The Genetic Landscape and Epidemiology of Phenylketonuria
Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]...
Saved in:
Published in | American journal of human genetics Vol. 107; no. 2; pp. 234 - 250 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.08.2020
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0002-9297 1537-6605 1537-6605 |
DOI | 10.1016/j.ajhg.2020.06.006 |
Cover
Loading…
Abstract | Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome. |
---|---|
AbstractList | Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome. Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome. Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome. Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome. |
Author | Polak, Emil Desviat, Lourdes R. Stojiljković, Maja Porta, Francesco Gundorova, Polina Karall, Daniela Yu, Youngguo Paras, Andrea Christodoulou, John Giżewska, Maria Đorđević, Maja Stoppioni, Vera Kneller, Katya Spécola, Norma Santana-da Silva, Luiz C. Muntau, Ania C. van Spronsen, Francjan Shen, Nan Thöny, Beat Burlina, Alberto Fajkusova, Lena Lichter-Konecki, Uta Trefz, Friedrich K. Burton, Barbara K. Kutsev, Sergey I. Vockley, Jerry Zschocke, Johannes Evers, Roeland A.F. Feillet, François Namour, Fares Carducci, Carla Perez, Belen Hoffmann, Georg F. Anikster, Yair Rohrbach, Marianne Oltarzewski, Mariusz Chiesa, Ana E. Eliyahu, Aviva Belanger-Quintana, Amaya Skouma, Anastasia Levy, Harvey L. Hillert, Alicia Bonfim-Freitas, Pedro E. Scholl-Bürgi, Sabine Blau, Nenad Leuzzi, Vincenzo Polyakov, Alexander V. Garbade, Sven F. |
Author_xml | – sequence: 1 givenname: Alicia surname: Hillert fullname: Hillert, Alicia organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany – sequence: 2 givenname: Yair surname: Anikster fullname: Anikster, Yair organization: Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Aviv University, 52621 Tel-Aviv, Israel – sequence: 3 givenname: Amaya surname: Belanger-Quintana fullname: Belanger-Quintana, Amaya organization: Unidad de Enfermedades Metabolicas, Servicio de Pediatria, Hospital Ramon y Cajal, 28034 Madrid, Spain – sequence: 4 givenname: Alberto surname: Burlina fullname: Burlina, Alberto organization: Division of Inherited Metabolic Diseases, Department of Woman’s and Child’s Health, University Hospital, 35129 Padua, Italy – sequence: 5 givenname: Barbara K. surname: Burton fullname: Burton, Barbara K. organization: Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA – sequence: 6 givenname: Carla surname: Carducci fullname: Carducci, Carla organization: Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy – sequence: 7 givenname: Ana E. surname: Chiesa fullname: Chiesa, Ana E. organization: Fundación de Endocrinología Infantil (FEI), C1425 Buenos Aires, Argentina – sequence: 8 givenname: John surname: Christodoulou fullname: Christodoulou, John organization: Murdoch Children’s Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia – sequence: 9 givenname: Maja surname: Đorđević fullname: Đorđević, Maja organization: Institute of Mother and Child Healthcare “Dr. Vukan Čupić,” 11000 Belgrade, Serbia – sequence: 10 givenname: Lourdes R. surname: Desviat fullname: Desviat, Lourdes R. organization: Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid. CIBERER, IdiPAz, 28049 Madrid, Spain – sequence: 11 givenname: Aviva surname: Eliyahu fullname: Eliyahu, Aviva organization: Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Aviv University, 52621 Tel-Aviv, Israel – sequence: 12 givenname: Roeland A.F. surname: Evers fullname: Evers, Roeland A.F. organization: University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Section of Metabolic Diseases, 9712 CP Groningen, the Netherlands – sequence: 13 givenname: Lena surname: Fajkusova fullname: Fajkusova, Lena organization: Centre of Molecular Biology and Gene Therapy, University Hospital Brno, 62500 Brno, Czech Republic – sequence: 14 givenname: François surname: Feillet fullname: Feillet, François organization: Reference Center for Inherited Metabolic Diseases, University Hospital of Nancy, 54511 Vandoeuvre-lès-Nancy, France – sequence: 15 givenname: Pedro E. surname: Bonfim-Freitas fullname: Bonfim-Freitas, Pedro E. organization: Laboratory of Inborn Errors of Metabolism, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil – sequence: 16 givenname: Maria surname: Giżewska fullname: Giżewska, Maria organization: Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, 71-252 Szczecin, Poland – sequence: 17 givenname: Polina surname: Gundorova fullname: Gundorova, Polina organization: Research Centre for Medical Genetics, 115522 Moscow, Russia – sequence: 18 givenname: Daniela surname: Karall fullname: Karall, Daniela organization: Clinic of Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria – sequence: 19 givenname: Katya surname: Kneller fullname: Kneller, Katya organization: Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Aviv University, 52621 Tel-Aviv, Israel – sequence: 20 givenname: Sergey I. surname: Kutsev fullname: Kutsev, Sergey I. organization: Research Centre for Medical Genetics, 115522 Moscow, Russia – sequence: 21 givenname: Vincenzo surname: Leuzzi fullname: Leuzzi, Vincenzo organization: Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy – sequence: 22 givenname: Harvey L. surname: Levy fullname: Levy, Harvey L. organization: Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 23 givenname: Uta surname: Lichter-Konecki fullname: Lichter-Konecki, Uta organization: UPMC, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA – sequence: 24 givenname: Ania C. surname: Muntau fullname: Muntau, Ania C. organization: University Children’s Hospital, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany – sequence: 25 givenname: Fares surname: Namour fullname: Namour, Fares organization: Reference Center for Inherited Metabolic Diseases, University Hospital of Nancy, 54511 Vandoeuvre-lès-Nancy, France – sequence: 26 givenname: Mariusz surname: Oltarzewski fullname: Oltarzewski, Mariusz organization: Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, 01-211 Warsaw, Poland – sequence: 27 givenname: Andrea surname: Paras fullname: Paras, Andrea organization: Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA – sequence: 28 givenname: Belen surname: Perez fullname: Perez, Belen organization: Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid. CIBERER, IdiPAz, 28049 Madrid, Spain – sequence: 29 givenname: Emil surname: Polak fullname: Polak, Emil organization: Comenius University, Faculty of Natural Sciences, Department of Molecular Biology, 84215 Bratislava 4, Slovak Republic – sequence: 30 givenname: Alexander V. surname: Polyakov fullname: Polyakov, Alexander V. organization: Research Centre for Medical Genetics, 115522 Moscow, Russia – sequence: 31 givenname: Francesco surname: Porta fullname: Porta, Francesco organization: Department of Pediatrics, AOU Citta’ della Salute e della Scienza di Torino, 10126 Torino, Italy – sequence: 32 givenname: Marianne surname: Rohrbach fullname: Rohrbach, Marianne organization: Division of Metabolism, University Children’s Hospital, 8032 Zürich, Switzerland – sequence: 33 givenname: Sabine surname: Scholl-Bürgi fullname: Scholl-Bürgi, Sabine organization: Clinic of Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria – sequence: 34 givenname: Norma surname: Spécola fullname: Spécola, Norma organization: Unidad de Metabolismo. Hospital de Niños “Sor Ludovica” de La Plata, 1904 Buenos Aires, Argentina – sequence: 35 givenname: Maja surname: Stojiljković fullname: Stojiljković, Maja organization: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia – sequence: 36 givenname: Nan surname: Shen fullname: Shen, Nan organization: Department of Infectious Diseases, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 2000025 Shanghai, China – sequence: 37 givenname: Luiz C. surname: Santana-da Silva fullname: Santana-da Silva, Luiz C. organization: Laboratory of Inborn Errors of Metabolism, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil – sequence: 38 givenname: Anastasia surname: Skouma fullname: Skouma, Anastasia organization: Institute of Child Health, 11526 Athens, Greece – sequence: 39 givenname: Francjan surname: van Spronsen fullname: van Spronsen, Francjan organization: University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Section of Metabolic Diseases, 9712 CP Groningen, the Netherlands – sequence: 40 givenname: Vera surname: Stoppioni fullname: Stoppioni, Vera organization: Centro Screening Neonatale Regione Marche, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61032 Fano, Italy – sequence: 41 givenname: Beat surname: Thöny fullname: Thöny, Beat organization: Division of Metabolism, University Children’s Hospital, 8032 Zürich, Switzerland – sequence: 42 givenname: Friedrich K. surname: Trefz fullname: Trefz, Friedrich K. organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany – sequence: 43 givenname: Jerry surname: Vockley fullname: Vockley, Jerry organization: UPMC, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA – sequence: 44 givenname: Youngguo surname: Yu fullname: Yu, Youngguo organization: Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, 2000025 Shanghai, China – sequence: 45 givenname: Johannes surname: Zschocke fullname: Zschocke, Johannes organization: Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria – sequence: 46 givenname: Georg F. surname: Hoffmann fullname: Hoffmann, Georg F. organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany – sequence: 47 givenname: Sven F. surname: Garbade fullname: Garbade, Sven F. email: sven.garbade@med.uni-heidelberg.de organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany – sequence: 48 givenname: Nenad surname: Blau fullname: Blau, Nenad email: nenad.blau@kispi.uzh.ch organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany |
BackLink | https://cir.nii.ac.jp/crid/1874242817929148672$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/32668217$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9v0zAUxy00xLrBP8AB5cCBS8rzc2I7EkJC0xiTKsFhnC3HeWldUrvE6aT-9zjqhmCH-WA_yd8flj8X7CzEQIy95bDkwOXH7dJuN-slAsIS5BJAvmALXgtVSgn1GVsAAJYNNuqcXaS0BeBcg3jFzgVKqZGrBWvuNlTcUKDJu2JlQ5ec3VORh-J67zva-TjE9bGIffFjQ-E4_KIphsPo7Wv2srdDojcP5yX7-fX67upbufp-c3v1ZVW6uoapRKGd0G3Vt63GGqHpHEii3rXY80YTCAVaSdejFahJSd1UopMNxw67qrLikn0-5e4P7Y46R2Ea7WD2o9_Z8Wii9eb_m-A3Zh3vjaq40HWTAz48BIzx94HSZHY-ORoGGygeksEKq7xqrbP03b9df0se_ysL9EngxpjSSL1xfrKTj3O1HwwHM6MxWzOjMTMaA9JkNNmKT6yP6c-a3p9MwftcNe9cq_xg1FxlsrzSUmGWfTrJKIO49zSa5DwFR50fyU2mi_65lj9lS7E5 |
CitedBy_id | crossref_primary_10_1016_j_bpobgyn_2024_102546 crossref_primary_10_1016_j_ymgmr_2024_101083 crossref_primary_10_1038_s42255_023_00897_6 crossref_primary_10_1007_s10072_022_06194_6 crossref_primary_10_3390_ijms25179335 crossref_primary_10_1007_s11011_021_00753_0 crossref_primary_10_4103_ijpvm_ijpvm_50_23 crossref_primary_10_3389_fpubh_2024_1461141 crossref_primary_10_3390_ijns8030047 crossref_primary_10_1016_j_ymgmr_2024_101087 crossref_primary_10_1016_j_ymgme_2022_04_004 crossref_primary_10_1002_mgg3_1959 crossref_primary_10_1186_s13023_021_02086_8 crossref_primary_10_3389_fbioe_2022_993298 crossref_primary_10_3390_jpm13081236 crossref_primary_10_1186_s13023_022_02488_2 crossref_primary_10_1002_cpdd_1363 crossref_primary_10_2147_NDS_S337135 crossref_primary_10_3390_nu15030649 crossref_primary_10_3390_nu13031040 crossref_primary_10_1016_j_ymgme_2023_107697 crossref_primary_10_3390_metabo14070397 crossref_primary_10_1016_j_cca_2024_119725 crossref_primary_10_1016_j_scr_2024_103407 crossref_primary_10_1016_j_gim_2022_12_005 crossref_primary_10_1016_j_ymgme_2024_108541 crossref_primary_10_3390_nu16142204 crossref_primary_10_1038_s41572_021_00267_0 crossref_primary_10_1155_2024_6638269 crossref_primary_10_1186_s40246_023_00481_9 crossref_primary_10_1177_03000605221125524 crossref_primary_10_1016_j_ymgmr_2023_101012 crossref_primary_10_1002_adhm_202401353 crossref_primary_10_1186_s13023_021_02094_8 crossref_primary_10_1089_nat_2024_0014 crossref_primary_10_1002_jimd_12508 crossref_primary_10_1186_s12920_023_01771_w crossref_primary_10_1186_s13023_021_01874_6 crossref_primary_10_3389_fgene_2022_1051153 crossref_primary_10_1007_s11033_021_06163_w crossref_primary_10_1007_s42247_024_00795_x crossref_primary_10_3390_nu15040957 crossref_primary_10_12956_tchd_1454353 crossref_primary_10_1016_j_ymgmr_2024_101103 crossref_primary_10_3390_children9030402 crossref_primary_10_1038_s41467_023_39246_2 crossref_primary_10_3390_nu14040807 crossref_primary_10_3390_nu15163506 crossref_primary_10_3390_nu17030379 crossref_primary_10_1016_j_gim_2021_08_012 crossref_primary_10_1021_acs_chemrev_1c00746 crossref_primary_10_3390_ijerph19052574 crossref_primary_10_1016_j_ymgme_2025_109068 crossref_primary_10_3390_nu13020707 crossref_primary_10_1016_j_clnesp_2023_05_011 crossref_primary_10_1002_mgg3_2224 crossref_primary_10_1515_jpem_2021_0155 crossref_primary_10_1093_clinchem_hvab106 crossref_primary_10_1016_j_xhgg_2023_100253 crossref_primary_10_1515_jpem_2021_0556 crossref_primary_10_3390_jcm12237452 crossref_primary_10_1016_j_clnesp_2024_09_032 crossref_primary_10_3390_genes12111676 crossref_primary_10_3390_nu16193348 crossref_primary_10_3389_fgene_2023_1049816 crossref_primary_10_1016_j_ymthe_2024_11_032 crossref_primary_10_1093_nutrit_nuac024 crossref_primary_10_1016_j_gim_2024_101268 crossref_primary_10_3390_nu14234987 crossref_primary_10_1016_j_ecoenv_2022_113467 crossref_primary_10_1016_j_cca_2022_08_009 crossref_primary_10_1242_dmm_050233 crossref_primary_10_1002_jimd_12651 crossref_primary_10_1016_j_dib_2022_107926 crossref_primary_10_1016_j_radcr_2025_02_036 crossref_primary_10_1186_s12934_022_01799_0 crossref_primary_10_1016_j_ijscr_2023_108458 crossref_primary_10_1016_S0140_6736_22_00578_5 crossref_primary_10_1007_s10528_024_10892_5 crossref_primary_10_1016_j_ymgmr_2024_101099 crossref_primary_10_1186_s12920_021_01141_4 crossref_primary_10_3390_nu13082719 crossref_primary_10_1016_j_ymgmr_2022_100918 crossref_primary_10_1016_j_ymgmr_2024_101134 crossref_primary_10_3390_ijns7010017 crossref_primary_10_1016_j_ymgme_2023_107625 crossref_primary_10_1016_S0140_6736_24_01819_1 crossref_primary_10_3389_fnut_2021_735366 crossref_primary_10_1007_s00112_021_01354_y crossref_primary_10_1002_humu_24292 crossref_primary_10_1016_j_lfs_2022_121204 crossref_primary_10_3390_genes15081020 crossref_primary_10_21926_obm_genet_2403256 crossref_primary_10_1186_s40246_022_00397_w crossref_primary_10_3390_ijns10040074 crossref_primary_10_1136_bcr_2023_256053 crossref_primary_10_1016_j_clinbiochem_2023_03_012 crossref_primary_10_3390_nu14194056 crossref_primary_10_1097_CCM_0000000000005640 crossref_primary_10_1016_j_ymgme_2022_11_003 crossref_primary_10_3389_fnins_2023_1308183 crossref_primary_10_1002_ana_26467 crossref_primary_10_1002_jimd_12710 crossref_primary_10_1186_s13023_021_01846_w crossref_primary_10_1080_20905068_2024_2439035 crossref_primary_10_1016_j_ymgmr_2022_100907 crossref_primary_10_1002_jimd_12719 crossref_primary_10_2337_dci22_0066 crossref_primary_10_1055_a_2412_4409 crossref_primary_10_3390_ijms25105065 crossref_primary_10_1007_s00112_024_02069_6 crossref_primary_10_1186_s43066_024_00312_z crossref_primary_10_1016_j_ymgme_2024_108580 crossref_primary_10_1016_j_gim_2024_101289 crossref_primary_10_3390_jcm11041061 crossref_primary_10_1186_s12909_023_04548_y crossref_primary_10_1007_s43538_023_00203_8 crossref_primary_10_1186_s12916_024_03602_w crossref_primary_10_14295_rp_v57i2_494 crossref_primary_10_1021_acs_molpharmaceut_2c00512 crossref_primary_10_1016_j_ymgme_2024_108514 crossref_primary_10_1080_87559129_2022_2122993 crossref_primary_10_1001_jamanetworkopen_2024_12886 crossref_primary_10_1016_j_ajhg_2023_10_005 crossref_primary_10_1111_jcmm_17865 crossref_primary_10_1097_MD_0000000000041064 crossref_primary_10_1016_j_genrep_2021_101196 crossref_primary_10_7759_cureus_59572 crossref_primary_10_1055_s_0043_1768677 crossref_primary_10_3390_nu16132064 crossref_primary_10_1080_03007995_2024_2337662 crossref_primary_10_1007_s40290_024_00529_8 crossref_primary_10_1016_j_ymgmr_2023_100992 crossref_primary_10_3390_metabo14090479 crossref_primary_10_38053_acmj_1532044 crossref_primary_10_1016_j_ymgmr_2022_100855 crossref_primary_10_1016_j_biochi_2020_11_011 crossref_primary_10_3390_biomedicines11071899 crossref_primary_10_3390_biology11091308 crossref_primary_10_1016_j_ymgmr_2024_101065 crossref_primary_10_1016_S0140_6736_24_01556_3 crossref_primary_10_1186_s40246_023_00475_7 crossref_primary_10_3390_nu15204352 crossref_primary_10_3390_genes12010020 crossref_primary_10_1186_s13023_023_02621_9 crossref_primary_10_36740_WLek202408111 crossref_primary_10_3390_children10121865 crossref_primary_10_4103_abr_abr_471_23 crossref_primary_10_1515_jpem_2024_0091 crossref_primary_10_3390_nu16223915 crossref_primary_10_1007_s11011_021_00676_w crossref_primary_10_1016_j_jmoldx_2023_02_001 crossref_primary_10_1016_j_ymgme_2022_01_004 crossref_primary_10_3389_fnmol_2021_787242 crossref_primary_10_1016_j_ymgme_2023_108120 crossref_primary_10_1016_j_ymgmr_2023_101015 crossref_primary_10_1093_hmg_ddae051 crossref_primary_10_3390_medicina60071185 crossref_primary_10_1007_s10928_024_09948_1 crossref_primary_10_1515_jpem_2022_0047 crossref_primary_10_1093_humrep_deab087 crossref_primary_10_3390_ph17111411 crossref_primary_10_1172_jci_insight_182876 crossref_primary_10_1186_s13023_025_03602_w crossref_primary_10_3390_ijms25094598 crossref_primary_10_1016_j_ymgme_2023_107704 crossref_primary_10_1016_j_ijbiomac_2024_131960 crossref_primary_10_3724_zdxbyxb_2023_0450 crossref_primary_10_1007_s12687_022_00626_8 crossref_primary_10_1007_s00415_023_11760_9 crossref_primary_10_1089_gtmb_2022_0218 crossref_primary_10_1038_s41598_022_18656_0 crossref_primary_10_1186_s12887_024_05140_z crossref_primary_10_1042_BST20231061 crossref_primary_10_1186_s40246_022_00398_9 crossref_primary_10_1002_ccr3_8598 crossref_primary_10_1186_s13023_021_01727_2 crossref_primary_10_1136_jmg_2023_109563 crossref_primary_10_1002_edm2_396 crossref_primary_10_1002_jimd_12442 crossref_primary_10_3390_ijms251810019 |
Cites_doi | 10.1016/j.ymgme.2016.01.004 10.1002/jimd.12173 10.1002/humu.10192 10.1136/bmjopen-2019-031474 10.1007/s004390050488 10.1016/S0168-9525(99)01761-8 10.1007/s10545-007-0660-5 10.1007/BF00225087 10.1016/S2213-8587(16)30320-5 10.1016/j.cca.2013.01.006 10.1016/j.ymgme.2014.02.013 10.3345/kjp.2019.00465 10.1038/srep15769 10.1038/gim.2013.157 10.1016/j.ymgme.2019.04.004 10.1002/(SICI)1098-1004(1997)9:1<88::AID-HUMU21>3.0.CO;2-K 10.1371/journal.pone.0211048 10.1038/jhg.2011.10 10.1007/BF00711693 10.1007/s10545-008-1016-5 10.1007/BF00197153 10.1007/s10545-012-9485-y 10.1136/jmedgenet-2014-102621 10.1002/humu.20526 10.1586/14737159.2014.923760 10.18388/abp.2013_2029 10.1002/humu.10205 10.1159/000472338 10.1016/j.ymgme.2018.06.011 10.1016/j.ymgme.2019.09.004 10.1371/journal.pone.0201489 10.1038/s41436-018-0081-x 10.1016/0888-7543(91)90225-4 10.1002/iub.1150 10.1007/8904_2017_61 10.1016/S0140-6736(10)60961-0 10.1111/cge.12444 10.1136/jmg.32.12.976 10.1155/2018/7697210 10.1517/14656566.2015.1013030 10.1016/0009-9120(91)80008-Q 10.1007/s004390050973 |
ContentType | Journal Article |
Copyright | 2020 American Society of Human Genetics Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. 2020 American Society of Human Genetics. 2020 American Society of Human Genetics |
Copyright_xml | – notice: 2020 American Society of Human Genetics – notice: Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. – notice: 2020 American Society of Human Genetics. 2020 American Society of Human Genetics |
DBID | 6I. AAFTH RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ajhg.2020.06.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-6605 |
EndPage | 250 |
ExternalDocumentID | PMC7413859 32668217 10_1016_j_ajhg_2020_06_006 S0002929720301944 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK117916 – fundername: NINR NIH HHS grantid: R01 NR016991 – fundername: NIMHD NIH HHS grantid: L60 MD003721 |
GroupedDBID | --- --K --Z -~X 0R~ 123 1~5 23M 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAWTL AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACGOD ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK E3Z EBS ECV F5P FCP FDB FEDTE GX1 HVGLF HYE IH2 IHE IXB JIG KQ8 L7B M41 O-L O9- OK1 P2P PQQKQ RCE RNS ROL RPM RPZ SES SJN SSZ TN5 TR2 TWZ UHB UKR UNMZH UPT VQA WH7 WQ6 ZA5 ZCA AAFWJ AAMRU ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP RYH .55 .GJ 34R 3O- 41~ AAIKJ AAQXK AAYWO AAYXX ABWVN ACKIV ACRPL ADMUD ADNMO ADXHL AGCDD AGHFR AGQPQ AI. C1A CITATION EJD FA8 FGOYB HZ~ MVM NEJ OHT OZT R2- RIG VH1 WOQ X7M XOL ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c550t-238c38b4fbb825209dc06eefcb2f198e0370876cf2a328e768943d6912d2d44a3 |
IEDL.DBID | IXB |
ISSN | 0002-9297 1537-6605 |
IngestDate | Thu Aug 21 18:05:21 EDT 2025 Thu Jul 10 17:02:13 EDT 2025 Thu Apr 03 07:05:44 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Tue Jul 01 03:39:19 EDT 2025 Fri Jun 27 01:25:57 EDT 2025 Fri Feb 23 02:48:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | tetrahydrobiopterin PKU phenylalanine hyperphenylalaninemia PAH deficiency BH4 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-238c38b4fbb825209dc06eefcb2f198e0370876cf2a328e768943d6912d2d44a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0046-8274 0000-0001-8703-7997 0000-0002-7420-4757 0000-0002-4013-6012 0000-0002-0105-1833 0000-0003-0492-3323 0000-0002-2529-4231 0000-0003-1697-3571 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0002929720301944 |
PMID | 32668217 |
PQID | 2424444588 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7413859 proquest_miscellaneous_2424444588 pubmed_primary_32668217 crossref_citationtrail_10_1016_j_ajhg_2020_06_006 crossref_primary_10_1016_j_ajhg_2020_06_006 nii_cinii_1874242817929148672 elsevier_sciencedirect_doi_10_1016_j_ajhg_2020_06_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-06 |
PublicationDateYYYYMMDD | 2020-08-06 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of human genetics |
PublicationTitleAlternate | Am J Hum Genet |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
References | Vockley, Andersson, Antshel, Braverman, Burton, Frazier, Mitchell, Smith, Thompson, Berry (bib7) 2014; 16 Blau, Shen, Carducci (bib14) 2014; 14 Sterl, Paul, Paschke, Zschocke, Brunner-Krainz, Windisch, Konstantopoulou, Möslinger, Karall, Scholl-Bürgi (bib35) 2013; 36 Desviat, Pérez, De Lucca, Cornejo, Schmidt, Ugarte (bib43) 1995; 57 Camp, Parisi, Acosta, Berry, Bilder, Blau, Bodamer, Brosco, Brown, Burlina (bib5) 2014; 112 Lillevali, Reinson, Muru, Simenson, Murumets, Mols, Ounap (bib31) 2018; 40 Shoraka, Haghdoost, Baneshi, Bagherinezhad, Zolala (bib26) 2020; 63 Scriver, Waters (bib17) 1999; 15 Gundorova, Stepanova, Kuznetsova, Kutsev, Polyakov (bib30) 2019; 14 Bik-Multanowski, Kaluzny, Mozrzymas, Oltarzewski, Starostecka, Lange, Didycz, Gizewska, Ulewicz-Filipowicz, Chrobot (bib32) 2013; 60 Garbade, Shen, Himmelreich, Haas, Trefz, Hoffmann, Burgard, Blau (bib15) 2019; 21 Blau, Longo (bib8) 2015; 16 Konecki, Schlotter, Trefz, Lichter-Konecki (bib21) 1991; 87 Eisensmith, Okano, Dasovich, Wang, Güttler, Lou, Guldberg, Lichter-Konecki, Konecki, Svensson (bib39) 1992; 51 Réblová, Hrubá, Procházková, Pazdírková, Pouchlá, Zeman, Fajkusová (bib34) 2013; 419 Zschocke, Hoffmann (bib36) 1999; 104 Güttler, Guldberg, Henriksen, Mikkelsen, Olsen, Lou (bib13) 1993; 16 Muntau, Adams, Bélanger-Quintana, Bushueva, Cerone, Chien, Chiesa, Coşkun, de Las Heras, Feillet (bib20) 2019; 127 van Spronsen, van Wegberg, Ahring, Bélanger-Quintana, Blau, Bosch, Burlina, Campistol, Feillet, Giżewska (bib6) 2017; 5 Okano, Kudo, Nishi, Sakaguchi, Aso (bib12) 2011; 56 Matalon, Michals (bib24) 1991; 24 Krawczak, Zschocke (bib38) 2003; 21 Hennermann, Vetter, Kulozik, Mönch (bib50) 2002; 25 Ellingsen, Knappskog, Eiken (bib22) 1997; 9 Blau, van Spronsen, Levy (bib1) 2010; 376 Himmelreich, Shen, Okun, Thiel, Hoffmann, Blau (bib3) 2018; 125 El-Metwally, Yousef Al-Ahaidib, Ayman Sunqurah, Al-Surimi, Househ, Alshehri, Da’ar, Abdul Razzak, AlOdaib (bib25) 2018; 2018 Li, Jia, Liu, Tao, Chen, Li, Deng, Jin, Song, Zhang (bib49) 2015; 5 Evers, van Wegberg, Anjema, Lubout, van Dam, van Vliet, Blau, van Spronsen (bib19) 2020; 43 Rajabi, Rohr, Wessel, Martell, Dobrowolski, Guldberg, Güttler, Levy (bib46) 2019; 128 Xiang, Tao, Deng, Li, Li, Yuan, Liang, Yu, Wang, Wang (bib48) 2019; 9 Vela-Amieva, Abreu-González, González-del Angel, Ibarra-González, Fernández-Lainez, Barrientos-Ríos, Monroy-Santoyo, Guillén-López, Alcántara-Ortigoza (bib44) 2015; 88 Shen, Heintz, Thiel, Okun, Hoffmann, Blau (bib18) 2016; 117 Zschocke (bib28) 2003; 21 Saadallah, Rashed (bib27) 2007; 30 Güttler (bib4) 1980; 280 Gundorova, Zinchenko, Kuznetsova, Bliznetz, Stepanova, Polyakov (bib10) 2018; 13 Flydal, Martinez (bib2) 2013; 65 Scriver (bib9) 2007; 28 Guldberg, Henriksen, Sipilä, Güttler, de la Chapelle (bib11) 1995; 32 Kádasi, Poláková, Feráková, Hudecová, Bohusová, Szomolayová, Strnová, Hruskovic, Moschonas, Ferák (bib33) 1995; 95 Hofman, Steel, Kazazian, Valle (bib47) 1991; 48 Zschocke (bib16) 2008; 31 Okano, Wang, Eisensmith, Longhi, Riva, Giovannini, Cerone, Romano, Woo (bib40) 1991; 9 Danecka, Woidy, Zschocke, Feillet, Muntau, Gersting (bib29) 2015; 52 Zschocke, Mallory, Eiken, Nevin (bib37) 1997; 100 Kleiman, Avigad, Vanagaite, Shmuelevitz, David, Eisensmith, Brand, Schwartz, Rey, Munnich (bib41) 1994; 2 Himmelreich (10.1016/j.ajhg.2020.06.006_bib3) 2018; 125 Güttler (10.1016/j.ajhg.2020.06.006_bib13) 1993; 16 Blau (10.1016/j.ajhg.2020.06.006_bib14) 2014; 14 Okano (10.1016/j.ajhg.2020.06.006_bib12) 2011; 56 Matalon (10.1016/j.ajhg.2020.06.006_bib24) 1991; 24 Zschocke (10.1016/j.ajhg.2020.06.006_bib37) 1997; 100 Scriver (10.1016/j.ajhg.2020.06.006_bib17) 1999; 15 Sterl (10.1016/j.ajhg.2020.06.006_bib35) 2013; 36 Garbade (10.1016/j.ajhg.2020.06.006_bib15) 2019; 21 Zschocke (10.1016/j.ajhg.2020.06.006_bib16) 2008; 31 Bik-Multanowski (10.1016/j.ajhg.2020.06.006_bib32) 2013; 60 Güttler (10.1016/j.ajhg.2020.06.006_bib4) 1980; 280 Blau (10.1016/j.ajhg.2020.06.006_bib8) 2015; 16 Blau (10.1016/j.ajhg.2020.06.006_bib1) 2010; 376 Gundorova (10.1016/j.ajhg.2020.06.006_bib30) 2019; 14 van Spronsen (10.1016/j.ajhg.2020.06.006_bib6) 2017; 5 Desviat (10.1016/j.ajhg.2020.06.006_bib43) 1995; 57 Vela-Amieva (10.1016/j.ajhg.2020.06.006_bib44) 2015; 88 Shoraka (10.1016/j.ajhg.2020.06.006_bib26) 2020; 63 Kádasi (10.1016/j.ajhg.2020.06.006_bib33) 1995; 95 Xiang (10.1016/j.ajhg.2020.06.006_bib48) 2019; 9 Camp (10.1016/j.ajhg.2020.06.006_bib5) 2014; 112 Saadallah (10.1016/j.ajhg.2020.06.006_bib27) 2007; 30 Zschocke (10.1016/j.ajhg.2020.06.006_bib36) 1999; 104 Flydal (10.1016/j.ajhg.2020.06.006_bib2) 2013; 65 Evers (10.1016/j.ajhg.2020.06.006_bib19) 2020; 43 Ellingsen (10.1016/j.ajhg.2020.06.006_bib22) 1997; 9 El-Metwally (10.1016/j.ajhg.2020.06.006_bib25) 2018; 2018 Krawczak (10.1016/j.ajhg.2020.06.006_bib38) 2003; 21 Guldberg (10.1016/j.ajhg.2020.06.006_bib11) 1995; 32 Li (10.1016/j.ajhg.2020.06.006_bib49) 2015; 5 Eisensmith (10.1016/j.ajhg.2020.06.006_bib39) 1992; 51 Muntau (10.1016/j.ajhg.2020.06.006_bib20) 2019; 127 Rajabi (10.1016/j.ajhg.2020.06.006_bib46) 2019; 128 Shen (10.1016/j.ajhg.2020.06.006_bib18) 2016; 117 Konecki (10.1016/j.ajhg.2020.06.006_bib21) 1991; 87 Scriver (10.1016/j.ajhg.2020.06.006_bib9) 2007; 28 Réblová (10.1016/j.ajhg.2020.06.006_bib34) 2013; 419 Danecka (10.1016/j.ajhg.2020.06.006_bib29) 2015; 52 Kleiman (10.1016/j.ajhg.2020.06.006_bib41) 1994; 2 Zschocke (10.1016/j.ajhg.2020.06.006_bib28) 2003; 21 Hofman (10.1016/j.ajhg.2020.06.006_bib47) 1991; 48 Vockley (10.1016/j.ajhg.2020.06.006_bib7) 2014; 16 Lillevali (10.1016/j.ajhg.2020.06.006_bib31) 2018; 40 Okano (10.1016/j.ajhg.2020.06.006_bib40) 1991; 9 Gundorova (10.1016/j.ajhg.2020.06.006_bib10) 2018; 13 Hennermann (10.1016/j.ajhg.2020.06.006_bib50) 2002; 25 |
References_xml | – volume: 32 start-page: 976 year: 1995 end-page: 978 ident: bib11 article-title: Phenylketonuria in a low incidence population: molecular characterisation of mutations in Finland publication-title: J. Med. Genet. – volume: 9 start-page: e031474 year: 2019 ident: bib48 article-title: Phenylketonuria incidence in China between 2013 and 2017 based on data from the Chinese newborn screening information system: a descriptive study publication-title: BMJ Open – volume: 24 start-page: 337 year: 1991 end-page: 342 ident: bib24 article-title: Phenylketonuria: screening, treatment and maternal PKU publication-title: Clin. Biochem. – volume: 5 start-page: 15769 year: 2015 ident: bib49 article-title: Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing publication-title: Sci. Rep. – volume: 419 start-page: 1 year: 2013 end-page: 10 ident: bib34 article-title: Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations publication-title: Clin. Chim. Acta – volume: 125 start-page: 86 year: 2018 end-page: 95 ident: bib3 article-title: Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria publication-title: Mol. Genet. Metab. – volume: 30 start-page: 482 year: 2007 end-page: 489 ident: bib27 article-title: Newborn screening: experiences in the Middle East and North Africa publication-title: J. Inherit. Metab. Dis. – volume: 2018 start-page: 7697210 year: 2018 ident: bib25 article-title: The prevalence of phenylketonuria in Arab countries, Turkey, and Iran: A systematic review publication-title: BioMed Res. Int. – volume: 40 start-page: 39 year: 2018 end-page: 45 ident: bib31 article-title: Hyperphenylalaninaemias in Estonia: Genotype-Phenotype Correlation and Comparative Overview of the Patient Cohort Before and After Nation-Wide Neonatal Screening publication-title: JIMD Rep. – volume: 376 start-page: 1417 year: 2010 end-page: 1427 ident: bib1 article-title: Phenylketonuria publication-title: Lancet – volume: 52 start-page: 175 year: 2015 end-page: 185 ident: bib29 article-title: Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria publication-title: J. Med. Genet. – volume: 51 start-page: 1355 year: 1992 end-page: 1365 ident: bib39 article-title: Multiple origins for phenylketonuria in Europe publication-title: Am. J. Hum. Genet. – volume: 21 start-page: 580 year: 2019 end-page: 590 ident: bib15 article-title: Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria publication-title: Genet. Med. – volume: 57 start-page: 337 year: 1995 end-page: 342 ident: bib43 article-title: Evidence in Latin America of recurrence of V388M, a phenylketonuria mutation with high in vitro residual activity publication-title: Am. J. Hum. Genet. – volume: 127 start-page: 1 year: 2019 end-page: 11 ident: bib20 article-title: International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria publication-title: Mol. Genet. Metab. – volume: 21 start-page: 345 year: 2003 end-page: 356 ident: bib28 article-title: Phenylketonuria mutations in Europe publication-title: Hum. Mutat. – volume: 14 start-page: e0211048 year: 2019 ident: bib30 article-title: Genotypes of 2579 patients with phenylketonuria reveal a high rate of BH4 non-responders in Russia publication-title: PLoS ONE – volume: 31 start-page: 599 year: 2008 end-page: 618 ident: bib16 article-title: Dominant versus recessive: molecular mechanisms in metabolic disease publication-title: J. Inherit. Metab. Dis. – volume: 5 start-page: 743 year: 2017 end-page: 756 ident: bib6 article-title: Key European guidelines for the diagnosis and management of patients with phenylketonuria publication-title: Lancet Diabetes Endocrinol. – volume: 48 start-page: 791 year: 1991 end-page: 798 ident: bib47 article-title: Phenylketonuria in U.S. blacks: molecular analysis of the phenylalanine hydroxylase gene publication-title: Am. J. Hum. Genet. – volume: 2 start-page: 24 year: 1994 end-page: 34 ident: bib41 article-title: Origins of hyperphenylalaninemia in Israel publication-title: Eur. J. Hum. Genet. – volume: 60 start-page: 613 year: 2013 end-page: 616 ident: bib32 article-title: Molecular genetics of PKU in Poland and potential impact of mutations on BH4 responsiveness publication-title: Acta Biochim. Pol. – volume: 280 start-page: 1 year: 1980 end-page: 80 ident: bib4 article-title: Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood publication-title: Acta Paediatr. Scand. Suppl. – volume: 56 start-page: 306 year: 2011 end-page: 312 ident: bib12 article-title: Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan publication-title: J. Hum. Genet. – volume: 63 start-page: 34 year: 2020 end-page: 43 ident: bib26 article-title: Global prevalence of classic phenylketonuria based on Neonatal Screening Program Data: systematic review and meta-analysis publication-title: Clin Exp Pediatr – volume: 21 start-page: 394 year: 2003 end-page: 397 ident: bib38 article-title: A role for overdominant selection in phenylketonuria? Evidence from molecular data publication-title: Hum. Mutat. – volume: 9 start-page: 88 year: 1997 end-page: 90 ident: bib22 article-title: Phenylketonuria splice mutation (EXON6nt-96A-->g) masquerading as missense mutation (Y204C) publication-title: Hum. Mutat. – volume: 65 start-page: 341 year: 2013 end-page: 349 ident: bib2 article-title: Phenylalanine hydroxylase: function, structure, and regulation publication-title: IUBMB Life – volume: 13 start-page: e0201489 year: 2018 ident: bib10 article-title: Molecular-genetic causes for the high frequency of phenylketonuria in the population from the North Caucasus publication-title: PLoS ONE – volume: 88 start-page: 62 year: 2015 end-page: 67 ident: bib44 article-title: Phenylalanine hydroxylase deficiency in Mexico: genotype-phenotype correlations, BH4 responsiveness and evidence of a founder effect publication-title: Clin. Genet. – volume: 112 start-page: 87 year: 2014 end-page: 122 ident: bib5 article-title: Phenylketonuria Scientific Review Conference: state of the science and future research needs publication-title: Mol. Genet. Metab. – volume: 117 start-page: 328 year: 2016 end-page: 335 ident: bib18 article-title: Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation publication-title: Mol. Genet. Metab. – volume: 128 start-page: 415 year: 2019 end-page: 421 ident: bib46 article-title: Phenylalanine hydroxylase genotype-phenotype associations in the United States: A single center study publication-title: Mol. Genet. Metab. – volume: 16 start-page: 188 year: 2014 end-page: 200 ident: bib7 article-title: Phenylalanine hydroxylase deficiency: diagnosis and management guideline publication-title: Genet. Med. – volume: 16 start-page: 602 year: 1993 end-page: 604 ident: bib13 article-title: Molecular basis for the phenotypical diversity of phenylketonuria and related hyperphenylalaninaemias publication-title: J. Inherit. Metab. Dis. – volume: 9 start-page: 96 year: 1991 end-page: 103 ident: bib40 article-title: Phenylketonuria missense mutations in the Mediterranean publication-title: Genomics – volume: 16 start-page: 791 year: 2015 end-page: 800 ident: bib8 article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria publication-title: Expert Opin. Pharmacother. – volume: 28 start-page: 831 year: 2007 end-page: 845 ident: bib9 article-title: The PAH gene, phenylketonuria, and a paradigm shift publication-title: Hum. Mutat. – volume: 25 start-page: 21 year: 2002 ident: bib50 article-title: Partial und total tetrahydrobiopterin-responsiveness in classical and mild phenylketonuria (PKU) publication-title: J. Inherit. Metab. Dis. – volume: 95 start-page: 112 year: 1995 end-page: 114 ident: bib33 article-title: PKU in Slovakia: mutation screening and haplotype analysis publication-title: Hum. Genet. – volume: 43 start-page: 244 year: 2020 end-page: 250 ident: bib19 article-title: The first European guidelines on phenylketonuria: Usefulness and implications for BH publication-title: J. Inherit. Metab. Dis. – volume: 104 start-page: 390 year: 1999 end-page: 398 ident: bib36 article-title: Phenylketonuria mutations in Germany publication-title: Hum. Genet. – volume: 15 start-page: 267 year: 1999 end-page: 272 ident: bib17 article-title: Monogenic traits are not simple: lessons from phenylketonuria publication-title: Trends Genet. – volume: 36 start-page: 7 year: 2013 end-page: 13 ident: bib35 article-title: Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients publication-title: J. Inherit. Metab. Dis. – volume: 14 start-page: 655 year: 2014 end-page: 671 ident: bib14 article-title: Molecular genetics and diagnosis of phenylketonuria: state of the art publication-title: Expert Rev. Mol. Diagn. – volume: 100 start-page: 189 year: 1997 end-page: 194 ident: bib37 article-title: Phenylketonuria and the peoples of Northern Ireland publication-title: Hum. Genet. – volume: 87 start-page: 389 year: 1991 end-page: 393 ident: bib21 article-title: The identification of two mis-sense mutations at the PAH gene locus in a Turkish patient with phenylketonuria publication-title: Hum. Genet. – volume: 117 start-page: 328 year: 2016 ident: 10.1016/j.ajhg.2020.06.006_bib18 article-title: Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2016.01.004 – volume: 43 start-page: 244 year: 2020 ident: 10.1016/j.ajhg.2020.06.006_bib19 article-title: The first European guidelines on phenylketonuria: Usefulness and implications for BH4 responsiveness testing publication-title: J. Inherit. Metab. Dis. doi: 10.1002/jimd.12173 – volume: 21 start-page: 345 year: 2003 ident: 10.1016/j.ajhg.2020.06.006_bib28 article-title: Phenylketonuria mutations in Europe publication-title: Hum. Mutat. doi: 10.1002/humu.10192 – volume: 9 start-page: e031474 year: 2019 ident: 10.1016/j.ajhg.2020.06.006_bib48 article-title: Phenylketonuria incidence in China between 2013 and 2017 based on data from the Chinese newborn screening information system: a descriptive study publication-title: BMJ Open doi: 10.1136/bmjopen-2019-031474 – volume: 100 start-page: 189 year: 1997 ident: 10.1016/j.ajhg.2020.06.006_bib37 article-title: Phenylketonuria and the peoples of Northern Ireland publication-title: Hum. Genet. doi: 10.1007/s004390050488 – volume: 15 start-page: 267 year: 1999 ident: 10.1016/j.ajhg.2020.06.006_bib17 article-title: Monogenic traits are not simple: lessons from phenylketonuria publication-title: Trends Genet. doi: 10.1016/S0168-9525(99)01761-8 – volume: 30 start-page: 482 year: 2007 ident: 10.1016/j.ajhg.2020.06.006_bib27 article-title: Newborn screening: experiences in the Middle East and North Africa publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-007-0660-5 – volume: 95 start-page: 112 year: 1995 ident: 10.1016/j.ajhg.2020.06.006_bib33 article-title: PKU in Slovakia: mutation screening and haplotype analysis publication-title: Hum. Genet. doi: 10.1007/BF00225087 – volume: 5 start-page: 743 year: 2017 ident: 10.1016/j.ajhg.2020.06.006_bib6 article-title: Key European guidelines for the diagnosis and management of patients with phenylketonuria publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(16)30320-5 – volume: 419 start-page: 1 year: 2013 ident: 10.1016/j.ajhg.2020.06.006_bib34 article-title: Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2013.01.006 – volume: 112 start-page: 87 year: 2014 ident: 10.1016/j.ajhg.2020.06.006_bib5 article-title: Phenylketonuria Scientific Review Conference: state of the science and future research needs publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2014.02.013 – volume: 63 start-page: 34 year: 2020 ident: 10.1016/j.ajhg.2020.06.006_bib26 article-title: Global prevalence of classic phenylketonuria based on Neonatal Screening Program Data: systematic review and meta-analysis publication-title: Clin Exp Pediatr doi: 10.3345/kjp.2019.00465 – volume: 5 start-page: 15769 year: 2015 ident: 10.1016/j.ajhg.2020.06.006_bib49 article-title: Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing publication-title: Sci. Rep. doi: 10.1038/srep15769 – volume: 16 start-page: 188 year: 2014 ident: 10.1016/j.ajhg.2020.06.006_bib7 article-title: Phenylalanine hydroxylase deficiency: diagnosis and management guideline publication-title: Genet. Med. doi: 10.1038/gim.2013.157 – volume: 127 start-page: 1 year: 2019 ident: 10.1016/j.ajhg.2020.06.006_bib20 article-title: International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2019.04.004 – volume: 9 start-page: 88 year: 1997 ident: 10.1016/j.ajhg.2020.06.006_bib22 article-title: Phenylketonuria splice mutation (EXON6nt-96A-->g) masquerading as missense mutation (Y204C) publication-title: Hum. Mutat. doi: 10.1002/(SICI)1098-1004(1997)9:1<88::AID-HUMU21>3.0.CO;2-K – volume: 48 start-page: 791 year: 1991 ident: 10.1016/j.ajhg.2020.06.006_bib47 article-title: Phenylketonuria in U.S. blacks: molecular analysis of the phenylalanine hydroxylase gene publication-title: Am. J. Hum. Genet. – volume: 14 start-page: e0211048 year: 2019 ident: 10.1016/j.ajhg.2020.06.006_bib30 article-title: Genotypes of 2579 patients with phenylketonuria reveal a high rate of BH4 non-responders in Russia publication-title: PLoS ONE doi: 10.1371/journal.pone.0211048 – volume: 25 start-page: 21 year: 2002 ident: 10.1016/j.ajhg.2020.06.006_bib50 article-title: Partial und total tetrahydrobiopterin-responsiveness in classical and mild phenylketonuria (PKU) publication-title: J. Inherit. Metab. Dis. – volume: 56 start-page: 306 year: 2011 ident: 10.1016/j.ajhg.2020.06.006_bib12 article-title: Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan publication-title: J. Hum. Genet. doi: 10.1038/jhg.2011.10 – volume: 16 start-page: 602 year: 1993 ident: 10.1016/j.ajhg.2020.06.006_bib13 article-title: Molecular basis for the phenotypical diversity of phenylketonuria and related hyperphenylalaninaemias publication-title: J. Inherit. Metab. Dis. doi: 10.1007/BF00711693 – volume: 31 start-page: 599 year: 2008 ident: 10.1016/j.ajhg.2020.06.006_bib16 article-title: Dominant versus recessive: molecular mechanisms in metabolic disease publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-008-1016-5 – volume: 87 start-page: 389 year: 1991 ident: 10.1016/j.ajhg.2020.06.006_bib21 article-title: The identification of two mis-sense mutations at the PAH gene locus in a Turkish patient with phenylketonuria publication-title: Hum. Genet. doi: 10.1007/BF00197153 – volume: 36 start-page: 7 year: 2013 ident: 10.1016/j.ajhg.2020.06.006_bib35 article-title: Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-012-9485-y – volume: 52 start-page: 175 year: 2015 ident: 10.1016/j.ajhg.2020.06.006_bib29 article-title: Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2014-102621 – volume: 28 start-page: 831 year: 2007 ident: 10.1016/j.ajhg.2020.06.006_bib9 article-title: The PAH gene, phenylketonuria, and a paradigm shift publication-title: Hum. Mutat. doi: 10.1002/humu.20526 – volume: 14 start-page: 655 year: 2014 ident: 10.1016/j.ajhg.2020.06.006_bib14 article-title: Molecular genetics and diagnosis of phenylketonuria: state of the art publication-title: Expert Rev. Mol. Diagn. doi: 10.1586/14737159.2014.923760 – volume: 60 start-page: 613 year: 2013 ident: 10.1016/j.ajhg.2020.06.006_bib32 article-title: Molecular genetics of PKU in Poland and potential impact of mutations on BH4 responsiveness publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2013_2029 – volume: 21 start-page: 394 year: 2003 ident: 10.1016/j.ajhg.2020.06.006_bib38 article-title: A role for overdominant selection in phenylketonuria? Evidence from molecular data publication-title: Hum. Mutat. doi: 10.1002/humu.10205 – volume: 2 start-page: 24 year: 1994 ident: 10.1016/j.ajhg.2020.06.006_bib41 article-title: Origins of hyperphenylalaninemia in Israel publication-title: Eur. J. Hum. Genet. doi: 10.1159/000472338 – volume: 125 start-page: 86 year: 2018 ident: 10.1016/j.ajhg.2020.06.006_bib3 article-title: Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2018.06.011 – volume: 280 start-page: 1 year: 1980 ident: 10.1016/j.ajhg.2020.06.006_bib4 article-title: Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood publication-title: Acta Paediatr. Scand. Suppl. – volume: 128 start-page: 415 year: 2019 ident: 10.1016/j.ajhg.2020.06.006_bib46 article-title: Phenylalanine hydroxylase genotype-phenotype associations in the United States: A single center study publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2019.09.004 – volume: 13 start-page: e0201489 year: 2018 ident: 10.1016/j.ajhg.2020.06.006_bib10 article-title: Molecular-genetic causes for the high frequency of phenylketonuria in the population from the North Caucasus publication-title: PLoS ONE doi: 10.1371/journal.pone.0201489 – volume: 21 start-page: 580 year: 2019 ident: 10.1016/j.ajhg.2020.06.006_bib15 article-title: Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria publication-title: Genet. Med. doi: 10.1038/s41436-018-0081-x – volume: 9 start-page: 96 year: 1991 ident: 10.1016/j.ajhg.2020.06.006_bib40 article-title: Phenylketonuria missense mutations in the Mediterranean publication-title: Genomics doi: 10.1016/0888-7543(91)90225-4 – volume: 57 start-page: 337 year: 1995 ident: 10.1016/j.ajhg.2020.06.006_bib43 article-title: Evidence in Latin America of recurrence of V388M, a phenylketonuria mutation with high in vitro residual activity publication-title: Am. J. Hum. Genet. – volume: 65 start-page: 341 year: 2013 ident: 10.1016/j.ajhg.2020.06.006_bib2 article-title: Phenylalanine hydroxylase: function, structure, and regulation publication-title: IUBMB Life doi: 10.1002/iub.1150 – volume: 51 start-page: 1355 year: 1992 ident: 10.1016/j.ajhg.2020.06.006_bib39 article-title: Multiple origins for phenylketonuria in Europe publication-title: Am. J. Hum. Genet. – volume: 40 start-page: 39 year: 2018 ident: 10.1016/j.ajhg.2020.06.006_bib31 article-title: Hyperphenylalaninaemias in Estonia: Genotype-Phenotype Correlation and Comparative Overview of the Patient Cohort Before and After Nation-Wide Neonatal Screening publication-title: JIMD Rep. doi: 10.1007/8904_2017_61 – volume: 376 start-page: 1417 year: 2010 ident: 10.1016/j.ajhg.2020.06.006_bib1 article-title: Phenylketonuria publication-title: Lancet doi: 10.1016/S0140-6736(10)60961-0 – volume: 88 start-page: 62 year: 2015 ident: 10.1016/j.ajhg.2020.06.006_bib44 article-title: Phenylalanine hydroxylase deficiency in Mexico: genotype-phenotype correlations, BH4 responsiveness and evidence of a founder effect publication-title: Clin. Genet. doi: 10.1111/cge.12444 – volume: 32 start-page: 976 year: 1995 ident: 10.1016/j.ajhg.2020.06.006_bib11 article-title: Phenylketonuria in a low incidence population: molecular characterisation of mutations in Finland publication-title: J. Med. Genet. doi: 10.1136/jmg.32.12.976 – volume: 2018 start-page: 7697210 year: 2018 ident: 10.1016/j.ajhg.2020.06.006_bib25 article-title: The prevalence of phenylketonuria in Arab countries, Turkey, and Iran: A systematic review publication-title: BioMed Res. Int. doi: 10.1155/2018/7697210 – volume: 16 start-page: 791 year: 2015 ident: 10.1016/j.ajhg.2020.06.006_bib8 article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria publication-title: Expert Opin. Pharmacother. doi: 10.1517/14656566.2015.1013030 – volume: 24 start-page: 337 year: 1991 ident: 10.1016/j.ajhg.2020.06.006_bib24 article-title: Phenylketonuria: screening, treatment and maternal PKU publication-title: Clin. Biochem. doi: 10.1016/0009-9120(91)80008-Q – volume: 104 start-page: 390 year: 1999 ident: 10.1016/j.ajhg.2020.06.006_bib36 article-title: Phenylketonuria mutations in Germany publication-title: Hum. Genet. doi: 10.1007/s004390050973 |
SSID | ssj0011803 ssib007581498 ssib058492176 |
Score | 2.6742654 |
Snippet | Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid... |
SourceID | pubmedcentral proquest pubmed crossref nii elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 234 |
SubjectTerms | Alleles BH4 BH4, PAH deficiency, PKU, hyperphenylalaninemia, phenylalanine, tetrahydrobiopterin Biopterins Biopterins - analogs & derivatives Biopterins - genetics DIAGNOSIS Europe Gene Frequency Gene Frequency - genetics Genetic Association Studies Genetic Association Studies - methods Genetic Predisposition to Disease Genetic Predisposition to Disease - genetics Genotype GENOTYPE-PHENOTYPE CORRELATIONS Homozygote https://purl.org/becyt/ford/3 https://purl.org/becyt/ford/3.3 Humans HYPERPHENYLALANINEMIA MOLECULAR CHARACTERIZATION Mutation Mutation - genetics MUTATIONS ORIGINS PAH DEFICIENCY PAH GENE PATIENT Phenotype Phenylalanine Phenylalanine - blood Phenylalanine Hydroxylase Phenylalanine Hydroxylase - genetics PHENYLALANINE-HYDROXYLASE DEFICIENCY Phenylketonurias Phenylketonurias - blood Phenylketonurias - epidemiology Phenylketonurias - genetics PKU STATE TETRAHYDROBIOPTERIN |
Title | The Genetic Landscape and Epidemiology of Phenylketonuria |
URI | https://dx.doi.org/10.1016/j.ajhg.2020.06.006 https://cir.nii.ac.jp/crid/1874242817929148672 https://www.ncbi.nlm.nih.gov/pubmed/32668217 https://www.proquest.com/docview/2424444588 https://pubmed.ncbi.nlm.nih.gov/PMC7413859 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT4MwEL9MExNfjN_iVzDxzRChLax9VLPFGDU-aLK3hkJxqGFGt4f9994VmM4sPsgDYVCW0it3v6N3vwM4zU1qDNrJAL0fHghmVSALbgJCEybO0Qim9B3y7j65fhI3g3jQgas2F4bCKhvdX-t0p62bM-fNaJ6_lyXl-IYMjTutI-I_C-IE5UK6JL7B5WwlIZIhbyEwtW4SZ-oYr_Rl-Iw-IgsdhydVPVpsnJaqslwEQX9HUv4wTf11WGswpX9Rd3sDOrbahJW6yuR0CxROBZ_opfGyf0upvRT05OOB3_uuDzv1R4X_MLTV9O3VIiCc4Mzchqd-7_HqOmgqJgQZehrjAO1vxqURhTHo-bFQ5VmYWFtkhhWRkjbkXaKgywqWciYtuhpK8DxREctZLkTKd2C5GlV2D_zI2ISpNEd3IxPMcdR0TcK73DJr4iz1IGqHSmcNnThVtXjTbdzYi6bh1TS82gXPJR6cze55r8k0_mwdtxLQc1NCo7b_874jFBd2ivZUchBRiES9w1RE9ILMg5NWkBrfJVogSSs7mnxqSpXBLZbSg91asLN-IsxNJPpvHnTnRD5rQDzd81eqcuj4uhG0cRmr_X8-zwGs0i8XdZgcwvL4Y2KPEAmNzbGb6sfuE9UXtz4DJA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbSDsN6Kbpnva6bB-w2GLUl2ZaObZEg2ZJghxTITbBsuXEXOMGWHPLvR_q1pQh6mA-GYcmBLMrkx4j8CPAlM4kxaCc99H64J5hVnsy58QhNmDBDI5jQ_5CTaTS8E9_m4bwHt20uDIVVNrq_1umVtm7uXDWzebUuCsrx9Rkad9pHxF8W4gieIRqIqX7DaH7TbSUE0uctBqbuTeZMHeSVPCzu0UlkfkXiSWWPDluno7IoDmHQx6GU_9imwRmcNqDSva7H_RJ6tnwFz-syk7vXoHAtuMQvjc3umHJ7KerJxQu3_7dA7M5d5e6PhS13y58WEeEWl-YbuBv0Z7dDrymZ4KXoamw8NMApl0bkxqDrx3yVpX5kbZ4algdKWp_HxEGX5izhTFr0NZTgWaQClrFMiIS_heNyVdpzcANjI6aSDP2NVLCKpCY2EY-5ZdaEaeJA0E6VThs-cSprsdRt4NiDpunVNL26ip6LHPjaPbOu2TSe7B22EtB7a0Kjun_yuUsUFw6KzlRzEGGIRMXDVED8gsyBz60gNX5MtEOSlHa1_a0pVwaPUEoH3tWC7caJODeS6MA5EO-JvOtARN37LWWxqAi7EbVxGar3__k-n-DFcDYZ6_Fo-v0CTqilCkGMPsDx5tfWXiIs2piP1bL_A6PkBTM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Genetic+Landscape+and+Epidemiology+of+Phenylketonuria&rft.jtitle=American+journal+of+human+genetics&rft.au=Hillert%2C+Alicia&rft.au=Anikster%2C+Yair&rft.au=Belanger-Quintana%2C+Amaya&rft.au=Burlina%2C+Alberto&rft.date=2020-08-06&rft.issn=1537-6605&rft.eissn=1537-6605&rft.volume=107&rft.issue=2&rft.spage=234&rft_id=info:doi/10.1016%2Fj.ajhg.2020.06.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon |