Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny
Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and ha...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 100; no. 23; pp. 13407 - 13412 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.11.2003
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. |
---|---|
AbstractList | Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. positive Darwinian selection duplication functional divergence Arabidopsis thaliana development Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. [PUBLICATION ABSTRACT] |
Author | Martinez-Castilla, L.P Alvarez-Buylla, E.R |
AuthorAffiliation | Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, National Autonomous University of Mexico, Ap Postal 70-275, Mexico D.F., 04510, Mexico |
AuthorAffiliation_xml | – name: Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, National Autonomous University of Mexico, Ap Postal 70-275, Mexico D.F., 04510, Mexico |
Author_xml | – sequence: 1 fullname: Martinez-Castilla, L.P – sequence: 2 fullname: Alvarez-Buylla, E.R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14597714$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0Ttv2zAUBWCiSNE4aecuRUt0CNBByeVLlIYORpo-gBQd0swELV3ZNCRRISUj_velYSNuu2TicL9DkPeckZPe90jIWwaXDLS4GnobL1khVJFLBvCCzBiULMtlCSdkBsB1VkguT8lZjGsAKFUBr8gpk6rUmskZWc1rO4xugxQ3vp1G53vqejqukM6DXbjaD9FF-nP-5S5b-Ee6xB5pYzvXbpNrMASsaRN8R90YaeW7ocURacDo200aDatt61No-5q8bGwb8c3hPCf3X29-X3_Pbn99-3E9v80qpWDMWAHprOqG2UXNmbU5L1WODBstQXNZKc6lxkJWGmooJUipleJlgVbZfMHEOfm8v3eYFh3WFfZjsK0Zguts2Bpvnfl30ruVWfqN4bkouE75i0M--IcJ42g6FytsW9ujn6LRTKhSivJZyEqupJZFgh__g2s_hT4twXBgQkCuIaGrPaqCjzFg8_RiBmZXtdlVbY5Vp8T7vz969IduE_h0ALvk8TowXBgm0jpNM7XtiI9jsvQZm8i7PVnH0YcnI5gsmBJp_GE_bqw3dhlcNPd3u_8BA5E6U-IPxrjSEg |
CitedBy_id | crossref_primary_10_1093_jxb_ers024 crossref_primary_10_1104_pp_104_043182 crossref_primary_10_1534_genetics_106_057125 crossref_primary_10_1186_1471_2229_9_81 crossref_primary_10_1016_j_molp_2015_01_017 crossref_primary_10_1186_1752_0509_8_9 crossref_primary_10_1371_journal_pone_0017334 crossref_primary_10_17816_ecogen2113_26 crossref_primary_10_1074_jbc_M113_456863 crossref_primary_10_1093_molbev_mst223 crossref_primary_10_1093_pcp_pcs050 crossref_primary_10_1007_s00239_008_9143_z crossref_primary_10_1093_molbev_msl182 crossref_primary_10_1093_nar_gkm972 crossref_primary_10_1111_nph_15793 crossref_primary_10_1093_aob_mct202 crossref_primary_10_1111_1755_0998_13497 crossref_primary_10_1098_rspb_2004_2848 crossref_primary_10_1007_s00427_008_0218_z crossref_primary_10_1093_gbe_evs015 crossref_primary_10_1016_j_gene_2006_05_022 crossref_primary_10_1038_s41467_021_24978_w crossref_primary_10_1016_j_rmb_2017_10_009 crossref_primary_10_1093_molbev_msj051 crossref_primary_10_1111_j_1469_8137_2009_02923_x crossref_primary_10_1093_molbev_msp129 crossref_primary_10_1186_s12863_021_00972_5 crossref_primary_10_1016_j_ympev_2005_07_002 crossref_primary_10_3389_fpls_2019_00043 crossref_primary_10_3390_genes12122011 crossref_primary_10_1104_pp_107_108647 crossref_primary_10_1007_s12374_009_9028_8 crossref_primary_10_1016_j_stress_2024_100492 crossref_primary_10_1105_tpc_107_055137 crossref_primary_10_1002_dvdy_24268 crossref_primary_10_1093_nar_gkp805 crossref_primary_10_1016_j_ympev_2007_02_016 crossref_primary_10_1007_s12042_018_9212_4 crossref_primary_10_1134_S1021443722100260 crossref_primary_10_1016_j_biochi_2014_10_019 crossref_primary_10_1080_14620316_2019_1640640 crossref_primary_10_1038_srep44948 crossref_primary_10_1186_s12864_018_5113_z crossref_primary_10_1016_j_bse_2011_05_016 crossref_primary_10_1534_genetics_106_069336 crossref_primary_10_1186_1471_2229_14_151 crossref_primary_10_1105_tpc_109_068411 crossref_primary_10_3233_JBR_200679 crossref_primary_10_1111_j_1365_313X_2010_04139_x crossref_primary_10_1007_s00425_006_0260_x crossref_primary_10_7554_eLife_22114 crossref_primary_10_1038_emboj_2013_216 crossref_primary_10_1104_pp_108_131052 crossref_primary_10_1093_molbev_msp181 crossref_primary_10_1016_j_tplants_2006_03_008 crossref_primary_10_3389_fpls_2015_01193 crossref_primary_10_1007_s00497_006_0030_8 crossref_primary_10_1093_molbev_msq156 crossref_primary_10_1105_tpc_114_126938 crossref_primary_10_1371_journal_pone_0002944 crossref_primary_10_3389_fpls_2021_770660 crossref_primary_10_1007_s11105_009_0140_1 crossref_primary_10_1534_genetics_107_082651 crossref_primary_10_1093_jhered_est087 crossref_primary_10_3390_ijms241310997 crossref_primary_10_3390_plants12162929 crossref_primary_10_3389_fpls_2015_00829 crossref_primary_10_1007_s12033_011_9443_1 crossref_primary_10_1093_aob_mcr061 crossref_primary_10_1534_genetics_104_027631 crossref_primary_10_1086_509079 crossref_primary_10_1104_pp_104_057935 crossref_primary_10_1016_j_jplph_2015_05_006 crossref_primary_10_1534_genetics_104_037770 crossref_primary_10_1199_tab_0127 crossref_primary_10_1016_j_phytochem_2004_04_021 crossref_primary_10_1111_j_1525_142X_2006_05073_x crossref_primary_10_1016_j_scienta_2017_06_014 crossref_primary_10_1104_pp_106_089805 crossref_primary_10_1007_s10709_010_9523_3 crossref_primary_10_1016_j_plantsci_2006_09_009 crossref_primary_10_1093_aob_mcs161 crossref_primary_10_2503_hortj_MI_IR05 crossref_primary_10_1086_648986 crossref_primary_10_1016_j_gene_2021_146138 crossref_primary_10_1016_S1673_8527_08_60103_4 crossref_primary_10_1016_j_gene_2022_146730 crossref_primary_10_1016_j_gde_2005_06_001 crossref_primary_10_1111_j_1558_5646_2008_00440_x crossref_primary_10_1139_b06_031 crossref_primary_10_1016_j_tig_2009_12_006 crossref_primary_10_1093_mp_ssp014 crossref_primary_10_1186_1471_2164_11_607 crossref_primary_10_1007_s00122_012_1989_1 crossref_primary_10_1093_jxb_erj011 crossref_primary_10_1016_j_plantsci_2015_10_013 crossref_primary_10_1186_s12870_018_1275_8 crossref_primary_10_1016_j_gene_2004_08_032 crossref_primary_10_1007_s00497_011_0176_x |
Cites_doi | 10.1073/pnas.97.10.5328 10.1007/978-3-642-86659-3 10.1101/gad.8.13.1548 10.1016/S0169-5347(00)01994-7 10.1093/genetics/151.4.1531 10.1126/science.250.4983.931 10.1046/j.1365-313x.2000.00682.x 10.1073/pnas.93.9.4063 10.1073/pnas.95.7.3708 10.1073/pnas.97.20.10866 10.1093/genetics/155.1.431 10.1073/pnas.0631708100 10.1093/emboj/19.11.2615 10.1073/pnas.95.14.8130 10.1126/science.279.5349.407 10.1006/jmbi.2000.3568 10.1101/gad.257403 10.1016/S0378-1119(00)00428-5 10.1073/pnas.91.8.2950 10.1093/genetics/149.2.765 10.1101/gad.4.9.1483 10.1038/376490a0 10.1007/PL00006244 10.1093/oxfordjournals.molbev.a003945 10.1073/pnas.212522399 10.1093/oxfordjournals.molbev.a004137 10.1046/j.1365-313X.2003.01671.x 10.1126/science.290.5494.1151 10.1093/oxfordjournals.molbev.a004010 10.1007/s00239-002-2426-x 10.1093/oxfordjournals.molbev.a004148 10.1093/bioinformatics/17.8.754 10.1038/ng852 10.1126/science.290.5499.2114 10.1101/gr.751803 10.1016/S1055-7903(02)00032-5 10.1105/tpc.10.7.1075 10.1093/nar/22.22.4673 10.1105/tpc.009506 10.1093/nar/24.16.3134 10.1093/bioinformatics/17.12.1244 10.1093/genetics/159.4.1789 10.1073/pnas.051605998 10.1016/0092-8674(92)90144-2 10.1002/(SICI)1521-1878(199809)20:9<700::AID-BIES3>3.0.CO;2-K 10.1038/385151a0 10.1046/j.1365-313x.2000.00891.x 10.1016/S0168-9525(02)02755-5 10.1038/35048692 |
ContentType | Journal Article |
Copyright | Copyright 1993-2003 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Nov 11, 2003 Copyright © 2003, The National Academy of Sciences 2003 |
Copyright_xml | – notice: Copyright 1993-2003 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Nov 11, 2003 – notice: Copyright © 2003, The National Academy of Sciences 2003 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1835864100 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 13412 |
ExternalDocumentID | 671926531 10_1073_pnas_1835864100 14597714 100_23_13407 3148153 US201301032245 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 08R 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c550t-180550cdf1abd21aa62956e1ef740724c52247e84c70d094044755298ea5a6b13 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:25:21 EDT 2024 Sat Nov 16 16:35:44 EST 2024 Fri Oct 25 23:13:09 EDT 2024 Mon Nov 04 10:15:05 EST 2024 Fri Aug 23 02:53:05 EDT 2024 Sat Nov 02 12:18:18 EDT 2024 Wed Nov 11 00:29:38 EST 2020 Thu May 30 08:53:54 EDT 2019 Fri Feb 02 07:04:46 EST 2024 Wed Dec 27 19:18:43 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-180550cdf1abd21aa62956e1ef740724c52247e84c70d094044755298ea5a6b13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Abbreviations: PDS, positive Darwinian selection; LRT, likelihood ratio test; AGL, agamous-like. To whom correspondence should be addressed. E-mail: ealvarez@miranda.ecologia.unam.mx. Communicated by José Sarukhán, National Autonomous University of Mexico, Mexico D.F., Mexico, September 11, 2003 |
OpenAccessLink | https://europepmc.org/articles/pmc263827?pdf=render |
PMID | 14597714 |
PQID | 201330670 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_3148153 pubmedcentral_primary_oai_pubmedcentral_nih_gov_263827 proquest_miscellaneous_19254748 proquest_miscellaneous_71359439 pubmed_primary_14597714 pnas_primary_100_23_13407 crossref_primary_10_1073_pnas_1835864100 pnas_primary_100_23_13407_fulltext fao_agris_US201301032245 proquest_journals_201330670 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2003-11-11 |
PublicationDateYYYYMMDD | 2003-11-11 |
PublicationDate_xml | – month: 11 year: 2003 text: 2003-11-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2003 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):1110 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 (e_1_3_2_18_2) 1991; 112 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_39_2 e_1_3_2_1_2 (e_1_3_2_56_2) 2000; 127 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 (e_1_3_2_12_2) 1994; 43 e_1_3_2_50_2 (e_1_3_2_22_2) 1998; 25 (e_1_3_2_42_2) 1995; 7 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 (e_1_3_2_34_2) 1997; 13 (e_1_3_2_26_2) 1999; 41 (e_1_3_2_31_2) 1994; 11 (e_1_3_2_7_2) 1999; 12 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 (e_1_3_2_43_2) 1997; 378 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_14_2 doi: 10.1073/pnas.97.10.5328 – ident: e_1_3_2_1_2 doi: 10.1007/978-3-642-86659-3 – ident: e_1_3_2_20_2 doi: 10.1101/gad.8.13.1548 – ident: e_1_3_2_10_2 doi: 10.1016/S0169-5347(00)01994-7 – ident: e_1_3_2_53_2 doi: 10.1093/genetics/151.4.1531 – ident: e_1_3_2_17_2 doi: 10.1126/science.250.4983.931 – volume: 11 start-page: 725 year: 1994 ident: e_1_3_2_31_2 publication-title: Mol. Biol. Evol. – ident: e_1_3_2_36_2 doi: 10.1046/j.1365-313x.2000.00682.x – volume: 378 start-page: 1079 year: 1997 ident: e_1_3_2_43_2 publication-title: J. Biol. Chem. – ident: e_1_3_2_47_2 doi: 10.1073/pnas.93.9.4063 – ident: e_1_3_2_48_2 doi: 10.1073/pnas.95.7.3708 – ident: e_1_3_2_49_2 doi: 10.1073/pnas.97.20.10866 – volume: 25 start-page: 9 year: 1998 ident: e_1_3_2_22_2 publication-title: Flowering Newslett. – ident: e_1_3_2_30_2 doi: 10.1093/genetics/155.1.431 – volume: 12 start-page: 1 year: 1999 ident: e_1_3_2_7_2 publication-title: J. Evol. Biol. – ident: e_1_3_2_54_2 doi: 10.1073/pnas.0631708100 – ident: e_1_3_2_46_2 doi: 10.1093/emboj/19.11.2615 – volume: 7 start-page: 1259 year: 1995 ident: e_1_3_2_42_2 publication-title: Plant Cell – ident: e_1_3_2_57_2 doi: 10.1073/pnas.95.14.8130 – ident: e_1_3_2_23_2 doi: 10.1126/science.279.5349.407 – ident: e_1_3_2_45_2 doi: 10.1006/jmbi.2000.3568 – ident: e_1_3_2_16_2 doi: 10.1101/gad.257403 – ident: e_1_3_2_3_2 doi: 10.1016/S0378-1119(00)00428-5 – volume: 13 start-page: 555 year: 1997 ident: e_1_3_2_34_2 publication-title: Comput. Appl. Biosci. – ident: e_1_3_2_6_2 doi: 10.1073/pnas.91.8.2950 – ident: e_1_3_2_28_2 doi: 10.1093/genetics/149.2.765 – ident: e_1_3_2_19_2 doi: 10.1101/gad.4.9.1483 – volume: 41 start-page: 95 year: 1999 ident: e_1_3_2_26_2 publication-title: Nucleic Acids Symp. Ser. – ident: e_1_3_2_44_2 doi: 10.1038/376490a0 – ident: e_1_3_2_15_2 doi: 10.1007/PL00006244 – ident: e_1_3_2_32_2 doi: 10.1093/oxfordjournals.molbev.a003945 – ident: e_1_3_2_51_2 doi: 10.1073/pnas.212522399 – ident: e_1_3_2_41_2 doi: 10.1093/oxfordjournals.molbev.a004137 – ident: e_1_3_2_35_2 doi: 10.1046/j.1365-313X.2003.01671.x – ident: e_1_3_2_39_2 doi: 10.1126/science.290.5494.1151 – ident: e_1_3_2_58_2 doi: 10.1093/oxfordjournals.molbev.a004010 – ident: e_1_3_2_27_2 doi: 10.1007/s00239-002-2426-x – volume: 112 start-page: 1 year: 1991 ident: e_1_3_2_18_2 publication-title: Development (Cambridge, U.K.) – ident: e_1_3_2_33_2 doi: 10.1093/oxfordjournals.molbev.a004148 – ident: e_1_3_2_29_2 doi: 10.1093/bioinformatics/17.8.754 – volume: 127 start-page: 725 year: 2000 ident: e_1_3_2_56_2 publication-title: Development (Cambridge, U.K.) – ident: e_1_3_2_2_2 doi: 10.1038/ng852 – ident: e_1_3_2_50_2 doi: 10.1126/science.290.5499.2114 – ident: e_1_3_2_52_2 doi: 10.1101/gr.751803 – ident: e_1_3_2_24_2 doi: 10.1016/S1055-7903(02)00032-5 – ident: e_1_3_2_59_2 doi: 10.1105/tpc.10.7.1075 – ident: e_1_3_2_25_2 doi: 10.1093/nar/22.22.4673 – ident: e_1_3_2_37_2 doi: 10.1105/tpc.009506 – ident: e_1_3_2_55_2 doi: 10.1093/nar/24.16.3134 – ident: e_1_3_2_38_2 doi: 10.1093/bioinformatics/17.12.1244 – ident: e_1_3_2_5_2 doi: 10.1093/genetics/159.4.1789 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.051605998 – volume: 43 start-page: 307 year: 1994 ident: e_1_3_2_12_2 publication-title: Syst. Biol. – ident: e_1_3_2_11_2 doi: 10.1016/0092-8674(92)90144-2 – ident: e_1_3_2_13_2 doi: 10.1002/(SICI)1521-1878(199809)20:9<700::AID-BIES3>3.0.CO;2-K – ident: e_1_3_2_8_2 doi: 10.1038/385151a0 – ident: e_1_3_2_21_2 doi: 10.1046/j.1365-313x.2000.00891.x – ident: e_1_3_2_4_2 doi: 10.1016/S0168-9525(02)02755-5 – ident: e_1_3_2_40_2 doi: 10.1038/35048692 |
SSID | ssj0009580 |
Score | 2.1738954 |
Snippet | Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13407 |
SubjectTerms | Adaptation Amino acids Arabidopsis - genetics Arabidopsis thaliana Bayes Theorem Biological Sciences Chromosomes Divergent evolution DNA, Complementary - metabolism duplicate genes Evolution Evolution, Molecular Gene duplication Genes Genomes Genomics MADS Domain Proteins - chemistry MADS Domain Proteins - genetics Multigene Family natural selection nucleotide sequences Phenotype Phylogeny Plants Positive selection Protein Structure, Tertiary Proteins regulator genes sequence alignment transcription factors Transcription, Genetic Trees |
Title | Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny |
URI | https://www.jstor.org/stable/3148153 http://www.pnas.org/content/100/23/13407.abstract https://www.ncbi.nlm.nih.gov/pubmed/14597714 https://www.proquest.com/docview/201330670 https://search.proquest.com/docview/19254748 https://www.proquest.com/docview/71359439 https://pubmed.ncbi.nlm.nih.gov/PMC263827 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfoTlwQg8GywbAQh3FIG3_k61gNpgEqQhqVdrP8FRZpc6Kmm-C_5zlxWorYBalSD45d1-89-_3in39G6J2BVYwrbWLKWBXzXNFY5tzGgCXSRJcmUYU_KLz4ml0s-eer9CocCusCrdJpVU_dze3U1dc9t7K91bORJzb7tjij4DQA2SdoAv45IvSN0G4xHDuhMPtyykc5n5zNWie7KbhwWmScJP0dcNzLrxG-syhNKtmM7EQveQq1_pV-_s2i_GNZOn-KnoR8Es-Hfu-jR9Y9Q_shYjt8GmSl3z9H13MjWz-5YXsf_A3XDkMCCLWlqk3TdnWHF_MPl7FqfmLwLIuH9x_YU7ZWK2uwP42C63WHeyo6JNwY4Hpzcw9FYC-YR637dYCW5x-_n13E4Z6FWAM-WcekSOBbm4pIZSiRMqOAmiyxVe7l07iGHI3ntuA6T4zX2_MigSktCytTmSnCXqA91zh7iDC0UxYykV41kLMqL7NUVzY1pU4rBWMdodNxoEU7yGmIfhs8Z8IPtNiaJ0KHYAghf8BkJ5aX1G-xevU_ytMIHfTW2TTBiNecYRGK-ka2LSeCMkEY_I0IvX2wTFSBaBOh49HOIsRyJ_wve2AFPXqzKYUg9Dsr0tnmDnpdAs7OefHwE_4mxBKSvwi9HLxm25HggxHKdvxp84AXAN8tgbjohcCHODj634rH6PFATSTweYX21qs7-xpSrLU6AXDx6ctJH1m_AfgnIn8 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcoALaqHQUKAW4lAO2Y0feR1XhWqBboXUrtSbZTtOG6lNos22Kv-ecR67LKIXpEg5OHYmnhl7Jv78GeBThrOY0CbzGee5L2LNfBUL62MuEQYmzQKduI3Cs7NoOhffL8PLflNY08MqS6OLUXlzOyqL6xZbWd-a8YATG_-cHTM0GkzZt-Apumsghhx9RbWbdBtPGI6_gomB0Cfm47pUzQiNOEwiQYP2FDjhCNio2JiWtnJVDfhER3qKtf4VgP6No_xjYjrZgRd9REkmneS78MSWL2G399mGHPXE0p9fwfUkU7Ub3oi97y2OFCXBEBBrK11kVd0UDZlNvpz7unogaFuWdH9AiANtLRY2I24_CimWDWnB6BhyE0zYq5t7LEKN4Uhqy197MD_5enE89fuTFnyDGcrSp0mAd5PlVOmMUaUihnmTpTaPHYGaMBilidgmwsRB5hj3HE1gyNLEqlBFmvLXsF1Wpd0Hgu2kiQqU4w0UPI_TKDS5DbPUhLnGvvbgaOhoWXeEGrJdCI-5dB0t1-rxYB8VIdUVDndyfs7cIqvj_2Mi9GCv1c6qCU4d6wz3wGsbWbccSMYl5fgZHnx8tEzmPdTGg4NBz7L35ka6N7vUCiU6XJWiG7q1FVXa6g6lTjHTjkXy-BPuLMQUwz8P3nRWsxakt0EPog17Wj3gKMA3S9AzWirwzhPe_m_FQ3g2vZidytNvZz8O4HkHVKR4vYPt5eLOvseAa6k_tP71G42tJNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUJcUAuFhgK1EIdyyG7sOK_jqmVVHltVKiv1ZvkVGqlNos22ov-ecR67LKIXpEg5OHYmnhl7Jv78GeCjwVmMK218Foa5zxPFfJlw62MuEQU6M4FK3Ubh2Xl8Nudfr6KrLUiHvTAtaF-rYlTe3I7K4rrFVta3ejzgxMYXsxOGRoMpe23y8TY8QZcN4iFPX9Htpt3mE4ZjMGd8IPVJwnFdymaEhhylMadBexIcdyRslG9MTdu5rAaMoiM-xVr_CkL_xlL-MTlNd-F5H1WSSSf9HmzZ8gXs9X7bkOOeXPrTS7ieGFm7IY7Y-97qSFESDAOxtlSFqeqmaMhscnrpq-oXQfuypPsLQhxwa7Gwhrg9KaRYNqQFpGPYTTBpr27usQi1hqOpLR_2YT79_OPkzO9PW_A1ZilLn6YB3rXJqVSGUSljhrmTpTZPHIka1xip8cSmXCeBcax7jiowYllqZSRjRcNXsFNWpT0Agu1kqQyk4w7kYZ5kcaRzG5lMR7nCvvbgeOhoUXekGqJdDE9C4TparNXjwQEqQsifOOSJ-SVzC62OA5DxyIP9VjurJkLqmGdCD7y2kXXLgWChoCF-hgcfHi0TeQ-38eBw0LPoPboR7s0uvUKJjlal6IpufUWWtrpDqTPMthOePv6EOw8xwxDQg9ed1awF6W3Qg3jDnlYPOBrwzRL0jpYOvPOGN_9b8QieXpxOxfcv598O4VmHVaR4vYWd5eLOvsOYa6net-71G8tlJe8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+evolution+in+the+Arabidopsis+MADS-box+gene+family+inferred+from+its+complete+resolved+phylogeny&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Leon+Patricio+Martinez-Castilla&rft.au=Alvarez-Buylla%2C+Elena+R&rft.date=2003-11-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=100&rft.issue=23&rft.spage=13407&rft_id=info:doi/10.1073%2Fpnas.1835864100&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=671926531 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F100%2F23.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F100%2F23.cover.gif |