A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age

This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 16; pp. 959 - 966
Main Author Wilke, Marko
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.02.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2352-3409
2352-3409
DOI10.1016/j.dib.2017.12.001

Cover

Loading…
Abstract This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.
AbstractList This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.
This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.
This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. Keywords: MRI template creation, Multivariate adaptive regression splines, DARTEL, Structural MRI
This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php .
Author Wilke, Marko
AuthorAffiliation Department of Pediatric Neurology and Developmental Medicine, Children's Hospital and Experimental Pediatric Neuroimaging group, Children's Hospital & Dept. of Neuroradiology, University of Tübingen, Germany
AuthorAffiliation_xml – name: Department of Pediatric Neurology and Developmental Medicine, Children's Hospital and Experimental Pediatric Neuroimaging group, Children's Hospital & Dept. of Neuroradiology, University of Tübingen, Germany
Author_xml – sequence: 1
  givenname: Marko
  surname: Wilke
  fullname: Wilke, Marko
  email: marko.wilke@med.uni-tuebingen.de
  organization: Department of Pediatric Neurology and Developmental Medicine, Children's Hospital and Experimental Pediatric Neuroimaging group, Children's Hospital & Dept. of Neuroradiology, University of Tübingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29322076$$D View this record in MEDLINE/PubMed
BookMark eNqFUtFuFCEUnZgaW2s_wBfDoy-7AjMMS0xMmlp1kzUmTX0mF7izspmBFdgm9etl3dq0PlReIJdzzr1wzsvmKMSATfOa0TmjrH-3mTtv5pwyOWd8Til71pzwVvBZ21F19OB83JzlvKEVIbpaFC-aY65azqnsT5p0TvJ29AFnBjI6knCdMGcfA9lCggkLJpKxkCEmYhNC8WFN7C6XOPlflfDx_Or6ckW-Xi2JSeADKThtRyiYyZDiRHwYINhbUiKJoyOwxlfN8wHGjGd3-2nz_dPl9cWX2erb5-XF-WpmhaBlxpSQHdCF6Cl13SCMUNI5ScENrjVSUSmNcq3lHNBQI5jpmWy7VhlFhetoe9osD7ouwkZvk58g3eoIXv8pxLTWkIq3I2o1OAOACLK2ArFQgnWWWsaR8gWAq1ofDlrbnZnQWQwlwfhI9PFN8D_0Ot5oIQWnqqsCb-8EUvy5w1z05LPFcYSAcZc17_vqqqrrv1Cm6nw974Wo0DcPx7qf56-_FcAOAJtizgmHewijeh8jvdE1RnofI824riGpHPkPx_pSfY_7l_nxSeb7AxOrrTcek87WY7DofEJb6r_7J9i_Af9C4YA
CitedBy_id crossref_primary_10_3758_s13415_022_00993_2
crossref_primary_10_1016_j_ynstr_2023_100576
crossref_primary_10_1016_j_neuroscience_2021_12_014
crossref_primary_10_3389_fpsyt_2023_1144993
crossref_primary_10_1016_j_dcn_2023_101224
crossref_primary_10_1016_j_neubiorev_2018_03_025
crossref_primary_10_1016_j_dcn_2020_100875
Cites_doi 10.1016/j.neuroimage.2008.12.037
10.1016/j.neuroimage.2010.12.049
10.1109/79.799930
10.1214/aos/1176347963
10.1016/j.neubiorev.2013.12.004
10.1006/nimg.1997.0299
10.1371/journal.pone.0074795
10.1371/journal.pone.0106498
10.1016/j.neuroimage.2011.02.013
10.1016/j.neuroimage.2014.09.034
10.1016/j.neuroimage.2007.07.007
10.3389/fncom.2017.00005
10.1016/j.neuroimage.2008.02.056
10.1016/j.neuroimage.2005.02.018
10.1016/j.neuroimage.2005.03.031
ContentType Journal Article
Copyright 2017 The Authors
2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors
– notice: 2017 The Authors 2017
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.dib.2017.12.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2352-3409
EndPage 966
ExternalDocumentID oai_doaj_org_article_9fdbaaeea70d4a589514c0c12e028aad
PMC5752094
29322076
10_1016_j_dib_2017_12_001
S2352340917306960
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c550t-19574a085600d4f5b597dd70adfd3b79077b9d3c22aeb0b51b6173439b905d403
IEDL.DBID M48
ISSN 2352-3409
IngestDate Wed Aug 27 01:29:36 EDT 2025
Thu Aug 21 14:12:35 EDT 2025
Fri Sep 05 05:56:57 EDT 2025
Fri Sep 05 03:35:55 EDT 2025
Thu Apr 03 07:07:54 EDT 2025
Tue Jul 01 04:20:20 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Wed May 17 01:22:47 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structural MRI
DARTEL
MRI template creation
Multivariate adaptive regression splines
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-19574a085600d4f5b597dd70adfd3b79077b9d3c22aeb0b51b6173439b905d403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.dib.2017.12.001
PMID 29322076
PQID 1989562655
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_9fdbaaeea70d4a589514c0c12e028aad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5752094
proquest_miscellaneous_2661019999
proquest_miscellaneous_1989562655
pubmed_primary_29322076
crossref_primary_10_1016_j_dib_2017_12_001
crossref_citationtrail_10_1016_j_dib_2017_12_001
elsevier_sciencedirect_doi_10_1016_j_dib_2017_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Data in brief
PublicationTitleAlternate Data Brief
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ruigrok, Salimi-Khorshidi, Lai, Baron-Cohen, Lombardo, Tait, Suckling (bib22) 2014; 39
Ashburner, Friston (bib7) 2011; 55
NIH.
J. Ashburner
Mega, Dinov, Mazziotta, Manese, Thompson, Lindshield, Moussai, Tran, Olsen, Zoumalan, Woods, Toga (bib21) 2005; 26
G. Jekabsons, ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, available at
fCONN. The 1000 Functional Connectomes Project, Available at
Message to the SPM list, Available at
IXI.
Study Of Normal Brain Development, Available at
available at
Ashburner (bib6) 2007; 38
Malone, Leung, Clegg, Barnes, Whitwell, Ashburner, Fox, Ridgway (bib17) 2015; 104
West, Blystad, Engström, Warntjes, Lundberg (bib4) 2013; 8
Friedman (bib5) 1991; 19
(last accessed 11 May 2017), 2017.
Wilke, Holland, Altaye, Gaser (bib2) 2008; 41
(last accessed 11 April 2017), 2017.
C. Gaser
Unser (bib14) 1999; 16
Cardoso, Clarkson, Ridgway, Modat, Fox, Ourselin (bib3) 2011; 56
Wilke (bib19) 2014; 9
Wilke, Altaye, Holland (bib1) 2017; 11
C-MIND.
Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier, Song, Jenkinson, Lepage, Rueckert, Thompson, Vercauteren, Woods, Mann, Parsey (bib8) 2009; 46
Ashburner, Friston (bib15) 2005; 26
Ashburner, Neelin, Collins, Evans, Friston (bib18) 1997; 6
10.1016/j.dib.2017.12.001_bib12
Friedman (10.1016/j.dib.2017.12.001_bib5) 1991; 19
10.1016/j.dib.2017.12.001_bib13
10.1016/j.dib.2017.12.001_bib10
Cardoso (10.1016/j.dib.2017.12.001_bib3) 2011; 56
Ashburner (10.1016/j.dib.2017.12.001_bib7) 2011; 55
10.1016/j.dib.2017.12.001_bib11
10.1016/j.dib.2017.12.001_bib16
Malone (10.1016/j.dib.2017.12.001_bib17) 2015; 104
Klein (10.1016/j.dib.2017.12.001_bib8) 2009; 46
Wilke (10.1016/j.dib.2017.12.001_bib2) 2008; 41
10.1016/j.dib.2017.12.001_bib20
Wilke (10.1016/j.dib.2017.12.001_bib1) 2017; 11
West (10.1016/j.dib.2017.12.001_bib4) 2013; 8
Ashburner (10.1016/j.dib.2017.12.001_bib6) 2007; 38
Wilke (10.1016/j.dib.2017.12.001_bib19) 2014; 9
Unser (10.1016/j.dib.2017.12.001_bib14) 1999; 16
10.1016/j.dib.2017.12.001_bib9
Ashburner (10.1016/j.dib.2017.12.001_bib15) 2005; 26
Ashburner (10.1016/j.dib.2017.12.001_bib18) 1997; 6
Ruigrok (10.1016/j.dib.2017.12.001_bib22) 2014; 39
Mega (10.1016/j.dib.2017.12.001_bib21) 2005; 26
References_xml – reference: 〉 (last accessed 11 May 2017), 2017.
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib6
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: NeuroImage
– reference: 〉 (last accessed 11 April 2017), 2017.
– volume: 39
  start-page: 34
  year: 2014
  end-page: 50
  ident: bib22
  article-title: A meta-analysis of sex differences in human brain structure
  publication-title: Neurosci. Biobehav. Rev.
– volume: 104
  start-page: 366
  year: 2015
  end-page: 372
  ident: bib17
  article-title: Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance
  publication-title: NeuroImage
– volume: 41
  start-page: 903
  year: 2008
  end-page: 913
  ident: bib2
  article-title: Template-O-Matic: a toolbox for creating customized pediatric templates
  publication-title: NeuroImage
– volume: 6
  start-page: 344
  year: 1997
  end-page: 352
  ident: bib18
  article-title: Incorporating prior knowledge into image registration
  publication-title: NeuroImage
– reference: fCONN. The 1000 Functional Connectomes Project, Available at 〈
– volume: 16
  start-page: 22
  year: 1999
  end-page: 38
  ident: bib14
  article-title: Splines: a perfect fit for signal and image processing
  publication-title: IEEE Sign Proc. Mag.
– volume: 8
  start-page: e74795
  year: 2013
  ident: bib4
  article-title: Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths
  publication-title: PLoS One
– reference: Study Of Normal Brain Development, Available at 〈
– reference: , Message to the SPM list, Available at 〈
– volume: 46
  start-page: 786
  year: 2009
  end-page: 802
  ident: bib8
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: NeuroImage
– volume: 56
  start-page: 1386
  year: 2011
  end-page: 1397
  ident: bib3
  article-title: Alzheimer's disease neuroimaging initiative. LoAd: a locally adaptive cortical segmentation algorithm
  publication-title: NeuroImage
– reference: J. Ashburner,
– volume: 55
  start-page: 954
  year: 2011
  end-page: 967
  ident: bib7
  article-title: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation
  publication-title: NeuroImage
– volume: 9
  start-page: e106498
  year: 2014
  ident: bib19
  article-title: Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data
  publication-title: PLoS One
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: bib5
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– reference: NIH.
– reference: IXI.
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib15
  article-title: Unified segmentation
  publication-title: NeuroImage
– reference: C-MIND.
– reference: . Available at 〈
– reference: , available at 〈
– reference: C. Gaser,
– reference: G. Jekabsons, ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, available at 〈
– volume: 26
  start-page: 1009
  year: 2005
  end-page: 1018
  ident: bib21
  article-title: Automated brain tissue assessment in the elderly and demented population: construction and validation of a sub-volume probabilistic brain atlas
  publication-title: NeuroImage
– volume: 11
  start-page: 5
  year: 2017
  ident: bib1
  article-title: CMIND authorship consortium. cerebroMatic: a versatile toolbox for spline-based MRI template creation
  publication-title: Front. Comput. Neurosci.
– volume: 46
  start-page: 786
  year: 2009
  ident: 10.1016/j.dib.2017.12.001_bib8
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.037
– volume: 55
  start-page: 954
  year: 2011
  ident: 10.1016/j.dib.2017.12.001_bib7
  article-title: Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.049
– volume: 16
  start-page: 22
  year: 1999
  ident: 10.1016/j.dib.2017.12.001_bib14
  article-title: Splines: a perfect fit for signal and image processing
  publication-title: IEEE Sign Proc. Mag.
  doi: 10.1109/79.799930
– volume: 19
  start-page: 1
  year: 1991
  ident: 10.1016/j.dib.2017.12.001_bib5
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347963
– volume: 39
  start-page: 34
  year: 2014
  ident: 10.1016/j.dib.2017.12.001_bib22
  article-title: A meta-analysis of sex differences in human brain structure
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2013.12.004
– volume: 6
  start-page: 344
  year: 1997
  ident: 10.1016/j.dib.2017.12.001_bib18
  article-title: Incorporating prior knowledge into image registration
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0299
– volume: 8
  start-page: e74795
  year: 2013
  ident: 10.1016/j.dib.2017.12.001_bib4
  article-title: Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074795
– volume: 9
  start-page: e106498
  year: 2014
  ident: 10.1016/j.dib.2017.12.001_bib19
  article-title: Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106498
– volume: 56
  start-page: 1386
  year: 2011
  ident: 10.1016/j.dib.2017.12.001_bib3
  article-title: Alzheimer's disease neuroimaging initiative. LoAd: a locally adaptive cortical segmentation algorithm
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.013
– volume: 104
  start-page: 366
  year: 2015
  ident: 10.1016/j.dib.2017.12.001_bib17
  article-title: Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.09.034
– ident: 10.1016/j.dib.2017.12.001_bib20
– volume: 38
  start-page: 95
  year: 2007
  ident: 10.1016/j.dib.2017.12.001_bib6
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: 10.1016/j.dib.2017.12.001_bib16
– volume: 11
  start-page: 5
  year: 2017
  ident: 10.1016/j.dib.2017.12.001_bib1
  article-title: CMIND authorship consortium. cerebroMatic: a versatile toolbox for spline-based MRI template creation
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2017.00005
– volume: 41
  start-page: 903
  year: 2008
  ident: 10.1016/j.dib.2017.12.001_bib2
  article-title: Template-O-Matic: a toolbox for creating customized pediatric templates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.056
– ident: 10.1016/j.dib.2017.12.001_bib9
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.dib.2017.12.001_bib15
  article-title: Unified segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 26
  start-page: 1009
  year: 2005
  ident: 10.1016/j.dib.2017.12.001_bib21
  article-title: Automated brain tissue assessment in the elderly and demented population: construction and validation of a sub-volume probabilistic brain atlas
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.03.031
– ident: 10.1016/j.dib.2017.12.001_bib10
– ident: 10.1016/j.dib.2017.12.001_bib13
– ident: 10.1016/j.dib.2017.12.001_bib11
– ident: 10.1016/j.dib.2017.12.001_bib12
SSID ssj0001542355
Score 2.0953286
Snippet This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 959
SubjectTerms brain
DARTEL
data quality
gender
infancy
MRI template creation
Multivariate adaptive regression splines
Neuroscience
Structural MRI
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Bb9MwFMcttBMXxAaMwIYeEgeYZOE4drIcN2Aa08YBMWk3y47t0alLUZte9un3XpxULYhx4VSpdRLZfvb7veb5_xh7hzFDLF3juXaN4rj7CW5tLnn0AaMRp6LvD4ldfCtPL9XZlb5aK_VFOWFJHjgN3Mc6emdtCLYSXll9iESgGtHkMqBntNbT7os-by2YSueDERP6kqf4IXmBUcz4SrNP7vITR2ldVf9X4FAQZnRKvXb_hm_6kz1_T6Fc80knT9mTASbhKHVimz0K7Q7bHpbrAt4PmtIfnrH5ESzo7G3g5LY8zMN1SoBtgcS_bykpBhahA2RYSCDZXkOzRDS8ndzhBZ8JfM_h4vtXcFRVAkjTakqgCnRCBdBQaZ-GbgazqQfcpZ6zy5MvPz6d8qHcAm8wTOl4XutKWUQwZCCvonYYa3hfCeujL1yFUXTlal80UtrghNO5Q_opEGhcLbRXonjBttpZG14yINWb3EtXFCGoKBxBokZ4tLHETUPGjIlxvE0zaJFTSYypGZPObgxOkaEpMrmkxLuMHawu-ZWEOB5qfEyTuGpIGtr9F2hZZrAs8y_LypgaTcAMOJIwA281eejZb0dzMbhU6f2LbcNsuTCUnoa4WWr99zbES4KkIeqM7SYTW_UCyUxKUZUZqzaMb6Obm7-0k5-9ZDhCOa4S9ep_jMtr9hi7e5hS1_fYVjdfhn0ks8696RfhPcg5Ncg
  priority: 102
  providerName: Directory of Open Access Journals
Title A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age
URI https://dx.doi.org/10.1016/j.dib.2017.12.001
https://www.ncbi.nlm.nih.gov/pubmed/29322076
https://www.proquest.com/docview/1989562655
https://www.proquest.com/docview/2661019999
https://pubmed.ncbi.nlm.nih.gov/PMC5752094
https://doaj.org/article/9fdbaaeea70d4a589514c0c12e028aad
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEICtqr1wQZRnCl0ZiQMgBTlOnDSHCi2PqlCWQ8WK3iw7trdbbRNIshLw65lJnIVA6YFTtFknke0ZzzfJeIaQJ-AzuFQXJhS6SEJY_VioVMRDZyx4IzpxptskNvuYHs-T92fibIsM5a38ADZXunZYT2per158-_r9JSj84a9YLQNuP1iyrHuzh7u5dsAwpSjkM0_7_aZhYIeuDioceBiDazN857zqLiNL1SX0Hxmsv4H0z7jK3wzV0S1y0xMmnfYisUu2bHmb7HodbuhTn2j62R1ST2mDG3JtiLbM0Nou-qjYkmJG8EuMlKGNbSmALe3pslzQYg28eLn8ARe8QRr-QGen76jGUhMUE12tkF4pbluhMJ64eNO2otXKUFi67pL50dtPr49DX4MhLMB3acMoF1migMsAjEzihAYHxJiMKeNMrDNwrTOdm7jgXFnNtIg0IFEMlKNzJkzC4ntku6xK-4BQTIUTGa7j2NrEMY3kKIAolUthJeEuIGwYb1n4BOVYJ2Mlh0i0CwlTJHGKZMQxGi8gzzeXfOmzc1zX-BVO4qYhJtbuTlT1Qno9lbkzWilrVQbdVeIAADQpWBFxCyCmlAlIMoiA9IzSswfcanndsx8P4iJBf_GjjCpttW4kxqwBg6ZC_LsNQhTDfBF5QO73IrbpBeAa5yxLA5KNhG_UzfE_5fK8yyMOpM7Bu9_7vy49JDfg10Efwf6IbLf12u4DoLV6QnamJ6efTybdC45Jp4Q_AaHOOgI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spline-based+regression+parameter+set+for+creating+customized+DARTEL+MRI+brain+templates+from+infancy+to+old+age&rft.jtitle=Data+in+brief&rft.au=Wilke%2C+Marko&rft.date=2018-02-01&rft.pub=Elsevier+Inc&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=16&rft.spage=959&rft.epage=966&rft_id=info:doi/10.1016%2Fj.dib.2017.12.001&rft.externalDocID=S2352340917306960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon