Hybrid anion exchanger for trace phosphate removal from water and wastewater

Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; t...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 41; no. 7; pp. 1603 - 1613
Main Authors Blaney, Lee M., Cinar, Suna, SenGupta, Arup K.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.2007
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico–chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid–base interactions. Experimental results demonstrate that HAIX's phosphate–sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity.
AbstractList The development and performance of hybrid anion exchanger for trace phosphate removal from water and wastewater were studied. HAIX combined durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. The results showed that HAIX selectively removed phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. The results demonstrated that HAIX's phosphate-sulfate separation factor was over two orders of magnitude greater than that of currently available commercial ion exchange resins. The results concluded that phosphate removal by HAIX is practically independent of seasonal fluctuation in ambient temperature.
Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity.
Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity.Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity.
Author Blaney, Lee M.
SenGupta, Arup K.
Cinar, Suna
Author_xml – sequence: 1
  givenname: Lee M.
  surname: Blaney
  fullname: Blaney, Lee M.
– sequence: 2
  givenname: Suna
  surname: Cinar
  fullname: Cinar, Suna
– sequence: 3
  givenname: Arup K.
  surname: SenGupta
  fullname: SenGupta, Arup K.
  email: arup.sengupta@lehigh.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18611769$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17306856$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS3Uik4Lb4BQNsAq6fVf4rCohCqgSCN1U9aWY98wHiXxYGcKfXtcMoDEYrqyLX_n-MrnnJOTKUxIyCsKFQVaX26rH2aOmCoG0FRAKwD1jKyoatqSCaFOyApA8JJyKc7IeUpbAGCMt8_JGW041ErWK7K-eeiid4WZfJgK_Gk3ZvqGsehDLOZoLBa7TUi7jZmxiDiGezMUfQxjkR_PmJlc3qUZfx9fkNPeDAlfHtYL8vXTx7vrm3J9-_nL9Yd1aaWEuZQcKfCms8y1CrEWqnacSyWFaPNFHpr3SrTCUIdtpwSaGpijJuuwY07yC_Ju8d3F8H2PadajTxaHwUwY9kk3UjRZ0taZfHucBCYVo-pJkIFoQTB4EqRCMZmjyODrA7jvRnR6F_1o4oP-8_cZeHMATLJm6KOZrE__OFVT2tRt5t4vnI0hpYi9tn42c84rB-QHTUE_FkJv9VII_VgIDVQvU4j_xH_9j8uuFhnmGO89Rp2sx8mi8xHtrF3wxw1-AegNz4k
CODEN WATRAG
CitedBy_id crossref_primary_10_1016_j_jece_2024_112571
crossref_primary_10_1002_chem_202002170
crossref_primary_10_1016_j_cej_2021_131411
crossref_primary_10_1080_19443994_2015_1133327
crossref_primary_10_1007_s11270_013_1835_3
crossref_primary_10_1002_adma_201401376
crossref_primary_10_1002_wer_1498
crossref_primary_10_1016_j_jhazmat_2009_06_038
crossref_primary_10_1007_s13762_017_1360_9
crossref_primary_10_1007_s42114_024_00941_3
crossref_primary_10_1016_j_jclepro_2019_117770
crossref_primary_10_1016_j_colsurfa_2020_124417
crossref_primary_10_1016_j_watres_2011_06_009
crossref_primary_10_1016_j_cej_2012_11_067
crossref_primary_10_1016_j_cej_2021_132754
crossref_primary_10_1016_j_micromeso_2014_07_010
crossref_primary_10_1021_acsestengg_0c00253
crossref_primary_10_1039_C6EN00661B
crossref_primary_10_1016_j_watres_2016_01_033
crossref_primary_10_1016_j_cej_2015_01_070
crossref_primary_10_1016_j_scitotenv_2019_05_380
crossref_primary_10_1016_j_comptc_2012_11_002
crossref_primary_10_1007_s11051_011_0521_x
crossref_primary_10_1016_j_jclepro_2023_136451
crossref_primary_10_1039_C7EW00280G
crossref_primary_10_1002_aic_11915
crossref_primary_10_1016_j_cej_2015_03_003
crossref_primary_10_1002_app_29363
crossref_primary_10_1038_s41545_021_00142_1
crossref_primary_10_1016_j_cej_2012_02_039
crossref_primary_10_1016_j_arabjc_2021_103354
crossref_primary_10_1016_j_jhazmat_2014_10_048
crossref_primary_10_53365_nrfhh_144289
crossref_primary_10_1039_c2ee21818f
crossref_primary_10_1016_j_colsurfa_2015_10_017
crossref_primary_10_1002_jctb_4763
crossref_primary_10_1007_s42247_024_00734_w
crossref_primary_10_1016_j_cscee_2020_100061
crossref_primary_10_19261_cjm_2019_650
crossref_primary_10_1016_j_jiec_2014_10_013
crossref_primary_10_1016_j_cej_2021_129913
crossref_primary_10_1021_acs_est_0c02272
crossref_primary_10_1007_s11270_024_07485_8
crossref_primary_10_1021_acsestwater_1c00126
crossref_primary_10_2965_jwet_2014_447
crossref_primary_10_1007_s11270_012_1241_2
crossref_primary_10_1002_wer_1395
crossref_primary_10_1016_j_ultsonch_2016_06_022
crossref_primary_10_1016_j_ijbiomac_2017_02_100
crossref_primary_10_1002_pol_20240966
crossref_primary_10_1080_01496395_2017_1378678
crossref_primary_10_1016_j_cej_2011_03_005
crossref_primary_10_1016_j_ecoleng_2014_09_112
crossref_primary_10_1016_j_watres_2018_08_040
crossref_primary_10_1016_j_colsurfa_2024_133476
crossref_primary_10_1016_j_jece_2024_112905
crossref_primary_10_1007_s11356_020_09400_0
crossref_primary_10_1021_acs_est_6b03021
crossref_primary_10_1039_C7EW00478H
crossref_primary_10_1021_acs_accounts_8b00614
crossref_primary_10_1007_s10311_021_01239_2
crossref_primary_10_1016_j_wasman_2009_10_012
crossref_primary_10_1016_j_watres_2011_03_044
crossref_primary_10_1039_D1CE00935D
crossref_primary_10_1080_10643389_2018_1443667
crossref_primary_10_1016_j_trac_2023_117233
crossref_primary_10_2166_wst_2020_023
crossref_primary_10_1016_j_jece_2015_11_032
crossref_primary_10_1007_s12665_013_2618_2
crossref_primary_10_1016_j_eti_2017_01_002
crossref_primary_10_1021_acs_est_3c04016
crossref_primary_10_1016_j_dyepig_2018_10_061
crossref_primary_10_1080_09593330_2017_1354076
crossref_primary_10_1016_j_chemosphere_2024_143351
crossref_primary_10_3390_w13040517
crossref_primary_10_1016_j_watres_2007_10_044
crossref_primary_10_1155_2022_9944126
crossref_primary_10_3390_ijms24119754
crossref_primary_10_1007_s11270_009_0221_7
crossref_primary_10_3390_w10070869
crossref_primary_10_1080_09593330_2011_632651
crossref_primary_10_3390_ijerph17207693
crossref_primary_10_3390_membranes2040804
crossref_primary_10_4028_www_scientific_net_SSP_299_316
crossref_primary_10_1039_D3RA08201F
crossref_primary_10_1007_s11356_021_12681_8
crossref_primary_10_1039_C5CE02568K
crossref_primary_10_1007_s10098_012_0527_9
crossref_primary_10_1016_j_rcradv_2023_200138
crossref_primary_10_1016_j_scitotenv_2017_10_077
crossref_primary_10_1016_j_scitotenv_2019_01_312
crossref_primary_10_1016_j_chemosphere_2014_02_024
crossref_primary_10_1016_j_jwpe_2020_101875
crossref_primary_10_1021_acssuschemeng_9b06915
crossref_primary_10_1080_20550324_2017_1329983
crossref_primary_10_31202_ecjse_948309
crossref_primary_10_1016_j_ese_2021_100078
crossref_primary_10_1016_j_jclepro_2019_02_020
crossref_primary_10_1016_j_colsurfa_2019_123881
crossref_primary_10_1016_j_jpba_2009_03_037
crossref_primary_10_1016_j_rser_2018_02_042
crossref_primary_10_1021_acs_est_5b04630
crossref_primary_10_1021_acs_est_5b00150
crossref_primary_10_1002_slct_202104577
crossref_primary_10_1002_wer_1469
crossref_primary_10_1016_j_watres_2023_120930
crossref_primary_10_1089_ees_2018_0436
crossref_primary_10_3389_fenvs_2023_1226101
crossref_primary_10_1016_j_chemosphere_2019_03_087
crossref_primary_10_1021_acs_est_6b01239
crossref_primary_10_1371_journal_pone_0290714
crossref_primary_10_1021_am404031q
crossref_primary_10_1016_j_cej_2018_09_202
crossref_primary_10_1021_acssuschemeng_9b01357
crossref_primary_10_1016_j_jwpe_2020_101405
crossref_primary_10_1016_j_resconrec_2015_09_016
crossref_primary_10_1016_S1001_0742_10_60645_6
crossref_primary_10_3390_w15203541
crossref_primary_10_1080_01496395_2018_1547315
crossref_primary_10_1016_j_colsurfa_2019_123854
crossref_primary_10_1021_acs_estlett_8b00487
crossref_primary_10_1007_s11783_013_0508_1
crossref_primary_10_1016_j_desal_2011_07_047
crossref_primary_10_1039_c2cc33707j
crossref_primary_10_1002_anie_201600185
crossref_primary_10_1016_j_jece_2017_02_005
crossref_primary_10_1016_j_cej_2011_11_096
crossref_primary_10_1016_j_watres_2014_11_052
crossref_primary_10_1016_j_jclepro_2020_124652
crossref_primary_10_1016_j_chemosphere_2016_12_051
crossref_primary_10_1080_09593330_2024_2362993
crossref_primary_10_1016_j_chemosphere_2015_07_023
crossref_primary_10_1021_cm302585r
crossref_primary_10_1016_j_cherd_2014_05_001
crossref_primary_10_1016_j_matchemphys_2015_05_021
crossref_primary_10_1021_acs_est_9b05569
crossref_primary_10_1016_j_jece_2017_06_015
crossref_primary_10_1016_j_watres_2009_06_055
crossref_primary_10_1007_s00604_009_0252_1
crossref_primary_10_1080_10643389_2012_741311
crossref_primary_10_1080_19443994_2015_1088805
crossref_primary_10_1093_femsle_fnw240
crossref_primary_10_1016_j_jcis_2007_12_012
crossref_primary_10_1002_ange_201709197
crossref_primary_10_1016_j_cej_2015_01_051
crossref_primary_10_1016_j_scitotenv_2025_178829
crossref_primary_10_1080_19443994_2015_1100555
crossref_primary_10_1016_j_carbpol_2016_08_025
crossref_primary_10_1016_j_jenvman_2024_122719
crossref_primary_10_1021_acsestwater_0c00069
crossref_primary_10_1002_ange_201307650
crossref_primary_10_1016_j_jhazmat_2019_06_003
crossref_primary_10_1002_ange_201600185
crossref_primary_10_1016_j_colsurfa_2021_126813
crossref_primary_10_1016_j_clay_2018_08_018
crossref_primary_10_1016_j_desal_2013_05_014
crossref_primary_10_1016_j_jiec_2013_07_009
crossref_primary_10_1061_JSWBAY_0000914
crossref_primary_10_1007_s10450_010_9220_7
crossref_primary_10_3390_pr11010111
crossref_primary_10_1016_j_ccr_2018_08_014
crossref_primary_10_1016_j_jclepro_2019_01_215
crossref_primary_10_1007_s11356_019_04553_z
crossref_primary_10_1039_D4EW00125G
crossref_primary_10_1016_j_impact_2016_09_004
crossref_primary_10_1002_anie_201709197
crossref_primary_10_1016_j_colsurfa_2021_126260
crossref_primary_10_2166_wst_2015_438
crossref_primary_10_1016_j_jwpe_2024_106851
crossref_primary_10_1002_anie_201307650
crossref_primary_10_1016_j_cej_2012_04_036
crossref_primary_10_1016_j_jes_2021_05_041
crossref_primary_10_1021_acs_iecr_7b00352
crossref_primary_10_1021_acsami_0c16477
crossref_primary_10_1080_01919512_2016_1204225
crossref_primary_10_1016_j_watres_2013_08_015
crossref_primary_10_1061__ASCE_EE_1943_7870_0001934
crossref_primary_10_1007_s00289_018_2555_z
crossref_primary_10_1016_j_cej_2023_141625
crossref_primary_10_1007_s11356_022_22525_8
crossref_primary_10_1016_j_cej_2024_157498
crossref_primary_10_1016_j_scitotenv_2022_159283
crossref_primary_10_1016_j_jcis_2013_07_038
crossref_primary_10_1016_j_pnsc_2023_12_016
crossref_primary_10_1016_j_watres_2013_05_037
crossref_primary_10_1016_j_jece_2020_104793
crossref_primary_10_1016_j_wroa_2018_09_003
crossref_primary_10_1139_er_2015_0080
crossref_primary_10_1016_j_jenvman_2020_111048
crossref_primary_10_1080_19443994_2013_811107
crossref_primary_10_1016_j_cej_2012_07_125
crossref_primary_10_5004_dwt_2017_20890
crossref_primary_10_1007_s00289_015_1479_0
crossref_primary_10_1016_j_chemosphere_2021_131581
crossref_primary_10_1016_j_cej_2021_129626
crossref_primary_10_1016_j_cej_2023_144683
crossref_primary_10_3390_ma17051168
crossref_primary_10_1016_j_ijbiomac_2013_09_020
crossref_primary_10_1016_j_cej_2020_127821
crossref_primary_10_1016_j_jhazmat_2020_122960
crossref_primary_10_1016_j_jclepro_2018_03_015
crossref_primary_10_1080_19443994_2014_915385
crossref_primary_10_1016_j_watres_2020_116299
crossref_primary_10_1016_j_seppur_2025_131433
crossref_primary_10_1002_bit_22612
crossref_primary_10_1021_acs_jpca_0c02515
crossref_primary_10_1088_1757_899X_763_1_012027
crossref_primary_10_1016_j_powtec_2017_08_041
crossref_primary_10_1016_j_watres_2014_11_012
crossref_primary_10_1016_j_cej_2013_09_021
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000325
crossref_primary_10_1260_0263_6174_28_7_611
crossref_primary_10_1007_s11051_011_0715_2
crossref_primary_10_1016_j_cej_2014_07_015
crossref_primary_10_1080_19443994_2015_1061456
crossref_primary_10_1007_s11270_012_1331_1
crossref_primary_10_1016_j_watres_2013_05_044
crossref_primary_10_1039_C5AY02319J
crossref_primary_10_1016_j_watres_2022_118102
crossref_primary_10_1007_s13762_018_2058_3
crossref_primary_10_1089_ees_2007_0222
crossref_primary_10_1016_j_cej_2020_126649
crossref_primary_10_1039_C5EW00009B
crossref_primary_10_1080_19443994_2015_1070763
crossref_primary_10_1016_j_cej_2012_11_006
crossref_primary_10_1080_01932691_2020_1845716
crossref_primary_10_1126_science_aab0530
crossref_primary_10_1038_s41545_022_00188_9
crossref_primary_10_1080_01496395_2015_1031400
crossref_primary_10_1016_j_ccst_2024_100319
crossref_primary_10_1016_j_envres_2019_05_022
crossref_primary_10_5004_dwt_2020_25825
crossref_primary_10_1007_s11356_022_21637_5
crossref_primary_10_1016_j_aquaeng_2016_04_003
crossref_primary_10_1016_j_jece_2021_106916
crossref_primary_10_1080_01496395_2012_658487
crossref_primary_10_1016_j_coche_2024_101080
crossref_primary_10_1002_wer_1563
crossref_primary_10_1016_j_desal_2010_06_030
crossref_primary_10_1016_j_scitotenv_2021_146834
crossref_primary_10_1016_j_watres_2018_06_035
crossref_primary_10_1016_j_chemosphere_2019_01_085
crossref_primary_10_1021_acsestengg_1c00506
crossref_primary_10_3390_pr10102122
crossref_primary_10_1016_j_apgeochem_2013_07_016
crossref_primary_10_1016_j_biortech_2013_03_032
crossref_primary_10_1039_b818248e
crossref_primary_10_1080_01496395_2011_627904
crossref_primary_10_3390_soilsystems4020036
crossref_primary_10_1016_j_seppur_2018_10_063
crossref_primary_10_5004_dwt_2017_21032
crossref_primary_10_1016_j_cej_2017_05_147
crossref_primary_10_1016_j_jclepro_2019_04_325
crossref_primary_10_1016_j_scitotenv_2024_175509
crossref_primary_10_1021_acsenvironau_3c00069
crossref_primary_10_1021_acs_inorgchem_7b00513
crossref_primary_10_1007_s11270_020_04816_3
crossref_primary_10_1021_es505439p
crossref_primary_10_1080_19443994_2014_951966
crossref_primary_10_1016_j_jhazmat_2021_125464
crossref_primary_10_1002_jctb_5361
crossref_primary_10_1021_acsestengg_2c00366
crossref_primary_10_1021_acs_iecr_7b01523
crossref_primary_10_1016_j_chemosphere_2016_05_080
crossref_primary_10_1016_j_chemosphere_2021_131259
crossref_primary_10_1016_j_watres_2015_04_039
crossref_primary_10_1007_s11270_012_1262_x
crossref_primary_10_1016_j_micromeso_2012_01_020
crossref_primary_10_1016_j_watres_2009_02_010
crossref_primary_10_1016_j_jiec_2013_11_016
crossref_primary_10_1002_ep_11978
crossref_primary_10_1002_slct_201901519
crossref_primary_10_1016_j_cej_2018_04_086
crossref_primary_10_1080_10643389_2011_604262
crossref_primary_10_1007_s13369_017_2432_3
crossref_primary_10_1016_j_chemosphere_2015_05_002
crossref_primary_10_1038_s41598_019_39035_2
crossref_primary_10_1016_j_cej_2011_02_071
crossref_primary_10_1016_j_jece_2015_01_010
crossref_primary_10_1021_acs_est_8b05177
crossref_primary_10_1016_j_desal_2007_10_062
crossref_primary_10_1016_j_colsurfa_2008_10_023
crossref_primary_10_1016_j_seppur_2015_12_022
crossref_primary_10_1016_j_desal_2020_114459
crossref_primary_10_1021_ie404291q
crossref_primary_10_1016_j_ijbiomac_2025_141276
crossref_primary_10_1016_S1003_6326_13_62886_1
crossref_primary_10_4491_eer_2009_14_3_164
crossref_primary_10_3390_polym12102415
crossref_primary_10_1007_s11356_024_35447_4
crossref_primary_10_1016_j_apt_2019_05_020
crossref_primary_10_1038_s41545_020_00097_9
crossref_primary_10_1080_07366299_2011_573436
crossref_primary_10_1149_2_0701503jes
crossref_primary_10_1016_j_scitotenv_2020_138892
crossref_primary_10_1016_j_watres_2018_09_005
crossref_primary_10_1088_1755_1315_1265_1_012006
crossref_primary_10_4028_www_scientific_net_DF_23_104
crossref_primary_10_1021_acs_langmuir_3c03369
crossref_primary_10_1016_j_watres_2009_10_027
crossref_primary_10_1016_j_chemosphere_2020_127938
crossref_primary_10_1016_j_chemosphere_2024_143648
crossref_primary_10_52679_978_81_952885_8_8_10
crossref_primary_10_1039_C8EW00938D
crossref_primary_10_1016_j_cej_2013_01_088
crossref_primary_10_1016_j_watres_2011_06_020
crossref_primary_10_1007_s11814_011_0212_4
crossref_primary_10_1016_j_scitotenv_2021_150288
crossref_primary_10_2116_analsci_28_887
crossref_primary_10_1016_j_jhazmat_2011_01_092
crossref_primary_10_1016_j_jenvman_2023_119553
crossref_primary_10_1016_j_jwpe_2018_10_008
crossref_primary_10_1007_s11356_021_15724_2
crossref_primary_10_1016_j_watres_2020_116167
crossref_primary_10_1016_j_jhazmat_2012_01_019
crossref_primary_10_1016_j_cej_2009_02_036
crossref_primary_10_1016_j_jclepro_2020_123960
crossref_primary_10_1021_es9024029
crossref_primary_10_1016_j_jhazmat_2011_04_021
crossref_primary_10_1007_s40710_016_0139_1
crossref_primary_10_1002_wer_1080
crossref_primary_10_1021_acsami_1c22316
crossref_primary_10_1016_j_chemosphere_2011_02_001
crossref_primary_10_1021_accountsmr_3c00290
crossref_primary_10_2166_wst_2018_230
crossref_primary_10_1016_j_reactfunctpolym_2015_06_002
crossref_primary_10_1007_s41742_024_00590_w
crossref_primary_10_1016_j_cej_2023_145287
crossref_primary_10_1590_0001_3765202020190440
crossref_primary_10_1007_s11356_021_12586_6
crossref_primary_10_1016_j_talanta_2012_05_021
crossref_primary_10_1016_j_jwpe_2017_07_019
crossref_primary_10_5004_dwt_2017_20776
crossref_primary_10_1021_acs_inorgchem_7b00323
crossref_primary_10_1016_j_cej_2011_09_129
crossref_primary_10_1016_j_jcis_2022_01_158
crossref_primary_10_1021_es903658h
crossref_primary_10_1080_19443994_2014_905974
crossref_primary_10_1007_s10450_018_9939_0
crossref_primary_10_1016_j_watres_2016_06_030
crossref_primary_10_1007_s13201_024_02332_x
crossref_primary_10_1016_j_jece_2013_07_031
crossref_primary_10_5004_dwt_2019_23594
crossref_primary_10_1016_j_watres_2018_01_061
crossref_primary_10_1016_j_jwpe_2020_101347
crossref_primary_10_1002_jctb_4629
crossref_primary_10_5004_dwt_2017_0287
crossref_primary_10_1016_j_cej_2022_140522
crossref_primary_10_1016_j_apsusc_2016_11_214
crossref_primary_10_1016_j_carbpol_2017_11_087
crossref_primary_10_1016_j_jcis_2022_11_127
crossref_primary_10_1016_j_wasman_2016_08_032
crossref_primary_10_1038_s44221_024_00305_7
crossref_primary_10_1080_09593330_2016_1141999
crossref_primary_10_1016_j_cej_2019_122671
crossref_primary_10_1039_C5EW00142K
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7QH
7TV
7UA
F1W
H96
L.G
7X8
DOI 10.1016/j.watres.2007.01.008
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Aqualine
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Environment Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Water Resources Abstracts
MEDLINE - Academic
DatabaseTitleList Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
MEDLINE
Environment Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2448
EndPage 1613
ExternalDocumentID 17306856
18611769
10_1016_j_watres_2007_01_008
S0043135407000206
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
X7M
XOL
XPP
YHZ
YV5
ZCA
ZMT
ZXP
ZY4
~02
~A~
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7ST
C1K
SOI
7QH
7TV
7UA
F1W
H96
L.G
7X8
ID FETCH-LOGICAL-c550t-53e1037bc2d98ee6486d335854491030433f8494a1de9b84ea602d1a53eeb2d53
IEDL.DBID .~1
ISSN 0043-1354
IngestDate Fri Jul 11 07:08:01 EDT 2025
Sun Aug 24 03:38:15 EDT 2025
Fri Jul 11 12:04:57 EDT 2025
Sun Aug 24 03:50:08 EDT 2025
Wed Feb 19 01:44:02 EST 2025
Mon Jul 21 09:16:09 EDT 2025
Tue Jul 01 03:53:13 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Fri Feb 23 02:28:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Nutrient removal
Hybrid anion exchanger
Selective phosphate removal
Phosphate
Tertiary treatment
Ion exchange
Hydrated iron oxide
Eutrophication
Phosphates
Nanoparticle
Anionic resin
Biological method
Nitrates
Ultrafine particle
Sulfates
Waste water
Chlorides
Tertiary purification
Reactor
Ion exchange resin
Operating cost
Sorption
Iron III
Industrial waste water
Aerosols
Air pollution
Water pollution
Kinetics
Waste water purification
Sorbent
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-53e1037bc2d98ee6486d335854491030433f8494a1de9b84ea602d1a53eeb2d53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 17306856
PQID 14825008
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_754760296
proquest_miscellaneous_70258218
proquest_miscellaneous_20490420
proquest_miscellaneous_14825008
pubmed_primary_17306856
pascalfrancis_primary_18611769
crossref_citationtrail_10_1016_j_watres_2007_01_008
crossref_primary_10_1016_j_watres_2007_01_008
elsevier_sciencedirect_doi_10_1016_j_watres_2007_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Jenkins, Hermanowicz (bib16) 1991
McCormick, O’Dell (bib23) 1996; 15
SenGupta, A.K., Cumbal, L., 2005. Method of manufacture and use of Hybrid nion exchanger for selective removal of contaminating ligands from fluids. US Patent 20050156136.
Stumm, Morgan (bib36) 1995
Kang, Choo, Lim (bib17) 2003; 38
Kney, Dreibelbis, Zhao, SenGupta (bib18) 2002
Genz, Kornmüller, Jekel (bib11) 2004; 38
DeMarco, SenGupta, Greenleaf (bib7) 2003; 37
Chubar, Kanibolotskyy, Strelko, Gallios, Samanidou, Shaposhnikova, Milgrandt, Zhuravlev (bib3) 2005; 255
Dutta, Ray, Sharma, Millero (bib8) 2004; 278
Singh, Pant (bib34) 2004; 36
Tanada, Kabayama, Kawasaki, Sakiyama, Nakamura, Araki, Tamura (bib37) 2003; 257
Schulze-Rettmer (bib28) 1991; 23
SenGupta, A.K., Zhao, D., 2000. Selective removal of Phosphate and Chromate by ion exchangers. US Patent 6136199.
Cooper, P., Dee, T., Yang, G., 1993. Nutrient removal-methods of meeting the EC urban wastewater directive. In: Paper presented at the Fourth Annual Conference on Industrial Wastewater Treatment, Esher, Surrey. March 10, 1993.
Kuba, Smolders, van Loosdrecht, Heijnen (bib20) 1993; 27
Li, Zhao (bib21) 2003; 20
(bib1) 1992
Zhao, SenGupta (bib40) 1998; 32
Cumbal, Greenleaf, Leun, SenGupta (bib5) 2003; 54
Seida, Nakano (bib29) 2002; 36
Zhao, SenGupta, Zhu (bib39) 1995; 34
Zeng, Li, Liu (bib38) 2004; 38
Boari, Liberti, Passino (bib2) 1976; 10
Ghorai, Pant (bib12) 2004; 98
Onyango, Matsuda, Ogada (bib25) 2003; 36
Zouboulis, Katsoyiannis (bib41) 2002; 41
Petruzzelli, Dell’Erba, Liberti, Norarnicola, SenGupta (bib26) 2004; 60
Cumbal, SenGupta (bib6) 2005; 39
SenGupta, Zhu, Hauze (bib33) 1991; 25
Liberti, Boari, Passino (bib22) 1976; 11
SenGupta, Lim (bib31) 1988; 34
Kney, SenGupta (bib19) 2001
Huang, Vane (bib14) 1989; 61
Hansen (bib13) 2006; 76
Dzombak, Morel (bib9) 1990
Noe, Childers, Jones (bib24) 2001; 4
Jenkins, Fergusson, Menar (bib15) 1971; 5
(bib10) 1994
Salutsky, Dunseth, Ries, Shapiro (bib27) 1971; 67
Suzuki, Bomani, Matsunaga, Yokoyama (bib35) 2000; 43
References_xml – volume: 36
  start-page: 477
  year: 2003
  end-page: 485
  ident: bib25
  article-title: Sorption kinetics of arsenic onto iron-conditioned zeolite
  publication-title: J. Chem. Eng. Japan
– volume: 34
  start-page: 2019
  year: 1988
  end-page: 2029
  ident: bib31
  article-title: Modeling chromate ion-exchange processes
  publication-title: AIChE J.
– reference: SenGupta, A.K., Zhao, D., 2000. Selective removal of Phosphate and Chromate by ion exchangers. US Patent 6136199.
– volume: 5
  start-page: 369
  year: 1971
  end-page: 387
  ident: bib15
  article-title: Chemical processes for phosphate removal
  publication-title: Water Res.
– volume: 27
  start-page: 241
  year: 1993
  end-page: 252
  ident: bib20
  article-title: Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor
  publication-title: Water. Sci. Technol.
– volume: 20
  start-page: 171
  year: 2003
  end-page: 181
  ident: bib21
  article-title: Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer
  publication-title: Ecol. Eng.
– year: 1991
  ident: bib16
  article-title: Principles of chemical phosphorus removal
  publication-title: Phosphorus and nitrogen removal from municipal wastewater: principles and practice
– volume: 67
  start-page: 54
  year: 1971
  end-page: 62
  ident: bib27
  article-title: Ultimate disposal of phosphate from wastewater by recovery as fertilizer
  publication-title: Chem. Eng. Prog. Symp. Ser.
– volume: 38
  start-page: 1318
  year: 2004
  end-page: 1326
  ident: bib38
  article-title: Adsorption removal of phosphate from aqueous solutions using iron oxide tailings
  publication-title: Water Res.
– reference: Cooper, P., Dee, T., Yang, G., 1993. Nutrient removal-methods of meeting the EC urban wastewater directive. In: Paper presented at the Fourth Annual Conference on Industrial Wastewater Treatment, Esher, Surrey. March 10, 1993.
– volume: 54
  start-page: 167
  year: 2003
  end-page: 180
  ident: bib5
  article-title: Polymer supported inorganic nanoparticles: characterization and environmental applications
  publication-title: React. Funct. Polym.
– volume: 36
  start-page: 139
  year: 2004
  end-page: 147
  ident: bib34
  article-title: Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina
  publication-title: Separ. Purif. Technol.
– volume: 278
  start-page: 270
  year: 2004
  end-page: 275
  ident: bib8
  article-title: Adsorption of arsenate and arsenite on titanium dioxide suspensions
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 517
  year: 1976
  end-page: 523
  ident: bib22
  article-title: Selective renovation of eutrophic wastes: Phosphate/Sulfate exchange
  publication-title: Water. Res.
– volume: 4
  start-page: 603
  year: 2001
  end-page: 624
  ident: bib24
  article-title: Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique?
  publication-title: Ecosystems
– volume: 10
  start-page: 421
  year: 1976
  end-page: 428
  ident: bib2
  article-title: Selective renovation of eutrophic wastes phosphate removal
  publication-title: Water Res.
– year: 1994
  ident: bib10
  article-title: Florida State Legislature
– year: 1995
  ident: bib36
  article-title: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
– volume: 61
  start-page: 1596
  year: 1989
  end-page: 1603
  ident: bib14
  article-title: Enhancing as (V) removal by a Fe(II)-treated activated carbon
  publication-title: J. Water Pollut. Control Fed.
– year: 1990
  ident: bib9
  article-title: Surface Complexation Modeling: Hydrous Ferric Oxide
– reference: SenGupta, A.K., Cumbal, L., 2005. Method of manufacture and use of Hybrid nion exchanger for selective removal of contaminating ligands from fluids. US Patent 20050156136.
– volume: 60
  start-page: 195
  year: 2004
  end-page: 202
  ident: bib26
  article-title: A phosphate selective sorbent for the REM NUT
  publication-title: React. Funct. Polym.
– volume: 37
  start-page: 164
  year: 2003
  end-page: 176
  ident: bib7
  article-title: Arsenic removal using a polymeric/inorganic hybrid sorbent
  publication-title: Water Res.
– volume: 38
  start-page: 3853
  year: 2003
  end-page: 3874
  ident: bib17
  article-title: Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent
  publication-title: Separ. Sci. Technol.
– volume: 15
  start-page: 450
  year: 1996
  end-page: 468
  ident: bib23
  article-title: Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach
  publication-title: J. N. Am. Benthol. Soc.
– volume: 43
  start-page: 165
  year: 2000
  end-page: 172
  ident: bib35
  article-title: Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic
  publication-title: React. Funct. Polym.
– volume: 41
  start-page: 6149
  year: 2002
  end-page: 6155
  ident: bib41
  article-title: Arsenic removal using iron oxide loaded alginate beads
  publication-title: Ind. Eng. Chem. Res.
– volume: 98
  start-page: 165
  year: 2004
  end-page: 173
  ident: bib12
  article-title: Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed
  publication-title: Chem. Eng. J.
– volume: 39
  start-page: 6508
  year: 2005
  end-page: 6515
  ident: bib6
  article-title: Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect
  publication-title: Environ. Sci. Technol
– volume: 32
  start-page: 1613
  year: 1998
  end-page: 1625
  ident: bib40
  article-title: Ultimate removal of phosphate using a new class of anion exchanger
  publication-title: Water Res.
– volume: 36
  start-page: 1306
  year: 2002
  end-page: 1312
  ident: bib29
  article-title: Removal of phosphate by layered double hydroxide containing iron
  publication-title: Water Res.
– year: 2002
  ident: bib18
  article-title: A pilot study—Phosphate and Nitrate removal from treated domestic wastewater using a unique enhanced ion exchange process
– year: 2001
  ident: bib19
  article-title: Synthesis and characterization of hybrid inorganic sorbents for heavy metals removal
  publication-title: Ion Exchange and Solvent Extraction
– volume: 255
  start-page: 55
  year: 2005
  end-page: 63
  ident: bib3
  article-title: Adsorption of phosphate ions on novel inorganic ion exchangers
  publication-title: Colloid Surf. A: Physicochem. Eng. Aspects
– volume: 257
  start-page: 135
  year: 2003
  end-page: 140
  ident: bib37
  article-title: Removal of phosphate by aluminum oxide hydroxide
  publication-title: J. Colloid Interface Sci.
– volume: 38
  start-page: 3523
  year: 2004
  end-page: 3530
  ident: bib11
  article-title: Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminum oxide and granulated ferric hydroxide
  publication-title: Water Res.
– year: 1992
  ident: bib1
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 34
  start-page: 2676
  year: 1995
  end-page: 2684
  ident: bib39
  article-title: Trace contaminants sorption through polymeric ligand exchange
  publication-title: Ind. Eng. Chem. Res.
– volume: 76
  start-page: 24
  year: 2006
  end-page: 25
  ident: bib13
  article-title: Long-term plan seeks to reduce phosphorus in Spokane river
  publication-title: Civil Eng.
– volume: 25
  start-page: 481
  year: 1991
  end-page: 488
  ident: bib33
  article-title: Metal(II) ion binding onto chelating exchangers with nitrogen donor atoms: some new observations and related implications
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 659
  year: 1991
  end-page: 667
  ident: bib28
  article-title: Simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium-ammonium-phosphate
  publication-title: Water Science anD Technology
SSID ssj0002239
Score 2.4205081
Snippet Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a...
The development and performance of hybrid anion exchanger for trace phosphate removal from water and wastewater were studied. HAIX combined durability and...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1603
SubjectTerms Adsorption
Anion Exchange Resins - chemistry
Applied sciences
Chromatography, Ion Exchange
Eutrophication
Exact sciences and technology
Hybrid anion exchanger
Hydrated iron oxide
Ion exchange
Nutrient removal
Other industrial wastes. Sewage sludge
Phosphate
Phosphates - analysis
Phosphates - chemistry
Pollution
Selective phosphate removal
Temperature
Tertiary treatment
Waste Disposal, Fluid - instrumentation
Waste Disposal, Fluid - methods
Wastes
Water Pollutants, Chemical - analysis
Water Purification - instrumentation
Water Purification - methods
Water treatment and pollution
Title Hybrid anion exchanger for trace phosphate removal from water and wastewater
URI https://dx.doi.org/10.1016/j.watres.2007.01.008
https://www.ncbi.nlm.nih.gov/pubmed/17306856
https://www.proquest.com/docview/14825008
https://www.proquest.com/docview/20490420
https://www.proquest.com/docview/70258218
https://www.proquest.com/docview/754760296
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcITgUoQqWqCEx9aHXgNJ7PhxRAi0fXEqEjfLcbwCVLLR7qLChW9nJo8uHCIkbkk0TpzxeB6eF8C3JNdlMVEqJhdfLBz3yAdRkTPBZYUrChWaSky_L-T4Uvy4yq9W4LTPhaGwyo73tzy94dbdk-MOm8f1zQ3l-KLwo2ML1fjTqOy2EIqo_OhpGeaB4s_0XmaC7tPnmhivf44SMrpChimVOh0STxu1myPSJm23i2F1tBFL55vwsdMn2Uk75U-wEqrPsP6iyuAW_Bo_UloWcxWuAQsPXa4vQ3WVLWbOB1ZfT-f1NWqdbBbupkh7jLJOGM4bwVxV4tWcDtnwdhsuz8_-nI7jrolC7NH4WMQ5D5QKWPisNDoEKbQsOUcjQQhDLcYE5xMtjHBpGUyhRXAyycrU4Tg0usuc78BqNa3CLrDEK1caNfFeaJF65PJoXGXeBDQSvdM8At7jzvquwjg1uvhr-1CyW9tinJpfKpukFjEeQfx_VN1W2HgDXvXLYl9RikUh8MbI0atVXH5OyzRV0kTwtV9Wi7uMXCeuCtP7uaVqqXnziiGIjFyoIkuGIRSqlxo1qgjYEESO9JtkRkbwpSWq5RSRE0udy713__0-fGjPpSnq6ABWF7P7cIgK1aIYNTtmBGsn33-OL54BwI4gGg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcFTKASqEeNc82j1wNbW9630cUUQUIMmplXpbrdcbJRU4VpKq5cK3M-MHoQerEjfbmrXXM7vz2HkBfExyXRYLpWJy8cXCcY98EBU5E1xWuKJQoanENJvLyYX4dplfHsCoz4WhsMqO97c8veHW3ZOzDptn9WpFOb4o_OjYQjX-NPkAHgrcvtTG4NPvfZwHyj_Tu5kJvM-fa4K8bhxlZHSVDFOqdTokn57UbotYW7TtLob10UYujZ_B006hZJ_bOT-Hg1C9gKN_ygy-hOnkF-VlMVchEVi47ZJ9GeqrbLdxPrB6ud7WS1Q72Sb8XOPiY5R2wnDeCOaqEq-2dMqGt6_gYvzlfDSJuy4KsUfrYxfnPFAuYOGz0ugQpNCy5BytBCEM9RgTnC-0MMKlZTCFFsHJJCtTh-PQ6i5z_hoOq3UVjoElXrnSqIX3QovUI5tH6yrzJqCV6J3mEfAed9Z3Jcap08UP28eSXdkW49T9UtkktYjxCOK_o-q2xMY98Koni72zVCxKgXtGntyh4v5zWqapkiaC056sFrcZ-U5cFdbXW0vlUvPmFUMQGflQRZYMQyjULzWqVBGwIYhcKMS-kRG8aRfVforIiqXO5dv__vtTeDQ5n03t9Ov8-zt43B5SUwjSezjcba7DB9SudsVJs3v-AB3lIag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+anion+exchanger+for+trace+phosphate+removal+from+water+and+wastewater&rft.jtitle=Water+research+%28Oxford%29&rft.au=BLANEY%2C+Lee+M&rft.au=CINAR%2C+Suna&rft.au=SENGUPTA%2C+Arup+K&rft.date=2007-04-01&rft.pub=Elsevier+Science&rft.issn=0043-1354&rft.volume=41&rft.issue=7&rft.spage=1603&rft.epage=1613&rft_id=info:doi/10.1016%2Fj.watres.2007.01.008&rft.externalDBID=n%2Fa&rft.externalDocID=18611769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon