Mutations Strengthened SARS-CoV-2 Infectivity
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single...
Saved in:
Published in | Journal of molecular biology Vol. 432; no. 19; pp. 5212 - 5226 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
04.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2836 1089-8638 1089-8638 |
DOI | 10.1016/j.jmb.2020.07.009 |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.
More than 8000 observed single mutations in the SARS-CoV-2 genomes have raised serious concerns about changes in infectivity. Qualitatively, such infectivity is proportional to the binding affinity between SARS-CoV-2 spike glycoprotein (S protein) and host ACE2 receptor. This work proposes a machine learning model to evaluate the relative infectivity following the mutations. We show that five out of six SARS-CoV-2 substrains have become more infectious, while the other one becomes less infectious. We found that a few potential future mutations on the S protein could lead to more dangerous new viruses. [Display omitted]
•SARS-CoV-2 has had many mutations and evolved into six subtypes.•Three SARS-CoV-2 subtypes have significantly strengthened their infectivity.•A few future mutations have high chances to produce more contagious viruses. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.
More than 8000 observed single mutations in the SARS-CoV-2 genomes have raised serious concerns about changes in infectivity. Qualitatively, such infectivity is proportional to the binding affinity between SARS-CoV-2 spike glycoprotein (S protein) and host ACE2 receptor. This work proposes a machine learning model to evaluate the relative infectivity following the mutations. We show that five out of six SARS-CoV-2 substrains have become more infectious, while the other one becomes less infectious. We found that a few potential future mutations on the S protein could lead to more dangerous new viruses. [Display omitted]
•SARS-CoV-2 has had many mutations and evolved into six subtypes.•Three SARS-CoV-2 subtypes have significantly strengthened their infectivity.•A few future mutations have high chances to produce more contagious viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains. More than 8000 observed single mutations in the SARS-CoV-2 genomes have raised serious concerns about changes in infectivity. Qualitatively, such infectivity is proportional to the binding affinity between SARS-CoV-2 spike glycoprotein (S protein) and host ACE2 receptor. This work proposes a machine learning model to evaluate the relative infectivity following the mutations. We show that five out of six SARS-CoV-2 substrains have become more infectious, while the other one becomes less infectious. We found that a few potential future mutations on the S protein could lead to more dangerous new viruses. Unlabelled Image • SARS-CoV-2 has had many mutations and evolved into six subtypes. • Three SARS-CoV-2 subtypes have significantly strengthened their infectivity. • A few future mutations have high chances to produce more contagious viruses. |
Author | Chen, Jiahui Wang, Menglun Wei, Guo-Wei Wang, Rui |
Author_xml | – sequence: 1 givenname: Jiahui surname: Chen fullname: Chen, Jiahui organization: Department of Mathematics, Michigan State University, MI 48824, USA – sequence: 2 givenname: Rui surname: Wang fullname: Wang, Rui organization: Department of Mathematics, Michigan State University, MI 48824, USA – sequence: 3 givenname: Menglun surname: Wang fullname: Wang, Menglun organization: Department of Mathematics, Michigan State University, MI 48824, USA – sequence: 4 givenname: Guo-Wei surname: Wei fullname: Wei, Guo-Wei email: wei@math.msu.edu organization: Department of Mathematics, Michigan State University, MI 48824, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32710986$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFLHDEUhYNYdLX-AF9kH32Z6Z3cmWSCUJDFtoKl0G37GjKZO5plNrFJdsF_37Grpe2D-HQf7jmHw_mO2L4Pnhg7raCsoBLvVuVq3ZUcOJQgSwC1x2YVtKpoBbb7bAbAecFbFIfsKKUVADRYtwfsELmsQLVixorPm2yyCz7NlzmSv8135KmfLy-_LotF-FHw-bUfyGa3dfnhLXszmDHRydM9Zt8_XH1bfCpuvny8XlzeFLZpIBf1QD0IhZ3k1ggLnDrFG5SAiDUMtWqMhb4bJBkSKA1WA7UgawUcVQ0Cj9n7Xe79pltTb8nnaEZ9H93axAcdjNP_fry707dhqyXKRkmcAs6fAmL4uaGU9dolS-NoPIVN0ryWUtTYgHqFlEuuELCZpGd_1_rT53nOSSB3AhtDSpEGbd1u3qmlG3UF-hGcXukJnH4Ep0Fq-N2i-s_5HP6S52LnoQnF1lHUyTrylnoXJ2K6D-4F9y9eoa5Y |
CitedBy_id | crossref_primary_10_7189_jogh_11_03038 crossref_primary_10_1016_j_progpolymsci_2021_101410 crossref_primary_10_1016_j_nmni_2024_101468 crossref_primary_10_1371_journal_ppat_1009914 crossref_primary_10_3390_v16030339 crossref_primary_10_1002_cbic_202100393 crossref_primary_10_1007_s12033_024_01240_4 crossref_primary_10_14336_AD_2021_1210 crossref_primary_10_1038_s41598_021_83761_5 crossref_primary_10_3390_vaccines9121410 crossref_primary_10_1007_s12275_021_1348_5 crossref_primary_10_15625_vjbt_21493 crossref_primary_10_7759_cureus_16905 crossref_primary_10_1186_s12575_021_00145_9 crossref_primary_10_1021_acs_jctc_3c01225 crossref_primary_10_3390_pathogens9100829 crossref_primary_10_1186_s12879_020_05728_7 crossref_primary_10_1073_pnas_2106480118 crossref_primary_10_3389_fimmu_2021_663586 crossref_primary_10_3390_vaccines11071240 crossref_primary_10_1371_journal_pcbi_1008449 crossref_primary_10_3389_fimmu_2021_724914 crossref_primary_10_3390_v16050757 crossref_primary_10_1016_j_cbi_2021_109598 crossref_primary_10_1016_j_eimce_2021_02_013 crossref_primary_10_1038_s42003_021_02835_2 crossref_primary_10_3389_fcimb_2022_875123 crossref_primary_10_1016_j_jmb_2022_167637 crossref_primary_10_3349_ymj_2021_62_11_961 crossref_primary_10_1002_jmv_28996 crossref_primary_10_1039_D1SM01181B crossref_primary_10_3389_fpubh_2023_1098965 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1007_s10845_024_02551_8 crossref_primary_10_1016_j_humgen_2024_201304 crossref_primary_10_1038_s41598_021_99368_9 crossref_primary_10_1590_1414_431x202010725 crossref_primary_10_1016_j_tmaid_2022_102390 crossref_primary_10_1186_s12985_021_01633_w crossref_primary_10_1016_j_virol_2021_10_005 crossref_primary_10_1016_j_compbiomed_2024_108688 crossref_primary_10_3390_jpm11111098 crossref_primary_10_1016_j_xcrp_2024_102334 crossref_primary_10_1007_s10787_021_00796_w crossref_primary_10_1017_S0950268821002430 crossref_primary_10_6339_21_JDS1006 crossref_primary_10_3390_v14040653 crossref_primary_10_3390_ijerph18136712 crossref_primary_10_1016_j_virol_2023_109850 crossref_primary_10_1016_j_compbiomed_2024_107918 crossref_primary_10_1371_journal_pone_0283664 crossref_primary_10_2217_fvl_2020_0384 crossref_primary_10_1016_j_eimc_2021_02_006 crossref_primary_10_3389_fmed_2021_620990 crossref_primary_10_1021_acsestwater_1c00119 crossref_primary_10_1016_j_bcp_2021_114424 crossref_primary_10_1080_07391102_2023_2194007 crossref_primary_10_22207_JPAM_15_4_53 crossref_primary_10_31665_JFB_2022_17298 crossref_primary_10_1177_10943420231188077 crossref_primary_10_1128_JCM_00921_21 crossref_primary_10_3390_ijerph19116551 crossref_primary_10_1007_s00430_022_00729_6 crossref_primary_10_3390_mi13020145 crossref_primary_10_1177_11779322211054684 crossref_primary_10_1038_s41467_023_38435_3 crossref_primary_10_1016_j_buildenv_2023_110117 crossref_primary_10_3389_fmicb_2023_1229506 crossref_primary_10_1002_rmv_2270 crossref_primary_10_1371_journal_pone_0263705 crossref_primary_10_1016_j_compbiomed_2022_106129 crossref_primary_10_1038_s41598_024_72842_w crossref_primary_10_3389_fmed_2022_815389 crossref_primary_10_1128_mra_00077_23 crossref_primary_10_3390_microorganisms11082039 crossref_primary_10_4110_in_2023_23_e13 crossref_primary_10_1016_j_micres_2022_127204 crossref_primary_10_1371_journal_pone_0273860 crossref_primary_10_1021_acsomega_2c01907 crossref_primary_10_1371_journal_pone_0266417 crossref_primary_10_1038_s41587_021_00845_3 crossref_primary_10_1007_s13337_022_00755_1 crossref_primary_10_1016_j_compbiomed_2021_104818 crossref_primary_10_3346_jkms_2021_36_e124 crossref_primary_10_1016_j_placenta_2021_07_288 crossref_primary_10_1016_j_watres_2022_118686 crossref_primary_10_1089_vim_2022_0122 crossref_primary_10_1007_s10114_022_2326_5 crossref_primary_10_3934_math_20241333 crossref_primary_10_7717_peerj_11232 crossref_primary_10_3389_fmicb_2022_828806 crossref_primary_10_3390_cimb43020061 crossref_primary_10_1002_jmv_27337 crossref_primary_10_3390_idr13010013 crossref_primary_10_1016_j_ijbiomac_2023_124893 crossref_primary_10_1021_acsinfecdis_1c00557 crossref_primary_10_1016_j_ebiom_2022_104025 crossref_primary_10_1016_j_jmb_2023_168187 crossref_primary_10_1080_08830185_2022_2079642 crossref_primary_10_1136_thoraxjnl_2021_217650 crossref_primary_10_3390_v14040827 crossref_primary_10_3390_ijms23031716 crossref_primary_10_1016_j_cell_2021_04_025 crossref_primary_10_1016_S1473_3099_21_00200_0 crossref_primary_10_1016_j_bbadis_2022_166612 crossref_primary_10_1016_j_arcmed_2022_08_006 crossref_primary_10_3389_fendo_2024_1434331 crossref_primary_10_1126_science_abh2315 crossref_primary_10_1016_j_compbiomed_2021_104264 crossref_primary_10_1021_acsomega_3c00944 crossref_primary_10_1016_j_nantod_2022_101730 crossref_primary_10_1016_j_compbiomed_2022_106262 crossref_primary_10_1139_cjpp_2021_0663 crossref_primary_10_1016_j_jinf_2021_04_023 crossref_primary_10_1128_AAC_00097_21 crossref_primary_10_3390_v13081595 crossref_primary_10_3390_biomedicines9101303 crossref_primary_10_1128_jvi_00685_22 crossref_primary_10_1371_journal_pone_0277745 crossref_primary_10_1142_S0218348X21501231 crossref_primary_10_1080_07391102_2021_1969281 crossref_primary_10_1021_acsami_1c16264 crossref_primary_10_1021_acs_jproteome_2c00325 crossref_primary_10_1038_s42003_021_01754_6 crossref_primary_10_1002_jmv_27596 crossref_primary_10_3390_v15020309 crossref_primary_10_1089_ars_2021_0017 crossref_primary_10_1128_spectrum_00959_24 crossref_primary_10_3389_fimmu_2021_663912 crossref_primary_10_3390_cells10040796 crossref_primary_10_1002_mco2_126 crossref_primary_10_1021_acs_jpclett_2c00469 crossref_primary_10_33321_cdi_2021_45_14 crossref_primary_10_1016_j_ymeth_2021_09_005 crossref_primary_10_1016_j_jobb_2022_02_002 crossref_primary_10_1038_s41598_022_19886_y crossref_primary_10_1111_zph_12971 crossref_primary_10_1371_journal_ppat_1009761 crossref_primary_10_3390_molecules26082383 crossref_primary_10_1016_j_compbiomed_2024_109101 crossref_primary_10_1016_j_onano_2022_100118 crossref_primary_10_1007_s11030_021_10373_6 crossref_primary_10_3390_math12172681 crossref_primary_10_1016_j_jmb_2021_167155 crossref_primary_10_1089_vim_2021_0023 crossref_primary_10_1007_s15010_024_02223_y crossref_primary_10_1016_j_heliyon_2022_e12667 crossref_primary_10_1016_j_sjbs_2021_09_028 crossref_primary_10_3390_v15040944 crossref_primary_10_3390_biom11060796 crossref_primary_10_1016_j_jksus_2021_101439 crossref_primary_10_3390_biom11091273 crossref_primary_10_3390_vaccines11030668 crossref_primary_10_1016_j_ijbiomac_2023_125153 crossref_primary_10_1021_acs_chemrev_1c00965 crossref_primary_10_37394_23208_2022_19_4 crossref_primary_10_1016_j_envres_2021_112092 crossref_primary_10_7554_eLife_74153 crossref_primary_10_1002_iub_2577 crossref_primary_10_1177_00375497231194348 crossref_primary_10_1142_S2737416524500613 crossref_primary_10_1002_btm2_10356 crossref_primary_10_1007_s13205_022_03430_w crossref_primary_10_3390_v12101095 crossref_primary_10_1128_spectrum_00716_22 crossref_primary_10_3390_vaccines12040441 crossref_primary_10_1016_j_ijbiomac_2021_11_151 crossref_primary_10_1016_j_virol_2022_05_003 crossref_primary_10_1038_s41467_021_25113_5 crossref_primary_10_1038_s41598_022_05424_3 crossref_primary_10_1016_j_drudis_2021_04_018 crossref_primary_10_3390_v15061382 crossref_primary_10_3389_fcimb_2024_1458383 crossref_primary_10_3390_biology10060531 crossref_primary_10_1021_acsomega_1c04024 crossref_primary_10_1186_s40779_021_00360_1 crossref_primary_10_3389_fmicb_2022_869559 crossref_primary_10_1016_j_nmni_2021_100929 crossref_primary_10_1186_s13059_024_03355_y crossref_primary_10_3390_biologics3020008 crossref_primary_10_1016_j_genrep_2022_101537 crossref_primary_10_1159_000515417 crossref_primary_10_1039_D1SC01203G crossref_primary_10_1038_s41564_021_00954_4 crossref_primary_10_1080_23144599_2023_2222981 crossref_primary_10_3390_ijms22052268 crossref_primary_10_1016_j_eclinm_2021_101021 crossref_primary_10_1080_08927022_2022_2111421 crossref_primary_10_3390_v14020186 crossref_primary_10_1016_j_scitotenv_2021_145721 crossref_primary_10_1021_acscentsci_1c00216 crossref_primary_10_3390_biology11020178 crossref_primary_10_1016_j_watres_2021_117681 crossref_primary_10_3389_fmicb_2021_703145 crossref_primary_10_1590_1678_4324_2021200803 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_1016_j_tmaid_2021_101983 crossref_primary_10_1016_j_biopha_2022_113977 crossref_primary_10_1007_s11042_023_14642_4 crossref_primary_10_15829_1728_8800_2023_3820 crossref_primary_10_3390_ijms26031367 crossref_primary_10_1007_s13337_022_00759_x crossref_primary_10_1016_j_jpha_2021_03_006 crossref_primary_10_5902_2447115167569 crossref_primary_10_3390_v14051029 crossref_primary_10_1016_j_intimp_2022_108531 crossref_primary_10_1007_s11427_022_2166_y crossref_primary_10_1016_j_csbj_2022_07_051 crossref_primary_10_3390_v15122291 crossref_primary_10_5817_CSF2021_1_18 crossref_primary_10_34172_apb_2023_069 crossref_primary_10_3390_biomedicines10020441 crossref_primary_10_3389_fimmu_2022_833355 crossref_primary_10_1016_j_cmpb_2021_106594 crossref_primary_10_1080_13102818_2023_2206492 crossref_primary_10_1002_jmv_28366 crossref_primary_10_1007_s11684_023_1034_6 crossref_primary_10_3389_fmolb_2022_976490 crossref_primary_10_3390_cimb44070208 crossref_primary_10_3390_microorganisms10030598 crossref_primary_10_1007_s13204_021_02300_w crossref_primary_10_1038_s41467_022_34033_x crossref_primary_10_1080_21645515_2023_2179788 crossref_primary_10_3389_fimmu_2022_957407 crossref_primary_10_3390_antiox11071366 crossref_primary_10_1080_07391102_2021_1889671 crossref_primary_10_3390_ma15227918 crossref_primary_10_1080_07391102_2022_2032354 crossref_primary_10_1021_acs_jpclett_1c03380 crossref_primary_10_3390_v15051115 crossref_primary_10_1002_prot_26645 crossref_primary_10_1186_s12929_022_00852_9 crossref_primary_10_1016_j_compbiomed_2021_104964 crossref_primary_10_1016_j_ijbiomac_2022_02_034 crossref_primary_10_1093_bib_bbad046 crossref_primary_10_1097_ID9_0000000000000027 crossref_primary_10_1007_s11403_021_00344_3 crossref_primary_10_1177_20587384211050199 crossref_primary_10_1016_j_crwh_2021_e00368 crossref_primary_10_1093_femsre_fuad048 crossref_primary_10_1186_s12967_020_02675_4 crossref_primary_10_1128_spectrum_01190_23 crossref_primary_10_3390_cells10071762 crossref_primary_10_1111_edt_12759 crossref_primary_10_1142_S179398442250012X crossref_primary_10_1016_j_biopha_2021_112011 crossref_primary_10_1128_aem_01313_24 crossref_primary_10_1021_acs_jcim_1c01451 crossref_primary_10_3389_fmed_2022_995960 crossref_primary_10_3390_ijms23084155 crossref_primary_10_1088_2632_072X_ad83a5 crossref_primary_10_1021_acs_jcim_2c00350 crossref_primary_10_3389_fimmu_2023_1266776 crossref_primary_10_3389_fmicb_2021_789062 crossref_primary_10_1016_j_ijbiomac_2021_10_144 crossref_primary_10_1021_acs_jcim_5c00114 crossref_primary_10_3390_microorganisms11040940 crossref_primary_10_1371_journal_pone_0289432 crossref_primary_10_1002_bkcs_12418 crossref_primary_10_1016_j_jmgm_2022_108260 crossref_primary_10_1016_j_bios_2023_115516 crossref_primary_10_1016_j_scitotenv_2021_149834 crossref_primary_10_1016_j_bjid_2021_101588 crossref_primary_10_1038_s41467_021_25168_4 crossref_primary_10_1093_bib_bbac024 crossref_primary_10_54097_hbem_v3i_4737 crossref_primary_10_1016_j_genrep_2024_102032 crossref_primary_10_1016_j_ygeno_2021_05_006 crossref_primary_10_3390_biom12111665 crossref_primary_10_3390_microorganisms8111840 crossref_primary_10_1021_acs_jpcb_3c05460 crossref_primary_10_1016_j_cytogfr_2021_06_001 crossref_primary_10_3390_math13020208 crossref_primary_10_1002_prot_26266 crossref_primary_10_3389_fcimb_2023_1161445 crossref_primary_10_3390_molecules26010057 crossref_primary_10_3390_cells9112528 crossref_primary_10_3389_fmed_2021_836826 crossref_primary_10_3934_fods_2024048 crossref_primary_10_1021_acs_jproteome_0c00637 crossref_primary_10_1142_S2737416523500278 crossref_primary_10_3390_jcm10122635 crossref_primary_10_3390_ijms22168498 crossref_primary_10_1038_s41598_022_14308_5 crossref_primary_10_1371_journal_ppat_1009704 crossref_primary_10_1016_j_envres_2021_111373 crossref_primary_10_1038_s41598_022_09999_9 crossref_primary_10_1016_j_heliyon_2025_e42533 crossref_primary_10_3390_vaccines10060919 crossref_primary_10_3389_fimmu_2021_742167 crossref_primary_10_3390_ijms22063060 crossref_primary_10_3389_fnut_2022_992733 crossref_primary_10_1016_j_compbiomed_2023_107258 crossref_primary_10_3390_life12020163 crossref_primary_10_1021_acsmeasuresciau_3c00005 crossref_primary_10_1128_Spectrum_00789_21 crossref_primary_10_31631_2073_3046_2022_6_24_33 crossref_primary_10_1016_j_intimp_2021_108232 crossref_primary_10_1016_j_heliyon_2023_e13672 crossref_primary_10_1007_s00705_022_05365_2 crossref_primary_10_1038_s41586_021_03461_y crossref_primary_10_2217_fvl_2021_0100 crossref_primary_10_3389_fpubh_2022_934242 crossref_primary_10_1093_bib_bbae465 crossref_primary_10_1080_07391102_2022_2142296 crossref_primary_10_1021_acs_analchem_1c04858 crossref_primary_10_4103_jmms_jmms_141_20 crossref_primary_10_1007_s11356_021_14092_1 crossref_primary_10_1016_j_isci_2022_103856 crossref_primary_10_3390_info15090575 crossref_primary_10_1097_CM9_0000000000002158 crossref_primary_10_1016_j_compbiomed_2022_105367 crossref_primary_10_1038_s41598_022_18644_4 crossref_primary_10_1371_journal_ppat_1009929 crossref_primary_10_1128_MRA_00727_21 crossref_primary_10_1038_s42003_022_03198_y crossref_primary_10_1016_j_antiviral_2022_105297 crossref_primary_10_3201_eid2811_220577 crossref_primary_10_1007_s10930_021_09988_3 crossref_primary_10_3390_life12020194 crossref_primary_10_3389_fmicb_2022_933983 crossref_primary_10_3389_fimmu_2021_751778 crossref_primary_10_54803_sauhsd_1138532 crossref_primary_10_1007_s42977_021_00069_1 crossref_primary_10_1021_acs_jcim_2c01352 crossref_primary_10_1111_jfbc_13902 crossref_primary_10_1093_nar_gkab921 crossref_primary_10_1002_biot_202100207 crossref_primary_10_1021_acsptsci_4c00316 crossref_primary_10_1002_mlf2_12040 crossref_primary_10_3390_molecules27072070 crossref_primary_10_1016_j_isci_2022_104716 crossref_primary_10_1016_j_envres_2021_112240 crossref_primary_10_1021_envhealth_3c00089 crossref_primary_10_3390_ijms241210233 crossref_primary_10_1038_s41598_021_93757_w crossref_primary_10_1128_Spectrum_01096_21 crossref_primary_10_3389_fimmu_2021_678570 crossref_primary_10_2174_2666796704666230328171636 crossref_primary_10_3389_fcimb_2021_765039 crossref_primary_10_3390_ijms24097803 crossref_primary_10_1016_j_snb_2023_133575 crossref_primary_10_3389_fenvs_2023_1106969 |
Cites_doi | 10.1016/S0140-6736(20)30251-8 10.1093/bioinformatics/bts489 10.1128/JVI.00442-08 10.1056/NEJMoa030685 10.3390/v12020135 10.1038/s41426-018-0155-5 10.3390/ijms17040547 10.1016/S0140-6736(20)30183-5 10.1128/JVI.00650-10 10.1038/s41586-020-2008-3 10.1038/s41586-020-2012-7 10.1074/jbc.M500662200 10.1126/science.1116480 10.2807/1560-7917.ES.2017.22.13.30494 10.1093/bioinformatics/bty635 10.1126/science.1118391 10.1371/journal.pcbi.1005929 10.1016/j.cell.2020.02.052 10.1021/acs.jcim.0c00501 10.1002/pro.2829 10.1038/s42256-020-0149-6 10.1093/nar/gkw374 10.1016/S0140-6736(20)30154-9 10.1126/science.abb2507 10.1090/S0273-0979-09-01249-X 10.1073/pnas.0409608102 10.1093/nar/gkz383 10.1093/nar/gki387 10.1093/molbev/mst010 10.1073/pnas.1718806115 10.1016/j.cell.2020.02.058 10.1038/srep29575 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jmb.2020.07.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
EndPage | 5226 |
ExternalDocumentID | PMC7375973 32710986 10_1016_j_jmb_2020_07_009 S0022283620304563 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM126189 |
GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HLW HMG IH2 IHE J1W KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 186 29L 3O- AAEDT AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HX~ HZ~ H~9 K-O MVM NEJ R2- RIG SBG SEW SIN SSH UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-4fed0693b72ca6c02eb92537033340f495ac0dbf7eae637a31fe8074902394063 |
IEDL.DBID | .~1 |
ISSN | 0022-2836 1089-8638 |
IngestDate | Thu Aug 21 14:07:15 EDT 2025 Thu Jul 10 19:15:36 EDT 2025 Tue Aug 05 10:27:06 EDT 2025 Wed Feb 19 02:01:49 EST 2025 Thu Apr 24 23:08:26 EDT 2025 Tue Jul 01 03:50:33 EDT 2025 Fri Feb 23 02:36:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | COVID-19 BFE mutation ACE2 SARS-CoV-2 RBD spike protein PPI protein-protein interaction RBM viral infectivity |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-4fed0693b72ca6c02eb92537033340f495ac0dbf7eae637a31fe8074902394063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7375973 |
PMID | 32710986 |
PQID | 2427293035 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7375973 proquest_miscellaneous_2477643509 proquest_miscellaneous_2427293035 pubmed_primary_32710986 crossref_citationtrail_10_1016_j_jmb_2020_07_009 crossref_primary_10_1016_j_jmb_2020_07_009 elsevier_sciencedirect_doi_10_1016_j_jmb_2020_07_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-04 |
PublicationDateYYYYMMDD | 2020-09-04 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | 395(10223):497–506, 2020. Wang, Cang, Wei (bb0145) 2020; 2 Walls, Park, Tortorici, Wall, McGuire, Veesler (bb0060) 2020; 181 M. Petukh, L. Dai, and E. Alexov. Saambe: webserver to predict the charge of binding free energy caused by amino acids mutations. Lee, Hui, Wu, Chan, Cameron, Joynt, Ahuja, Yung (bb0160) 2003; 348 M. Li, F. L. Simonetti, A. Goncearenco, and A. R. Panchenko. Mutabind estimates and interprets the effects of sequence variants on protein–protein interactions. Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Foley, Giorgi (bb0040) 2020 35(3):462–469, 2019. 28(20):2600–2607, 2012. Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach (bb0080) 2020; 1–4 C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015. Zhang, Jackson, Mou, Ojha, Rangarajan, Izard, Farzan, Choe (bb0045) 2020 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bb0085) 2020; 367 Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song (bb0020) 2020; 395 44(W1):W494–W501, 2016. Katoh, Standley (bb0185) 2013; 30 Rodrigues, Myung, Pires, Ascher (bb0105) 2019; 47 Wang, Hozumi, Yin, Wei (bb0025) 2020 Li, Shi, Yu, Ren, Smith, Epstein, Wang, Crameri (bb0065) 2005; 310 Hu, Zhu, Ai, He, Wang, Ye, Yang, Ding (bb0175) 2018; 7 579(7798):270–273, 2020. Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao (bb0030) 2020; 579 Gralinski, Menachery (bb0015) 2020; 12 Li, Li, Farzan, Harrison (bb0055) 2005; 309 Y. Shu and J. McCauley. GISAID: Globalinitiative on sharing all influenza data–from vision to reality. M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Kru¨ger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Zhang, Chen, Lu, Zhao, Alvarez, Goncearenco, Panchenko, Li (bb0115) 2020; 100939 Edelsbrunner, Letscher, Zomorodian (bb0140) 2000 P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Schymkowitz, Borg, Stricher, Nys, Rousseau, Serrano (bb0110) 2005; 33 J. Jankauskaite B. Jim´enez-Garc´ıa, J. Dapku¯nas, J. Ferna´ndez-Recio, and I.H. Moal. Skempi 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. 22(13), 2017. Carlsson (bb0135) 2009; 46 Song, Tu, Zhang, Wang, Zheng, Lei, Chen, Gao (bb0075) 2005; 102 Qu, Hao, Song, Jiang, Liu, Wang, Rao, Song (bb0070) 2005; 280 Ferron, Subissi, De Morais, Le, Sevajol, Gluais, Decroly, Vonrhein (bb0035) 2018; 115 Sievers, Higgins (bb0195) 2014 2020. I.H. Moal, J. Ferna´ndez-Recio. SKEMPI: a Structural Kinetic and Energetic database of mutant protein interactions and its use in empirical models. Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi (bb0155) 2020; 1–6 Cang, Mu, Wei (bb0200) 2018; 14 17(4):547, 2016. Li (bb0180) 2008; 82 Sirin, Apgar, Bennett, Keating (bb0120) 2016; 25 Pires, Blundell, Ascher (bb0100) 2016; 6 J. F.-W. Chan, S. Yuan, K.-H. Kok, K. K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C.-Y. Yip, R. W.-S. Poon, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223):514–523, 2020. Drexler, Gloza-Rausch, Glende, Corman, Muth, Goettsche, Seebens, Niedrig (bb0170) 2010; 84 Ferron (10.1016/j.jmb.2020.07.009_bb0035) 2018; 115 Lu (10.1016/j.jmb.2020.07.009_bb0020) 2020; 395 10.1016/j.jmb.2020.07.009_bb0165 Cang (10.1016/j.jmb.2020.07.009_bb0200) 2018; 14 10.1016/j.jmb.2020.07.009_bb0005 Gralinski (10.1016/j.jmb.2020.07.009_bb0015) 2020; 12 10.1016/j.jmb.2020.07.009_bb0125 Schymkowitz (10.1016/j.jmb.2020.07.009_bb0110) 2005; 33 Pires (10.1016/j.jmb.2020.07.009_bb0100) 2016; 6 Li (10.1016/j.jmb.2020.07.009_bb0055) 2005; 309 Rodrigues (10.1016/j.jmb.2020.07.009_bb0105) 2019; 47 Wu (10.1016/j.jmb.2020.07.009_bb0030) 2020; 579 Wrapp (10.1016/j.jmb.2020.07.009_bb0085) 2020; 367 Li (10.1016/j.jmb.2020.07.009_bb0180) 2008; 82 Qu (10.1016/j.jmb.2020.07.009_bb0070) 2005; 280 Lee (10.1016/j.jmb.2020.07.009_bb0160) 2003; 348 Edelsbrunner (10.1016/j.jmb.2020.07.009_bb0140) 2000 Lan (10.1016/j.jmb.2020.07.009_bb0155) 2020; 1–6 Walls (10.1016/j.jmb.2020.07.009_bb0060) 2020; 181 Zhang (10.1016/j.jmb.2020.07.009_bb0045) 2020 Wang (10.1016/j.jmb.2020.07.009_bb0145) 2020; 2 Katoh (10.1016/j.jmb.2020.07.009_bb0185) 2013; 30 10.1016/j.jmb.2020.07.009_bb0010 10.1016/j.jmb.2020.07.009_bb0130 Li (10.1016/j.jmb.2020.07.009_bb0065) 2005; 310 Song (10.1016/j.jmb.2020.07.009_bb0075) 2005; 102 10.1016/j.jmb.2020.07.009_bb0090 10.1016/j.jmb.2020.07.009_bb0190 Sievers (10.1016/j.jmb.2020.07.009_bb0195) 2014 10.1016/j.jmb.2020.07.009_bb0050 Zhang (10.1016/j.jmb.2020.07.009_bb0115) 2020; 100939 Carlsson (10.1016/j.jmb.2020.07.009_bb0135) 2009; 46 10.1016/j.jmb.2020.07.009_bb0095 10.1016/j.jmb.2020.07.009_bb0150 Korber (10.1016/j.jmb.2020.07.009_bb0040) 2020 Wang (10.1016/j.jmb.2020.07.009_bb0025) 2020 Sirin (10.1016/j.jmb.2020.07.009_bb0120) 2016; 25 Hu (10.1016/j.jmb.2020.07.009_bb0175) 2018; 7 Shang (10.1016/j.jmb.2020.07.009_bb0080) 2020; 1–4 Drexler (10.1016/j.jmb.2020.07.009_bb0170) 2010; 84 |
References_xml | – reference: Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015. – reference: , 28(20):2600–2607, 2012. – reference: P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. – reference: M. Petukh, L. Dai, and E. Alexov. Saambe: webserver to predict the charge of binding free energy caused by amino acids mutations. – volume: 25 start-page: 393 year: 2016 end-page: 409 ident: bb0120 article-title: AB-Bind: antibody binding mutational database for computational affinity predictions publication-title: Protein Sci. – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: bb0185 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. – volume: 181 start-page: 281 year: 2020 end-page: 292 ident: bb0060 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – reference: , 2020. – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: bb0030 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature – volume: 280 start-page: 29588 year: 2005 end-page: 29595 ident: bb0070 article-title: Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy publication-title: J. Biol. Chem. – volume: 47 start-page: W338 year: 2019 end-page: W344 ident: bb0105 article-title: mCSM-PPI2: predicting the effects of mutations on protein–protein interactions publication-title: Nucleic Acids Res. – start-page: 454 year: 2000 end-page: 463 ident: bb0140 article-title: Topological persistence and simplification publication-title: Proceedings 41st Annual Symposium on Foundations of Computer Science – reference: , B. Jim´enez-Garc´ıa, J. Dapku¯nas, J. Ferna´ndez-Recio, and I.H. Moal. Skempi 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. – reference: , 17(4):547, 2016. – reference: Y. Shu and J. McCauley. GISAID: Globalinitiative on sharing all influenza data–from vision to reality. – reference: , 44(W1):W494–W501, 2016. – year: 2020 ident: bb0045 article-title: The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity publication-title: bioRxiv – volume: 348 start-page: 1986 year: 2003 end-page: 1994 ident: bb0160 article-title: A major outbreak of severe acute respiratory syndrome in hong kong publication-title: N. Engl. J. Med. – volume: 7 start-page: 1 year: 2018 end-page: 10 ident: bb0175 article-title: Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats publication-title: Emerg. Microbes Infect. – reference: J. F.-W. Chan, S. Yuan, K.-H. Kok, K. K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C.-Y. Yip, R. W.-S. Poon, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223):514–523, 2020. – volume: 1–6 year: 2020 ident: bb0155 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 1–4 year: 2020 ident: bb0080 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – volume: 310 start-page: 676 year: 2005 end-page: 679 ident: bb0065 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science – reference: , 395(10223):497–506, 2020. – volume: 100939 year: 2020 ident: bb0115 article-title: Mutabind2: predicting the impacts of single and multiple mutations on protein–protein interactions publication-title: Iscience – volume: 33 start-page: W382 year: 2005 end-page: W388 ident: bb0110 article-title: The FoldX web server: an online force field publication-title: Nucleic Acids Res. – volume: 46 start-page: 255 year: 2009 end-page: 308 ident: bb0135 article-title: Topology and data publication-title: Bull. Am. Math. Soc. – volume: 14 start-page: e1005929 year: 2018 ident: bb0200 article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening publication-title: PLoS Comput. Biol – year: 2020 ident: bb0040 article-title: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2 publication-title: bioRxiv – volume: 115 start-page: E162 year: 2018 end-page: E171 ident: bb0035 article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA publication-title: Proc. Natl. Acad. Sci. – volume: 12 start-page: 135 year: 2020 ident: bb0015 article-title: Return of the coronavirus: 2019-nCoV publication-title: Viruses – volume: 102 start-page: 2430 year: 2005 end-page: 2435 ident: bb0075 article-title: Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human publication-title: Proc. Natl. Acad. Sci. – reference: M. Li, F. L. Simonetti, A. Goncearenco, and A. R. Panchenko. Mutabind estimates and interprets the effects of sequence variants on protein–protein interactions. – volume: 84 start-page: 11336 year: 2010 end-page: 11349 ident: bb0170 article-title: Genomic characterization of SARS-related coronavirus in european bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences publication-title: J. Virol. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bb0085 article-title: Cryo-em structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 2 start-page: 116 year: 2020 end-page: 123 ident: bb0145 article-title: A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation publication-title: Nat. Mach. Intell. – start-page: 105 year: 2014 end-page: 116 ident: bb0195 article-title: Clustal omega, accurate alignment of very large numbers of sequences publication-title: Multiple Sequence Alignment Methods – volume: 82 start-page: 6984 year: 2008 end-page: 6991 ident: bb0180 article-title: Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections publication-title: J. Virol. – volume: 6 start-page: 29575 year: 2016 ident: bb0100 article-title: mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance publication-title: Sci. Rep. – reference: , 579(7798):270–273, 2020. – year: 2020 ident: bb0025 article-title: Decoding SARS-CoV-2 transmission and evolution and ramifications for COVID-19 diagnosis, vaccine, and medicine publication-title: J. Chem. Inf. Model. – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: bb0020 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet – volume: 309 start-page: 1864 year: 2005 end-page: 1868 ident: bb0055 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science – reference: J. Jankauskaite – reference: M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Kru¨ger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. – reference: I.H. Moal, J. Ferna´ndez-Recio. SKEMPI: a Structural Kinetic and Energetic database of mutant protein interactions and its use in empirical models. – reference: C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. – reference: , 22(13), 2017. – reference: , 35(3):462–469, 2019. – volume: 395 start-page: 565 issue: 10224 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0020 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0040 article-title: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2 publication-title: bioRxiv – ident: 10.1016/j.jmb.2020.07.009_bb0130 doi: 10.1093/bioinformatics/bts489 – volume: 82 start-page: 6984 issue: 14 year: 2008 ident: 10.1016/j.jmb.2020.07.009_bb0180 article-title: Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections publication-title: J. Virol. doi: 10.1128/JVI.00442-08 – volume: 348 start-page: 1986 issue: 20 year: 2003 ident: 10.1016/j.jmb.2020.07.009_bb0160 article-title: A major outbreak of severe acute respiratory syndrome in hong kong publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030685 – volume: 12 start-page: 135 issue: 2 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0015 article-title: Return of the coronavirus: 2019-nCoV publication-title: Viruses doi: 10.3390/v12020135 – volume: 7 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.jmb.2020.07.009_bb0175 article-title: Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats publication-title: Emerg. Microbes Infect. doi: 10.1038/s41426-018-0155-5 – ident: 10.1016/j.jmb.2020.07.009_bb0095 doi: 10.3390/ijms17040547 – volume: 1–6 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0155 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – ident: 10.1016/j.jmb.2020.07.009_bb0190 – volume: 1–4 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0080 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – start-page: 454 year: 2000 ident: 10.1016/j.jmb.2020.07.009_bb0140 article-title: Topological persistence and simplification – ident: 10.1016/j.jmb.2020.07.009_bb0005 doi: 10.1016/S0140-6736(20)30183-5 – volume: 84 start-page: 11336 year: 2010 ident: 10.1016/j.jmb.2020.07.009_bb0170 article-title: Genomic characterization of SARS-related coronavirus in european bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences publication-title: J. Virol. doi: 10.1128/JVI.00650-10 – volume: 100939 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0115 article-title: Mutabind2: predicting the impacts of single and multiple mutations on protein–protein interactions publication-title: Iscience – volume: 579 start-page: 265 issue: 7798 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0030 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – ident: 10.1016/j.jmb.2020.07.009_bb0165 doi: 10.1038/s41586-020-2012-7 – volume: 280 start-page: 29588 issue: 33 year: 2005 ident: 10.1016/j.jmb.2020.07.009_bb0070 article-title: Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500662200 – start-page: 105 year: 2014 ident: 10.1016/j.jmb.2020.07.009_bb0195 article-title: Clustal omega, accurate alignment of very large numbers of sequences – volume: 309 start-page: 1864 issue: 5742 year: 2005 ident: 10.1016/j.jmb.2020.07.009_bb0055 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science doi: 10.1126/science.1116480 – ident: 10.1016/j.jmb.2020.07.009_bb0150 doi: 10.2807/1560-7917.ES.2017.22.13.30494 – ident: 10.1016/j.jmb.2020.07.009_bb0125 doi: 10.1093/bioinformatics/bty635 – volume: 310 start-page: 676 issue: 5748 year: 2005 ident: 10.1016/j.jmb.2020.07.009_bb0065 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science doi: 10.1126/science.1118391 – volume: 14 start-page: e1005929 issue: 1 year: 2018 ident: 10.1016/j.jmb.2020.07.009_bb0200 article-title: Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005929 – ident: 10.1016/j.jmb.2020.07.009_bb0050 doi: 10.1016/j.cell.2020.02.052 – year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0025 article-title: Decoding SARS-CoV-2 transmission and evolution and ramifications for COVID-19 diagnosis, vaccine, and medicine publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00501 – volume: 25 start-page: 393 issue: 2 year: 2016 ident: 10.1016/j.jmb.2020.07.009_bb0120 article-title: AB-Bind: antibody binding mutational database for computational affinity predictions publication-title: Protein Sci. doi: 10.1002/pro.2829 – volume: 2 start-page: 116 issue: 2 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0145 article-title: A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0149-6 – ident: 10.1016/j.jmb.2020.07.009_bb0090 doi: 10.1093/nar/gkw374 – ident: 10.1016/j.jmb.2020.07.009_bb0010 doi: 10.1016/S0140-6736(20)30154-9 – volume: 367 start-page: 1260 issue: 6483 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0085 article-title: Cryo-em structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 46 start-page: 255 issue: 2 year: 2009 ident: 10.1016/j.jmb.2020.07.009_bb0135 article-title: Topology and data publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-09-01249-X – volume: 102 start-page: 2430 issue: 7 year: 2005 ident: 10.1016/j.jmb.2020.07.009_bb0075 article-title: Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0409608102 – volume: 47 start-page: W338 issue: W1 year: 2019 ident: 10.1016/j.jmb.2020.07.009_bb0105 article-title: mCSM-PPI2: predicting the effects of mutations on protein–protein interactions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz383 – volume: 33 start-page: W382 issue: Suppl. 2 year: 2005 ident: 10.1016/j.jmb.2020.07.009_bb0110 article-title: The FoldX web server: an online force field publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki387 – volume: 30 start-page: 772 issue: 4 year: 2013 ident: 10.1016/j.jmb.2020.07.009_bb0185 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 115 start-page: E162 issue: 2 year: 2018 ident: 10.1016/j.jmb.2020.07.009_bb0035 article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1718806115 – year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0045 article-title: The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity publication-title: bioRxiv – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.jmb.2020.07.009_bb0060 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 6 start-page: 29575 year: 2016 ident: 10.1016/j.jmb.2020.07.009_bb0100 article-title: mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance publication-title: Sci. Rep. doi: 10.1038/srep29575 |
SSID | ssj0005348 |
Score | 2.7002065 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5212 |
SubjectTerms | Amino Acid Sequence Angiotensin-Converting Enzyme 2 Betacoronavirus - classification Betacoronavirus - genetics Betacoronavirus - pathogenicity Cluster Analysis Coronavirus Infections - virology COVID-19 COVID-19 infection DNA Mutational Analysis evolution Evolution, Molecular Genotype Geographic Mapping Gibbs free energy glycoproteins Humans Machine Learning Models, Molecular molecular biology Mutation Pandemics pathogenicity peptidyl-dipeptidase A Peptidyl-Dipeptidase A - metabolism Pneumonia, Viral - virology Polymorphism, Single Nucleotide - genetics Probability probability analysis Protein Binding - genetics protein-protein interaction Receptors, Virus - metabolism SARS-CoV-2 Sequence Alignment Severe acute respiratory syndrome coronavirus 2 Severe acute respiratory syndrome-related coronavirus Severe acute respiratory syndrome-related coronavirus - chemistry Severe acute respiratory syndrome-related coronavirus - genetics Severe acute respiratory syndrome-related coronavirus - metabolism Severe acute respiratory syndrome-related coronavirus - pathogenicity Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - metabolism spike protein Thermodynamics viral infectivity viruses |
Title | Mutations Strengthened SARS-CoV-2 Infectivity |
URI | https://dx.doi.org/10.1016/j.jmb.2020.07.009 https://www.ncbi.nlm.nih.gov/pubmed/32710986 https://www.proquest.com/docview/2427293035 https://www.proquest.com/docview/2477643509 https://pubmed.ncbi.nlm.nih.gov/PMC7375973 |
Volume | 432 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VIAQL4k15KUhMSAYTO3YzVhWoBZWBl7pZTuJAK0gRtAMLv527PCoKqANLpCR25Jzt853v83cAR6FVgeVRytAcUIwYsFjoW8fS0KVJbLGOo33I7rVq38vLXtCrQas6C0OwylL3Fzo919blk9NSmqev_T6d8aXdC1TAebRPEeOnlJr4808-v8E8hGxUjOFUuops5hivwUuELqLPc_5OwiT-vTb9tj1_Qii_rUkXK7BcGpNes2jvKtRctgYLRXrJjzVYbFXZ3NaBdcdF0P3do0B09kisBy7xbps3t6w1fGC-1ylwWZRMYgPuL87vWm1WpkpgMboYIyZTl3AVikj7sVUx910U-oHA6SyE5Cl6QTbmSZRqZ50S2oqz1BENTlikRldiE-ayYea2wROuoWOKt-FVxtxGQWJx1jt0ZaXzw6gOvBKSiUsecUpn8WwqwNjAoFwNydVwim6HdTieVHktSDRmFZaV5M3USDCo5GdVO6x6yaBoKexhMzccvxs0QtCDwKU6mFVGa7TNAvrOVtGzk5YKn_CqDVUHPdXnkwLE0D39Jus_5UzdWmh02MTO_35pF5boLke0yT2YG72N3T6aQKPoIB_jBzDf7Fy1r78A5MoDrQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xEIIF8aY8g8SEZGHixG7GqgK19DFAi9gsJ3GgCFIE7cC_5y6PQgF1YMkQ25Fzts93vs_fAZwGRvqGhwlDc0AyYsBigWssSwKbxJHBNpbOITtd2eh71_f-_RzUy7swBKssdH-u0zNtXbw5L6R5_joY0B1fOr1ABZxF-6SYh0Vip8LJvlhrthrdL6SH8KolaTg1KIObGczr6SVEL9HlGYUnwRL_3p5-m58_UZTftqWrNVgt7Emnlnd5HeZsugFLeYbJjw1YrpcJ3TaBdcZ53P3doVh0-kDEBzZ2bms3t6w-vGOu08yhWZRPYgv6V5e9eoMV2RJYhF7GiHmJjbkMRKjcyMiIuzYMXF_gihbC4wk6QibicZgoa6wUyoiLxBITTpBnR5diGxbSYWp3wRG2qiIKueHTi7gJ_djgwrfozXrWDcIK8FJIOiqoxCmjxbMuMWNPGuWqSa6aU4A7qMDZpMlrzqMxq7JXSl5PTQaNen5Ws5NylDSKliIfJrXD8btGOwSdCNyt_Vl1lELzzKfv7OQjO-mpcAmyWpUVUFNjPqlAJN3TJengMSPrVkKhzyb2_vdLx7Dc6HXaut3stvZhhUoygJt3AAujt7E9RItoFB4VM_4TyoAGXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+Strengthened+SARS-CoV-2+Infectivity&rft.jtitle=Journal+of+molecular+biology&rft.au=Chen%2C+Jiahui&rft.au=Wang%2C+Rui&rft.au=Wang%2C+Menglun&rft.au=Wei%2C+Guo-Wei&rft.date=2020-09-04&rft.issn=1089-8638&rft.eissn=1089-8638&rft.volume=432&rft.issue=19&rft.spage=5212&rft_id=info:doi/10.1016%2Fj.jmb.2020.07.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |