The Genetic Landscape and Epidemiology of Phenylketonuria

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human genetics Vol. 107; no. 2; pp. 234 - 250
Main Authors Hillert, Alicia, Anikster, Yair, Belanger-Quintana, Amaya, Burlina, Alberto, Burton, Barbara K., Carducci, Carla, Chiesa, Ana E., Christodoulou, John, Đorđević, Maja, Desviat, Lourdes R., Eliyahu, Aviva, Evers, Roeland A.F., Fajkusova, Lena, Feillet, François, Bonfim-Freitas, Pedro E., Giżewska, Maria, Gundorova, Polina, Karall, Daniela, Kneller, Katya, Kutsev, Sergey I., Leuzzi, Vincenzo, Levy, Harvey L., Lichter-Konecki, Uta, Muntau, Ania C., Namour, Fares, Oltarzewski, Mariusz, Paras, Andrea, Perez, Belen, Polak, Emil, Polyakov, Alexander V., Porta, Francesco, Rohrbach, Marianne, Scholl-Bürgi, Sabine, Spécola, Norma, Stojiljković, Maja, Shen, Nan, Santana-da Silva, Luiz C., Skouma, Anastasia, van Spronsen, Francjan, Stoppioni, Vera, Thöny, Beat, Trefz, Friedrich K., Vockley, Jerry, Yu, Youngguo, Zschocke, Johannes, Hoffmann, Georg F., Garbade, Sven F., Blau, Nenad
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.08.2020
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0002-9297
1537-6605
1537-6605
DOI10.1016/j.ajhg.2020.06.006

Cover

Loading…
Abstract Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
AbstractList Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.
Author Polak, Emil
Desviat, Lourdes R.
Stojiljković, Maja
Porta, Francesco
Gundorova, Polina
Karall, Daniela
Yu, Youngguo
Paras, Andrea
Christodoulou, John
Giżewska, Maria
Đorđević, Maja
Stoppioni, Vera
Kneller, Katya
Spécola, Norma
Santana-da Silva, Luiz C.
Muntau, Ania C.
van Spronsen, Francjan
Shen, Nan
Thöny, Beat
Burlina, Alberto
Fajkusova, Lena
Lichter-Konecki, Uta
Trefz, Friedrich K.
Burton, Barbara K.
Kutsev, Sergey I.
Vockley, Jerry
Zschocke, Johannes
Evers, Roeland A.F.
Feillet, François
Namour, Fares
Carducci, Carla
Perez, Belen
Hoffmann, Georg F.
Anikster, Yair
Rohrbach, Marianne
Oltarzewski, Mariusz
Chiesa, Ana E.
Eliyahu, Aviva
Belanger-Quintana, Amaya
Skouma, Anastasia
Levy, Harvey L.
Hillert, Alicia
Bonfim-Freitas, Pedro E.
Scholl-Bürgi, Sabine
Blau, Nenad
Leuzzi, Vincenzo
Polyakov, Alexander V.
Garbade, Sven F.
Author_xml – sequence: 1
  givenname: Alicia
  surname: Hillert
  fullname: Hillert, Alicia
  organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany
– sequence: 2
  givenname: Yair
  surname: Anikster
  fullname: Anikster, Yair
  organization: Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Aviv University, 52621 Tel-Aviv, Israel
– sequence: 3
  givenname: Amaya
  surname: Belanger-Quintana
  fullname: Belanger-Quintana, Amaya
  organization: Unidad de Enfermedades Metabolicas, Servicio de Pediatria, Hospital Ramon y Cajal, 28034 Madrid, Spain
– sequence: 4
  givenname: Alberto
  surname: Burlina
  fullname: Burlina, Alberto
  organization: Division of Inherited Metabolic Diseases, Department of Woman’s and Child’s Health, University Hospital, 35129 Padua, Italy
– sequence: 5
  givenname: Barbara K.
  surname: Burton
  fullname: Burton, Barbara K.
  organization: Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
– sequence: 6
  givenname: Carla
  surname: Carducci
  fullname: Carducci, Carla
  organization: Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
– sequence: 7
  givenname: Ana E.
  surname: Chiesa
  fullname: Chiesa, Ana E.
  organization: Fundación de Endocrinología Infantil (FEI), C1425 Buenos Aires, Argentina
– sequence: 8
  givenname: John
  surname: Christodoulou
  fullname: Christodoulou, John
  organization: Murdoch Children’s Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
– sequence: 9
  givenname: Maja
  surname: Đorđević
  fullname: Đorđević, Maja
  organization: Institute of Mother and Child Healthcare “Dr. Vukan Čupić,” 11000 Belgrade, Serbia
– sequence: 10
  givenname: Lourdes R.
  surname: Desviat
  fullname: Desviat, Lourdes R.
  organization: Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid. CIBERER, IdiPAz, 28049 Madrid, Spain
– sequence: 11
  givenname: Aviva
  surname: Eliyahu
  fullname: Eliyahu, Aviva
  organization: Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Aviv University, 52621 Tel-Aviv, Israel
– sequence: 12
  givenname: Roeland A.F.
  surname: Evers
  fullname: Evers, Roeland A.F.
  organization: University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Section of Metabolic Diseases, 9712 CP Groningen, the Netherlands
– sequence: 13
  givenname: Lena
  surname: Fajkusova
  fullname: Fajkusova, Lena
  organization: Centre of Molecular Biology and Gene Therapy, University Hospital Brno, 62500 Brno, Czech Republic
– sequence: 14
  givenname: François
  surname: Feillet
  fullname: Feillet, François
  organization: Reference Center for Inherited Metabolic Diseases, University Hospital of Nancy, 54511 Vandoeuvre-lès-Nancy, France
– sequence: 15
  givenname: Pedro E.
  surname: Bonfim-Freitas
  fullname: Bonfim-Freitas, Pedro E.
  organization: Laboratory of Inborn Errors of Metabolism, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
– sequence: 16
  givenname: Maria
  surname: Giżewska
  fullname: Giżewska, Maria
  organization: Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, 71-252 Szczecin, Poland
– sequence: 17
  givenname: Polina
  surname: Gundorova
  fullname: Gundorova, Polina
  organization: Research Centre for Medical Genetics, 115522 Moscow, Russia
– sequence: 18
  givenname: Daniela
  surname: Karall
  fullname: Karall, Daniela
  organization: Clinic of Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
– sequence: 19
  givenname: Katya
  surname: Kneller
  fullname: Kneller, Katya
  organization: Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Aviv University, 52621 Tel-Aviv, Israel
– sequence: 20
  givenname: Sergey I.
  surname: Kutsev
  fullname: Kutsev, Sergey I.
  organization: Research Centre for Medical Genetics, 115522 Moscow, Russia
– sequence: 21
  givenname: Vincenzo
  surname: Leuzzi
  fullname: Leuzzi, Vincenzo
  organization: Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
– sequence: 22
  givenname: Harvey L.
  surname: Levy
  fullname: Levy, Harvey L.
  organization: Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
– sequence: 23
  givenname: Uta
  surname: Lichter-Konecki
  fullname: Lichter-Konecki, Uta
  organization: UPMC, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
– sequence: 24
  givenname: Ania C.
  surname: Muntau
  fullname: Muntau, Ania C.
  organization: University Children’s Hospital, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
– sequence: 25
  givenname: Fares
  surname: Namour
  fullname: Namour, Fares
  organization: Reference Center for Inherited Metabolic Diseases, University Hospital of Nancy, 54511 Vandoeuvre-lès-Nancy, France
– sequence: 26
  givenname: Mariusz
  surname: Oltarzewski
  fullname: Oltarzewski, Mariusz
  organization: Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, 01-211 Warsaw, Poland
– sequence: 27
  givenname: Andrea
  surname: Paras
  fullname: Paras, Andrea
  organization: Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
– sequence: 28
  givenname: Belen
  surname: Perez
  fullname: Perez, Belen
  organization: Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid. CIBERER, IdiPAz, 28049 Madrid, Spain
– sequence: 29
  givenname: Emil
  surname: Polak
  fullname: Polak, Emil
  organization: Comenius University, Faculty of Natural Sciences, Department of Molecular Biology, 84215 Bratislava 4, Slovak Republic
– sequence: 30
  givenname: Alexander V.
  surname: Polyakov
  fullname: Polyakov, Alexander V.
  organization: Research Centre for Medical Genetics, 115522 Moscow, Russia
– sequence: 31
  givenname: Francesco
  surname: Porta
  fullname: Porta, Francesco
  organization: Department of Pediatrics, AOU Citta’ della Salute e della Scienza di Torino, 10126 Torino, Italy
– sequence: 32
  givenname: Marianne
  surname: Rohrbach
  fullname: Rohrbach, Marianne
  organization: Division of Metabolism, University Children’s Hospital, 8032 Zürich, Switzerland
– sequence: 33
  givenname: Sabine
  surname: Scholl-Bürgi
  fullname: Scholl-Bürgi, Sabine
  organization: Clinic of Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
– sequence: 34
  givenname: Norma
  surname: Spécola
  fullname: Spécola, Norma
  organization: Unidad de Metabolismo. Hospital de Niños “Sor Ludovica” de La Plata, 1904 Buenos Aires, Argentina
– sequence: 35
  givenname: Maja
  surname: Stojiljković
  fullname: Stojiljković, Maja
  organization: Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
– sequence: 36
  givenname: Nan
  surname: Shen
  fullname: Shen, Nan
  organization: Department of Infectious Diseases, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 2000025 Shanghai, China
– sequence: 37
  givenname: Luiz C.
  surname: Santana-da Silva
  fullname: Santana-da Silva, Luiz C.
  organization: Laboratory of Inborn Errors of Metabolism, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
– sequence: 38
  givenname: Anastasia
  surname: Skouma
  fullname: Skouma, Anastasia
  organization: Institute of Child Health, 11526 Athens, Greece
– sequence: 39
  givenname: Francjan
  surname: van Spronsen
  fullname: van Spronsen, Francjan
  organization: University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Section of Metabolic Diseases, 9712 CP Groningen, the Netherlands
– sequence: 40
  givenname: Vera
  surname: Stoppioni
  fullname: Stoppioni, Vera
  organization: Centro Screening Neonatale Regione Marche, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61032 Fano, Italy
– sequence: 41
  givenname: Beat
  surname: Thöny
  fullname: Thöny, Beat
  organization: Division of Metabolism, University Children’s Hospital, 8032 Zürich, Switzerland
– sequence: 42
  givenname: Friedrich K.
  surname: Trefz
  fullname: Trefz, Friedrich K.
  organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany
– sequence: 43
  givenname: Jerry
  surname: Vockley
  fullname: Vockley, Jerry
  organization: UPMC, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
– sequence: 44
  givenname: Youngguo
  surname: Yu
  fullname: Yu, Youngguo
  organization: Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, 2000025 Shanghai, China
– sequence: 45
  givenname: Johannes
  surname: Zschocke
  fullname: Zschocke, Johannes
  organization: Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
– sequence: 46
  givenname: Georg F.
  surname: Hoffmann
  fullname: Hoffmann, Georg F.
  organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany
– sequence: 47
  givenname: Sven F.
  surname: Garbade
  fullname: Garbade, Sven F.
  email: sven.garbade@med.uni-heidelberg.de
  organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany
– sequence: 48
  givenname: Nenad
  surname: Blau
  fullname: Blau, Nenad
  email: nenad.blau@kispi.uzh.ch
  organization: Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, 69120 Heidelberg, Germany
BackLink https://cir.nii.ac.jp/crid/1874242817929148672$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/32668217$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9v0zAUxy00xLrBP8AB5cCBS8rzc2I7EkJC0xiTKsFhnC3HeWldUrvE6aT-9zjqhmCH-WA_yd8flj8X7CzEQIy95bDkwOXH7dJuN-slAsIS5BJAvmALXgtVSgn1GVsAAJYNNuqcXaS0BeBcg3jFzgVKqZGrBWvuNlTcUKDJu2JlQ5ec3VORh-J67zva-TjE9bGIffFjQ-E4_KIphsPo7Wv2srdDojcP5yX7-fX67upbufp-c3v1ZVW6uoapRKGd0G3Vt63GGqHpHEii3rXY80YTCAVaSdejFahJSd1UopMNxw67qrLikn0-5e4P7Y46R2Ea7WD2o9_Z8Wii9eb_m-A3Zh3vjaq40HWTAz48BIzx94HSZHY-ORoGGygeksEKq7xqrbP03b9df0se_ysL9EngxpjSSL1xfrKTj3O1HwwHM6MxWzOjMTMaA9JkNNmKT6yP6c-a3p9MwftcNe9cq_xg1FxlsrzSUmGWfTrJKIO49zSa5DwFR50fyU2mi_65lj9lS7E5
CitedBy_id crossref_primary_10_1016_j_bpobgyn_2024_102546
crossref_primary_10_1016_j_ymgmr_2024_101083
crossref_primary_10_1038_s42255_023_00897_6
crossref_primary_10_1007_s10072_022_06194_6
crossref_primary_10_3390_ijms25179335
crossref_primary_10_1007_s11011_021_00753_0
crossref_primary_10_4103_ijpvm_ijpvm_50_23
crossref_primary_10_3389_fpubh_2024_1461141
crossref_primary_10_3390_ijns8030047
crossref_primary_10_1016_j_ymgmr_2024_101087
crossref_primary_10_1016_j_ymgme_2022_04_004
crossref_primary_10_1002_mgg3_1959
crossref_primary_10_1186_s13023_021_02086_8
crossref_primary_10_3389_fbioe_2022_993298
crossref_primary_10_3390_jpm13081236
crossref_primary_10_1186_s13023_022_02488_2
crossref_primary_10_1002_cpdd_1363
crossref_primary_10_2147_NDS_S337135
crossref_primary_10_3390_nu15030649
crossref_primary_10_3390_nu13031040
crossref_primary_10_1016_j_ymgme_2023_107697
crossref_primary_10_3390_metabo14070397
crossref_primary_10_1016_j_cca_2024_119725
crossref_primary_10_1016_j_scr_2024_103407
crossref_primary_10_1016_j_gim_2022_12_005
crossref_primary_10_1016_j_ymgme_2024_108541
crossref_primary_10_3390_nu16142204
crossref_primary_10_1038_s41572_021_00267_0
crossref_primary_10_1155_2024_6638269
crossref_primary_10_1186_s40246_023_00481_9
crossref_primary_10_1177_03000605221125524
crossref_primary_10_1016_j_ymgmr_2023_101012
crossref_primary_10_1002_adhm_202401353
crossref_primary_10_1186_s13023_021_02094_8
crossref_primary_10_1089_nat_2024_0014
crossref_primary_10_1002_jimd_12508
crossref_primary_10_1186_s12920_023_01771_w
crossref_primary_10_1186_s13023_021_01874_6
crossref_primary_10_3389_fgene_2022_1051153
crossref_primary_10_1007_s11033_021_06163_w
crossref_primary_10_1007_s42247_024_00795_x
crossref_primary_10_3390_nu15040957
crossref_primary_10_12956_tchd_1454353
crossref_primary_10_1016_j_ymgmr_2024_101103
crossref_primary_10_3390_children9030402
crossref_primary_10_1038_s41467_023_39246_2
crossref_primary_10_3390_nu14040807
crossref_primary_10_3390_nu15163506
crossref_primary_10_3390_nu17030379
crossref_primary_10_1016_j_gim_2021_08_012
crossref_primary_10_1021_acs_chemrev_1c00746
crossref_primary_10_3390_ijerph19052574
crossref_primary_10_1016_j_ymgme_2025_109068
crossref_primary_10_3390_nu13020707
crossref_primary_10_1016_j_clnesp_2023_05_011
crossref_primary_10_1002_mgg3_2224
crossref_primary_10_1515_jpem_2021_0155
crossref_primary_10_1093_clinchem_hvab106
crossref_primary_10_1016_j_xhgg_2023_100253
crossref_primary_10_1515_jpem_2021_0556
crossref_primary_10_3390_jcm12237452
crossref_primary_10_1016_j_clnesp_2024_09_032
crossref_primary_10_3390_genes12111676
crossref_primary_10_3390_nu16193348
crossref_primary_10_3389_fgene_2023_1049816
crossref_primary_10_1016_j_ymthe_2024_11_032
crossref_primary_10_1093_nutrit_nuac024
crossref_primary_10_1016_j_gim_2024_101268
crossref_primary_10_3390_nu14234987
crossref_primary_10_1016_j_ecoenv_2022_113467
crossref_primary_10_1016_j_cca_2022_08_009
crossref_primary_10_1242_dmm_050233
crossref_primary_10_1002_jimd_12651
crossref_primary_10_1016_j_dib_2022_107926
crossref_primary_10_1016_j_radcr_2025_02_036
crossref_primary_10_1186_s12934_022_01799_0
crossref_primary_10_1016_j_ijscr_2023_108458
crossref_primary_10_1016_S0140_6736_22_00578_5
crossref_primary_10_1007_s10528_024_10892_5
crossref_primary_10_1016_j_ymgmr_2024_101099
crossref_primary_10_1186_s12920_021_01141_4
crossref_primary_10_3390_nu13082719
crossref_primary_10_1016_j_ymgmr_2022_100918
crossref_primary_10_1016_j_ymgmr_2024_101134
crossref_primary_10_3390_ijns7010017
crossref_primary_10_1016_j_ymgme_2023_107625
crossref_primary_10_1016_S0140_6736_24_01819_1
crossref_primary_10_3389_fnut_2021_735366
crossref_primary_10_1007_s00112_021_01354_y
crossref_primary_10_1002_humu_24292
crossref_primary_10_1016_j_lfs_2022_121204
crossref_primary_10_3390_genes15081020
crossref_primary_10_21926_obm_genet_2403256
crossref_primary_10_1186_s40246_022_00397_w
crossref_primary_10_3390_ijns10040074
crossref_primary_10_1136_bcr_2023_256053
crossref_primary_10_1016_j_clinbiochem_2023_03_012
crossref_primary_10_3390_nu14194056
crossref_primary_10_1097_CCM_0000000000005640
crossref_primary_10_1016_j_ymgme_2022_11_003
crossref_primary_10_3389_fnins_2023_1308183
crossref_primary_10_1002_ana_26467
crossref_primary_10_1002_jimd_12710
crossref_primary_10_1186_s13023_021_01846_w
crossref_primary_10_1080_20905068_2024_2439035
crossref_primary_10_1016_j_ymgmr_2022_100907
crossref_primary_10_1002_jimd_12719
crossref_primary_10_2337_dci22_0066
crossref_primary_10_1055_a_2412_4409
crossref_primary_10_3390_ijms25105065
crossref_primary_10_1007_s00112_024_02069_6
crossref_primary_10_1186_s43066_024_00312_z
crossref_primary_10_1016_j_ymgme_2024_108580
crossref_primary_10_1016_j_gim_2024_101289
crossref_primary_10_3390_jcm11041061
crossref_primary_10_1186_s12909_023_04548_y
crossref_primary_10_1007_s43538_023_00203_8
crossref_primary_10_1186_s12916_024_03602_w
crossref_primary_10_14295_rp_v57i2_494
crossref_primary_10_1021_acs_molpharmaceut_2c00512
crossref_primary_10_1016_j_ymgme_2024_108514
crossref_primary_10_1080_87559129_2022_2122993
crossref_primary_10_1001_jamanetworkopen_2024_12886
crossref_primary_10_1016_j_ajhg_2023_10_005
crossref_primary_10_1111_jcmm_17865
crossref_primary_10_1097_MD_0000000000041064
crossref_primary_10_1016_j_genrep_2021_101196
crossref_primary_10_7759_cureus_59572
crossref_primary_10_1055_s_0043_1768677
crossref_primary_10_3390_nu16132064
crossref_primary_10_1080_03007995_2024_2337662
crossref_primary_10_1007_s40290_024_00529_8
crossref_primary_10_1016_j_ymgmr_2023_100992
crossref_primary_10_3390_metabo14090479
crossref_primary_10_38053_acmj_1532044
crossref_primary_10_1016_j_ymgmr_2022_100855
crossref_primary_10_1016_j_biochi_2020_11_011
crossref_primary_10_3390_biomedicines11071899
crossref_primary_10_3390_biology11091308
crossref_primary_10_1016_j_ymgmr_2024_101065
crossref_primary_10_1016_S0140_6736_24_01556_3
crossref_primary_10_1186_s40246_023_00475_7
crossref_primary_10_3390_nu15204352
crossref_primary_10_3390_genes12010020
crossref_primary_10_1186_s13023_023_02621_9
crossref_primary_10_36740_WLek202408111
crossref_primary_10_3390_children10121865
crossref_primary_10_4103_abr_abr_471_23
crossref_primary_10_1515_jpem_2024_0091
crossref_primary_10_3390_nu16223915
crossref_primary_10_1007_s11011_021_00676_w
crossref_primary_10_1016_j_jmoldx_2023_02_001
crossref_primary_10_1016_j_ymgme_2022_01_004
crossref_primary_10_3389_fnmol_2021_787242
crossref_primary_10_1016_j_ymgme_2023_108120
crossref_primary_10_1016_j_ymgmr_2023_101015
crossref_primary_10_1093_hmg_ddae051
crossref_primary_10_3390_medicina60071185
crossref_primary_10_1007_s10928_024_09948_1
crossref_primary_10_1515_jpem_2022_0047
crossref_primary_10_1093_humrep_deab087
crossref_primary_10_3390_ph17111411
crossref_primary_10_1172_jci_insight_182876
crossref_primary_10_1186_s13023_025_03602_w
crossref_primary_10_3390_ijms25094598
crossref_primary_10_1016_j_ymgme_2023_107704
crossref_primary_10_1016_j_ijbiomac_2024_131960
crossref_primary_10_3724_zdxbyxb_2023_0450
crossref_primary_10_1007_s12687_022_00626_8
crossref_primary_10_1007_s00415_023_11760_9
crossref_primary_10_1089_gtmb_2022_0218
crossref_primary_10_1038_s41598_022_18656_0
crossref_primary_10_1186_s12887_024_05140_z
crossref_primary_10_1042_BST20231061
crossref_primary_10_1186_s40246_022_00398_9
crossref_primary_10_1002_ccr3_8598
crossref_primary_10_1186_s13023_021_01727_2
crossref_primary_10_1136_jmg_2023_109563
crossref_primary_10_1002_edm2_396
crossref_primary_10_1002_jimd_12442
crossref_primary_10_3390_ijms251810019
Cites_doi 10.1016/j.ymgme.2016.01.004
10.1002/jimd.12173
10.1002/humu.10192
10.1136/bmjopen-2019-031474
10.1007/s004390050488
10.1016/S0168-9525(99)01761-8
10.1007/s10545-007-0660-5
10.1007/BF00225087
10.1016/S2213-8587(16)30320-5
10.1016/j.cca.2013.01.006
10.1016/j.ymgme.2014.02.013
10.3345/kjp.2019.00465
10.1038/srep15769
10.1038/gim.2013.157
10.1016/j.ymgme.2019.04.004
10.1002/(SICI)1098-1004(1997)9:1<88::AID-HUMU21>3.0.CO;2-K
10.1371/journal.pone.0211048
10.1038/jhg.2011.10
10.1007/BF00711693
10.1007/s10545-008-1016-5
10.1007/BF00197153
10.1007/s10545-012-9485-y
10.1136/jmedgenet-2014-102621
10.1002/humu.20526
10.1586/14737159.2014.923760
10.18388/abp.2013_2029
10.1002/humu.10205
10.1159/000472338
10.1016/j.ymgme.2018.06.011
10.1016/j.ymgme.2019.09.004
10.1371/journal.pone.0201489
10.1038/s41436-018-0081-x
10.1016/0888-7543(91)90225-4
10.1002/iub.1150
10.1007/8904_2017_61
10.1016/S0140-6736(10)60961-0
10.1111/cge.12444
10.1136/jmg.32.12.976
10.1155/2018/7697210
10.1517/14656566.2015.1013030
10.1016/0009-9120(91)80008-Q
10.1007/s004390050973
ContentType Journal Article
Copyright 2020 American Society of Human Genetics
Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
2020 American Society of Human Genetics. 2020 American Society of Human Genetics
Copyright_xml – notice: 2020 American Society of Human Genetics
– notice: Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
– notice: 2020 American Society of Human Genetics. 2020 American Society of Human Genetics
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ajhg.2020.06.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-6605
EndPage 250
ExternalDocumentID PMC7413859
32668217
10_1016_j_ajhg_2020_06_006
S0002929720301944
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK117916
– fundername: NINR NIH HHS
  grantid: R01 NR016991
– fundername: NIMHD NIH HHS
  grantid: L60 MD003721
GroupedDBID ---
--K
--Z
-~X
0R~
123
1~5
23M
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAWTL
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
E3Z
EBS
ECV
F5P
FCP
FDB
FEDTE
GX1
HVGLF
HYE
IH2
IHE
IXB
JIG
KQ8
L7B
M41
O-L
O9-
OK1
P2P
PQQKQ
RCE
RNS
ROL
RPM
RPZ
SES
SJN
SSZ
TN5
TR2
TWZ
UHB
UKR
UNMZH
UPT
VQA
WH7
WQ6
ZA5
ZCA
AAFWJ
AAMRU
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
RYH
.55
.GJ
34R
3O-
41~
AAIKJ
AAQXK
AAYWO
AAYXX
ABWVN
ACKIV
ACRPL
ADMUD
ADNMO
ADXHL
AGCDD
AGHFR
AGQPQ
AI.
C1A
CITATION
EJD
FA8
FGOYB
HZ~
MVM
NEJ
OHT
OZT
R2-
RIG
VH1
WOQ
X7M
XOL
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c550t-238c38b4fbb825209dc06eefcb2f198e0370876cf2a328e768943d6912d2d44a3
IEDL.DBID IXB
ISSN 0002-9297
1537-6605
IngestDate Thu Aug 21 18:05:21 EDT 2025
Thu Jul 10 17:02:13 EDT 2025
Thu Apr 03 07:05:44 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Jul 01 03:39:19 EDT 2025
Fri Jun 27 01:25:57 EDT 2025
Fri Feb 23 02:48:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords tetrahydrobiopterin
PKU
phenylalanine
hyperphenylalaninemia
PAH deficiency
BH4
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-238c38b4fbb825209dc06eefcb2f198e0370876cf2a328e768943d6912d2d44a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0046-8274
0000-0001-8703-7997
0000-0002-7420-4757
0000-0002-4013-6012
0000-0002-0105-1833
0000-0003-0492-3323
0000-0002-2529-4231
0000-0003-1697-3571
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0002929720301944
PMID 32668217
PQID 2424444588
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7413859
proquest_miscellaneous_2424444588
pubmed_primary_32668217
crossref_citationtrail_10_1016_j_ajhg_2020_06_006
crossref_primary_10_1016_j_ajhg_2020_06_006
nii_cinii_1874242817929148672
elsevier_sciencedirect_doi_10_1016_j_ajhg_2020_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-06
PublicationDateYYYYMMDD 2020-08-06
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of human genetics
PublicationTitleAlternate Am J Hum Genet
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Vockley, Andersson, Antshel, Braverman, Burton, Frazier, Mitchell, Smith, Thompson, Berry (bib7) 2014; 16
Blau, Shen, Carducci (bib14) 2014; 14
Sterl, Paul, Paschke, Zschocke, Brunner-Krainz, Windisch, Konstantopoulou, Möslinger, Karall, Scholl-Bürgi (bib35) 2013; 36
Desviat, Pérez, De Lucca, Cornejo, Schmidt, Ugarte (bib43) 1995; 57
Camp, Parisi, Acosta, Berry, Bilder, Blau, Bodamer, Brosco, Brown, Burlina (bib5) 2014; 112
Lillevali, Reinson, Muru, Simenson, Murumets, Mols, Ounap (bib31) 2018; 40
Shoraka, Haghdoost, Baneshi, Bagherinezhad, Zolala (bib26) 2020; 63
Scriver, Waters (bib17) 1999; 15
Gundorova, Stepanova, Kuznetsova, Kutsev, Polyakov (bib30) 2019; 14
Bik-Multanowski, Kaluzny, Mozrzymas, Oltarzewski, Starostecka, Lange, Didycz, Gizewska, Ulewicz-Filipowicz, Chrobot (bib32) 2013; 60
Garbade, Shen, Himmelreich, Haas, Trefz, Hoffmann, Burgard, Blau (bib15) 2019; 21
Blau, Longo (bib8) 2015; 16
Konecki, Schlotter, Trefz, Lichter-Konecki (bib21) 1991; 87
Eisensmith, Okano, Dasovich, Wang, Güttler, Lou, Guldberg, Lichter-Konecki, Konecki, Svensson (bib39) 1992; 51
Réblová, Hrubá, Procházková, Pazdírková, Pouchlá, Zeman, Fajkusová (bib34) 2013; 419
Zschocke, Hoffmann (bib36) 1999; 104
Güttler, Guldberg, Henriksen, Mikkelsen, Olsen, Lou (bib13) 1993; 16
Muntau, Adams, Bélanger-Quintana, Bushueva, Cerone, Chien, Chiesa, Coşkun, de Las Heras, Feillet (bib20) 2019; 127
van Spronsen, van Wegberg, Ahring, Bélanger-Quintana, Blau, Bosch, Burlina, Campistol, Feillet, Giżewska (bib6) 2017; 5
Okano, Kudo, Nishi, Sakaguchi, Aso (bib12) 2011; 56
Matalon, Michals (bib24) 1991; 24
Krawczak, Zschocke (bib38) 2003; 21
Hennermann, Vetter, Kulozik, Mönch (bib50) 2002; 25
Ellingsen, Knappskog, Eiken (bib22) 1997; 9
Blau, van Spronsen, Levy (bib1) 2010; 376
Himmelreich, Shen, Okun, Thiel, Hoffmann, Blau (bib3) 2018; 125
El-Metwally, Yousef Al-Ahaidib, Ayman Sunqurah, Al-Surimi, Househ, Alshehri, Da’ar, Abdul Razzak, AlOdaib (bib25) 2018; 2018
Li, Jia, Liu, Tao, Chen, Li, Deng, Jin, Song, Zhang (bib49) 2015; 5
Evers, van Wegberg, Anjema, Lubout, van Dam, van Vliet, Blau, van Spronsen (bib19) 2020; 43
Rajabi, Rohr, Wessel, Martell, Dobrowolski, Guldberg, Güttler, Levy (bib46) 2019; 128
Xiang, Tao, Deng, Li, Li, Yuan, Liang, Yu, Wang, Wang (bib48) 2019; 9
Vela-Amieva, Abreu-González, González-del Angel, Ibarra-González, Fernández-Lainez, Barrientos-Ríos, Monroy-Santoyo, Guillén-López, Alcántara-Ortigoza (bib44) 2015; 88
Shen, Heintz, Thiel, Okun, Hoffmann, Blau (bib18) 2016; 117
Zschocke (bib28) 2003; 21
Saadallah, Rashed (bib27) 2007; 30
Güttler (bib4) 1980; 280
Gundorova, Zinchenko, Kuznetsova, Bliznetz, Stepanova, Polyakov (bib10) 2018; 13
Flydal, Martinez (bib2) 2013; 65
Scriver (bib9) 2007; 28
Guldberg, Henriksen, Sipilä, Güttler, de la Chapelle (bib11) 1995; 32
Kádasi, Poláková, Feráková, Hudecová, Bohusová, Szomolayová, Strnová, Hruskovic, Moschonas, Ferák (bib33) 1995; 95
Hofman, Steel, Kazazian, Valle (bib47) 1991; 48
Zschocke (bib16) 2008; 31
Okano, Wang, Eisensmith, Longhi, Riva, Giovannini, Cerone, Romano, Woo (bib40) 1991; 9
Danecka, Woidy, Zschocke, Feillet, Muntau, Gersting (bib29) 2015; 52
Zschocke, Mallory, Eiken, Nevin (bib37) 1997; 100
Kleiman, Avigad, Vanagaite, Shmuelevitz, David, Eisensmith, Brand, Schwartz, Rey, Munnich (bib41) 1994; 2
Himmelreich (10.1016/j.ajhg.2020.06.006_bib3) 2018; 125
Güttler (10.1016/j.ajhg.2020.06.006_bib13) 1993; 16
Blau (10.1016/j.ajhg.2020.06.006_bib14) 2014; 14
Okano (10.1016/j.ajhg.2020.06.006_bib12) 2011; 56
Matalon (10.1016/j.ajhg.2020.06.006_bib24) 1991; 24
Zschocke (10.1016/j.ajhg.2020.06.006_bib37) 1997; 100
Scriver (10.1016/j.ajhg.2020.06.006_bib17) 1999; 15
Sterl (10.1016/j.ajhg.2020.06.006_bib35) 2013; 36
Garbade (10.1016/j.ajhg.2020.06.006_bib15) 2019; 21
Zschocke (10.1016/j.ajhg.2020.06.006_bib16) 2008; 31
Bik-Multanowski (10.1016/j.ajhg.2020.06.006_bib32) 2013; 60
Güttler (10.1016/j.ajhg.2020.06.006_bib4) 1980; 280
Blau (10.1016/j.ajhg.2020.06.006_bib8) 2015; 16
Blau (10.1016/j.ajhg.2020.06.006_bib1) 2010; 376
Gundorova (10.1016/j.ajhg.2020.06.006_bib30) 2019; 14
van Spronsen (10.1016/j.ajhg.2020.06.006_bib6) 2017; 5
Desviat (10.1016/j.ajhg.2020.06.006_bib43) 1995; 57
Vela-Amieva (10.1016/j.ajhg.2020.06.006_bib44) 2015; 88
Shoraka (10.1016/j.ajhg.2020.06.006_bib26) 2020; 63
Kádasi (10.1016/j.ajhg.2020.06.006_bib33) 1995; 95
Xiang (10.1016/j.ajhg.2020.06.006_bib48) 2019; 9
Camp (10.1016/j.ajhg.2020.06.006_bib5) 2014; 112
Saadallah (10.1016/j.ajhg.2020.06.006_bib27) 2007; 30
Zschocke (10.1016/j.ajhg.2020.06.006_bib36) 1999; 104
Flydal (10.1016/j.ajhg.2020.06.006_bib2) 2013; 65
Evers (10.1016/j.ajhg.2020.06.006_bib19) 2020; 43
Ellingsen (10.1016/j.ajhg.2020.06.006_bib22) 1997; 9
El-Metwally (10.1016/j.ajhg.2020.06.006_bib25) 2018; 2018
Krawczak (10.1016/j.ajhg.2020.06.006_bib38) 2003; 21
Guldberg (10.1016/j.ajhg.2020.06.006_bib11) 1995; 32
Li (10.1016/j.ajhg.2020.06.006_bib49) 2015; 5
Eisensmith (10.1016/j.ajhg.2020.06.006_bib39) 1992; 51
Muntau (10.1016/j.ajhg.2020.06.006_bib20) 2019; 127
Rajabi (10.1016/j.ajhg.2020.06.006_bib46) 2019; 128
Shen (10.1016/j.ajhg.2020.06.006_bib18) 2016; 117
Konecki (10.1016/j.ajhg.2020.06.006_bib21) 1991; 87
Scriver (10.1016/j.ajhg.2020.06.006_bib9) 2007; 28
Réblová (10.1016/j.ajhg.2020.06.006_bib34) 2013; 419
Danecka (10.1016/j.ajhg.2020.06.006_bib29) 2015; 52
Kleiman (10.1016/j.ajhg.2020.06.006_bib41) 1994; 2
Zschocke (10.1016/j.ajhg.2020.06.006_bib28) 2003; 21
Hofman (10.1016/j.ajhg.2020.06.006_bib47) 1991; 48
Vockley (10.1016/j.ajhg.2020.06.006_bib7) 2014; 16
Lillevali (10.1016/j.ajhg.2020.06.006_bib31) 2018; 40
Okano (10.1016/j.ajhg.2020.06.006_bib40) 1991; 9
Gundorova (10.1016/j.ajhg.2020.06.006_bib10) 2018; 13
Hennermann (10.1016/j.ajhg.2020.06.006_bib50) 2002; 25
References_xml – volume: 32
  start-page: 976
  year: 1995
  end-page: 978
  ident: bib11
  article-title: Phenylketonuria in a low incidence population: molecular characterisation of mutations in Finland
  publication-title: J. Med. Genet.
– volume: 9
  start-page: e031474
  year: 2019
  ident: bib48
  article-title: Phenylketonuria incidence in China between 2013 and 2017 based on data from the Chinese newborn screening information system: a descriptive study
  publication-title: BMJ Open
– volume: 24
  start-page: 337
  year: 1991
  end-page: 342
  ident: bib24
  article-title: Phenylketonuria: screening, treatment and maternal PKU
  publication-title: Clin. Biochem.
– volume: 5
  start-page: 15769
  year: 2015
  ident: bib49
  article-title: Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing
  publication-title: Sci. Rep.
– volume: 419
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib34
  article-title: Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations
  publication-title: Clin. Chim. Acta
– volume: 125
  start-page: 86
  year: 2018
  end-page: 95
  ident: bib3
  article-title: Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria
  publication-title: Mol. Genet. Metab.
– volume: 30
  start-page: 482
  year: 2007
  end-page: 489
  ident: bib27
  article-title: Newborn screening: experiences in the Middle East and North Africa
  publication-title: J. Inherit. Metab. Dis.
– volume: 2018
  start-page: 7697210
  year: 2018
  ident: bib25
  article-title: The prevalence of phenylketonuria in Arab countries, Turkey, and Iran: A systematic review
  publication-title: BioMed Res. Int.
– volume: 40
  start-page: 39
  year: 2018
  end-page: 45
  ident: bib31
  article-title: Hyperphenylalaninaemias in Estonia: Genotype-Phenotype Correlation and Comparative Overview of the Patient Cohort Before and After Nation-Wide Neonatal Screening
  publication-title: JIMD Rep.
– volume: 376
  start-page: 1417
  year: 2010
  end-page: 1427
  ident: bib1
  article-title: Phenylketonuria
  publication-title: Lancet
– volume: 52
  start-page: 175
  year: 2015
  end-page: 185
  ident: bib29
  article-title: Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria
  publication-title: J. Med. Genet.
– volume: 51
  start-page: 1355
  year: 1992
  end-page: 1365
  ident: bib39
  article-title: Multiple origins for phenylketonuria in Europe
  publication-title: Am. J. Hum. Genet.
– volume: 21
  start-page: 580
  year: 2019
  end-page: 590
  ident: bib15
  article-title: Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria
  publication-title: Genet. Med.
– volume: 57
  start-page: 337
  year: 1995
  end-page: 342
  ident: bib43
  article-title: Evidence in Latin America of recurrence of V388M, a phenylketonuria mutation with high in vitro residual activity
  publication-title: Am. J. Hum. Genet.
– volume: 127
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib20
  article-title: International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria
  publication-title: Mol. Genet. Metab.
– volume: 21
  start-page: 345
  year: 2003
  end-page: 356
  ident: bib28
  article-title: Phenylketonuria mutations in Europe
  publication-title: Hum. Mutat.
– volume: 14
  start-page: e0211048
  year: 2019
  ident: bib30
  article-title: Genotypes of 2579 patients with phenylketonuria reveal a high rate of BH4 non-responders in Russia
  publication-title: PLoS ONE
– volume: 31
  start-page: 599
  year: 2008
  end-page: 618
  ident: bib16
  article-title: Dominant versus recessive: molecular mechanisms in metabolic disease
  publication-title: J. Inherit. Metab. Dis.
– volume: 5
  start-page: 743
  year: 2017
  end-page: 756
  ident: bib6
  article-title: Key European guidelines for the diagnosis and management of patients with phenylketonuria
  publication-title: Lancet Diabetes Endocrinol.
– volume: 48
  start-page: 791
  year: 1991
  end-page: 798
  ident: bib47
  article-title: Phenylketonuria in U.S. blacks: molecular analysis of the phenylalanine hydroxylase gene
  publication-title: Am. J. Hum. Genet.
– volume: 2
  start-page: 24
  year: 1994
  end-page: 34
  ident: bib41
  article-title: Origins of hyperphenylalaninemia in Israel
  publication-title: Eur. J. Hum. Genet.
– volume: 60
  start-page: 613
  year: 2013
  end-page: 616
  ident: bib32
  article-title: Molecular genetics of PKU in Poland and potential impact of mutations on BH4 responsiveness
  publication-title: Acta Biochim. Pol.
– volume: 280
  start-page: 1
  year: 1980
  end-page: 80
  ident: bib4
  article-title: Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood
  publication-title: Acta Paediatr. Scand. Suppl.
– volume: 56
  start-page: 306
  year: 2011
  end-page: 312
  ident: bib12
  article-title: Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan
  publication-title: J. Hum. Genet.
– volume: 63
  start-page: 34
  year: 2020
  end-page: 43
  ident: bib26
  article-title: Global prevalence of classic phenylketonuria based on Neonatal Screening Program Data: systematic review and meta-analysis
  publication-title: Clin Exp Pediatr
– volume: 21
  start-page: 394
  year: 2003
  end-page: 397
  ident: bib38
  article-title: A role for overdominant selection in phenylketonuria? Evidence from molecular data
  publication-title: Hum. Mutat.
– volume: 9
  start-page: 88
  year: 1997
  end-page: 90
  ident: bib22
  article-title: Phenylketonuria splice mutation (EXON6nt-96A-->g) masquerading as missense mutation (Y204C)
  publication-title: Hum. Mutat.
– volume: 65
  start-page: 341
  year: 2013
  end-page: 349
  ident: bib2
  article-title: Phenylalanine hydroxylase: function, structure, and regulation
  publication-title: IUBMB Life
– volume: 13
  start-page: e0201489
  year: 2018
  ident: bib10
  article-title: Molecular-genetic causes for the high frequency of phenylketonuria in the population from the North Caucasus
  publication-title: PLoS ONE
– volume: 88
  start-page: 62
  year: 2015
  end-page: 67
  ident: bib44
  article-title: Phenylalanine hydroxylase deficiency in Mexico: genotype-phenotype correlations, BH4 responsiveness and evidence of a founder effect
  publication-title: Clin. Genet.
– volume: 112
  start-page: 87
  year: 2014
  end-page: 122
  ident: bib5
  article-title: Phenylketonuria Scientific Review Conference: state of the science and future research needs
  publication-title: Mol. Genet. Metab.
– volume: 117
  start-page: 328
  year: 2016
  end-page: 335
  ident: bib18
  article-title: Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation
  publication-title: Mol. Genet. Metab.
– volume: 128
  start-page: 415
  year: 2019
  end-page: 421
  ident: bib46
  article-title: Phenylalanine hydroxylase genotype-phenotype associations in the United States: A single center study
  publication-title: Mol. Genet. Metab.
– volume: 16
  start-page: 188
  year: 2014
  end-page: 200
  ident: bib7
  article-title: Phenylalanine hydroxylase deficiency: diagnosis and management guideline
  publication-title: Genet. Med.
– volume: 16
  start-page: 602
  year: 1993
  end-page: 604
  ident: bib13
  article-title: Molecular basis for the phenotypical diversity of phenylketonuria and related hyperphenylalaninaemias
  publication-title: J. Inherit. Metab. Dis.
– volume: 9
  start-page: 96
  year: 1991
  end-page: 103
  ident: bib40
  article-title: Phenylketonuria missense mutations in the Mediterranean
  publication-title: Genomics
– volume: 16
  start-page: 791
  year: 2015
  end-page: 800
  ident: bib8
  article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria
  publication-title: Expert Opin. Pharmacother.
– volume: 28
  start-page: 831
  year: 2007
  end-page: 845
  ident: bib9
  article-title: The PAH gene, phenylketonuria, and a paradigm shift
  publication-title: Hum. Mutat.
– volume: 25
  start-page: 21
  year: 2002
  ident: bib50
  article-title: Partial und total tetrahydrobiopterin-responsiveness in classical and mild phenylketonuria (PKU)
  publication-title: J. Inherit. Metab. Dis.
– volume: 95
  start-page: 112
  year: 1995
  end-page: 114
  ident: bib33
  article-title: PKU in Slovakia: mutation screening and haplotype analysis
  publication-title: Hum. Genet.
– volume: 43
  start-page: 244
  year: 2020
  end-page: 250
  ident: bib19
  article-title: The first European guidelines on phenylketonuria: Usefulness and implications for BH
  publication-title: J. Inherit. Metab. Dis.
– volume: 104
  start-page: 390
  year: 1999
  end-page: 398
  ident: bib36
  article-title: Phenylketonuria mutations in Germany
  publication-title: Hum. Genet.
– volume: 15
  start-page: 267
  year: 1999
  end-page: 272
  ident: bib17
  article-title: Monogenic traits are not simple: lessons from phenylketonuria
  publication-title: Trends Genet.
– volume: 36
  start-page: 7
  year: 2013
  end-page: 13
  ident: bib35
  article-title: Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients
  publication-title: J. Inherit. Metab. Dis.
– volume: 14
  start-page: 655
  year: 2014
  end-page: 671
  ident: bib14
  article-title: Molecular genetics and diagnosis of phenylketonuria: state of the art
  publication-title: Expert Rev. Mol. Diagn.
– volume: 100
  start-page: 189
  year: 1997
  end-page: 194
  ident: bib37
  article-title: Phenylketonuria and the peoples of Northern Ireland
  publication-title: Hum. Genet.
– volume: 87
  start-page: 389
  year: 1991
  end-page: 393
  ident: bib21
  article-title: The identification of two mis-sense mutations at the PAH gene locus in a Turkish patient with phenylketonuria
  publication-title: Hum. Genet.
– volume: 117
  start-page: 328
  year: 2016
  ident: 10.1016/j.ajhg.2020.06.006_bib18
  article-title: Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2016.01.004
– volume: 43
  start-page: 244
  year: 2020
  ident: 10.1016/j.ajhg.2020.06.006_bib19
  article-title: The first European guidelines on phenylketonuria: Usefulness and implications for BH4 responsiveness testing
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1002/jimd.12173
– volume: 21
  start-page: 345
  year: 2003
  ident: 10.1016/j.ajhg.2020.06.006_bib28
  article-title: Phenylketonuria mutations in Europe
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.10192
– volume: 9
  start-page: e031474
  year: 2019
  ident: 10.1016/j.ajhg.2020.06.006_bib48
  article-title: Phenylketonuria incidence in China between 2013 and 2017 based on data from the Chinese newborn screening information system: a descriptive study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-031474
– volume: 100
  start-page: 189
  year: 1997
  ident: 10.1016/j.ajhg.2020.06.006_bib37
  article-title: Phenylketonuria and the peoples of Northern Ireland
  publication-title: Hum. Genet.
  doi: 10.1007/s004390050488
– volume: 15
  start-page: 267
  year: 1999
  ident: 10.1016/j.ajhg.2020.06.006_bib17
  article-title: Monogenic traits are not simple: lessons from phenylketonuria
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(99)01761-8
– volume: 30
  start-page: 482
  year: 2007
  ident: 10.1016/j.ajhg.2020.06.006_bib27
  article-title: Newborn screening: experiences in the Middle East and North Africa
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-007-0660-5
– volume: 95
  start-page: 112
  year: 1995
  ident: 10.1016/j.ajhg.2020.06.006_bib33
  article-title: PKU in Slovakia: mutation screening and haplotype analysis
  publication-title: Hum. Genet.
  doi: 10.1007/BF00225087
– volume: 5
  start-page: 743
  year: 2017
  ident: 10.1016/j.ajhg.2020.06.006_bib6
  article-title: Key European guidelines for the diagnosis and management of patients with phenylketonuria
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(16)30320-5
– volume: 419
  start-page: 1
  year: 2013
  ident: 10.1016/j.ajhg.2020.06.006_bib34
  article-title: Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2013.01.006
– volume: 112
  start-page: 87
  year: 2014
  ident: 10.1016/j.ajhg.2020.06.006_bib5
  article-title: Phenylketonuria Scientific Review Conference: state of the science and future research needs
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2014.02.013
– volume: 63
  start-page: 34
  year: 2020
  ident: 10.1016/j.ajhg.2020.06.006_bib26
  article-title: Global prevalence of classic phenylketonuria based on Neonatal Screening Program Data: systematic review and meta-analysis
  publication-title: Clin Exp Pediatr
  doi: 10.3345/kjp.2019.00465
– volume: 5
  start-page: 15769
  year: 2015
  ident: 10.1016/j.ajhg.2020.06.006_bib49
  article-title: Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing
  publication-title: Sci. Rep.
  doi: 10.1038/srep15769
– volume: 16
  start-page: 188
  year: 2014
  ident: 10.1016/j.ajhg.2020.06.006_bib7
  article-title: Phenylalanine hydroxylase deficiency: diagnosis and management guideline
  publication-title: Genet. Med.
  doi: 10.1038/gim.2013.157
– volume: 127
  start-page: 1
  year: 2019
  ident: 10.1016/j.ajhg.2020.06.006_bib20
  article-title: International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2019.04.004
– volume: 9
  start-page: 88
  year: 1997
  ident: 10.1016/j.ajhg.2020.06.006_bib22
  article-title: Phenylketonuria splice mutation (EXON6nt-96A-->g) masquerading as missense mutation (Y204C)
  publication-title: Hum. Mutat.
  doi: 10.1002/(SICI)1098-1004(1997)9:1<88::AID-HUMU21>3.0.CO;2-K
– volume: 48
  start-page: 791
  year: 1991
  ident: 10.1016/j.ajhg.2020.06.006_bib47
  article-title: Phenylketonuria in U.S. blacks: molecular analysis of the phenylalanine hydroxylase gene
  publication-title: Am. J. Hum. Genet.
– volume: 14
  start-page: e0211048
  year: 2019
  ident: 10.1016/j.ajhg.2020.06.006_bib30
  article-title: Genotypes of 2579 patients with phenylketonuria reveal a high rate of BH4 non-responders in Russia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0211048
– volume: 25
  start-page: 21
  year: 2002
  ident: 10.1016/j.ajhg.2020.06.006_bib50
  article-title: Partial und total tetrahydrobiopterin-responsiveness in classical and mild phenylketonuria (PKU)
  publication-title: J. Inherit. Metab. Dis.
– volume: 56
  start-page: 306
  year: 2011
  ident: 10.1016/j.ajhg.2020.06.006_bib12
  article-title: Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan
  publication-title: J. Hum. Genet.
  doi: 10.1038/jhg.2011.10
– volume: 16
  start-page: 602
  year: 1993
  ident: 10.1016/j.ajhg.2020.06.006_bib13
  article-title: Molecular basis for the phenotypical diversity of phenylketonuria and related hyperphenylalaninaemias
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/BF00711693
– volume: 31
  start-page: 599
  year: 2008
  ident: 10.1016/j.ajhg.2020.06.006_bib16
  article-title: Dominant versus recessive: molecular mechanisms in metabolic disease
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-008-1016-5
– volume: 87
  start-page: 389
  year: 1991
  ident: 10.1016/j.ajhg.2020.06.006_bib21
  article-title: The identification of two mis-sense mutations at the PAH gene locus in a Turkish patient with phenylketonuria
  publication-title: Hum. Genet.
  doi: 10.1007/BF00197153
– volume: 36
  start-page: 7
  year: 2013
  ident: 10.1016/j.ajhg.2020.06.006_bib35
  article-title: Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-012-9485-y
– volume: 52
  start-page: 175
  year: 2015
  ident: 10.1016/j.ajhg.2020.06.006_bib29
  article-title: Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria
  publication-title: J. Med. Genet.
  doi: 10.1136/jmedgenet-2014-102621
– volume: 28
  start-page: 831
  year: 2007
  ident: 10.1016/j.ajhg.2020.06.006_bib9
  article-title: The PAH gene, phenylketonuria, and a paradigm shift
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.20526
– volume: 14
  start-page: 655
  year: 2014
  ident: 10.1016/j.ajhg.2020.06.006_bib14
  article-title: Molecular genetics and diagnosis of phenylketonuria: state of the art
  publication-title: Expert Rev. Mol. Diagn.
  doi: 10.1586/14737159.2014.923760
– volume: 60
  start-page: 613
  year: 2013
  ident: 10.1016/j.ajhg.2020.06.006_bib32
  article-title: Molecular genetics of PKU in Poland and potential impact of mutations on BH4 responsiveness
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2013_2029
– volume: 21
  start-page: 394
  year: 2003
  ident: 10.1016/j.ajhg.2020.06.006_bib38
  article-title: A role for overdominant selection in phenylketonuria? Evidence from molecular data
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.10205
– volume: 2
  start-page: 24
  year: 1994
  ident: 10.1016/j.ajhg.2020.06.006_bib41
  article-title: Origins of hyperphenylalaninemia in Israel
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1159/000472338
– volume: 125
  start-page: 86
  year: 2018
  ident: 10.1016/j.ajhg.2020.06.006_bib3
  article-title: Relationship between genotype, phenylalanine hydroxylase expression and in vitro activity and metabolic phenotype in phenylketonuria
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2018.06.011
– volume: 280
  start-page: 1
  year: 1980
  ident: 10.1016/j.ajhg.2020.06.006_bib4
  article-title: Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood
  publication-title: Acta Paediatr. Scand. Suppl.
– volume: 128
  start-page: 415
  year: 2019
  ident: 10.1016/j.ajhg.2020.06.006_bib46
  article-title: Phenylalanine hydroxylase genotype-phenotype associations in the United States: A single center study
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2019.09.004
– volume: 13
  start-page: e0201489
  year: 2018
  ident: 10.1016/j.ajhg.2020.06.006_bib10
  article-title: Molecular-genetic causes for the high frequency of phenylketonuria in the population from the North Caucasus
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0201489
– volume: 21
  start-page: 580
  year: 2019
  ident: 10.1016/j.ajhg.2020.06.006_bib15
  article-title: Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria
  publication-title: Genet. Med.
  doi: 10.1038/s41436-018-0081-x
– volume: 9
  start-page: 96
  year: 1991
  ident: 10.1016/j.ajhg.2020.06.006_bib40
  article-title: Phenylketonuria missense mutations in the Mediterranean
  publication-title: Genomics
  doi: 10.1016/0888-7543(91)90225-4
– volume: 57
  start-page: 337
  year: 1995
  ident: 10.1016/j.ajhg.2020.06.006_bib43
  article-title: Evidence in Latin America of recurrence of V388M, a phenylketonuria mutation with high in vitro residual activity
  publication-title: Am. J. Hum. Genet.
– volume: 65
  start-page: 341
  year: 2013
  ident: 10.1016/j.ajhg.2020.06.006_bib2
  article-title: Phenylalanine hydroxylase: function, structure, and regulation
  publication-title: IUBMB Life
  doi: 10.1002/iub.1150
– volume: 51
  start-page: 1355
  year: 1992
  ident: 10.1016/j.ajhg.2020.06.006_bib39
  article-title: Multiple origins for phenylketonuria in Europe
  publication-title: Am. J. Hum. Genet.
– volume: 40
  start-page: 39
  year: 2018
  ident: 10.1016/j.ajhg.2020.06.006_bib31
  article-title: Hyperphenylalaninaemias in Estonia: Genotype-Phenotype Correlation and Comparative Overview of the Patient Cohort Before and After Nation-Wide Neonatal Screening
  publication-title: JIMD Rep.
  doi: 10.1007/8904_2017_61
– volume: 376
  start-page: 1417
  year: 2010
  ident: 10.1016/j.ajhg.2020.06.006_bib1
  article-title: Phenylketonuria
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60961-0
– volume: 88
  start-page: 62
  year: 2015
  ident: 10.1016/j.ajhg.2020.06.006_bib44
  article-title: Phenylalanine hydroxylase deficiency in Mexico: genotype-phenotype correlations, BH4 responsiveness and evidence of a founder effect
  publication-title: Clin. Genet.
  doi: 10.1111/cge.12444
– volume: 32
  start-page: 976
  year: 1995
  ident: 10.1016/j.ajhg.2020.06.006_bib11
  article-title: Phenylketonuria in a low incidence population: molecular characterisation of mutations in Finland
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.32.12.976
– volume: 2018
  start-page: 7697210
  year: 2018
  ident: 10.1016/j.ajhg.2020.06.006_bib25
  article-title: The prevalence of phenylketonuria in Arab countries, Turkey, and Iran: A systematic review
  publication-title: BioMed Res. Int.
  doi: 10.1155/2018/7697210
– volume: 16
  start-page: 791
  year: 2015
  ident: 10.1016/j.ajhg.2020.06.006_bib8
  article-title: Alternative therapies to address the unmet medical needs of patients with phenylketonuria
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1517/14656566.2015.1013030
– volume: 24
  start-page: 337
  year: 1991
  ident: 10.1016/j.ajhg.2020.06.006_bib24
  article-title: Phenylketonuria: screening, treatment and maternal PKU
  publication-title: Clin. Biochem.
  doi: 10.1016/0009-9120(91)80008-Q
– volume: 104
  start-page: 390
  year: 1999
  ident: 10.1016/j.ajhg.2020.06.006_bib36
  article-title: Phenylketonuria mutations in Germany
  publication-title: Hum. Genet.
  doi: 10.1007/s004390050973
SSID ssj0011803
ssib007581498
ssib058492176
Score 2.6742654
Snippet Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid...
SourceID pubmedcentral
proquest
pubmed
crossref
nii
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 234
SubjectTerms Alleles
BH4
BH4, PAH deficiency, PKU, hyperphenylalaninemia, phenylalanine, tetrahydrobiopterin
Biopterins
Biopterins - analogs & derivatives
Biopterins - genetics
DIAGNOSIS
Europe
Gene Frequency
Gene Frequency - genetics
Genetic Association Studies
Genetic Association Studies - methods
Genetic Predisposition to Disease
Genetic Predisposition to Disease - genetics
Genotype
GENOTYPE-PHENOTYPE CORRELATIONS
Homozygote
https://purl.org/becyt/ford/3
https://purl.org/becyt/ford/3.3
Humans
HYPERPHENYLALANINEMIA
MOLECULAR CHARACTERIZATION
Mutation
Mutation - genetics
MUTATIONS
ORIGINS
PAH DEFICIENCY
PAH GENE
PATIENT
Phenotype
Phenylalanine
Phenylalanine - blood
Phenylalanine Hydroxylase
Phenylalanine Hydroxylase - genetics
PHENYLALANINE-HYDROXYLASE DEFICIENCY
Phenylketonurias
Phenylketonurias - blood
Phenylketonurias - epidemiology
Phenylketonurias - genetics
PKU
STATE
TETRAHYDROBIOPTERIN
Title The Genetic Landscape and Epidemiology of Phenylketonuria
URI https://dx.doi.org/10.1016/j.ajhg.2020.06.006
https://cir.nii.ac.jp/crid/1874242817929148672
https://www.ncbi.nlm.nih.gov/pubmed/32668217
https://www.proquest.com/docview/2424444588
https://pubmed.ncbi.nlm.nih.gov/PMC7413859
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT4MwEL9MExNfjN_iVzDxzRChLax9VLPFGDU-aLK3hkJxqGFGt4f9994VmM4sPsgDYVCW0it3v6N3vwM4zU1qDNrJAL0fHghmVSALbgJCEybO0Qim9B3y7j65fhI3g3jQgas2F4bCKhvdX-t0p62bM-fNaJ6_lyXl-IYMjTutI-I_C-IE5UK6JL7B5WwlIZIhbyEwtW4SZ-oYr_Rl-Iw-IgsdhydVPVpsnJaqslwEQX9HUv4wTf11WGswpX9Rd3sDOrbahJW6yuR0CxROBZ_opfGyf0upvRT05OOB3_uuDzv1R4X_MLTV9O3VIiCc4Mzchqd-7_HqOmgqJgQZehrjAO1vxqURhTHo-bFQ5VmYWFtkhhWRkjbkXaKgywqWciYtuhpK8DxREctZLkTKd2C5GlV2D_zI2ISpNEd3IxPMcdR0TcK73DJr4iz1IGqHSmcNnThVtXjTbdzYi6bh1TS82gXPJR6cze55r8k0_mwdtxLQc1NCo7b_874jFBd2ivZUchBRiES9w1RE9ILMg5NWkBrfJVogSSs7mnxqSpXBLZbSg91asLN-IsxNJPpvHnTnRD5rQDzd81eqcuj4uhG0cRmr_X8-zwGs0i8XdZgcwvL4Y2KPEAmNzbGb6sfuE9UXtz4DJA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbSDsN6Kbpnva6bB-w2GLUl2ZaObZEg2ZJghxTITbBsuXEXOMGWHPLvR_q1pQh6mA-GYcmBLMrkx4j8CPAlM4kxaCc99H64J5hVnsy58QhNmDBDI5jQ_5CTaTS8E9_m4bwHt20uDIVVNrq_1umVtm7uXDWzebUuCsrx9Rkad9pHxF8W4gieIRqIqX7DaH7TbSUE0uctBqbuTeZMHeSVPCzu0UlkfkXiSWWPDluno7IoDmHQx6GU_9imwRmcNqDSva7H_RJ6tnwFz-syk7vXoHAtuMQvjc3umHJ7KerJxQu3_7dA7M5d5e6PhS13y58WEeEWl-YbuBv0Z7dDrymZ4KXoamw8NMApl0bkxqDrx3yVpX5kbZ4algdKWp_HxEGX5izhTFr0NZTgWaQClrFMiIS_heNyVdpzcANjI6aSDP2NVLCKpCY2EY-5ZdaEaeJA0E6VThs-cSprsdRt4NiDpunVNL26ip6LHPjaPbOu2TSe7B22EtB7a0Kjun_yuUsUFw6KzlRzEGGIRMXDVED8gsyBz60gNX5MtEOSlHa1_a0pVwaPUEoH3tWC7caJODeS6MA5EO-JvOtARN37LWWxqAi7EbVxGar3__k-n-DFcDYZ6_Fo-v0CTqilCkGMPsDx5tfWXiIs2piP1bL_A6PkBTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Genetic+Landscape+and+Epidemiology+of+Phenylketonuria&rft.jtitle=American+journal+of+human+genetics&rft.au=Hillert%2C+Alicia&rft.au=Anikster%2C+Yair&rft.au=Belanger-Quintana%2C+Amaya&rft.au=Burlina%2C+Alberto&rft.date=2020-08-06&rft.issn=1537-6605&rft.eissn=1537-6605&rft.volume=107&rft.issue=2&rft.spage=234&rft_id=info:doi/10.1016%2Fj.ajhg.2020.06.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon