A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age
This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four...
Saved in:
Published in | Data in brief Vol. 16; pp. 959 - 966 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-3409 2352-3409 |
DOI | 10.1016/j.dib.2017.12.001 |
Cover
Loading…
Abstract | This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. |
---|---|
AbstractList | This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. Keywords: MRI template creation, Multivariate adaptive regression splines, DARTEL, Structural MRI This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php . |
Author | Wilke, Marko |
AuthorAffiliation | Department of Pediatric Neurology and Developmental Medicine, Children's Hospital and Experimental Pediatric Neuroimaging group, Children's Hospital & Dept. of Neuroradiology, University of Tübingen, Germany |
AuthorAffiliation_xml | – name: Department of Pediatric Neurology and Developmental Medicine, Children's Hospital and Experimental Pediatric Neuroimaging group, Children's Hospital & Dept. of Neuroradiology, University of Tübingen, Germany |
Author_xml | – sequence: 1 givenname: Marko surname: Wilke fullname: Wilke, Marko email: marko.wilke@med.uni-tuebingen.de organization: Department of Pediatric Neurology and Developmental Medicine, Children's Hospital and Experimental Pediatric Neuroimaging group, Children's Hospital & Dept. of Neuroradiology, University of Tübingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29322076$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUtFuFCEUnZgaW2s_wBfDoy-7AjMMS0xMmlp1kzUmTX0mF7izspmBFdgm9etl3dq0PlReIJdzzr1wzsvmKMSATfOa0TmjrH-3mTtv5pwyOWd8Til71pzwVvBZ21F19OB83JzlvKEVIbpaFC-aY65azqnsT5p0TvJ29AFnBjI6knCdMGcfA9lCggkLJpKxkCEmYhNC8WFN7C6XOPlflfDx_Or6ckW-Xi2JSeADKThtRyiYyZDiRHwYINhbUiKJoyOwxlfN8wHGjGd3-2nz_dPl9cWX2erb5-XF-WpmhaBlxpSQHdCF6Cl13SCMUNI5ScENrjVSUSmNcq3lHNBQI5jpmWy7VhlFhetoe9osD7ouwkZvk58g3eoIXv8pxLTWkIq3I2o1OAOACLK2ArFQgnWWWsaR8gWAq1ofDlrbnZnQWQwlwfhI9PFN8D_0Ot5oIQWnqqsCb-8EUvy5w1z05LPFcYSAcZc17_vqqqrrv1Cm6nw974Wo0DcPx7qf56-_FcAOAJtizgmHewijeh8jvdE1RnofI824riGpHPkPx_pSfY_7l_nxSeb7AxOrrTcek87WY7DofEJb6r_7J9i_Af9C4YA |
CitedBy_id | crossref_primary_10_3758_s13415_022_00993_2 crossref_primary_10_1016_j_ynstr_2023_100576 crossref_primary_10_1016_j_neuroscience_2021_12_014 crossref_primary_10_3389_fpsyt_2023_1144993 crossref_primary_10_1016_j_dcn_2023_101224 crossref_primary_10_1016_j_neubiorev_2018_03_025 crossref_primary_10_1016_j_dcn_2020_100875 |
Cites_doi | 10.1016/j.neuroimage.2008.12.037 10.1016/j.neuroimage.2010.12.049 10.1109/79.799930 10.1214/aos/1176347963 10.1016/j.neubiorev.2013.12.004 10.1006/nimg.1997.0299 10.1371/journal.pone.0074795 10.1371/journal.pone.0106498 10.1016/j.neuroimage.2011.02.013 10.1016/j.neuroimage.2014.09.034 10.1016/j.neuroimage.2007.07.007 10.3389/fncom.2017.00005 10.1016/j.neuroimage.2008.02.056 10.1016/j.neuroimage.2005.02.018 10.1016/j.neuroimage.2005.03.031 |
ContentType | Journal Article |
Copyright | 2017 The Authors 2017 The Authors 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: 2017 The Authors 2017 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.dib.2017.12.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2352-3409 |
EndPage | 966 |
ExternalDocumentID | oai_doaj_org_article_9fdbaaeea70d4a589514c0c12e028aad PMC5752094 29322076 10_1016_j_dib_2017_12_001 S2352340917306960 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c550t-19574a085600d4f5b597dd70adfd3b79077b9d3c22aeb0b51b6173439b905d403 |
IEDL.DBID | M48 |
ISSN | 2352-3409 |
IngestDate | Wed Aug 27 01:29:36 EDT 2025 Thu Aug 21 14:12:35 EDT 2025 Fri Sep 05 05:56:57 EDT 2025 Fri Sep 05 03:35:55 EDT 2025 Thu Apr 03 07:07:54 EDT 2025 Tue Jul 01 04:20:20 EDT 2025 Thu Apr 24 23:07:15 EDT 2025 Wed May 17 01:22:47 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural MRI DARTEL MRI template creation Multivariate adaptive regression splines |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-19574a085600d4f5b597dd70adfd3b79077b9d3c22aeb0b51b6173439b905d403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.dib.2017.12.001 |
PMID | 29322076 |
PQID | 1989562655 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9fdbaaeea70d4a589514c0c12e028aad pubmedcentral_primary_oai_pubmedcentral_nih_gov_5752094 proquest_miscellaneous_2661019999 proquest_miscellaneous_1989562655 pubmed_primary_29322076 crossref_primary_10_1016_j_dib_2017_12_001 crossref_citationtrail_10_1016_j_dib_2017_12_001 elsevier_sciencedirect_doi_10_1016_j_dib_2017_12_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Data in brief |
PublicationTitleAlternate | Data Brief |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Ruigrok, Salimi-Khorshidi, Lai, Baron-Cohen, Lombardo, Tait, Suckling (bib22) 2014; 39 Ashburner, Friston (bib7) 2011; 55 NIH. J. Ashburner Mega, Dinov, Mazziotta, Manese, Thompson, Lindshield, Moussai, Tran, Olsen, Zoumalan, Woods, Toga (bib21) 2005; 26 G. Jekabsons, ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, available at fCONN. The 1000 Functional Connectomes Project, Available at Message to the SPM list, Available at IXI. Study Of Normal Brain Development, Available at available at Ashburner (bib6) 2007; 38 Malone, Leung, Clegg, Barnes, Whitwell, Ashburner, Fox, Ridgway (bib17) 2015; 104 West, Blystad, Engström, Warntjes, Lundberg (bib4) 2013; 8 Friedman (bib5) 1991; 19 (last accessed 11 May 2017), 2017. Wilke, Holland, Altaye, Gaser (bib2) 2008; 41 (last accessed 11 April 2017), 2017. C. Gaser Unser (bib14) 1999; 16 Cardoso, Clarkson, Ridgway, Modat, Fox, Ourselin (bib3) 2011; 56 Wilke (bib19) 2014; 9 Wilke, Altaye, Holland (bib1) 2017; 11 C-MIND. Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier, Song, Jenkinson, Lepage, Rueckert, Thompson, Vercauteren, Woods, Mann, Parsey (bib8) 2009; 46 Ashburner, Friston (bib15) 2005; 26 Ashburner, Neelin, Collins, Evans, Friston (bib18) 1997; 6 10.1016/j.dib.2017.12.001_bib12 Friedman (10.1016/j.dib.2017.12.001_bib5) 1991; 19 10.1016/j.dib.2017.12.001_bib13 10.1016/j.dib.2017.12.001_bib10 Cardoso (10.1016/j.dib.2017.12.001_bib3) 2011; 56 Ashburner (10.1016/j.dib.2017.12.001_bib7) 2011; 55 10.1016/j.dib.2017.12.001_bib11 10.1016/j.dib.2017.12.001_bib16 Malone (10.1016/j.dib.2017.12.001_bib17) 2015; 104 Klein (10.1016/j.dib.2017.12.001_bib8) 2009; 46 Wilke (10.1016/j.dib.2017.12.001_bib2) 2008; 41 10.1016/j.dib.2017.12.001_bib20 Wilke (10.1016/j.dib.2017.12.001_bib1) 2017; 11 West (10.1016/j.dib.2017.12.001_bib4) 2013; 8 Ashburner (10.1016/j.dib.2017.12.001_bib6) 2007; 38 Wilke (10.1016/j.dib.2017.12.001_bib19) 2014; 9 Unser (10.1016/j.dib.2017.12.001_bib14) 1999; 16 10.1016/j.dib.2017.12.001_bib9 Ashburner (10.1016/j.dib.2017.12.001_bib15) 2005; 26 Ashburner (10.1016/j.dib.2017.12.001_bib18) 1997; 6 Ruigrok (10.1016/j.dib.2017.12.001_bib22) 2014; 39 Mega (10.1016/j.dib.2017.12.001_bib21) 2005; 26 |
References_xml | – reference: 〉 (last accessed 11 May 2017), 2017. – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bib6 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage – reference: 〉 (last accessed 11 April 2017), 2017. – volume: 39 start-page: 34 year: 2014 end-page: 50 ident: bib22 article-title: A meta-analysis of sex differences in human brain structure publication-title: Neurosci. Biobehav. Rev. – volume: 104 start-page: 366 year: 2015 end-page: 372 ident: bib17 article-title: Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance publication-title: NeuroImage – volume: 41 start-page: 903 year: 2008 end-page: 913 ident: bib2 article-title: Template-O-Matic: a toolbox for creating customized pediatric templates publication-title: NeuroImage – volume: 6 start-page: 344 year: 1997 end-page: 352 ident: bib18 article-title: Incorporating prior knowledge into image registration publication-title: NeuroImage – reference: fCONN. The 1000 Functional Connectomes Project, Available at 〈 – volume: 16 start-page: 22 year: 1999 end-page: 38 ident: bib14 article-title: Splines: a perfect fit for signal and image processing publication-title: IEEE Sign Proc. Mag. – volume: 8 start-page: e74795 year: 2013 ident: bib4 article-title: Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths publication-title: PLoS One – reference: Study Of Normal Brain Development, Available at 〈 – reference: , Message to the SPM list, Available at 〈 – volume: 46 start-page: 786 year: 2009 end-page: 802 ident: bib8 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage – volume: 56 start-page: 1386 year: 2011 end-page: 1397 ident: bib3 article-title: Alzheimer's disease neuroimaging initiative. LoAd: a locally adaptive cortical segmentation algorithm publication-title: NeuroImage – reference: J. Ashburner, – volume: 55 start-page: 954 year: 2011 end-page: 967 ident: bib7 article-title: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation publication-title: NeuroImage – volume: 9 start-page: e106498 year: 2014 ident: bib19 article-title: Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data publication-title: PLoS One – volume: 19 start-page: 1 year: 1991 end-page: 67 ident: bib5 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – reference: NIH. – reference: IXI. – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib15 article-title: Unified segmentation publication-title: NeuroImage – reference: C-MIND. – reference: . Available at 〈 – reference: , available at 〈 – reference: C. Gaser, – reference: G. Jekabsons, ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, available at 〈 – volume: 26 start-page: 1009 year: 2005 end-page: 1018 ident: bib21 article-title: Automated brain tissue assessment in the elderly and demented population: construction and validation of a sub-volume probabilistic brain atlas publication-title: NeuroImage – volume: 11 start-page: 5 year: 2017 ident: bib1 article-title: CMIND authorship consortium. cerebroMatic: a versatile toolbox for spline-based MRI template creation publication-title: Front. Comput. Neurosci. – volume: 46 start-page: 786 year: 2009 ident: 10.1016/j.dib.2017.12.001_bib8 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.037 – volume: 55 start-page: 954 year: 2011 ident: 10.1016/j.dib.2017.12.001_bib7 article-title: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.049 – volume: 16 start-page: 22 year: 1999 ident: 10.1016/j.dib.2017.12.001_bib14 article-title: Splines: a perfect fit for signal and image processing publication-title: IEEE Sign Proc. Mag. doi: 10.1109/79.799930 – volume: 19 start-page: 1 year: 1991 ident: 10.1016/j.dib.2017.12.001_bib5 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. doi: 10.1214/aos/1176347963 – volume: 39 start-page: 34 year: 2014 ident: 10.1016/j.dib.2017.12.001_bib22 article-title: A meta-analysis of sex differences in human brain structure publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2013.12.004 – volume: 6 start-page: 344 year: 1997 ident: 10.1016/j.dib.2017.12.001_bib18 article-title: Incorporating prior knowledge into image registration publication-title: NeuroImage doi: 10.1006/nimg.1997.0299 – volume: 8 start-page: e74795 year: 2013 ident: 10.1016/j.dib.2017.12.001_bib4 article-title: Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths publication-title: PLoS One doi: 10.1371/journal.pone.0074795 – volume: 9 start-page: e106498 year: 2014 ident: 10.1016/j.dib.2017.12.001_bib19 article-title: Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data publication-title: PLoS One doi: 10.1371/journal.pone.0106498 – volume: 56 start-page: 1386 year: 2011 ident: 10.1016/j.dib.2017.12.001_bib3 article-title: Alzheimer's disease neuroimaging initiative. LoAd: a locally adaptive cortical segmentation algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.013 – volume: 104 start-page: 366 year: 2015 ident: 10.1016/j.dib.2017.12.001_bib17 article-title: Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.09.034 – ident: 10.1016/j.dib.2017.12.001_bib20 – volume: 38 start-page: 95 year: 2007 ident: 10.1016/j.dib.2017.12.001_bib6 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.007 – ident: 10.1016/j.dib.2017.12.001_bib16 – volume: 11 start-page: 5 year: 2017 ident: 10.1016/j.dib.2017.12.001_bib1 article-title: CMIND authorship consortium. cerebroMatic: a versatile toolbox for spline-based MRI template creation publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2017.00005 – volume: 41 start-page: 903 year: 2008 ident: 10.1016/j.dib.2017.12.001_bib2 article-title: Template-O-Matic: a toolbox for creating customized pediatric templates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.056 – ident: 10.1016/j.dib.2017.12.001_bib9 – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.dib.2017.12.001_bib15 article-title: Unified segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 26 start-page: 1009 year: 2005 ident: 10.1016/j.dib.2017.12.001_bib21 article-title: Automated brain tissue assessment in the elderly and demented population: construction and validation of a sub-volume probabilistic brain atlas publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.03.031 – ident: 10.1016/j.dib.2017.12.001_bib10 – ident: 10.1016/j.dib.2017.12.001_bib13 – ident: 10.1016/j.dib.2017.12.001_bib11 – ident: 10.1016/j.dib.2017.12.001_bib12 |
SSID | ssj0001542355 |
Score | 2.0953286 |
Snippet | This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 959 |
SubjectTerms | brain DARTEL data quality gender infancy MRI template creation Multivariate adaptive regression splines Neuroscience Structural MRI |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Bb9MwFMcttBMXxAaMwIYeEgeYZOE4drIcN2Aa08YBMWk3y47t0alLUZte9un3XpxULYhx4VSpdRLZfvb7veb5_xh7hzFDLF3juXaN4rj7CW5tLnn0AaMRp6LvD4ldfCtPL9XZlb5aK_VFOWFJHjgN3Mc6emdtCLYSXll9iESgGtHkMqBntNbT7os-by2YSueDERP6kqf4IXmBUcz4SrNP7vITR2ldVf9X4FAQZnRKvXb_hm_6kz1_T6Fc80knT9mTASbhKHVimz0K7Q7bHpbrAt4PmtIfnrH5ESzo7G3g5LY8zMN1SoBtgcS_bykpBhahA2RYSCDZXkOzRDS8ndzhBZ8JfM_h4vtXcFRVAkjTakqgCnRCBdBQaZ-GbgazqQfcpZ6zy5MvPz6d8qHcAm8wTOl4XutKWUQwZCCvonYYa3hfCeujL1yFUXTlal80UtrghNO5Q_opEGhcLbRXonjBttpZG14yINWb3EtXFCGoKBxBokZ4tLHETUPGjIlxvE0zaJFTSYypGZPObgxOkaEpMrmkxLuMHawu-ZWEOB5qfEyTuGpIGtr9F2hZZrAs8y_LypgaTcAMOJIwA281eejZb0dzMbhU6f2LbcNsuTCUnoa4WWr99zbES4KkIeqM7SYTW_UCyUxKUZUZqzaMb6Obm7-0k5-9ZDhCOa4S9ep_jMtr9hi7e5hS1_fYVjdfhn0ks8696RfhPcg5Ncg priority: 102 providerName: Directory of Open Access Journals |
Title | A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age |
URI | https://dx.doi.org/10.1016/j.dib.2017.12.001 https://www.ncbi.nlm.nih.gov/pubmed/29322076 https://www.proquest.com/docview/1989562655 https://www.proquest.com/docview/2661019999 https://pubmed.ncbi.nlm.nih.gov/PMC5752094 https://doaj.org/article/9fdbaaeea70d4a589514c0c12e028aad |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEICtqr1wQZRnCl0ZiQMgBTlOnDSHCi2PqlCWQ8WK3iw7trdbbRNIshLw65lJnIVA6YFTtFknke0ZzzfJeIaQJ-AzuFQXJhS6SEJY_VioVMRDZyx4IzpxptskNvuYHs-T92fibIsM5a38ADZXunZYT2per158-_r9JSj84a9YLQNuP1iyrHuzh7u5dsAwpSjkM0_7_aZhYIeuDioceBiDazN857zqLiNL1SX0Hxmsv4H0z7jK3wzV0S1y0xMmnfYisUu2bHmb7HodbuhTn2j62R1ST2mDG3JtiLbM0Nou-qjYkmJG8EuMlKGNbSmALe3pslzQYg28eLn8ARe8QRr-QGen76jGUhMUE12tkF4pbluhMJ64eNO2otXKUFi67pL50dtPr49DX4MhLMB3acMoF1migMsAjEzihAYHxJiMKeNMrDNwrTOdm7jgXFnNtIg0IFEMlKNzJkzC4ntku6xK-4BQTIUTGa7j2NrEMY3kKIAolUthJeEuIGwYb1n4BOVYJ2Mlh0i0CwlTJHGKZMQxGi8gzzeXfOmzc1zX-BVO4qYhJtbuTlT1Qno9lbkzWilrVQbdVeIAADQpWBFxCyCmlAlIMoiA9IzSswfcanndsx8P4iJBf_GjjCpttW4kxqwBg6ZC_LsNQhTDfBF5QO73IrbpBeAa5yxLA5KNhG_UzfE_5fK8yyMOpM7Bu9_7vy49JDfg10Efwf6IbLf12u4DoLV6QnamJ6efTybdC45Jp4Q_AaHOOgI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spline-based+regression+parameter+set+for+creating+customized+DARTEL+MRI+brain+templates+from+infancy+to+old+age&rft.jtitle=Data+in+brief&rft.au=Wilke%2C+Marko&rft.date=2018-02-01&rft.pub=Elsevier+Inc&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=16&rft.spage=959&rft.epage=966&rft_id=info:doi/10.1016%2Fj.dib.2017.12.001&rft.externalDocID=S2352340917306960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon |