_1002_bit_22612 crossref_primary_10_1021_acs_jpca_0c02515 crossref_primary_10_1088_1757_899X_763_1_012027 crossref_primary_10_1016_j_powtec_2017_08_041 crossref_primary_10_1016_j_watres_2014_11_012 crossref_primary_10_1016_j_cej_2013_09_021 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000325 crossref_primary_10_1260_0263_6174_28_7_611 crossref_primary_10_1007_s11051_011_0715_2 crossref_primary_10_1016_j_cej_2014_07_015 crossref_primary_10_1080_19443994_2015_1061456 crossref_primary_10_1007_s11270_012_1331_1 crossref_primary_10_1016_j_watres_2013_05_044 crossref_primary_10_1039_C5AY02319J crossref_primary_10_1016_j_watres_2022_118102 crossref_primary_10_1007_s13762_018_2058_3 crossref_primary_10_1089_ees_2007_0222 crossref_primary_10_1016_j_cej_2020_126649 crossref_primary_10_1039_C5EW00009B crossref_primary_10_1080_19443994_2015_1070763 crossref_primary_10_1016_j_cej_2012_11_006 crossref_primary_10_1080_01932691_2020_1845716 crossref_primary_10_1126_science_aab0530 crossref_primary_10_1038_s41545_022_00188_9 crossref_primary_10_1080_01496395_2015_1031400 crossref_primary_10_1016_j_ccst_2024_100319 crossref_primary_10_1016_j_envres_2019_05_022 crossref_primary_10_5004_dwt_2020_25825 crossref_primary_10_1007_s11356_022_21637_5 crossref_primary_10_1016_j_aquaeng_2016_04_003 crossref_primary_10_1016_j_jece_2021_106916 crossref_primary_10_1080_01496395_2012_658487 crossref_primary_10_1016_j_coche_2024_101080 crossref_primary_10_1002_wer_1563 crossref_primary_10_1016_j_desal_2010_06_030 crossref_primary_10_1016_j_scitotenv_2021_146834 crossref_primary_10_1016_j_watres_2018_06_035 crossref_primary_10_1016_j_chemosphere_2019_01_085 crossref_primary_10_1021_acsestengg_1c00506 crossref_primary_10_3390_pr10102122 crossref_primary_10_1016_j_apgeochem_2013_07_016 crossref_primary_10_1016_j_biortech_2013_03_032 crossref_primary_10_1039_b818248e crossref_primary_10_1080_01496395_2011_627904 crossref_primary_10_3390_soilsystems4020036 crossref_primary_10_1016_j_seppur_2018_10_063 crossref_primary_10_5004_dwt_2017_21032 crossref_primary_10_1016_j_cej_2017_05_147 crossref_primary_10_1016_j_jclepro_2019_04_325 crossref_primary_10_1016_j_scitotenv_2024_175509 crossref_primary_10_1021_acsenvironau_3c00069 crossref_primary_10_1021_acs_inorgchem_7b00513 crossref_primary_10_1007_s11270_020_04816_3 crossref_primary_10_1021_es505439p crossref_primary_10_1080_19443994_2014_951966 crossref_primary_10_1016_j_jhazmat_2021_125464 crossref_primary_10_1002_jctb_5361 crossref_primary_10_1021_acsestengg_2c00366 crossref_primary_10_1021_acs_iecr_7b01523 crossref_primary_10_1016_j_chemosphere_2016_05_080 crossref_primary_10_1016_j_chemosphere_2021_131259 crossref_primary_10_1016_j_watres_2015_04_039 crossref_primary_10_1007_s11270_012_1262_x crossref_primary_10_1016_j_micromeso_2012_01_020 crossref_primary_10_1016_j_watres_2009_02_010 crossref_primary_10_1016_j_jiec_2013_11_016 crossref_primary_10_1002_ep_11978 crossref_primary_10_1002_slct_201901519 crossref_primary_10_1016_j_cej_2018_04_086 crossref_primary_10_1080_10643389_2011_604262 crossref_primary_10_1007_s13369_017_2432_3 crossref_primary_10_1016_j_chemosphere_2015_05_002 crossref_primary_10_1038_s41598_019_39035_2 crossref_primary_10_1016_j_cej_2011_02_071 crossref_primary_10_1016_j_jece_2015_01_010 crossref_primary_10_1021_acs_est_8b05177 crossref_primary_10_1016_j_desal_2007_10_062 crossref_primary_10_1016_j_colsurfa_2008_10_023 crossref_primary_10_1016_j_seppur_2015_12_022 crossref_primary_10_1016_j_desal_2020_114459 crossref_primary_10_1021_ie404291q crossref_primary_10_1016_j_ijbiomac_2025_141276 crossref_primary_10_1016_S1003_6326_13_62886_1 crossref_primary_10_4491_eer_2009_14_3_164 crossref_primary_10_3390_polym12102415 crossref_primary_10_1007_s11356_024_35447_4 crossref_primary_10_1016_j_apt_2019_05_020 crossref_primary_10_1038_s41545_020_00097_9 crossref_primary_10_1080_07366299_2011_573436 crossref_primary_10_1149_2_0701503jes crossref_primary_10_1016_j_scitotenv_2020_138892 crossref_primary_10_1016_j_watres_2018_09_005 crossref_primary_10_1088_1755_1315_1265_1_012006 crossref_primary_10_4028_www_scientific_net_DF_23_104 crossref_primary_10_1021_acs_langmuir_3c03369 crossref_primary_10_1016_j_watres_2009_10_027 crossref_primary_10_1016_j_chemosphere_2020_127938 crossref_primary_10_1016_j_chemosphere_2024_143648 crossref_primary_10_52679_978_81_952885_8_8_10 crossref_primary_10_1039_C8EW00938D crossref_primary_10_1016_j_cej_2013_01_088 crossref_primary_10_1016_j_watres_2011_06_020 crossref_primary_10_1007_s11814_011_0212_4 crossref_primary_10_1016_j_scitotenv_2021_150288 crossref_primary_10_2116_analsci_28_887 crossref_primary_10_1016_j_jhazmat_2011_01_092 crossref_primary_10_1016_j_jenvman_2023_119553 crossref_primary_10_1016_j_jwpe_2018_10_008 crossref_primary_10_1007_s11356_021_15724_2 crossref_primary_10_1016_j_watres_2020_116167 crossref_primary_10_1016_j_jhazmat_2012_01_019 crossref_primary_10_1016_j_cej_2009_02_036 crossref_primary_10_1016_j_jclepro_2020_123960 crossref_primary_10_1021_es9024029 crossref_primary_10_1016_j_jhazmat_2011_04_021 crossref_primary_10_1007_s40710_016_0139_1 crossref_primary_10_1002_wer_1080 crossref_primary_10_1021_acsami_1c22316 crossref_primary_10_1016_j_chemosphere_2011_02_001 crossref_primary_10_1021_accountsmr_3c00290 crossref_primary_10_2166_wst_2018_230 crossref_primary_10_1016_j_reactfunctpolym_2015_06_002 crossref_primary_10_1007_s41742_024_00590_w crossref_primary_10_1016_j_cej_2023_145287 crossref_primary_10_1590_0001_3765202020190440 crossref_primary_10_1007_s11356_021_12586_6 crossref_primary_10_1016_j_talanta_2012_05_021 crossref_primary_10_1016_j_jwpe_2017_07_019 crossref_primary_10_5004_dwt_2017_20776 crossref_primary_10_1021_acs_inorgchem_7b00323 crossref_primary_10_1016_j_cej_2011_09_129 crossref_primary_10_1016_j_jcis_2022_01_158 crossref_primary_10_1021_es903658h crossref_primary_10_1080_19443994_2014_905974 crossref_primary_10_1007_s10450_018_9939_0 crossref_primary_10_1016_j_watres_2016_06_030 crossref_primary_10_1007_s13201_024_02332_x crossref_primary_10_1016_j_jece_2013_07_031 crossref_primary_10_5004_dwt_2019_23594 crossref_primary_10_1016_j_watres_2018_01_061 crossref_primary_10_1016_j_jwpe_2020_101347 crossref_primary_10_1002_jctb_4629 crossref_primary_10_5004_dwt_2017_0287 crossref_primary_10_1016_j_cej_2022_140522 crossref_primary_10_1016_j_apsusc_2016_11_214 crossref_primary_10_1016_j_carbpol_2017_11_087 crossref_primary_10_1016_j_jcis_2022_11_127 crossref_primary_10_1016_j_wasman_2016_08_032 crossref_primary_10_1038_s44221_024_00305_7 crossref_primary_10_1080_09593330_2016_1141999 crossref_primary_10_1016_j_cej_2019_122671 crossref_primary_10_1039_C5EW00142K |
ContentType | Journal Article |
Copyright | 2007 Elsevier Ltd 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7QH 7TV 7UA F1W H96 L.G 7X8 |
DOI | 10.1016/j.watres.2007.01.008 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Aqualine Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Environment Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Water Resources Abstracts MEDLINE - Academic |
DatabaseTitleList | Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE Environment Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-2448 |
EndPage | 1613 |
ExternalDocumentID | 17306856 18611769 10_1016_j_watres_2007_01_008 S0043135407000206 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M -DZ -~X .55 .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29R 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACKIV ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 WUQ X7M XOL XPP YHZ YV5 ZCA ZMT ZXP ZY4 ~02 ~A~ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM PKN 7ST C1K SOI 7QH 7TV 7UA F1W H96 L.G 7X8 |
ID | FETCH-LOGICAL-c550t-53e1037bc2d98ee6486d335854491030433f8494a1de9b84ea602d1a53eeb2d53 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 |
IngestDate | Fri Jul 11 07:08:01 EDT 2025 Sun Aug 24 03:38:15 EDT 2025 Fri Jul 11 12:04:57 EDT 2025 Sun Aug 24 03:50:08 EDT 2025 Wed Feb 19 01:44:02 EST 2025 Mon Jul 21 09:16:09 EDT 2025 Tue Jul 01 03:53:13 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Fri Feb 23 02:28:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Nutrient removal Hybrid anion exchanger Selective phosphate removal Phosphate Tertiary treatment Ion exchange Hydrated iron oxide Eutrophication Phosphates Nanoparticle Anionic resin Biological method Nitrates Ultrafine particle Sulfates Waste water Chlorides Tertiary purification Reactor Ion exchange resin Operating cost Sorption Iron III Industrial waste water Aerosols Air pollution Water pollution Kinetics Waste water purification Sorbent |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-53e1037bc2d98ee6486d335854491030433f8494a1de9b84ea602d1a53eeb2d53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 17306856 |
PQID | 14825008 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_754760296 proquest_miscellaneous_70258218 proquest_miscellaneous_20490420 proquest_miscellaneous_14825008 pubmed_primary_17306856 pascalfrancis_primary_18611769 crossref_citationtrail_10_1016_j_watres_2007_01_008 crossref_primary_10_1016_j_watres_2007_01_008 elsevier_sciencedirect_doi_10_1016_j_watres_2007_01_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-01 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Jenkins, Hermanowicz (bib16) 1991 McCormick, O’Dell (bib23) 1996; 15 SenGupta, A.K., Cumbal, L., 2005. Method of manufacture and use of Hybrid nion exchanger for selective removal of contaminating ligands from fluids. US Patent 20050156136. Stumm, Morgan (bib36) 1995 Kang, Choo, Lim (bib17) 2003; 38 Kney, Dreibelbis, Zhao, SenGupta (bib18) 2002 Genz, Kornmüller, Jekel (bib11) 2004; 38 DeMarco, SenGupta, Greenleaf (bib7) 2003; 37 Chubar, Kanibolotskyy, Strelko, Gallios, Samanidou, Shaposhnikova, Milgrandt, Zhuravlev (bib3) 2005; 255 Dutta, Ray, Sharma, Millero (bib8) 2004; 278 Singh, Pant (bib34) 2004; 36 Tanada, Kabayama, Kawasaki, Sakiyama, Nakamura, Araki, Tamura (bib37) 2003; 257 Schulze-Rettmer (bib28) 1991; 23 SenGupta, A.K., Zhao, D., 2000. Selective removal of Phosphate and Chromate by ion exchangers. US Patent 6136199. Cooper, P., Dee, T., Yang, G., 1993. Nutrient removal-methods of meeting the EC urban wastewater directive. In: Paper presented at the Fourth Annual Conference on Industrial Wastewater Treatment, Esher, Surrey. March 10, 1993. Kuba, Smolders, van Loosdrecht, Heijnen (bib20) 1993; 27 Li, Zhao (bib21) 2003; 20 (bib1) 1992 Zhao, SenGupta (bib40) 1998; 32 Cumbal, Greenleaf, Leun, SenGupta (bib5) 2003; 54 Seida, Nakano (bib29) 2002; 36 Zhao, SenGupta, Zhu (bib39) 1995; 34 Zeng, Li, Liu (bib38) 2004; 38 Boari, Liberti, Passino (bib2) 1976; 10 Ghorai, Pant (bib12) 2004; 98 Onyango, Matsuda, Ogada (bib25) 2003; 36 Zouboulis, Katsoyiannis (bib41) 2002; 41 Petruzzelli, Dell’Erba, Liberti, Norarnicola, SenGupta (bib26) 2004; 60 Cumbal, SenGupta (bib6) 2005; 39 SenGupta, Zhu, Hauze (bib33) 1991; 25 Liberti, Boari, Passino (bib22) 1976; 11 SenGupta, Lim (bib31) 1988; 34 Kney, SenGupta (bib19) 2001 Huang, Vane (bib14) 1989; 61 Hansen (bib13) 2006; 76 Dzombak, Morel (bib9) 1990 Noe, Childers, Jones (bib24) 2001; 4 Jenkins, Fergusson, Menar (bib15) 1971; 5 (bib10) 1994 Salutsky, Dunseth, Ries, Shapiro (bib27) 1971; 67 Suzuki, Bomani, Matsunaga, Yokoyama (bib35) 2000; 43 |
References_xml | – volume: 36 start-page: 477 year: 2003 end-page: 485 ident: bib25 article-title: Sorption kinetics of arsenic onto iron-conditioned zeolite publication-title: J. Chem. Eng. Japan – volume: 34 start-page: 2019 year: 1988 end-page: 2029 ident: bib31 article-title: Modeling chromate ion-exchange processes publication-title: AIChE J. – reference: SenGupta, A.K., Zhao, D., 2000. Selective removal of Phosphate and Chromate by ion exchangers. US Patent 6136199. – volume: 5 start-page: 369 year: 1971 end-page: 387 ident: bib15 article-title: Chemical processes for phosphate removal publication-title: Water Res. – volume: 27 start-page: 241 year: 1993 end-page: 252 ident: bib20 article-title: Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor publication-title: Water. Sci. Technol. – volume: 20 start-page: 171 year: 2003 end-page: 181 ident: bib21 article-title: Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer publication-title: Ecol. Eng. – year: 1991 ident: bib16 article-title: Principles of chemical phosphorus removal publication-title: Phosphorus and nitrogen removal from municipal wastewater: principles and practice – volume: 67 start-page: 54 year: 1971 end-page: 62 ident: bib27 article-title: Ultimate disposal of phosphate from wastewater by recovery as fertilizer publication-title: Chem. Eng. Prog. Symp. Ser. – volume: 38 start-page: 1318 year: 2004 end-page: 1326 ident: bib38 article-title: Adsorption removal of phosphate from aqueous solutions using iron oxide tailings publication-title: Water Res. – reference: Cooper, P., Dee, T., Yang, G., 1993. Nutrient removal-methods of meeting the EC urban wastewater directive. In: Paper presented at the Fourth Annual Conference on Industrial Wastewater Treatment, Esher, Surrey. March 10, 1993. – volume: 54 start-page: 167 year: 2003 end-page: 180 ident: bib5 article-title: Polymer supported inorganic nanoparticles: characterization and environmental applications publication-title: React. Funct. Polym. – volume: 36 start-page: 139 year: 2004 end-page: 147 ident: bib34 article-title: Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina publication-title: Separ. Purif. Technol. – volume: 278 start-page: 270 year: 2004 end-page: 275 ident: bib8 article-title: Adsorption of arsenate and arsenite on titanium dioxide suspensions publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 517 year: 1976 end-page: 523 ident: bib22 article-title: Selective renovation of eutrophic wastes: Phosphate/Sulfate exchange publication-title: Water. Res. – volume: 4 start-page: 603 year: 2001 end-page: 624 ident: bib24 article-title: Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? publication-title: Ecosystems – volume: 10 start-page: 421 year: 1976 end-page: 428 ident: bib2 article-title: Selective renovation of eutrophic wastes phosphate removal publication-title: Water Res. – year: 1994 ident: bib10 article-title: Florida State Legislature – year: 1995 ident: bib36 article-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters – volume: 61 start-page: 1596 year: 1989 end-page: 1603 ident: bib14 article-title: Enhancing as (V) removal by a Fe(II)-treated activated carbon publication-title: J. Water Pollut. Control Fed. – year: 1990 ident: bib9 article-title: Surface Complexation Modeling: Hydrous Ferric Oxide – reference: SenGupta, A.K., Cumbal, L., 2005. Method of manufacture and use of Hybrid nion exchanger for selective removal of contaminating ligands from fluids. US Patent 20050156136. – volume: 60 start-page: 195 year: 2004 end-page: 202 ident: bib26 article-title: A phosphate selective sorbent for the REM NUT publication-title: React. Funct. Polym. – volume: 37 start-page: 164 year: 2003 end-page: 176 ident: bib7 article-title: Arsenic removal using a polymeric/inorganic hybrid sorbent publication-title: Water Res. – volume: 38 start-page: 3853 year: 2003 end-page: 3874 ident: bib17 article-title: Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent publication-title: Separ. Sci. Technol. – volume: 15 start-page: 450 year: 1996 end-page: 468 ident: bib23 article-title: Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach publication-title: J. N. Am. Benthol. Soc. – volume: 43 start-page: 165 year: 2000 end-page: 172 ident: bib35 article-title: Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic publication-title: React. Funct. Polym. – volume: 41 start-page: 6149 year: 2002 end-page: 6155 ident: bib41 article-title: Arsenic removal using iron oxide loaded alginate beads publication-title: Ind. Eng. Chem. Res. – volume: 98 start-page: 165 year: 2004 end-page: 173 ident: bib12 article-title: Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed publication-title: Chem. Eng. J. – volume: 39 start-page: 6508 year: 2005 end-page: 6515 ident: bib6 article-title: Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect publication-title: Environ. Sci. Technol – volume: 32 start-page: 1613 year: 1998 end-page: 1625 ident: bib40 article-title: Ultimate removal of phosphate using a new class of anion exchanger publication-title: Water Res. – volume: 36 start-page: 1306 year: 2002 end-page: 1312 ident: bib29 article-title: Removal of phosphate by layered double hydroxide containing iron publication-title: Water Res. – year: 2002 ident: bib18 article-title: A pilot study—Phosphate and Nitrate removal from treated domestic wastewater using a unique enhanced ion exchange process – year: 2001 ident: bib19 article-title: Synthesis and characterization of hybrid inorganic sorbents for heavy metals removal publication-title: Ion Exchange and Solvent Extraction – volume: 255 start-page: 55 year: 2005 end-page: 63 ident: bib3 article-title: Adsorption of phosphate ions on novel inorganic ion exchangers publication-title: Colloid Surf. A: Physicochem. Eng. Aspects – volume: 257 start-page: 135 year: 2003 end-page: 140 ident: bib37 article-title: Removal of phosphate by aluminum oxide hydroxide publication-title: J. Colloid Interface Sci. – volume: 38 start-page: 3523 year: 2004 end-page: 3530 ident: bib11 article-title: Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminum oxide and granulated ferric hydroxide publication-title: Water Res. – year: 1992 ident: bib1 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 34 start-page: 2676 year: 1995 end-page: 2684 ident: bib39 article-title: Trace contaminants sorption through polymeric ligand exchange publication-title: Ind. Eng. Chem. Res. – volume: 76 start-page: 24 year: 2006 end-page: 25 ident: bib13 article-title: Long-term plan seeks to reduce phosphorus in Spokane river publication-title: Civil Eng. – volume: 25 start-page: 481 year: 1991 end-page: 488 ident: bib33 article-title: Metal(II) ion binding onto chelating exchangers with nitrogen donor atoms: some new observations and related implications publication-title: Environ. Sci. Technol. – volume: 23 start-page: 659 year: 1991 end-page: 667 ident: bib28 article-title: Simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium-ammonium-phosphate publication-title: Water Science anD Technology |
SSID | ssj0002239 |
Score | 2.4205081 |
Snippet | Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a... The development and performance of hybrid anion exchanger for trace phosphate removal from water and wastewater were studied. HAIX combined durability and... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1603 |
SubjectTerms | Adsorption Anion Exchange Resins - chemistry Applied sciences Chromatography, Ion Exchange Eutrophication Exact sciences and technology Hybrid anion exchanger Hydrated iron oxide Ion exchange Nutrient removal Other industrial wastes. Sewage sludge Phosphate Phosphates - analysis Phosphates - chemistry Pollution Selective phosphate removal Temperature Tertiary treatment Waste Disposal, Fluid - instrumentation Waste Disposal, Fluid - methods Wastes Water Pollutants, Chemical - analysis Water Purification - instrumentation Water Purification - methods Water treatment and pollution |
Title | Hybrid anion exchanger for trace phosphate removal from water and wastewater |
URI | https://dx.doi.org/10.1016/j.watres.2007.01.008 https://www.ncbi.nlm.nih.gov/pubmed/17306856 https://www.proquest.com/docview/14825008 https://www.proquest.com/docview/20490420 https://www.proquest.com/docview/70258218 https://www.proquest.com/docview/754760296 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcITgUoQqWqCEx9aHXgNJ7PhxRAi0fXEqEjfLcbwCVLLR7qLChW9nJo8uHCIkbkk0TpzxeB6eF8C3JNdlMVEqJhdfLBz3yAdRkTPBZYUrChWaSky_L-T4Uvy4yq9W4LTPhaGwyo73tzy94dbdk-MOm8f1zQ3l-KLwo2ML1fjTqOy2EIqo_OhpGeaB4s_0XmaC7tPnmhivf44SMrpChimVOh0STxu1myPSJm23i2F1tBFL55vwsdMn2Uk75U-wEqrPsP6iyuAW_Bo_UloWcxWuAQsPXa4vQ3WVLWbOB1ZfT-f1NWqdbBbupkh7jLJOGM4bwVxV4tWcDtnwdhsuz8_-nI7jrolC7NH4WMQ5D5QKWPisNDoEKbQsOUcjQQhDLcYE5xMtjHBpGUyhRXAyycrU4Tg0usuc78BqNa3CLrDEK1caNfFeaJF65PJoXGXeBDQSvdM8At7jzvquwjg1uvhr-1CyW9tinJpfKpukFjEeQfx_VN1W2HgDXvXLYl9RikUh8MbI0atVXH5OyzRV0kTwtV9Wi7uMXCeuCtP7uaVqqXnziiGIjFyoIkuGIRSqlxo1qgjYEESO9JtkRkbwpSWq5RSRE0udy713__0-fGjPpSnq6ABWF7P7cIgK1aIYNTtmBGsn33-OL54BwI4gGg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcFTKASqEeNc82j1wNbW9630cUUQUIMmplXpbrdcbJRU4VpKq5cK3M-MHoQerEjfbmrXXM7vz2HkBfExyXRYLpWJy8cXCcY98EBU5E1xWuKJQoanENJvLyYX4dplfHsCoz4WhsMqO97c8veHW3ZOzDptn9WpFOb4o_OjYQjX-NPkAHgrcvtTG4NPvfZwHyj_Tu5kJvM-fa4K8bhxlZHSVDFOqdTokn57UbotYW7TtLob10UYujZ_B006hZJ_bOT-Hg1C9gKN_ygy-hOnkF-VlMVchEVi47ZJ9GeqrbLdxPrB6ud7WS1Q72Sb8XOPiY5R2wnDeCOaqEq-2dMqGt6_gYvzlfDSJuy4KsUfrYxfnPFAuYOGz0ugQpNCy5BytBCEM9RgTnC-0MMKlZTCFFsHJJCtTh-PQ6i5z_hoOq3UVjoElXrnSqIX3QovUI5tH6yrzJqCV6J3mEfAed9Z3Jcap08UP28eSXdkW49T9UtkktYjxCOK_o-q2xMY98Koni72zVCxKgXtGntyh4v5zWqapkiaC056sFrcZ-U5cFdbXW0vlUvPmFUMQGflQRZYMQyjULzWqVBGwIYhcKMS-kRG8aRfVforIiqXO5dv__vtTeDQ5n03t9Ov8-zt43B5SUwjSezjcba7DB9SudsVJs3v-AB3lIag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+anion+exchanger+for+trace+phosphate+removal+from+water+and+wastewater&rft.jtitle=Water+research+%28Oxford%29&rft.au=BLANEY%2C+Lee+M&rft.au=CINAR%2C+Suna&rft.au=SENGUPTA%2C+Arup+K&rft.date=2007-04-01&rft.pub=Elsevier+Science&rft.issn=0043-1354&rft.volume=41&rft.issue=7&rft.spage=1603&rft.epage=1613&rft_id=info:doi/10.1016%2Fj.watres.2007.01.008&rft.externalDBID=n%2Fa&rft.externalDocID=18611769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |