Mutations Strengthened SARS-CoV-2 Infectivity

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 432; no. 19; pp. 5212 - 5226
Main Authors Chen, Jiahui, Wang, Rui, Wang, Menglun, Wei, Guo-Wei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 04.09.2020
Subjects
Online AccessGet full text
ISSN0022-2836
1089-8638
1089-8638
DOI10.1016/j.jmb.2020.07.009

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains. More than 8000 observed single mutations in the SARS-CoV-2 genomes have raised serious concerns about changes in infectivity. Qualitatively, such infectivity is proportional to the binding affinity between SARS-CoV-2 spike glycoprotein (S protein) and host ACE2 receptor. This work proposes a machine learning model to evaluate the relative infectivity following the mutations. We show that five out of six SARS-CoV-2 substrains have become more infectious, while the other one becomes less infectious. We found that a few potential future mutations on the S protein could lead to more dangerous new viruses. [Display omitted] •SARS-CoV-2 has had many mutations and evolved into six subtypes.•Three SARS-CoV-2 subtypes have significantly strengthened their infectivity.•A few future mutations have high chances to produce more contagious viruses.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains. More than 8000 observed single mutations in the SARS-CoV-2 genomes have raised serious concerns about changes in infectivity. Qualitatively, such infectivity is proportional to the binding affinity between SARS-CoV-2 spike glycoprotein (S protein) and host ACE2 receptor. This work proposes a machine learning model to evaluate the relative infectivity following the mutations. We show that five out of six SARS-CoV-2 substrains have become more infectious, while the other one becomes less infectious. We found that a few potential future mutations on the S protein could lead to more dangerous new viruses. [Display omitted] •SARS-CoV-2 has had many mutations and evolved into six subtypes.•Three SARS-CoV-2 subtypes have significantly strengthened their infectivity.•A few future mutations have high chances to produce more contagious viruses.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains. More than 8000 observed single mutations in the SARS-CoV-2 genomes have raised serious concerns about changes in infectivity. Qualitatively, such infectivity is proportional to the binding affinity between SARS-CoV-2 spike glycoprotein (S protein) and host ACE2 receptor. This work proposes a machine learning model to evaluate the relative infectivity following the mutations. We show that five out of six SARS-CoV-2 substrains have become more infectious, while the other one becomes less infectious. We found that a few potential future mutations on the S protein could lead to more dangerous new viruses. Unlabelled Image • SARS-CoV-2 has had many mutations and evolved into six subtypes. • Three SARS-CoV-2 subtypes have significantly strengthened their infectivity. • A few future mutations have high chances to produce more contagious viruses.
Author Chen, Jiahui
Wang, Menglun
Wei, Guo-Wei
Wang, Rui
Author_xml – sequence: 1
  givenname: Jiahui
  surname: Chen
  fullname: Chen, Jiahui
  organization: Department of Mathematics, Michigan State University, MI 48824, USA
– sequence: 2
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Department of Mathematics, Michigan State University, MI 48824, USA
– sequence: 3
  givenname: Menglun
  surname: Wang
  fullname: Wang, Menglun
  organization: Department of Mathematics, Michigan State University, MI 48824, USA
– sequence: 4
  givenname: Guo-Wei
  surname: Wei
  fullname: Wei, Guo-Wei
  email: wei@math.msu.edu
  organization: Department of Mathematics, Michigan State University, MI 48824, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32710986$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFLHDEUhYNYdLX-AF9kH32Z6Z3cmWSCUJDFtoKl0G37GjKZO5plNrFJdsF_37Grpe2D-HQf7jmHw_mO2L4Pnhg7raCsoBLvVuVq3ZUcOJQgSwC1x2YVtKpoBbb7bAbAecFbFIfsKKUVADRYtwfsELmsQLVixorPm2yyCz7NlzmSv8135KmfLy-_LotF-FHw-bUfyGa3dfnhLXszmDHRydM9Zt8_XH1bfCpuvny8XlzeFLZpIBf1QD0IhZ3k1ggLnDrFG5SAiDUMtWqMhb4bJBkSKA1WA7UgawUcVQ0Cj9n7Xe79pltTb8nnaEZ9H93axAcdjNP_fry707dhqyXKRkmcAs6fAmL4uaGU9dolS-NoPIVN0ryWUtTYgHqFlEuuELCZpGd_1_rT53nOSSB3AhtDSpEGbd1u3qmlG3UF-hGcXukJnH4Ep0Fq-N2i-s_5HP6S52LnoQnF1lHUyTrylnoXJ2K6D-4F9y9eoa5Y
CitedBy_id crossref_primary_10_7189_jogh_11_03038
crossref_primary_10_1016_j_progpolymsci_2021_101410
crossref_primary_10_1016_j_nmni_2024_101468
crossref_primary_10_1371_journal_ppat_1009914
crossref_primary_10_3390_v16030339
crossref_primary_10_1002_cbic_202100393
crossref_primary_10_1007_s12033_024_01240_4
crossref_primary_10_14336_AD_2021_1210
crossref_primary_10_1038_s41598_021_83761_5
crossref_primary_10_3390_vaccines9121410
crossref_primary_10_1007_s12275_021_1348_5
crossref_primary_10_15625_vjbt_21493
crossref_primary_10_7759_cureus_16905
crossref_primary_10_1186_s12575_021_00145_9
crossref_primary_10_1021_acs_jctc_3c01225
crossref_primary_10_3390_pathogens9100829
crossref_primary_10_1186_s12879_020_05728_7
crossref_primary_10_1073_pnas_2106480118
crossref_primary_10_3389_fimmu_2021_663586
crossref_primary_10_3390_vaccines11071240
crossref_primary_10_1371_journal_pcbi_1008449
crossref_primary_10_3389_fimmu_2021_724914
crossref_primary_10_3390_v16050757
crossref_primary_10_1016_j_cbi_2021_109598
crossref_primary_10_1016_j_eimce_2021_02_013
crossref_primary_10_1038_s42003_021_02835_2
crossref_primary_10_3389_fcimb_2022_875123
crossref_primary_10_1016_j_jmb_2022_167637
crossref_primary_10_3349_ymj_2021_62_11_961
crossref_primary_10_1002_jmv_28996
crossref_primary_10_1039_D1SM01181B
crossref_primary_10_3389_fpubh_2023_1098965
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_1007_s10845_024_02551_8
crossref_primary_10_1016_j_humgen_2024_201304
crossref_primary_10_1038_s41598_021_99368_9
crossref_primary_10_1590_1414_431x202010725
crossref_primary_10_1016_j_tmaid_2022_102390
crossref_primary_10_1186_s12985_021_01633_w
crossref_primary_10_1016_j_virol_2021_10_005
crossref_primary_10_1016_j_compbiomed_2024_108688
crossref_primary_10_3390_jpm11111098
crossref_primary_10_1016_j_xcrp_2024_102334
crossref_primary_10_1007_s10787_021_00796_w
crossref_primary_10_1017_S0950268821002430
crossref_primary_10_6339_21_JDS1006
crossref_primary_10_3390_v14040653
crossref_primary_10_3390_ijerph18136712
crossref_primary_10_1016_j_virol_2023_109850
crossref_primary_10_1016_j_compbiomed_2024_107918
crossref_primary_10_1371_journal_pone_0283664
crossref_primary_10_2217_fvl_2020_0384
crossref_primary_10_1016_j_eimc_2021_02_006
crossref_primary_10_3389_fmed_2021_620990
crossref_primary_10_1021_acsestwater_1c00119
crossref_primary_10_1016_j_bcp_2021_114424
crossref_primary_10_1080_07391102_2023_2194007
crossref_primary_10_22207_JPAM_15_4_53
crossref_primary_10_31665_JFB_2022_17298
crossref_primary_10_1177_10943420231188077
crossref_primary_10_1128_JCM_00921_21
crossref_primary_10_3390_ijerph19116551
crossref_primary_10_1007_s00430_022_00729_6
crossref_primary_10_3390_mi13020145
crossref_primary_10_1177_11779322211054684
crossref_primary_10_1038_s41467_023_38435_3
crossref_primary_10_1016_j_buildenv_2023_110117
crossref_primary_10_3389_fmicb_2023_1229506
crossref_primary_10_1002_rmv_2270
crossref_primary_10_1371_journal_pone_0263705
crossref_primary_10_1016_j_compbiomed_2022_106129
crossref_primary_10_1038_s41598_024_72842_w
crossref_primary_10_3389_fmed_2022_815389
crossref_primary_10_1128_mra_00077_23
crossref_primary_10_3390_microorganisms11082039
crossref_primary_10_4110_in_2023_23_e13
crossref_primary_10_1016_j_micres_2022_127204
crossref_primary_10_1371_journal_pone_0273860
crossref_primary_10_1021_acsomega_2c01907
crossref_primary_10_1371_journal_pone_0266417
crossref_primary_10_1038_s41587_021_00845_3
crossref_primary_10_1007_s13337_022_00755_1
crossref_primary_10_1016_j_compbiomed_2021_104818
crossref_primary_10_3346_jkms_2021_36_e124
crossref_primary_10_1016_j_placenta_2021_07_288
crossref_primary_10_1016_j_watres_2022_118686
crossref_primary_10_1089_vim_2022_0122
crossref_primary_10_1007_s10114_022_2326_5
crossref_primary_10_3934_math_20241333
crossref_primary_10_7717_peerj_11232
crossref_primary_10_3389_fmicb_2022_828806
crossref_primary_10_3390_cimb43020061
crossref_primary_10_1002_jmv_27337
crossref_primary_10_3390_idr13010013
crossref_primary_10_1016_j_ijbiomac_2023_124893
crossref_primary_10_1021_acsinfecdis_1c00557
crossref_primary_10_1016_j_ebiom_2022_104025
crossref_primary_10_1016_j_jmb_2023_168187
crossref_primary_10_1080_08830185_2022_2079642
crossref_primary_10_1136_thoraxjnl_2021_217650
crossref_primary_10_3390_v14040827
crossref_primary_10_3390_ijms23031716
crossref_primary_10_1016_j_cell_2021_04_025
crossref_primary_10_1016_S1473_3099_21_00200_0
crossref_primary_10_1016_j_bbadis_2022_166612
crossref_primary_10_1016_j_arcmed_2022_08_006
crossref_primary_10_3389_fendo_2024_1434331
crossref_primary_10_1126_science_abh2315
crossref_primary_10_1016_j_compbiomed_2021_104264
crossref_primary_10_1021_acsomega_3c00944
crossref_primary_10_1016_j_nantod_2022_101730
crossref_primary_10_1016_j_compbiomed_2022_106262
crossref_primary_10_1139_cjpp_2021_0663
crossref_primary_10_1016_j_jinf_2021_04_023
crossref_primary_10_1128_AAC_00097_21
crossref_primary_10_3390_v13081595
crossref_primary_10_3390_biomedicines9101303
crossref_primary_10_1128_jvi_00685_22
crossref_primary_10_1371_journal_pone_0277745
crossref_primary_10_1142_S0218348X21501231
crossref_primary_10_1080_07391102_2021_1969281
crossref_primary_10_1021_acsami_1c16264
crossref_primary_10_1021_acs_jproteome_2c00325
crossref_primary_10_1038_s42003_021_01754_6
crossref_primary_10_1002_jmv_27596
crossref_primary_10_3390_v15020309
crossref_primary_10_1089_ars_2021_0017
crossref_primary_10_1128_spectrum_00959_24
crossref_primary_10_3389_fimmu_2021_663912
crossref_primary_10_3390_cells10040796
crossref_primary_10_1002_mco2_126
crossref_primary_10_1021_acs_jpclett_2c00469
crossref_primary_10_33321_cdi_2021_45_14
crossref_primary_10_1016_j_ymeth_2021_09_005
crossref_primary_10_1016_j_jobb_2022_02_002
crossref_primary_10_1038_s41598_022_19886_y
crossref_primary_10_1111_zph_12971
crossref_primary_10_1371_journal_ppat_1009761
crossref_primary_10_3390_molecules26082383
crossref_primary_10_1016_j_compbiomed_2024_109101
crossref_primary_10_1016_j_onano_2022_100118
crossref_primary_10_1007_s11030_021_10373_6
crossref_primary_10_3390_math12172681
crossref_primary_10_1016_j_jmb_2021_167155
crossref_primary_10_1089_vim_2021_0023
crossref_primary_10_1007_s15010_024_02223_y
crossref_primary_10_1016_j_heliyon_2022_e12667
crossref_primary_10_1016_j_sjbs_2021_09_028
crossref_primary_10_3390_v15040944
crossref_primary_10_3390_biom11060796
crossref_primary_10_1016_j_jksus_2021_101439
crossref_primary_10_3390_biom11091273
crossref_primary_10_3390_vaccines11030668
crossref_primary_10_1016_j_ijbiomac_2023_125153
crossref_primary_10_1021_acs_chemrev_1c00965
crossref_primary_10_37394_23208_2022_19_4
crossref_primary_10_1016_j_envres_2021_112092
crossref_primary_10_7554_eLife_74153
crossref_primary_10_1002_iub_2577
crossref_primary_10_1177_00375497231194348
crossref_primary_10_1142_S2737416524500613
crossref_primary_10_1002_btm2_10356
crossref_primary_10_1007_s13205_022_03430_w
crossref_primary_10_3390_v12101095
crossref_primary_10_1128_spectrum_00716_22
crossref_primary_10_3390_vaccines12040441
crossref_primary_10_1016_j_ijbiomac_2021_11_151
crossref_primary_10_1016_j_virol_2022_05_003
crossref_primary_10_1038_s41467_021_25113_5
crossref_primary_10_1038_s41598_022_05424_3
crossref_primary_10_1016_j_drudis_2021_04_018
crossref_primary_10_3390_v15061382
crossref_primary_10_3389_fcimb_2024_1458383
crossref_primary_10_3390_biology10060531
crossref_primary_10_1021_acsomega_1c04024
crossref_primary_10_1186_s40779_021_00360_1
crossref_primary_10_3389_fmicb_2022_869559
crossref_primary_10_1016_j_nmni_2021_100929
crossref_primary_10_1186_s13059_024_03355_y
crossref_primary_10_3390_biologics3020008
crossref_primary_10_1016_j_genrep_2022_101537
crossref_primary_10_1159_000515417
crossref_primary_10_1039_D1SC01203G
crossref_primary_10_1038_s41564_021_00954_4
crossref_primary_10_1080_23144599_2023_2222981
crossref_primary_10_3390_ijms22052268
crossref_primary_10_1016_j_eclinm_2021_101021
crossref_primary_10_1080_08927022_2022_2111421
crossref_primary_10_3390_v14020186
crossref_primary_10_1016_j_scitotenv_2021_145721
crossref_primary_10_1021_acscentsci_1c00216
crossref_primary_10_3390_biology11020178
crossref_primary_10_1016_j_watres_2021_117681
crossref_primary_10_3389_fmicb_2021_703145
crossref_primary_10_1590_1678_4324_2021200803
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_1016_j_tmaid_2021_101983
crossref_primary_10_1016_j_biopha_2022_113977
crossref_primary_10_1007_s11042_023_14642_4
crossref_primary_10_15829_1728_8800_2023_3820
crossref_primary_10_3390_ijms26031367
crossref_primary_10_1007_s13337_022_00759_x
crossref_primary_10_1016_j_jpha_2021_03_006
crossref_primary_10_5902_2447115167569
crossref_primary_10_3390_v14051029
crossref_primary_10_1016_j_intimp_2022_108531
crossref_primary_10_1007_s11427_022_2166_y
crossref_primary_10_1016_j_csbj_2022_07_051
crossref_primary_10_3390_v15122291
crossref_primary_10_5817_CSF2021_1_18
crossref_primary_10_34172_apb_2023_069
crossref_primary_10_3390_biomedicines10020441
crossref_primary_10_3389_fimmu_2022_833355
crossref_primary_10_1016_j_cmpb_2021_106594
crossref_primary_10_1080_13102818_2023_2206492
crossref_primary_10_1002_jmv_28366
crossref_primary_10_1007_s11684_023_1034_6
crossref_primary_10_3389_fmolb_2022_976490
crossref_primary_10_3390_cimb44070208
crossref_primary_10_3390_microorganisms10030598
crossref_primary_10_1007_s13204_021_02300_w
crossref_primary_10_1038_s41467_022_34033_x
crossref_primary_10_1080_21645515_2023_2179788
crossref_primary_10_3389_fimmu_2022_957407
crossref_primary_10_3390_antiox11071366
crossref_primary_10_1080_07391102_2021_1889671
crossref_primary_10_3390_ma15227918
crossref_primary_10_1080_07391102_2022_2032354
crossref_primary_10_1021_acs_jpclett_1c03380
crossref_primary_10_3390_v15051115
crossref_primary_10_1002_prot_26645
crossref_primary_10_1186_s12929_022_00852_9
crossref_primary_10_1016_j_compbiomed_2021_104964
crossref_primary_10_1016_j_ijbiomac_2022_02_034
crossref_primary_10_1093_bib_bbad046
crossref_primary_10_1097_ID9_0000000000000027
crossref_primary_10_1007_s11403_021_00344_3
crossref_primary_10_1177_20587384211050199
crossref_primary_10_1016_j_crwh_2021_e00368
crossref_primary_10_1093_femsre_fuad048
crossref_primary_10_1186_s12967_020_02675_4
crossref_primary_10_1128_spectrum_01190_23
crossref_primary_10_3390_cells10071762
crossref_primary_10_1111_edt_12759
crossref_primary_10_1142_S179398442250012X
crossref_primary_10_1016_j_biopha_2021_112011
crossref_primary_10_1128_aem_01313_24
crossref_primary_10_1021_acs_jcim_1c01451
crossref_primary_10_3389_fmed_2022_995960
crossref_primary_10_3390_ijms23084155
crossref_primary_10_1088_2632_072X_ad83a5
crossref_primary_10_1021_acs_jcim_2c00350
crossref_primary_10_3389_fimmu_2023_1266776
crossref_primary_10_3389_fmicb_2021_789062
crossref_primary_10_1016_j_ijbiomac_2021_10_144
crossref_primary_10_1021_acs_jcim_5c00114
crossref_primary_10_3390_microorganisms11040940
crossref_primary_10_1371_journal_pone_0289432
crossref_primary_10_1002_bkcs_12418
crossref_primary_10_1016_j_jmgm_2022_108260
crossref_primary_10_1016_j_bios_2023_115516
crossref_primary_10_1016_j_scitotenv_2021_149834
crossref_primary_10_1016_j_bjid_2021_101588
crossref_primary_10_1038_s41467_021_25168_4
crossref_primary_10_1093_bib_bbac024
crossref_primary_10_54097_hbem_v3i_4737
crossref_primary_10_1016_j_genrep_2024_102032
crossref_primary_10_1016_j_ygeno_2021_05_006
crossref_primary_10_3390_biom12111665
crossref_primary_10_3390_microorganisms8111840
crossref_primary_10_1021_acs_jpcb_3c05460
crossref_primary_10_1016_j_cytogfr_2021_06_001
crossref_primary_10_3390_math13020208
crossref_primary_10_1002_prot_26266
crossref_primary_10_3389_fcimb_2023_1161445
crossref_primary_10_3390_molecules26010057
crossref_primary_10_3390_cells9112528
crossref_primary_10_3389_fmed_2021_836826
crossref_primary_10_3934_fods_2024048
crossref_primary_10_1021_acs_jproteome_0c00637
crossref_primary_10_1142_S2737416523500278
crossref_primary_10_3390_jcm10122635
crossref_primary_10_3390_ijms22168498
crossref_primary_10_1038_s41598_022_14308_5
crossref_primary_10_1371_journal_ppat_1009704
crossref_primary_10_1016_j_envres_2021_111373
crossref_primary_10_1038_s41598_022_09999_9
crossref_primary_10_1016_j_heliyon_2025_e42533
crossref_primary_10_3390_vaccines10060919
crossref_primary_10_3389_fimmu_2021_742167
crossref_primary_10_3390_ijms22063060
crossref_primary_10_3389_fnut_2022_992733
crossref_primary_10_1016_j_compbiomed_2023_107258
crossref_primary_10_3390_life12020163
crossref_primary_10_1021_acsmeasuresciau_3c00005
crossref_primary_10_1128_Spectrum_00789_21
crossref_primary_10_31631_2073_3046_2022_6_24_33
crossref_primary_10_1016_j_intimp_2021_108232
crossref_primary_10_1016_j_heliyon_2023_e13672
crossref_primary_10_1007_s00705_022_05365_2
crossref_primary_10_1038_s41586_021_03461_y
crossref_primary_10_2217_fvl_2021_0100
crossref_primary_10_3389_fpubh_2022_934242
crossref_primary_10_1093_bib_bbae465
crossref_primary_10_1080_07391102_2022_2142296
crossref_primary_10_1021_acs_analchem_1c04858
crossref_primary_10_4103_jmms_jmms_141_20
crossref_primary_10_1007_s11356_021_14092_1
crossref_primary_10_1016_j_isci_2022_103856
crossref_primary_10_3390_info15090575
crossref_primary_10_1097_CM9_0000000000002158
crossref_primary_10_1016_j_compbiomed_2022_105367
crossref_primary_10_1038_s41598_022_18644_4
crossref_primary_10_1371_journal_ppat_1009929
crossref_primary_10_1128_MRA_00727_21
crossref_primary_10_1038_s42003_022_03198_y
crossref_primary_10_1016_j_antiviral_2022_105297
crossref_primary_10_3201_eid2811_220577
crossref_primary_10_1007_s10930_021_09988_3
crossref_primary_10_3390_life12020194
crossref_primary_10_3389_fmicb_2022_933983
crossref_primary_10_3389_fimmu_2021_751778
crossref_primary_10_54803_sauhsd_1138532
crossref_primary_10_1007_s42977_021_00069_1
crossref_primary_10_1021_acs_jcim_2c01352
crossref_primary_10_1111_jfbc_13902
crossref_primary_10_1093_nar_gkab921
crossref_primary_10_1002_biot_202100207
crossref_primary_10_1021_acsptsci_4c00316
crossref_primary_10_1002_mlf2_12040
crossref_primary_10_3390_molecules27072070
crossref_primary_10_1016_j_isci_2022_104716
crossref_primary_10_1016_j_envres_2021_112240
crossref_primary_10_1021_envhealth_3c00089
crossref_primary_10_3390_ijms241210233
crossref_primary_10_1038_s41598_021_93757_w
crossref_primary_10_1128_Spectrum_01096_21
crossref_primary_10_3389_fimmu_2021_678570
crossref_primary_10_2174_2666796704666230328171636
crossref_primary_10_3389_fcimb_2021_765039
crossref_primary_10_3390_ijms24097803
crossref_primary_10_1016_j_snb_2023_133575
crossref_primary_10_3389_fenvs_2023_1106969
Cites_doi 10.1016/S0140-6736(20)30251-8
10.1093/bioinformatics/bts489
10.1128/JVI.00442-08
10.1056/NEJMoa030685
10.3390/v12020135
10.1038/s41426-018-0155-5
10.3390/ijms17040547
10.1016/S0140-6736(20)30183-5
10.1128/JVI.00650-10
10.1038/s41586-020-2008-3
10.1038/s41586-020-2012-7
10.1074/jbc.M500662200
10.1126/science.1116480
10.2807/1560-7917.ES.2017.22.13.30494
10.1093/bioinformatics/bty635
10.1126/science.1118391
10.1371/journal.pcbi.1005929
10.1016/j.cell.2020.02.052
10.1021/acs.jcim.0c00501
10.1002/pro.2829
10.1038/s42256-020-0149-6
10.1093/nar/gkw374
10.1016/S0140-6736(20)30154-9
10.1126/science.abb2507
10.1090/S0273-0979-09-01249-X
10.1073/pnas.0409608102
10.1093/nar/gkz383
10.1093/nar/gki387
10.1093/molbev/mst010
10.1073/pnas.1718806115
10.1016/j.cell.2020.02.058
10.1038/srep29575
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jmb.2020.07.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 5226
ExternalDocumentID PMC7375973
32710986
10_1016_j_jmb_2020_07_009
S0022283620304563
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM126189
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HLW
HMG
IH2
IHE
J1W
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSI
SSU
SSZ
T5K
TWZ
VQA
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
186
29L
3O-
AAEDT
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
K-O
MVM
NEJ
R2-
RIG
SBG
SEW
SIN
SSH
UQL
VH1
WUQ
X7M
XJT
XOL
Y6R
YYP
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-4fed0693b72ca6c02eb92537033340f495ac0dbf7eae637a31fe8074902394063
IEDL.DBID .~1
ISSN 0022-2836
1089-8638
IngestDate Thu Aug 21 14:07:15 EDT 2025
Thu Jul 10 19:15:36 EDT 2025
Tue Aug 05 10:27:06 EDT 2025
Wed Feb 19 02:01:49 EST 2025
Thu Apr 24 23:08:26 EDT 2025
Tue Jul 01 03:50:33 EDT 2025
Fri Feb 23 02:36:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords COVID-19
BFE
mutation
ACE2
SARS-CoV-2
RBD
spike protein
PPI
protein-protein interaction
RBM
viral infectivity
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-4fed0693b72ca6c02eb92537033340f495ac0dbf7eae637a31fe8074902394063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7375973
PMID 32710986
PQID 2427293035
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7375973
proquest_miscellaneous_2477643509
proquest_miscellaneous_2427293035
pubmed_primary_32710986
crossref_citationtrail_10_1016_j_jmb_2020_07_009
crossref_primary_10_1016_j_jmb_2020_07_009
elsevier_sciencedirect_doi_10_1016_j_jmb_2020_07_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-04
PublicationDateYYYYMMDD 2020-09-04
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-04
  day: 04
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References 395(10223):497–506, 2020.
Wang, Cang, Wei (bb0145) 2020; 2
Walls, Park, Tortorici, Wall, McGuire, Veesler (bb0060) 2020; 181
M. Petukh, L. Dai, and E. Alexov. Saambe: webserver to predict the charge of binding free energy caused by amino acids mutations.
Lee, Hui, Wu, Chan, Cameron, Joynt, Ahuja, Yung (bb0160) 2003; 348
M. Li, F. L. Simonetti, A. Goncearenco, and A. R. Panchenko. Mutabind estimates and interprets the effects of sequence variants on protein–protein interactions.
Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Foley, Giorgi (bb0040) 2020
35(3):462–469, 2019.
28(20):2600–2607, 2012.
Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach (bb0080) 2020; 1–4
C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015.
Zhang, Jackson, Mou, Ojha, Rangarajan, Izard, Farzan, Choe (bb0045) 2020
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bb0085) 2020; 367
Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song (bb0020) 2020; 395
44(W1):W494–W501, 2016.
Katoh, Standley (bb0185) 2013; 30
Rodrigues, Myung, Pires, Ascher (bb0105) 2019; 47
Wang, Hozumi, Yin, Wei (bb0025) 2020
Li, Shi, Yu, Ren, Smith, Epstein, Wang, Crameri (bb0065) 2005; 310
Hu, Zhu, Ai, He, Wang, Ye, Yang, Ding (bb0175) 2018; 7
579(7798):270–273, 2020.
Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao (bb0030) 2020; 579
Gralinski, Menachery (bb0015) 2020; 12
Li, Li, Farzan, Harrison (bb0055) 2005; 309
Y. Shu and J. McCauley. GISAID: Globalinitiative on sharing all influenza data–from vision to reality.
M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Kru¨ger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.
Zhang, Chen, Lu, Zhao, Alvarez, Goncearenco, Panchenko, Li (bb0115) 2020; 100939
Edelsbrunner, Letscher, Zomorodian (bb0140) 2000
P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin.
Schymkowitz, Borg, Stricher, Nys, Rousseau, Serrano (bb0110) 2005; 33
J. Jankauskaite
B. Jim´enez-Garc´ıa, J. Dapku¯nas, J. Ferna´ndez-Recio, and I.H. Moal. Skempi 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation.
22(13), 2017.
Carlsson (bb0135) 2009; 46
Song, Tu, Zhang, Wang, Zheng, Lei, Chen, Gao (bb0075) 2005; 102
Qu, Hao, Song, Jiang, Liu, Wang, Rao, Song (bb0070) 2005; 280
Ferron, Subissi, De Morais, Le, Sevajol, Gluais, Decroly, Vonrhein (bb0035) 2018; 115
Sievers, Higgins (bb0195) 2014
2020.
I.H. Moal, J. Ferna´ndez-Recio. SKEMPI: a Structural Kinetic and Energetic database of mutant protein interactions and its use in empirical models.
Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi (bb0155) 2020; 1–6
Cang, Mu, Wei (bb0200) 2018; 14
17(4):547, 2016.
Li (bb0180) 2008; 82
Sirin, Apgar, Bennett, Keating (bb0120) 2016; 25
Pires, Blundell, Ascher (bb0100) 2016; 6
J. F.-W. Chan, S. Yuan, K.-H. Kok, K. K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C.-Y. Yip, R. W.-S. Poon, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223):514–523, 2020.
Drexler, Gloza-Rausch, Glende, Corman, Muth, Goettsche, Seebens, Niedrig (bb0170) 2010; 84
Ferron (10.1016/j.jmb.2020.07.009_bb0035) 2018; 115
Lu (10.1016/j.jmb.2020.07.009_bb0020) 2020; 395
10.1016/j.jmb.2020.07.009_bb0165
Cang (10.1016/j.jmb.2020.07.009_bb0200) 2018; 14
10.1016/j.jmb.2020.07.009_bb0005
Gralinski (10.1016/j.jmb.2020.07.009_bb0015) 2020; 12
10.1016/j.jmb.2020.07.009_bb0125
Schymkowitz (10.1016/j.jmb.2020.07.009_bb0110) 2005; 33
Pires (10.1016/j.jmb.2020.07.009_bb0100) 2016; 6
Li (10.1016/j.jmb.2020.07.009_bb0055) 2005; 309
Rodrigues (10.1016/j.jmb.2020.07.009_bb0105) 2019; 47
Wu (10.1016/j.jmb.2020.07.009_bb0030) 2020; 579
Wrapp (10.1016/j.jmb.2020.07.009_bb0085) 2020; 367
Li (10.1016/j.jmb.2020.07.009_bb0180) 2008; 82
Qu (10.1016/j.jmb.2020.07.009_bb0070) 2005; 280
Lee (10.1016/j.jmb.2020.07.009_bb0160) 2003; 348
Edelsbrunner (10.1016/j.jmb.2020.07.009_bb0140) 2000
Lan (10.1016/j.jmb.2020.07.009_bb0155) 2020; 1–6
Walls (10.1016/j.jmb.2020.07.009_bb0060) 2020; 181
Zhang (10.1016/j.jmb.2020.07.009_bb0045) 2020
Wang (10.1016/j.jmb.2020.07.009_bb0145) 2020; 2
Katoh (10.1016/j.jmb.2020.07.009_bb0185) 2013; 30
10.1016/j.jmb.2020.07.009_bb0010
10.1016/j.jmb.2020.07.009_bb0130
Li (10.1016/j.jmb.2020.07.009_bb0065) 2005; 310
Song (10.1016/j.jmb.2020.07.009_bb0075) 2005; 102
10.1016/j.jmb.2020.07.009_bb0090
10.1016/j.jmb.2020.07.009_bb0190
Sievers (10.1016/j.jmb.2020.07.009_bb0195) 2014
10.1016/j.jmb.2020.07.009_bb0050
Zhang (10.1016/j.jmb.2020.07.009_bb0115) 2020; 100939
Carlsson (10.1016/j.jmb.2020.07.009_bb0135) 2009; 46
10.1016/j.jmb.2020.07.009_bb0095
10.1016/j.jmb.2020.07.009_bb0150
Korber (10.1016/j.jmb.2020.07.009_bb0040) 2020
Wang (10.1016/j.jmb.2020.07.009_bb0025) 2020
Sirin (10.1016/j.jmb.2020.07.009_bb0120) 2016; 25
Hu (10.1016/j.jmb.2020.07.009_bb0175) 2018; 7
Shang (10.1016/j.jmb.2020.07.009_bb0080) 2020; 1–4
Drexler (10.1016/j.jmb.2020.07.009_bb0170) 2010; 84
References_xml – reference: Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015.
– reference: , 28(20):2600–2607, 2012.
– reference: P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin.
– reference: M. Petukh, L. Dai, and E. Alexov. Saambe: webserver to predict the charge of binding free energy caused by amino acids mutations.
– volume: 25
  start-page: 393
  year: 2016
  end-page: 409
  ident: bb0120
  article-title: AB-Bind: antibody binding mutational database for computational affinity predictions
  publication-title: Protein Sci.
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  ident: bb0185
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol. Biol. Evol.
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292
  ident: bb0060
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– reference: , 2020.
– volume: 579
  start-page: 265
  year: 2020
  end-page: 269
  ident: bb0030
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
– volume: 280
  start-page: 29588
  year: 2005
  end-page: 29595
  ident: bb0070
  article-title: Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy
  publication-title: J. Biol. Chem.
– volume: 47
  start-page: W338
  year: 2019
  end-page: W344
  ident: bb0105
  article-title: mCSM-PPI2: predicting the effects of mutations on protein–protein interactions
  publication-title: Nucleic Acids Res.
– start-page: 454
  year: 2000
  end-page: 463
  ident: bb0140
  article-title: Topological persistence and simplification
  publication-title: Proceedings 41st Annual Symposium on Foundations of Computer Science
– reference: , B. Jim´enez-Garc´ıa, J. Dapku¯nas, J. Ferna´ndez-Recio, and I.H. Moal. Skempi 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation.
– reference: , 17(4):547, 2016.
– reference: Y. Shu and J. McCauley. GISAID: Globalinitiative on sharing all influenza data–from vision to reality.
– reference: , 44(W1):W494–W501, 2016.
– year: 2020
  ident: bb0045
  article-title: The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity
  publication-title: bioRxiv
– volume: 348
  start-page: 1986
  year: 2003
  end-page: 1994
  ident: bb0160
  article-title: A major outbreak of severe acute respiratory syndrome in hong kong
  publication-title: N. Engl. J. Med.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 10
  ident: bb0175
  article-title: Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats
  publication-title: Emerg. Microbes Infect.
– reference: J. F.-W. Chan, S. Yuan, K.-H. Kok, K. K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C.-Y. Yip, R. W.-S. Poon, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223):514–523, 2020.
– volume: 1–6
  year: 2020
  ident: bb0155
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 1–4
  year: 2020
  ident: bb0080
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
– volume: 310
  start-page: 676
  year: 2005
  end-page: 679
  ident: bb0065
  article-title: Bats are natural reservoirs of SARS-like coronaviruses
  publication-title: Science
– reference: , 395(10223):497–506, 2020.
– volume: 100939
  year: 2020
  ident: bb0115
  article-title: Mutabind2: predicting the impacts of single and multiple mutations on protein–protein interactions
  publication-title: Iscience
– volume: 33
  start-page: W382
  year: 2005
  end-page: W388
  ident: bb0110
  article-title: The FoldX web server: an online force field
  publication-title: Nucleic Acids Res.
– volume: 46
  start-page: 255
  year: 2009
  end-page: 308
  ident: bb0135
  article-title: Topology and data
  publication-title: Bull. Am. Math. Soc.
– volume: 14
  start-page: e1005929
  year: 2018
  ident: bb0200
  article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
  publication-title: PLoS Comput. Biol
– year: 2020
  ident: bb0040
  article-title: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
  publication-title: bioRxiv
– volume: 115
  start-page: E162
  year: 2018
  end-page: E171
  ident: bb0035
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci.
– volume: 12
  start-page: 135
  year: 2020
  ident: bb0015
  article-title: Return of the coronavirus: 2019-nCoV
  publication-title: Viruses
– volume: 102
  start-page: 2430
  year: 2005
  end-page: 2435
  ident: bb0075
  article-title: Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human
  publication-title: Proc. Natl. Acad. Sci.
– reference: M. Li, F. L. Simonetti, A. Goncearenco, and A. R. Panchenko. Mutabind estimates and interprets the effects of sequence variants on protein–protein interactions.
– volume: 84
  start-page: 11336
  year: 2010
  end-page: 11349
  ident: bb0170
  article-title: Genomic characterization of SARS-related coronavirus in european bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences
  publication-title: J. Virol.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bb0085
  article-title: Cryo-em structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 2
  start-page: 116
  year: 2020
  end-page: 123
  ident: bb0145
  article-title: A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation
  publication-title: Nat. Mach. Intell.
– start-page: 105
  year: 2014
  end-page: 116
  ident: bb0195
  article-title: Clustal omega, accurate alignment of very large numbers of sequences
  publication-title: Multiple Sequence Alignment Methods
– volume: 82
  start-page: 6984
  year: 2008
  end-page: 6991
  ident: bb0180
  article-title: Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections
  publication-title: J. Virol.
– volume: 6
  start-page: 29575
  year: 2016
  ident: bb0100
  article-title: mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance
  publication-title: Sci. Rep.
– reference: , 579(7798):270–273, 2020.
– year: 2020
  ident: bb0025
  article-title: Decoding SARS-CoV-2 transmission and evolution and ramifications for COVID-19 diagnosis, vaccine, and medicine
  publication-title: J. Chem. Inf. Model.
– volume: 395
  start-page: 565
  year: 2020
  end-page: 574
  ident: bb0020
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
– volume: 309
  start-page: 1864
  year: 2005
  end-page: 1868
  ident: bb0055
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
– reference: J. Jankauskaite
– reference: M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Kru¨ger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.
– reference: I.H. Moal, J. Ferna´ndez-Recio. SKEMPI: a Structural Kinetic and Energetic database of mutant protein interactions and its use in empirical models.
– reference: C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
– reference: , 22(13), 2017.
– reference: , 35(3):462–469, 2019.
– volume: 395
  start-page: 565
  issue: 10224
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0020
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30251-8
– year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0040
  article-title: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2
  publication-title: bioRxiv
– ident: 10.1016/j.jmb.2020.07.009_bb0130
  doi: 10.1093/bioinformatics/bts489
– volume: 82
  start-page: 6984
  issue: 14
  year: 2008
  ident: 10.1016/j.jmb.2020.07.009_bb0180
  article-title: Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections
  publication-title: J. Virol.
  doi: 10.1128/JVI.00442-08
– volume: 348
  start-page: 1986
  issue: 20
  year: 2003
  ident: 10.1016/j.jmb.2020.07.009_bb0160
  article-title: A major outbreak of severe acute respiratory syndrome in hong kong
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030685
– volume: 12
  start-page: 135
  issue: 2
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0015
  article-title: Return of the coronavirus: 2019-nCoV
  publication-title: Viruses
  doi: 10.3390/v12020135
– volume: 7
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jmb.2020.07.009_bb0175
  article-title: Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/s41426-018-0155-5
– ident: 10.1016/j.jmb.2020.07.009_bb0095
  doi: 10.3390/ijms17040547
– volume: 1–6
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0155
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– ident: 10.1016/j.jmb.2020.07.009_bb0190
– volume: 1–4
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0080
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
– start-page: 454
  year: 2000
  ident: 10.1016/j.jmb.2020.07.009_bb0140
  article-title: Topological persistence and simplification
– ident: 10.1016/j.jmb.2020.07.009_bb0005
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 84
  start-page: 11336
  year: 2010
  ident: 10.1016/j.jmb.2020.07.009_bb0170
  article-title: Genomic characterization of SARS-related coronavirus in european bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences
  publication-title: J. Virol.
  doi: 10.1128/JVI.00650-10
– volume: 100939
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0115
  article-title: Mutabind2: predicting the impacts of single and multiple mutations on protein–protein interactions
  publication-title: Iscience
– volume: 579
  start-page: 265
  issue: 7798
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0030
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– ident: 10.1016/j.jmb.2020.07.009_bb0165
  doi: 10.1038/s41586-020-2012-7
– volume: 280
  start-page: 29588
  issue: 33
  year: 2005
  ident: 10.1016/j.jmb.2020.07.009_bb0070
  article-title: Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500662200
– start-page: 105
  year: 2014
  ident: 10.1016/j.jmb.2020.07.009_bb0195
  article-title: Clustal omega, accurate alignment of very large numbers of sequences
– volume: 309
  start-page: 1864
  issue: 5742
  year: 2005
  ident: 10.1016/j.jmb.2020.07.009_bb0055
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
  doi: 10.1126/science.1116480
– ident: 10.1016/j.jmb.2020.07.009_bb0150
  doi: 10.2807/1560-7917.ES.2017.22.13.30494
– ident: 10.1016/j.jmb.2020.07.009_bb0125
  doi: 10.1093/bioinformatics/bty635
– volume: 310
  start-page: 676
  issue: 5748
  year: 2005
  ident: 10.1016/j.jmb.2020.07.009_bb0065
  article-title: Bats are natural reservoirs of SARS-like coronaviruses
  publication-title: Science
  doi: 10.1126/science.1118391
– volume: 14
  start-page: e1005929
  issue: 1
  year: 2018
  ident: 10.1016/j.jmb.2020.07.009_bb0200
  article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005929
– ident: 10.1016/j.jmb.2020.07.009_bb0050
  doi: 10.1016/j.cell.2020.02.052
– year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0025
  article-title: Decoding SARS-CoV-2 transmission and evolution and ramifications for COVID-19 diagnosis, vaccine, and medicine
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00501
– volume: 25
  start-page: 393
  issue: 2
  year: 2016
  ident: 10.1016/j.jmb.2020.07.009_bb0120
  article-title: AB-Bind: antibody binding mutational database for computational affinity predictions
  publication-title: Protein Sci.
  doi: 10.1002/pro.2829
– volume: 2
  start-page: 116
  issue: 2
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0145
  article-title: A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0149-6
– ident: 10.1016/j.jmb.2020.07.009_bb0090
  doi: 10.1093/nar/gkw374
– ident: 10.1016/j.jmb.2020.07.009_bb0010
  doi: 10.1016/S0140-6736(20)30154-9
– volume: 367
  start-page: 1260
  issue: 6483
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0085
  article-title: Cryo-em structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 46
  start-page: 255
  issue: 2
  year: 2009
  ident: 10.1016/j.jmb.2020.07.009_bb0135
  article-title: Topology and data
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-09-01249-X
– volume: 102
  start-page: 2430
  issue: 7
  year: 2005
  ident: 10.1016/j.jmb.2020.07.009_bb0075
  article-title: Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0409608102
– volume: 47
  start-page: W338
  issue: W1
  year: 2019
  ident: 10.1016/j.jmb.2020.07.009_bb0105
  article-title: mCSM-PPI2: predicting the effects of mutations on protein–protein interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz383
– volume: 33
  start-page: W382
  issue: Suppl. 2
  year: 2005
  ident: 10.1016/j.jmb.2020.07.009_bb0110
  article-title: The FoldX web server: an online force field
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki387
– volume: 30
  start-page: 772
  issue: 4
  year: 2013
  ident: 10.1016/j.jmb.2020.07.009_bb0185
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst010
– volume: 115
  start-page: E162
  issue: 2
  year: 2018
  ident: 10.1016/j.jmb.2020.07.009_bb0035
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1718806115
– year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0045
  article-title: The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity
  publication-title: bioRxiv
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.jmb.2020.07.009_bb0060
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 6
  start-page: 29575
  year: 2016
  ident: 10.1016/j.jmb.2020.07.009_bb0100
  article-title: mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance
  publication-title: Sci. Rep.
  doi: 10.1038/srep29575
SSID ssj0005348
Score 2.7002065
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5212
SubjectTerms Amino Acid Sequence
Angiotensin-Converting Enzyme 2
Betacoronavirus - classification
Betacoronavirus - genetics
Betacoronavirus - pathogenicity
Cluster Analysis
Coronavirus Infections - virology
COVID-19
COVID-19 infection
DNA Mutational Analysis
evolution
Evolution, Molecular
Genotype
Geographic Mapping
Gibbs free energy
glycoproteins
Humans
Machine Learning
Models, Molecular
molecular biology
Mutation
Pandemics
pathogenicity
peptidyl-dipeptidase A
Peptidyl-Dipeptidase A - metabolism
Pneumonia, Viral - virology
Polymorphism, Single Nucleotide - genetics
Probability
probability analysis
Protein Binding - genetics
protein-protein interaction
Receptors, Virus - metabolism
SARS-CoV-2
Sequence Alignment
Severe acute respiratory syndrome coronavirus 2
Severe acute respiratory syndrome-related coronavirus
Severe acute respiratory syndrome-related coronavirus - chemistry
Severe acute respiratory syndrome-related coronavirus - genetics
Severe acute respiratory syndrome-related coronavirus - metabolism
Severe acute respiratory syndrome-related coronavirus - pathogenicity
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - metabolism
spike protein
Thermodynamics
viral infectivity
viruses
Title Mutations Strengthened SARS-CoV-2 Infectivity
URI https://dx.doi.org/10.1016/j.jmb.2020.07.009
https://www.ncbi.nlm.nih.gov/pubmed/32710986
https://www.proquest.com/docview/2427293035
https://www.proquest.com/docview/2477643509
https://pubmed.ncbi.nlm.nih.gov/PMC7375973
Volume 432
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VIAQL4k15KUhMSAYTO3YzVhWoBZWBl7pZTuJAK0gRtAMLv527PCoKqANLpCR25Jzt853v83cAR6FVgeVRytAcUIwYsFjoW8fS0KVJbLGOo33I7rVq38vLXtCrQas6C0OwylL3Fzo919blk9NSmqev_T6d8aXdC1TAebRPEeOnlJr4808-v8E8hGxUjOFUuops5hivwUuELqLPc_5OwiT-vTb9tj1_Qii_rUkXK7BcGpNes2jvKtRctgYLRXrJjzVYbFXZ3NaBdcdF0P3do0B09kisBy7xbps3t6w1fGC-1ylwWZRMYgPuL87vWm1WpkpgMboYIyZTl3AVikj7sVUx910U-oHA6SyE5Cl6QTbmSZRqZ50S2oqz1BENTlikRldiE-ayYea2wROuoWOKt-FVxtxGQWJx1jt0ZaXzw6gOvBKSiUsecUpn8WwqwNjAoFwNydVwim6HdTieVHktSDRmFZaV5M3USDCo5GdVO6x6yaBoKexhMzccvxs0QtCDwKU6mFVGa7TNAvrOVtGzk5YKn_CqDVUHPdXnkwLE0D39Jus_5UzdWmh02MTO_35pF5boLke0yT2YG72N3T6aQKPoIB_jBzDf7Fy1r78A5MoDrQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xEIIF8aY8g8SEZGHixG7GqgK19DFAi9gsJ3GgCFIE7cC_5y6PQgF1YMkQ25Fzts93vs_fAZwGRvqGhwlDc0AyYsBigWssSwKbxJHBNpbOITtd2eh71_f-_RzUy7swBKssdH-u0zNtXbw5L6R5_joY0B1fOr1ABZxF-6SYh0Vip8LJvlhrthrdL6SH8KolaTg1KIObGczr6SVEL9HlGYUnwRL_3p5-m58_UZTftqWrNVgt7Emnlnd5HeZsugFLeYbJjw1YrpcJ3TaBdcZ53P3doVh0-kDEBzZ2bms3t6w-vGOu08yhWZRPYgv6V5e9eoMV2RJYhF7GiHmJjbkMRKjcyMiIuzYMXF_gihbC4wk6QibicZgoa6wUyoiLxBITTpBnR5diGxbSYWp3wRG2qiIKueHTi7gJ_djgwrfozXrWDcIK8FJIOiqoxCmjxbMuMWNPGuWqSa6aU4A7qMDZpMlrzqMxq7JXSl5PTQaNen5Ws5NylDSKliIfJrXD8btGOwSdCNyt_Vl1lELzzKfv7OQjO-mpcAmyWpUVUFNjPqlAJN3TJengMSPrVkKhzyb2_vdLx7Dc6HXaut3stvZhhUoygJt3AAujt7E9RItoFB4VM_4TyoAGXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+Strengthened+SARS-CoV-2+Infectivity&rft.jtitle=Journal+of+molecular+biology&rft.au=Chen%2C+Jiahui&rft.au=Wang%2C+Rui&rft.au=Wang%2C+Menglun&rft.au=Wei%2C+Guo-Wei&rft.date=2020-09-04&rft.issn=1089-8638&rft.eissn=1089-8638&rft.volume=432&rft.issue=19&rft.spage=5212&rft_id=info:doi/10.1016%2Fj.jmb.2020.07.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon