Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and ha...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 100; no. 23; pp. 13407 - 13412
Main Authors Martinez-Castilla, L.P, Alvarez-Buylla, E.R
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.11.2003
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.
AbstractList Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.
Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. positive Darwinian selection duplication functional divergence Arabidopsis thaliana development
Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.
Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.
Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. [PUBLICATION ABSTRACT]
Author Martinez-Castilla, L.P
Alvarez-Buylla, E.R
AuthorAffiliation Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, National Autonomous University of Mexico, Ap Postal 70-275, Mexico D.F., 04510, Mexico
AuthorAffiliation_xml – name: Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, National Autonomous University of Mexico, Ap Postal 70-275, Mexico D.F., 04510, Mexico
Author_xml – sequence: 1
  fullname: Martinez-Castilla, L.P
– sequence: 2
  fullname: Alvarez-Buylla, E.R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14597714$$D View this record in MEDLINE/PubMed
BookMark eNqF0Ttv2zAUBWCiSNE4aecuRUt0CNBByeVLlIYORpo-gBQd0swELV3ZNCRRISUj_velYSNuu2TicL9DkPeckZPe90jIWwaXDLS4GnobL1khVJFLBvCCzBiULMtlCSdkBsB1VkguT8lZjGsAKFUBr8gpk6rUmskZWc1rO4xugxQ3vp1G53vqejqukM6DXbjaD9FF-nP-5S5b-Ee6xB5pYzvXbpNrMASsaRN8R90YaeW7ocURacDo200aDatt61No-5q8bGwb8c3hPCf3X29-X3_Pbn99-3E9v80qpWDMWAHprOqG2UXNmbU5L1WODBstQXNZKc6lxkJWGmooJUipleJlgVbZfMHEOfm8v3eYFh3WFfZjsK0Zguts2Bpvnfl30ruVWfqN4bkouE75i0M--IcJ42g6FytsW9ujn6LRTKhSivJZyEqupJZFgh__g2s_hT4twXBgQkCuIaGrPaqCjzFg8_RiBmZXtdlVbY5Vp8T7vz969IduE_h0ALvk8TowXBgm0jpNM7XtiI9jsvQZm8i7PVnH0YcnI5gsmBJp_GE_bqw3dhlcNPd3u_8BA5E6U-IPxrjSEg
CitedBy_id crossref_primary_10_1093_jxb_ers024
crossref_primary_10_1104_pp_104_043182
crossref_primary_10_1534_genetics_106_057125
crossref_primary_10_1186_1471_2229_9_81
crossref_primary_10_1016_j_molp_2015_01_017
crossref_primary_10_1186_1752_0509_8_9
crossref_primary_10_1371_journal_pone_0017334
crossref_primary_10_17816_ecogen2113_26
crossref_primary_10_1074_jbc_M113_456863
crossref_primary_10_1093_molbev_mst223
crossref_primary_10_1093_pcp_pcs050
crossref_primary_10_1007_s00239_008_9143_z
crossref_primary_10_1093_molbev_msl182
crossref_primary_10_1093_nar_gkm972
crossref_primary_10_1111_nph_15793
crossref_primary_10_1093_aob_mct202
crossref_primary_10_1111_1755_0998_13497
crossref_primary_10_1098_rspb_2004_2848
crossref_primary_10_1007_s00427_008_0218_z
crossref_primary_10_1093_gbe_evs015
crossref_primary_10_1016_j_gene_2006_05_022
crossref_primary_10_1038_s41467_021_24978_w
crossref_primary_10_1016_j_rmb_2017_10_009
crossref_primary_10_1093_molbev_msj051
crossref_primary_10_1111_j_1469_8137_2009_02923_x
crossref_primary_10_1093_molbev_msp129
crossref_primary_10_1186_s12863_021_00972_5
crossref_primary_10_1016_j_ympev_2005_07_002
crossref_primary_10_3389_fpls_2019_00043
crossref_primary_10_3390_genes12122011
crossref_primary_10_1104_pp_107_108647
crossref_primary_10_1007_s12374_009_9028_8
crossref_primary_10_1016_j_stress_2024_100492
crossref_primary_10_1105_tpc_107_055137
crossref_primary_10_1002_dvdy_24268
crossref_primary_10_1093_nar_gkp805
crossref_primary_10_1016_j_ympev_2007_02_016
crossref_primary_10_1007_s12042_018_9212_4
crossref_primary_10_1134_S1021443722100260
crossref_primary_10_1016_j_biochi_2014_10_019
crossref_primary_10_1080_14620316_2019_1640640
crossref_primary_10_1038_srep44948
crossref_primary_10_1186_s12864_018_5113_z
crossref_primary_10_1016_j_bse_2011_05_016
crossref_primary_10_1534_genetics_106_069336
crossref_primary_10_1186_1471_2229_14_151
crossref_primary_10_1105_tpc_109_068411
crossref_primary_10_3233_JBR_200679
crossref_primary_10_1111_j_1365_313X_2010_04139_x
crossref_primary_10_1007_s00425_006_0260_x
crossref_primary_10_7554_eLife_22114
crossref_primary_10_1038_emboj_2013_216
crossref_primary_10_1104_pp_108_131052
crossref_primary_10_1093_molbev_msp181
crossref_primary_10_1016_j_tplants_2006_03_008
crossref_primary_10_3389_fpls_2015_01193
crossref_primary_10_1007_s00497_006_0030_8
crossref_primary_10_1093_molbev_msq156
crossref_primary_10_1105_tpc_114_126938
crossref_primary_10_1371_journal_pone_0002944
crossref_primary_10_3389_fpls_2021_770660
crossref_primary_10_1007_s11105_009_0140_1
crossref_primary_10_1534_genetics_107_082651
crossref_primary_10_1093_jhered_est087
crossref_primary_10_3390_ijms241310997
crossref_primary_10_3390_plants12162929
crossref_primary_10_3389_fpls_2015_00829
crossref_primary_10_1007_s12033_011_9443_1
crossref_primary_10_1093_aob_mcr061
crossref_primary_10_1534_genetics_104_027631
crossref_primary_10_1086_509079
crossref_primary_10_1104_pp_104_057935
crossref_primary_10_1016_j_jplph_2015_05_006
crossref_primary_10_1534_genetics_104_037770
crossref_primary_10_1199_tab_0127
crossref_primary_10_1016_j_phytochem_2004_04_021
crossref_primary_10_1111_j_1525_142X_2006_05073_x
crossref_primary_10_1016_j_scienta_2017_06_014
crossref_primary_10_1104_pp_106_089805
crossref_primary_10_1007_s10709_010_9523_3
crossref_primary_10_1016_j_plantsci_2006_09_009
crossref_primary_10_1093_aob_mcs161
crossref_primary_10_2503_hortj_MI_IR05
crossref_primary_10_1086_648986
crossref_primary_10_1016_j_gene_2021_146138
crossref_primary_10_1016_S1673_8527_08_60103_4
crossref_primary_10_1016_j_gene_2022_146730
crossref_primary_10_1016_j_gde_2005_06_001
crossref_primary_10_1111_j_1558_5646_2008_00440_x
crossref_primary_10_1139_b06_031
crossref_primary_10_1016_j_tig_2009_12_006
crossref_primary_10_1093_mp_ssp014
crossref_primary_10_1186_1471_2164_11_607
crossref_primary_10_1007_s00122_012_1989_1
crossref_primary_10_1093_jxb_erj011
crossref_primary_10_1016_j_plantsci_2015_10_013
crossref_primary_10_1186_s12870_018_1275_8
crossref_primary_10_1016_j_gene_2004_08_032
crossref_primary_10_1007_s00497_011_0176_x
Cites_doi 10.1073/pnas.97.10.5328
10.1007/978-3-642-86659-3
10.1101/gad.8.13.1548
10.1016/S0169-5347(00)01994-7
10.1093/genetics/151.4.1531
10.1126/science.250.4983.931
10.1046/j.1365-313x.2000.00682.x
10.1073/pnas.93.9.4063
10.1073/pnas.95.7.3708
10.1073/pnas.97.20.10866
10.1093/genetics/155.1.431
10.1073/pnas.0631708100
10.1093/emboj/19.11.2615
10.1073/pnas.95.14.8130
10.1126/science.279.5349.407
10.1006/jmbi.2000.3568
10.1101/gad.257403
10.1016/S0378-1119(00)00428-5
10.1073/pnas.91.8.2950
10.1093/genetics/149.2.765
10.1101/gad.4.9.1483
10.1038/376490a0
10.1007/PL00006244
10.1093/oxfordjournals.molbev.a003945
10.1073/pnas.212522399
10.1093/oxfordjournals.molbev.a004137
10.1046/j.1365-313X.2003.01671.x
10.1126/science.290.5494.1151
10.1093/oxfordjournals.molbev.a004010
10.1007/s00239-002-2426-x
10.1093/oxfordjournals.molbev.a004148
10.1093/bioinformatics/17.8.754
10.1038/ng852
10.1126/science.290.5499.2114
10.1101/gr.751803
10.1016/S1055-7903(02)00032-5
10.1105/tpc.10.7.1075
10.1093/nar/22.22.4673
10.1105/tpc.009506
10.1093/nar/24.16.3134
10.1093/bioinformatics/17.12.1244
10.1093/genetics/159.4.1789
10.1073/pnas.051605998
10.1016/0092-8674(92)90144-2
10.1002/(SICI)1521-1878(199809)20:9<700::AID-BIES3>3.0.CO;2-K
10.1038/385151a0
10.1046/j.1365-313x.2000.00891.x
10.1016/S0168-9525(02)02755-5
10.1038/35048692
ContentType Journal Article
Copyright Copyright 1993-2003 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Nov 11, 2003
Copyright © 2003, The National Academy of Sciences 2003
Copyright_xml – notice: Copyright 1993-2003 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Nov 11, 2003
– notice: Copyright © 2003, The National Academy of Sciences 2003
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1835864100
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts


CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 13412
ExternalDocumentID 671926531
10_1073_pnas_1835864100
14597714
100_23_13407
3148153
US201301032245
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c550t-180550cdf1abd21aa62956e1ef740724c52247e84c70d094044755298ea5a6b13
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:25:21 EDT 2024
Sat Nov 16 16:35:44 EST 2024
Fri Oct 25 23:13:09 EDT 2024
Mon Nov 04 10:15:05 EST 2024
Fri Aug 23 02:53:05 EDT 2024
Sat Nov 02 12:18:18 EDT 2024
Wed Nov 11 00:29:38 EST 2020
Thu May 30 08:53:54 EDT 2019
Fri Feb 02 07:04:46 EST 2024
Wed Dec 27 19:18:43 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-180550cdf1abd21aa62956e1ef740724c52247e84c70d094044755298ea5a6b13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Abbreviations: PDS, positive Darwinian selection; LRT, likelihood ratio test; AGL, agamous-like.
To whom correspondence should be addressed. E-mail: ealvarez@miranda.ecologia.unam.mx.
Communicated by José Sarukhán, National Autonomous University of Mexico, Mexico D.F., Mexico, September 11, 2003
OpenAccessLink https://europepmc.org/articles/pmc263827?pdf=render
PMID 14597714
PQID 201330670
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_3148153
pubmedcentral_primary_oai_pubmedcentral_nih_gov_263827
proquest_miscellaneous_19254748
proquest_miscellaneous_71359439
pubmed_primary_14597714
pnas_primary_100_23_13407
crossref_primary_10_1073_pnas_1835864100
pnas_primary_100_23_13407_fulltext
fao_agris_US201301032245
proquest_journals_201330670
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2003-11-11
PublicationDateYYYYMMDD 2003-11-11
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2003
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):1110
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
(e_1_3_2_18_2) 1991; 112
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_39_2
e_1_3_2_1_2
(e_1_3_2_56_2) 2000; 127
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
(e_1_3_2_12_2) 1994; 43
e_1_3_2_50_2
(e_1_3_2_22_2) 1998; 25
(e_1_3_2_42_2) 1995; 7
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
(e_1_3_2_34_2) 1997; 13
(e_1_3_2_26_2) 1999; 41
(e_1_3_2_31_2) 1994; 11
(e_1_3_2_7_2) 1999; 12
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
(e_1_3_2_43_2) 1997; 378
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_14_2
  doi: 10.1073/pnas.97.10.5328
– ident: e_1_3_2_1_2
  doi: 10.1007/978-3-642-86659-3
– ident: e_1_3_2_20_2
  doi: 10.1101/gad.8.13.1548
– ident: e_1_3_2_10_2
  doi: 10.1016/S0169-5347(00)01994-7
– ident: e_1_3_2_53_2
  doi: 10.1093/genetics/151.4.1531
– ident: e_1_3_2_17_2
  doi: 10.1126/science.250.4983.931
– volume: 11
  start-page: 725
  year: 1994
  ident: e_1_3_2_31_2
  publication-title: Mol. Biol. Evol.
– ident: e_1_3_2_36_2
  doi: 10.1046/j.1365-313x.2000.00682.x
– volume: 378
  start-page: 1079
  year: 1997
  ident: e_1_3_2_43_2
  publication-title: J. Biol. Chem.
– ident: e_1_3_2_47_2
  doi: 10.1073/pnas.93.9.4063
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.95.7.3708
– ident: e_1_3_2_49_2
  doi: 10.1073/pnas.97.20.10866
– volume: 25
  start-page: 9
  year: 1998
  ident: e_1_3_2_22_2
  publication-title: Flowering Newslett.
– ident: e_1_3_2_30_2
  doi: 10.1093/genetics/155.1.431
– volume: 12
  start-page: 1
  year: 1999
  ident: e_1_3_2_7_2
  publication-title: J. Evol. Biol.
– ident: e_1_3_2_54_2
  doi: 10.1073/pnas.0631708100
– ident: e_1_3_2_46_2
  doi: 10.1093/emboj/19.11.2615
– volume: 7
  start-page: 1259
  year: 1995
  ident: e_1_3_2_42_2
  publication-title: Plant Cell
– ident: e_1_3_2_57_2
  doi: 10.1073/pnas.95.14.8130
– ident: e_1_3_2_23_2
  doi: 10.1126/science.279.5349.407
– ident: e_1_3_2_45_2
  doi: 10.1006/jmbi.2000.3568
– ident: e_1_3_2_16_2
  doi: 10.1101/gad.257403
– ident: e_1_3_2_3_2
  doi: 10.1016/S0378-1119(00)00428-5
– volume: 13
  start-page: 555
  year: 1997
  ident: e_1_3_2_34_2
  publication-title: Comput. Appl. Biosci.
– ident: e_1_3_2_6_2
  doi: 10.1073/pnas.91.8.2950
– ident: e_1_3_2_28_2
  doi: 10.1093/genetics/149.2.765
– ident: e_1_3_2_19_2
  doi: 10.1101/gad.4.9.1483
– volume: 41
  start-page: 95
  year: 1999
  ident: e_1_3_2_26_2
  publication-title: Nucleic Acids Symp. Ser.
– ident: e_1_3_2_44_2
  doi: 10.1038/376490a0
– ident: e_1_3_2_15_2
  doi: 10.1007/PL00006244
– ident: e_1_3_2_32_2
  doi: 10.1093/oxfordjournals.molbev.a003945
– ident: e_1_3_2_51_2
  doi: 10.1073/pnas.212522399
– ident: e_1_3_2_41_2
  doi: 10.1093/oxfordjournals.molbev.a004137
– ident: e_1_3_2_35_2
  doi: 10.1046/j.1365-313X.2003.01671.x
– ident: e_1_3_2_39_2
  doi: 10.1126/science.290.5494.1151
– ident: e_1_3_2_58_2
  doi: 10.1093/oxfordjournals.molbev.a004010
– ident: e_1_3_2_27_2
  doi: 10.1007/s00239-002-2426-x
– volume: 112
  start-page: 1
  year: 1991
  ident: e_1_3_2_18_2
  publication-title: Development (Cambridge, U.K.)
– ident: e_1_3_2_33_2
  doi: 10.1093/oxfordjournals.molbev.a004148
– ident: e_1_3_2_29_2
  doi: 10.1093/bioinformatics/17.8.754
– volume: 127
  start-page: 725
  year: 2000
  ident: e_1_3_2_56_2
  publication-title: Development (Cambridge, U.K.)
– ident: e_1_3_2_2_2
  doi: 10.1038/ng852
– ident: e_1_3_2_50_2
  doi: 10.1126/science.290.5499.2114
– ident: e_1_3_2_52_2
  doi: 10.1101/gr.751803
– ident: e_1_3_2_24_2
  doi: 10.1016/S1055-7903(02)00032-5
– ident: e_1_3_2_59_2
  doi: 10.1105/tpc.10.7.1075
– ident: e_1_3_2_25_2
  doi: 10.1093/nar/22.22.4673
– ident: e_1_3_2_37_2
  doi: 10.1105/tpc.009506
– ident: e_1_3_2_55_2
  doi: 10.1093/nar/24.16.3134
– ident: e_1_3_2_38_2
  doi: 10.1093/bioinformatics/17.12.1244
– ident: e_1_3_2_5_2
  doi: 10.1093/genetics/159.4.1789
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.051605998
– volume: 43
  start-page: 307
  year: 1994
  ident: e_1_3_2_12_2
  publication-title: Syst. Biol.
– ident: e_1_3_2_11_2
  doi: 10.1016/0092-8674(92)90144-2
– ident: e_1_3_2_13_2
  doi: 10.1002/(SICI)1521-1878(199809)20:9<700::AID-BIES3>3.0.CO;2-K
– ident: e_1_3_2_8_2
  doi: 10.1038/385151a0
– ident: e_1_3_2_21_2
  doi: 10.1046/j.1365-313x.2000.00891.x
– ident: e_1_3_2_4_2
  doi: 10.1016/S0168-9525(02)02755-5
– ident: e_1_3_2_40_2
  doi: 10.1038/35048692
SSID ssj0009580
Score 2.1738954
Snippet Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13407
SubjectTerms Adaptation
Amino acids
Arabidopsis - genetics
Arabidopsis thaliana
Bayes Theorem
Biological Sciences
Chromosomes
Divergent evolution
DNA, Complementary - metabolism
duplicate genes
Evolution
Evolution, Molecular
Gene duplication
Genes
Genomes
Genomics
MADS Domain Proteins - chemistry
MADS Domain Proteins - genetics
Multigene Family
natural selection
nucleotide sequences
Phenotype
Phylogeny
Plants
Positive selection
Protein Structure, Tertiary
Proteins
regulator genes
sequence alignment
transcription factors
Transcription, Genetic
Trees
Title Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny
URI https://www.jstor.org/stable/3148153
http://www.pnas.org/content/100/23/13407.abstract
https://www.ncbi.nlm.nih.gov/pubmed/14597714
https://www.proquest.com/docview/201330670
https://search.proquest.com/docview/19254748
https://www.proquest.com/docview/71359439
https://pubmed.ncbi.nlm.nih.gov/PMC263827
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfoTlwQg8GywbAQh3FIG3_k61gNpgEqQhqVdrP8FRZpc6Kmm-C_5zlxWorYBalSD45d1-89-_3in39G6J2BVYwrbWLKWBXzXNFY5tzGgCXSRJcmUYU_KLz4ml0s-eer9CocCusCrdJpVU_dze3U1dc9t7K91bORJzb7tjij4DQA2SdoAv45IvSN0G4xHDuhMPtyykc5n5zNWie7KbhwWmScJP0dcNzLrxG-syhNKtmM7EQveQq1_pV-_s2i_GNZOn-KnoR8Es-Hfu-jR9Y9Q_shYjt8GmSl3z9H13MjWz-5YXsf_A3XDkMCCLWlqk3TdnWHF_MPl7FqfmLwLIuH9x_YU7ZWK2uwP42C63WHeyo6JNwY4Hpzcw9FYC-YR637dYCW5x-_n13E4Z6FWAM-WcekSOBbm4pIZSiRMqOAmiyxVe7l07iGHI3ntuA6T4zX2_MigSktCytTmSnCXqA91zh7iDC0UxYykV41kLMqL7NUVzY1pU4rBWMdodNxoEU7yGmIfhs8Z8IPtNiaJ0KHYAghf8BkJ5aX1G-xevU_ytMIHfTW2TTBiNecYRGK-ka2LSeCMkEY_I0IvX2wTFSBaBOh49HOIsRyJ_wve2AFPXqzKYUg9Dsr0tnmDnpdAs7OefHwE_4mxBKSvwi9HLxm25HggxHKdvxp84AXAN8tgbjohcCHODj634rH6PFATSTweYX21qs7-xpSrLU6AXDx6ctJH1m_AfgnIn8
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcoALaqHQUKAW4lAO2Y0feR1XhWqBboXUrtSbZTtOG6lNos22Kv-ecR67LKIXpEg5OHYmnhl7Jv78GeBThrOY0CbzGee5L2LNfBUL62MuEQYmzQKduI3Cs7NoOhffL8PLflNY08MqS6OLUXlzOyqL6xZbWd-a8YATG_-cHTM0GkzZt-Apumsghhx9RbWbdBtPGI6_gomB0Cfm47pUzQiNOEwiQYP2FDjhCNio2JiWtnJVDfhER3qKtf4VgP6No_xjYjrZgRd9REkmneS78MSWL2G399mGHPXE0p9fwfUkU7Ub3oi97y2OFCXBEBBrK11kVd0UDZlNvpz7unogaFuWdH9AiANtLRY2I24_CimWDWnB6BhyE0zYq5t7LEKN4Uhqy197MD_5enE89fuTFnyDGcrSp0mAd5PlVOmMUaUihnmTpTaPHYGaMBilidgmwsRB5hj3HE1gyNLEqlBFmvLXsF1Wpd0Hgu2kiQqU4w0UPI_TKDS5DbPUhLnGvvbgaOhoWXeEGrJdCI-5dB0t1-rxYB8VIdUVDndyfs7cIqvj_2Mi9GCv1c6qCU4d6wz3wGsbWbccSMYl5fgZHnx8tEzmPdTGg4NBz7L35ka6N7vUCiU6XJWiG7q1FVXa6g6lTjHTjkXy-BPuLMQUwz8P3nRWsxakt0EPog17Wj3gKMA3S9AzWirwzhPe_m_FQ3g2vZidytNvZz8O4HkHVKR4vYPt5eLOvseAa6k_tP71G42tJNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUJcUAuFhgK1EIdyyG7sOK_jqmVVHltVKiv1ZvkVGqlNos22ov-ecR67LKIXpEg5OHYmnhl7Jv78GeCjwVmMK218Foa5zxPFfJlw62MuEQU6M4FK3Ubh2Xl8Nudfr6KrLUiHvTAtaF-rYlTe3I7K4rrFVta3ejzgxMYXsxOGRoMpe23y8TY8QZcN4iFPX9Htpt3mE4ZjMGd8IPVJwnFdymaEhhylMadBexIcdyRslG9MTdu5rAaMoiM-xVr_CkL_xlL-MTlNd-F5H1WSSSf9HmzZ8gXs9X7bkOOeXPrTS7ieGFm7IY7Y-97qSFESDAOxtlSFqeqmaMhscnrpq-oXQfuypPsLQhxwa7Gwhrg9KaRYNqQFpGPYTTBpr27usQi1hqOpLR_2YT79_OPkzO9PW_A1ZilLn6YB3rXJqVSGUSljhrmTpTZPHIka1xip8cSmXCeBcax7jiowYllqZSRjRcNXsFNWpT0Agu1kqQyk4w7kYZ5kcaRzG5lMR7nCvvbgeOhoUXekGqJdDE9C4TparNXjwQEqQsifOOSJ-SVzC62OA5DxyIP9VjurJkLqmGdCD7y2kXXLgWChoCF-hgcfHi0TeQ-38eBw0LPoPboR7s0uvUKJjlal6IpufUWWtrpDqTPMthOePv6EOw8xwxDQg9ed1awF6W3Qg3jDnlYPOBrwzRL0jpYOvPOGN_9b8QieXpxOxfcv598O4VmHVaR4vYWd5eLOvsOYa6net-71G8tlJe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+evolution+in+the+Arabidopsis+MADS-box+gene+family+inferred+from+its+complete+resolved+phylogeny&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Leon+Patricio+Martinez-Castilla&rft.au=Alvarez-Buylla%2C+Elena+R&rft.date=2003-11-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=100&rft.issue=23&rft.spage=13407&rft_id=info:doi/10.1073%2Fpnas.1835864100&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=671926531
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F100%2F23.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F100%2F23.cover.gif