Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes

Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed repair in the G1 phase of the cell cycle. The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of inte...

Full description

Saved in:
Bibliographic Details
Published inNature structural & molecular biology Vol. 24; no. 4; pp. 353 - 361
Main Authors Aymard, François, Aguirrebengoa, Marion, Guillou, Emmanuelle, Javierre, Biola M, Bugler, Beatrix, Arnould, Coline, Rocher, Vincent, Iacovoni, Jason S, Biernacka, Anna, Skrzypczak, Magdalena, Ginalski, Krzysztof, Rowicka, Maga, Fraser, Peter, Legube, Gaëlle
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.04.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1545-9993
1545-9985
DOI10.1038/nsmb.3387

Cover

Loading…
Abstract Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed repair in the G1 phase of the cell cycle. The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells.
AbstractList The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells.
Translocations, which occur when two DNA DSBs are abnormally rejoined, are highly deleterious genome rearrangements favoring cancer initiation and progression. However, the mechanisms that drive their formation remain poorly understood. One prerequisite for translocation is the juxtaposition of two distant DSBs, an event that would be favored if DSBs cluster, i.e. are brought together in spatial proximity within the nucleus. In budding yeast, a lacO- or TetO-tagged genomic locus exhibits increased motion when it is damaged with the I-SceI endonuclease. Intriguingly, this phenomenon, referred to as local mobility, is accompanied by a global mobility process whereby the other chromosomes also explore wider volumes in the nuclear space, although to a lesser extent than the damaged locus itself13. Moreover, induction of two DSBs by the HO and I-SceI endonucleases triggers formation of a single Rad52 focus, thus suggesting that DSBs can indeed coalesce in yeast.
Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed repair in the G1 phase of the cell cycle. The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells.
Audience Academic
Author Aguirrebengoa, Marion
Rocher, Vincent
Bugler, Beatrix
Guillou, Emmanuelle
Arnould, Coline
Iacovoni, Jason S
Ginalski, Krzysztof
Biernacka, Anna
Skrzypczak, Magdalena
Fraser, Peter
Aymard, François
Rowicka, Maga
Javierre, Biola M
Legube, Gaëlle
Author_xml – sequence: 1
  givenname: François
  surname: Aymard
  fullname: Aymard, François
  organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3
– sequence: 2
  givenname: Marion
  surname: Aguirrebengoa
  fullname: Aguirrebengoa, Marion
  organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3
– sequence: 3
  givenname: Emmanuelle
  surname: Guillou
  fullname: Guillou, Emmanuelle
  organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3
– sequence: 4
  givenname: Biola M
  surname: Javierre
  fullname: Javierre, Biola M
  organization: Nuclear Dynamics Programme, Babraham Institute
– sequence: 5
  givenname: Beatrix
  surname: Bugler
  fullname: Bugler, Beatrix
  organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3
– sequence: 6
  givenname: Coline
  surname: Arnould
  fullname: Arnould, Coline
  organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3
– sequence: 7
  givenname: Vincent
  surname: Rocher
  fullname: Rocher, Vincent
  organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3
– sequence: 8
  givenname: Jason S
  surname: Iacovoni
  fullname: Iacovoni, Jason S
  organization: Bioinformatic Plateau I2MC, INSERM and University of Toulouse
– sequence: 9
  givenname: Anna
  orcidid: 0000-0002-0080-5947
  surname: Biernacka
  fullname: Biernacka, Anna
  organization: Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw
– sequence: 10
  givenname: Magdalena
  surname: Skrzypczak
  fullname: Skrzypczak, Magdalena
  organization: Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw
– sequence: 11
  givenname: Krzysztof
  surname: Ginalski
  fullname: Ginalski, Krzysztof
  organization: Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw
– sequence: 12
  givenname: Maga
  surname: Rowicka
  fullname: Rowicka, Maga
  organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston
– sequence: 13
  givenname: Peter
  orcidid: 0000-0002-0041-1227
  surname: Fraser
  fullname: Fraser, Peter
  organization: Nuclear Dynamics Programme, Babraham Institute
– sequence: 14
  givenname: Gaëlle
  surname: Legube
  fullname: Legube, Gaëlle
  email: gaelle.legube@univ-tlse3.fr
  organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28263325$$D View this record in MEDLINE/PubMed
BookMark eNptkltv1DAQhS1URC_wwB9AlngCKVsnjjfO46qFUqkCicuzNbEnkUtip7ZT4N_jVZeWhcoPtqzvzNhnzjE5cN4hIS9LtioZl6cuTt2Kc9k8IUelqEXRtlIc3J9bfkiOY7xmrBKi4c_IYSWrNeeVOCI3F-j8hMUPa5BOMM_WDdT3dPRuKAK4Aan2LoFOkS7uFu0YqR6XmDDsyPOPG2r80o1YxJQVhnYB4XukkKiBCQY0NMvtLdIBHcbn5GkPY8QXu_2EfHv_7uvZh-Lq08Xl2eaq0EKwVJSNYSCxqmvNBO9KaAyWDYIEXTYgZd_UtVxXmjEGVd33bWtY0zKpQRuhe81PyOu7unPwNwvGpK79ElxuqUopa8GrqpYP1AAjKut6n_-gJxu12tRSNmwthMjU6hEqL4OTzf5gb_P9nuDNnmDrIf5MAywxqssvn_fZV7uHLt2ERs3BThB-qT9Deiimg48xYH-PlExtA6C2AVDbAGT29B9W2wTJ5v4B7Pio4u2dIs7bkWL4y6f_4N9q87_l
CitedBy_id crossref_primary_10_1016_j_ceb_2020_11_001
crossref_primary_10_1016_j_mrfmmm_2020_111714
crossref_primary_10_1080_19491034_2017_1380138
crossref_primary_10_1016_j_ceb_2024_102376
crossref_primary_10_1073_pnas_1913280117
crossref_primary_10_1016_j_molcel_2018_08_020
crossref_primary_10_1021_acschembio_7b00760
crossref_primary_10_1038_s41467_024_55724_7
crossref_primary_10_1016_j_ymeth_2018_02_023
crossref_primary_10_1007_s00294_019_01015_4
crossref_primary_10_3389_fmolb_2019_00051
crossref_primary_10_1016_j_molcel_2019_08_023
crossref_primary_10_1259_bjr_20191054
crossref_primary_10_3390_ijms23179824
crossref_primary_10_1038_s41467_019_10332_8
crossref_primary_10_1016_j_bbadis_2022_166527
crossref_primary_10_3390_epigenomes2030015
crossref_primary_10_1016_j_bulcan_2022_02_014
crossref_primary_10_1155_2020_4834965
crossref_primary_10_1016_j_dnarep_2019_102661
crossref_primary_10_1016_j_tig_2021_08_016
crossref_primary_10_15252_msb_20188214
crossref_primary_10_1073_pnas_1818595116
crossref_primary_10_1093_nar_gkae574
crossref_primary_10_3390_e26060502
crossref_primary_10_3389_fcell_2021_682294
crossref_primary_10_3390_cancers17060949
crossref_primary_10_1038_s41556_019_0379_1
crossref_primary_10_1038_s12276_022_00862_5
crossref_primary_10_1042_BST20230705
crossref_primary_10_1002_bies_201700229
crossref_primary_10_1016_j_cell_2024_01_015
crossref_primary_10_1134_S0006297923070040
crossref_primary_10_3389_fmolb_2022_895795
crossref_primary_10_3390_cancers13153819
crossref_primary_10_1016_j_jmb_2019_07_036
crossref_primary_10_1038_s41467_018_02893_x
crossref_primary_10_1038_s41467_023_41790_w
crossref_primary_10_1016_j_ymeth_2018_02_013
crossref_primary_10_15252_embj_2019101751
crossref_primary_10_1091_mbc_E18_10_0645
crossref_primary_10_1126_scisignal_aar4195
crossref_primary_10_15252_embj_2018101379
crossref_primary_10_31857_S0320972523070047
crossref_primary_10_1146_annurev_genet_120417_031334
crossref_primary_10_1038_s41467_023_44167_1
crossref_primary_10_1038_s41596_020_00448_3
crossref_primary_10_1242_jcs_261630
crossref_primary_10_1007_s11427_017_9164_1
crossref_primary_10_3389_fcell_2025_1548946
crossref_primary_10_1016_j_dnarep_2019_05_002
crossref_primary_10_7554_eLife_78015
crossref_primary_10_1016_j_molcel_2022_07_011
crossref_primary_10_1038_s41467_024_53313_2
crossref_primary_10_1038_s41467_018_05009_7
crossref_primary_10_1016_j_molcel_2019_12_021
crossref_primary_10_1038_s41586_023_05838_7
crossref_primary_10_15252_embj_2019103002
crossref_primary_10_1111_jmi_12799
crossref_primary_10_1038_s41467_019_08889_5
crossref_primary_10_1038_s41586_023_05981_1
crossref_primary_10_2139_ssrn_4104813
crossref_primary_10_3390_cancers13010018
crossref_primary_10_1016_j_tig_2019_07_001
crossref_primary_10_1016_j_jmb_2019_09_010
crossref_primary_10_1039_C7NR08145F
crossref_primary_10_1016_j_ceb_2020_02_014
crossref_primary_10_18632_aging_202810
crossref_primary_10_1016_j_molcel_2023_09_023
crossref_primary_10_1038_s41467_023_43183_5
crossref_primary_10_1172_JCI120518
crossref_primary_10_18632_aging_203583
crossref_primary_10_1016_j_tig_2024_10_008
crossref_primary_10_1038_s41594_022_00893_6
crossref_primary_10_1016_j_dnarep_2017_06_010
crossref_primary_10_1038_s41467_018_06586_3
crossref_primary_10_1101_gad_307702_117
crossref_primary_10_1038_s41586_018_0237_5
crossref_primary_10_1016_j_drup_2024_101077
crossref_primary_10_3390_genes9120632
crossref_primary_10_1038_s41419_019_1546_9
crossref_primary_10_1093_nar_gkaa640
crossref_primary_10_1016_j_dnarep_2021_103183
crossref_primary_10_1038_s41598_024_51756_7
crossref_primary_10_1242_jcs_249706
crossref_primary_10_3389_fcell_2021_703466
crossref_primary_10_1134_S002689332470002X
crossref_primary_10_1038_s41568_022_00488_9
crossref_primary_10_1016_j_gde_2021_09_007
crossref_primary_10_1038_s41467_023_39517_y
crossref_primary_10_1038_s41467_021_23835_0
crossref_primary_10_1088_1361_6560_ac35f1
crossref_primary_10_3390_genes13020215
crossref_primary_10_1016_j_ceb_2018_08_005
crossref_primary_10_1016_j_dnarep_2023_103571
crossref_primary_10_1016_j_dnarep_2023_103570
crossref_primary_10_1016_j_tcb_2019_11_003
crossref_primary_10_1039_D1SM00983D
crossref_primary_10_1038_s41598_020_58084_6
crossref_primary_10_1038_s41467_022_29629_2
crossref_primary_10_1007_s00412_017_0632_y
crossref_primary_10_31857_S0026898424030029
crossref_primary_10_1128_MCB_00181_19
crossref_primary_10_1186_s13059_018_1411_7
crossref_primary_10_1016_j_molcel_2023_08_007
crossref_primary_10_1242_jcs_259114
crossref_primary_10_1073_pnas_2002193117
crossref_primary_10_1016_j_dnarep_2021_103170
crossref_primary_10_1016_j_tcb_2021_06_002
crossref_primary_10_1371_journal_pone_0225578
crossref_primary_10_1016_j_tig_2019_02_003
crossref_primary_10_1038_s41467_023_43873_0
crossref_primary_10_1038_s41556_021_00663_4
crossref_primary_10_1093_jmcb_mjaa060
crossref_primary_10_7554_eLife_53402
crossref_primary_10_1016_j_it_2019_11_006
crossref_primary_10_1083_jcb_201904202
crossref_primary_10_2139_ssrn_3526272
crossref_primary_10_7554_eLife_60577
crossref_primary_10_3389_fmolb_2019_00141
crossref_primary_10_1038_s41467_020_19504_3
crossref_primary_10_1186_s13039_018_0368_2
crossref_primary_10_3389_fgene_2020_00800
crossref_primary_10_1016_j_tig_2020_09_006
crossref_primary_10_1242_dev_161190
crossref_primary_10_1038_s41388_021_01856_9
crossref_primary_10_1038_s41598_019_40770_9
crossref_primary_10_3390_cancers10010025
crossref_primary_10_1126_sciadv_abb2947
crossref_primary_10_1016_j_tibs_2017_06_011
crossref_primary_10_3389_fmolb_2020_00024
crossref_primary_10_1038_s41586_023_06635_y
crossref_primary_10_1007_s00412_018_0669_6
crossref_primary_10_3390_genes13010007
crossref_primary_10_1016_j_dnarep_2021_103162
crossref_primary_10_3390_cells11244086
crossref_primary_10_1038_s41556_019_0392_4
crossref_primary_10_1038_s41467_020_20047_w
crossref_primary_10_1016_j_jmb_2017_03_024
crossref_primary_10_3389_fgene_2018_00095
crossref_primary_10_1177_1535370219876651
crossref_primary_10_1016_j_cell_2023_08_038
crossref_primary_10_3390_ijms18122611
crossref_primary_10_1038_s41467_020_16926_x
crossref_primary_10_1080_07388551_2023_2226339
crossref_primary_10_1016_j_mrrev_2021_108397
crossref_primary_10_1038_s41467_024_54159_4
crossref_primary_10_1039_C9NR03696B
crossref_primary_10_1016_j_gde_2020_12_007
crossref_primary_10_1093_nar_gkz518
crossref_primary_10_1016_j_ceb_2020_08_002
crossref_primary_10_1016_j_dnarep_2025_103825
crossref_primary_10_1101_cshperspect_a040477
crossref_primary_10_1016_j_molcel_2023_06_016
crossref_primary_10_1016_j_dnarep_2023_103592
crossref_primary_10_1016_j_dnarep_2019_102646
crossref_primary_10_1016_j_molcel_2022_09_025
crossref_primary_10_3390_cells13131093
crossref_primary_10_1016_j_dnarep_2022_103430
crossref_primary_10_1073_pnas_2309306120
crossref_primary_10_1016_j_mrfmmm_2021_111773
crossref_primary_10_1093_nar_gkac690
crossref_primary_10_1098_rstb_2016_0291
crossref_primary_10_1016_j_neuron_2024_12_001
crossref_primary_10_1016_j_dnarep_2021_103139
crossref_primary_10_1093_nar_gkae914
crossref_primary_10_3389_fgene_2021_746380
crossref_primary_10_1038_s41467_020_14546_z
crossref_primary_10_1016_j_semcdb_2018_07_002
crossref_primary_10_1101_gad_324012_119
crossref_primary_10_1038_s41467_018_02894_w
crossref_primary_10_1093_nar_gkab1093
crossref_primary_10_1093_narcan_zcad049
crossref_primary_10_15252_embj_2022112684
crossref_primary_10_15252_embr_202153902
crossref_primary_10_1038_s41580_025_00828_1
crossref_primary_10_1371_journal_pone_0249691
crossref_primary_10_15252_embj_2018100986
crossref_primary_10_3390_molecules25112496
crossref_primary_10_1007_s00412_023_00807_5
crossref_primary_10_1016_j_tcb_2019_02_010
crossref_primary_10_1016_j_ceb_2020_01_012
crossref_primary_10_1038_s41594_022_00906_4
crossref_primary_10_1016_j_gde_2020_03_001
crossref_primary_10_1101_gad_348667_121
crossref_primary_10_3389_fcell_2022_928113
crossref_primary_10_1016_j_molcel_2021_02_007
Cites_doi 10.1038/ncb3258
10.1186/s13059-015-0753-7
10.1083/jcb.200510015
10.1016/j.celrep.2013.07.003
10.1093/bioinformatics/btp616
10.4161/cc.5.17.3169
10.1080/23723556.2015.1134411
10.1016/j.cell.2011.07.049
10.1016/j.molcel.2012.12.023
10.7554/eLife.02482
10.1016/j.cell.2015.09.057
10.1016/j.molcel.2016.06.002
10.1016/j.cell.2015.12.039
10.12688/f1000research.7334.1
10.1038/ncb1591
10.1101/gr.158436.113
10.1038/nature16142
10.1126/science.1162790
10.1016/j.cell.2011.02.012
10.1371/journal.pcbi.1003118
10.1371/journal.pone.0120520
10.1073/pnas.1525564113
10.1126/science.1237150
10.1038/ncb2465
10.1101/gr.185272.114
10.1038/emboj.2010.38
10.1038/nsmb.2796
10.4137/CIN.S13495
10.1083/jcb.201011083
10.1073/pnas.1117849108
10.1126/science.1088845
10.1093/rpd/ncl479
10.1101/gad.260703.115
10.1038/ncb2472
10.7554/eLife.07735
10.1016/j.celrep.2014.05.026
10.1080/19491034.2015.1010946
10.1371/journal.pbio.0030157
10.1016/j.celrep.2015.10.024
10.1038/nsmb.2314
10.1002/jemt.20294
10.1101/gr.157008.113
10.1146/annurev.genet.41.042007.165900
10.1038/nmeth.2408
10.1038/ncb2201
10.1371/journal.pone.0092640
10.1093/nar/gkr230
10.1016/j.cell.2011.07.048
10.1038/ncb997
10.1101/gad.1782209
10.1016/j.ceb.2016.12.003
10.1016/j.molcel.2009.01.016
10.1667/RR1520.1
10.1016/j.celrep.2015.08.085
10.1101/gad.176156.111
10.1126/science.1140321
10.1038/nsmb.2737
10.1242/jcs.089847
10.1016/j.cell.2014.08.030
10.1038/nprot.2014.031
10.1016/j.semcancer.2016.03.003
ContentType Journal Article
Copyright Springer Nature America, Inc. 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Apr 2017
Copyright_xml – notice: Springer Nature America, Inc. 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
DOI 10.1038/nsmb.3387
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Science in Context
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
DatabaseTitleList MEDLINE
Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1545-9985
EndPage 361
ExternalDocumentID 4321475963
A488706555
28263325
10_1038_nsmb_3387
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L007150/1
– fundername: NIGMS NIH HHS
  grantid: R01 GM112131
– fundername: European Research Council
  grantid: 647344
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
36B
39C
3V.
4.4
53G
5BI
5S5
6TJ
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRPL
ACUHS
ADBBV
ADFRT
ADNMO
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
AJQPL
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
DB5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IH2
IHR
INH
INR
ISR
ITC
L-9
L7B
LK8
M0L
M1P
M2O
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PADUT
PKN
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
ZXP
~8M
AAYXX
ACMFV
ACSTC
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
ID FETCH-LOGICAL-c550t-17d0a8e244c053b1a7de17ea8ac17a88f744862c000a24ff99d07908cacd5cfc3
IEDL.DBID 7X7
ISSN 1545-9993
IngestDate Fri Jul 25 08:57:39 EDT 2025
Tue Jun 17 21:35:26 EDT 2025
Tue Jun 10 20:51:29 EDT 2025
Fri Jun 27 04:10:43 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Tue Jul 01 01:59:41 EDT 2025
Fri Feb 21 02:40:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-17d0a8e244c053b1a7de17ea8ac17a88f744862c000a24ff99d07908cacd5cfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0080-5947
0000-0002-0041-1227
OpenAccessLink http://doi.org/10.1038/nsmb.3387
PMID 28263325
PQID 1884532248
PQPubID 27587
PageCount 9
ParticipantIDs proquest_journals_1884532248
gale_infotracmisc_A488706555
gale_infotracacademiconefile_A488706555
gale_incontextgauss_ISR_A488706555
pubmed_primary_28263325
crossref_primary_10_1038_nsmb_3387
crossref_citationtrail_10_1038_nsmb_3387
springer_journals_10_1038_nsmb_3387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature structural & molecular biology
PublicationTitleAbbrev Nat Struct Mol Biol
PublicationTitleAlternate Nat Struct Mol Biol
PublicationYear 2017
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Harding, Boiarsky, Greenberg (CR34) 2015; 13
Kalocsay, Hiller, Jentsch (CR52) 2009; 33
Ryu (CR53) 2015; 17
Marnef, Legube (CR14) 2017; 46
Lisby, Mortensen, Rothstein (CR4) 2003; 5
Kruhlak (CR11) 2006; 172
van Sluis, McStay (CR35) 2015; 29
Neumaier (CR8) 2012; 109
Soutoglou (CR13) 2007; 9
Bolzer (CR29) 2005; 3
Ginno, Lim, Lott, Korf, Chédin (CR47) 2013; 23
Mitra, Skrzypczak, Ginalski, Rowicka (CR38) 2015; 10
Harrigan (CR48) 2011; 193
Jakob, Splinter, Taucher-Scholz (CR10) 2009; 171
Orthwein (CR19) 2015; 528
Yamada, Ono, Perkins, Rocha, Lamond (CR55) 2013; 49
Dion, Kalck, Horigome, Towbin, Gasser (CR1) 2012; 14
Neumann (CR3) 2012; 26
Jakob (CR33) 2011; 39
Tsouroula (CR46) 2016; 63
Crosetto (CR37) 2013; 10
Durkin, Glover (CR50) 2007; 41
Robinson, McCarthy, Smyth (CR59) 2010; 26
Chailleux (CR36) 2014; 9
Lee, Lee, Legube, Haber (CR41) 2014; 21
Becker, Durante, Taucher-Scholz, Jakob (CR9) 2014; 9
Daugaard (CR24) 2012; 19
Wei (CR44) 2016; 164
Nagano (CR56) 2015; 16
Cho, Dilley, Lampson, Greenberg (CR15) 2014; 159
Chiarle (CR42) 2011; 147
Klein (CR43) 2011; 147
Aymard, Legube (CR28) 2016; 3
Schoenfelder (CR26) 2015; 25
Miné-Hattab, Rothstein (CR2) 2012; 14
Kruhlak, Celeste, Nussenzweig (CR12) 2006; 5
Krawczyk (CR6) 2012; 125
Aymard (CR21) 2014; 21
Pfister (CR22) 2014; 7
Lottersberger, Karssemeijer, Dimitrova, de Lange (CR39) 2015; 163
Krawczyk, Stap, van Oven, Hoebe, Aten (CR7) 2006; 122
Caron (CR16) 2015; 13
Matsuoka (CR54) 2007; 316
Dey (CR61) 2006; 69
Roukos (CR17) 2013; 341
Iacovoni (CR27) 2010; 29
Le Tallec (CR51) 2013; 4
Lawrence (CR58) 2013; 9
Hu (CR60) 2014; 13
Nagai (CR30) 2008; 322
Clouaire, Legube (CR20) 2015; 6
Oza, Jaspersen, Miele, Dekker, Peterson (CR31) 2009; 23
Wingett (CR57) 2015; 4
Belin, Lee, Mullins (CR40) 2015; 4
Chiolo (CR32) 2011; 144
Schwer (CR45) 2016; 113
Aten (CR5) 2004; 303
Mladenov, Magin, Soni, Iliakis (CR18) 2016; 37-38
Carvalho (CR23) 2014; 3
Hajjoul (CR25) 2013; 23
Lukas (CR49) 2011; 13
B Le Tallec (BFnsmb3387_CR51) 2013; 4
SG Durkin (BFnsmb3387_CR50) 2007; 41
A Orthwein (BFnsmb3387_CR19) 2015; 528
S Nagai (BFnsmb3387_CR30) 2008; 322
M Daugaard (BFnsmb3387_CR24) 2012; 19
SX Pfister (BFnsmb3387_CR22) 2014; 7
T Nagano (BFnsmb3387_CR56) 2015; 16
JS Iacovoni (BFnsmb3387_CR27) 2010; 29
V Dion (BFnsmb3387_CR1) 2012; 14
T Neumaier (BFnsmb3387_CR8) 2012; 109
S Matsuoka (BFnsmb3387_CR54) 2007; 316
PC Wei (BFnsmb3387_CR44) 2016; 164
E Mladenov (BFnsmb3387_CR18) 2016; 37-38
SM Harding (BFnsmb3387_CR34) 2015; 13
MJ Kruhlak (BFnsmb3387_CR12) 2006; 5
C Lukas (BFnsmb3387_CR49) 2011; 13
K Tsouroula (BFnsmb3387_CR46) 2016; 63
E Soutoglou (BFnsmb3387_CR13) 2007; 9
PA Ginno (BFnsmb3387_CR47) 2013; 23
PM Krawczyk (BFnsmb3387_CR7) 2006; 122
B Jakob (BFnsmb3387_CR33) 2011; 39
V Roukos (BFnsmb3387_CR17) 2013; 341
M Lisby (BFnsmb3387_CR4) 2003; 5
M van Sluis (BFnsmb3387_CR35) 2015; 29
M Kalocsay (BFnsmb3387_CR52) 2009; 33
PM Krawczyk (BFnsmb3387_CR6) 2012; 125
B Jakob (BFnsmb3387_CR10) 2009; 171
P Caron (BFnsmb3387_CR16) 2015; 13
S Schoenfelder (BFnsmb3387_CR26) 2015; 25
BJ Belin (BFnsmb3387_CR40) 2015; 4
B Schwer (BFnsmb3387_CR45) 2016; 113
F Aymard (BFnsmb3387_CR21) 2014; 21
FR Neumann (BFnsmb3387_CR3) 2012; 26
IA Klein (BFnsmb3387_CR43) 2011; 147
A Mitra (BFnsmb3387_CR38) 2015; 10
T Ryu (BFnsmb3387_CR53) 2015; 17
F Aymard (BFnsmb3387_CR28) 2016; 3
MJ Kruhlak (BFnsmb3387_CR11) 2006; 172
CS Lee (BFnsmb3387_CR41) 2014; 21
M Lawrence (BFnsmb3387_CR58) 2013; 9
A Marnef (BFnsmb3387_CR14) 2017; 46
P Oza (BFnsmb3387_CR31) 2009; 23
A Becker (BFnsmb3387_CR9) 2014; 9
R Chiarle (BFnsmb3387_CR42) 2011; 147
MD Robinson (BFnsmb3387_CR59) 2010; 26
Y Hu (BFnsmb3387_CR60) 2014; 13
JA Harrigan (BFnsmb3387_CR48) 2011; 193
T Clouaire (BFnsmb3387_CR20) 2015; 6
JA Aten (BFnsmb3387_CR5) 2004; 303
S Carvalho (BFnsmb3387_CR23) 2014; 3
K Yamada (BFnsmb3387_CR55) 2013; 49
N Dey (BFnsmb3387_CR61) 2006; 69
H Hajjoul (BFnsmb3387_CR25) 2013; 23
C Chailleux (BFnsmb3387_CR36) 2014; 9
I Chiolo (BFnsmb3387_CR32) 2011; 144
N Crosetto (BFnsmb3387_CR37) 2013; 10
J Miné-Hattab (BFnsmb3387_CR2) 2012; 14
A Bolzer (BFnsmb3387_CR29) 2005; 3
F Lottersberger (BFnsmb3387_CR39) 2015; 163
NW Cho (BFnsmb3387_CR15) 2014; 159
S Wingett (BFnsmb3387_CR57) 2015; 4
References_xml – volume: 17
  start-page: 1401
  year: 2015
  end-page: 1411
  ident: CR53
  article-title: Heterochromatic breaks move to the nuclear periphery to continue recombinational repair
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3258
– volume: 16
  start-page: 175
  year: 2015
  ident: CR56
  article-title: Comparison of Hi-C results using in-solution versus in-nucleus ligation
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0753-7
– volume: 172
  start-page: 823
  year: 2006
  end-page: 834
  ident: CR11
  article-title: Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200510015
– volume: 4
  start-page: 420
  year: 2013
  end-page: 428
  ident: CR51
  article-title: Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.003
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: CR59
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 5
  start-page: 1910
  year: 2006
  end-page: 1912
  ident: CR12
  article-title: Spatio-temporal dynamics of chromatin containing DNA breaks
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.17.3169
– volume: 3
  start-page: e1134411
  year: 2016
  ident: CR28
  article-title: A TAD closer to ATM
  publication-title: Mol. Cell. Oncol.
  doi: 10.1080/23723556.2015.1134411
– volume: 147
  start-page: 107
  year: 2011
  end-page: 119
  ident: CR42
  article-title: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.049
– volume: 49
  start-page: 922
  year: 2013
  end-page: 933
  ident: CR55
  article-title: Identification and functional characterization of FMN2, a regulator of the cyclin-dependent kinase inhibitor p21
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.023
– volume: 3
  start-page: e02482
  year: 2014
  ident: CR23
  article-title: SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint
  publication-title: eLife
  doi: 10.7554/eLife.02482
– volume: 163
  start-page: 880
  year: 2015
  end-page: 893
  ident: CR39
  article-title: 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.057
– volume: 63
  start-page: 293
  year: 2016
  end-page: 305
  ident: CR46
  article-title: Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.06.002
– volume: 164
  start-page: 644
  year: 2016
  end-page: 655
  ident: CR44
  article-title: Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.039
– volume: 4
  start-page: 1310
  year: 2015
  ident: CR57
  article-title: HiCUP: pipeline for mapping and processing Hi-C data
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7334.1
– volume: 9
  start-page: 675
  year: 2007
  end-page: 682
  ident: CR13
  article-title: Positional stability of single double-strand breaks in mammalian cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1591
– volume: 23
  start-page: 1590
  year: 2013
  end-page: 1600
  ident: CR47
  article-title: GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination
  publication-title: Genome Res.
  doi: 10.1101/gr.158436.113
– volume: 528
  start-page: 422
  year: 2015
  end-page: 426
  ident: CR19
  article-title: A mechanism for the suppression of homologous recombination in G1 cells
  publication-title: Nature
  doi: 10.1038/nature16142
– volume: 322
  start-page: 597
  year: 2008
  end-page: 602
  ident: CR30
  article-title: Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase
  publication-title: Science
  doi: 10.1126/science.1162790
– volume: 144
  start-page: 732
  year: 2011
  end-page: 744
  ident: CR32
  article-title: Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.012
– volume: 9
  start-page: e1003118
  year: 2013
  ident: CR58
  article-title: Software for computing and annotating genomic ranges
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003118
– volume: 10
  start-page: e0120520
  year: 2015
  ident: CR38
  article-title: Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120520
– volume: 113
  start-page: 2258
  year: 2016
  end-page: 2263
  ident: CR45
  article-title: Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1525564113
– volume: 341
  start-page: 660
  year: 2013
  end-page: 664
  ident: CR17
  article-title: Spatial dynamics of chromosome translocations in living cells
  publication-title: Science
  doi: 10.1126/science.1237150
– volume: 14
  start-page: 502
  year: 2012
  end-page: 509
  ident: CR1
  article-title: Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2465
– volume: 25
  start-page: 582
  year: 2015
  end-page: 597
  ident: CR26
  article-title: The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements
  publication-title: Genome Res.
  doi: 10.1101/gr.185272.114
– volume: 29
  start-page: 1446
  year: 2010
  end-page: 1457
  ident: CR27
  article-title: High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.38
– volume: 21
  start-page: 366
  year: 2014
  end-page: 374
  ident: CR21
  article-title: Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2796
– volume: 13
  start-page: 13
  year: 2014
  end-page: 20
  ident: CR60
  article-title: OmicCircos: a simple-to-use R Package for the circular visualization of multidimensional omics data
  publication-title: Cancer Inform.
  doi: 10.4137/CIN.S13495
– volume: 193
  start-page: 97
  year: 2011
  end-page: 108
  ident: CR48
  article-title: Replication stress induces 53BP1-containing OPT domains in G1 cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201011083
– volume: 109
  start-page: 443
  year: 2012
  end-page: 448
  ident: CR8
  article-title: Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117849108
– volume: 303
  start-page: 92
  year: 2004
  end-page: 95
  ident: CR5
  article-title: Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains
  publication-title: Science
  doi: 10.1126/science.1088845
– volume: 122
  start-page: 150
  year: 2006
  end-page: 153
  ident: CR7
  article-title: Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins
  publication-title: Radiat. Prot. Dosimetry
  doi: 10.1093/rpd/ncl479
– volume: 29
  start-page: 1151
  year: 2015
  end-page: 1163
  ident: CR35
  article-title: A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage
  publication-title: Genes Dev.
  doi: 10.1101/gad.260703.115
– volume: 14
  start-page: 510
  year: 2012
  end-page: 517
  ident: CR2
  article-title: Increased chromosome mobility facilitates homology search during recombination
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2472
– volume: 4
  start-page: e07735
  year: 2015
  ident: CR40
  article-title: DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA repair
  publication-title: eLife
  doi: 10.7554/eLife.07735
– volume: 7
  start-page: 2006
  year: 2014
  end-page: 2018
  ident: CR22
  article-title: SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.026
– volume: 6
  start-page: 107
  year: 2015
  end-page: 113
  ident: CR20
  article-title: DNA double strand break repair pathway choice: a chromatin based decision?
  publication-title: Nucleus
  doi: 10.1080/19491034.2015.1010946
– volume: 3
  start-page: e157
  year: 2005
  ident: CR29
  article-title: Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030157
– volume: 13
  start-page: 1598
  year: 2015
  end-page: 1609
  ident: CR16
  article-title: Non-redundant functions of ATM and DNA-PKcs in response to DNA double-strand breaks
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.10.024
– volume: 19
  start-page: 803
  year: 2012
  end-page: 810
  ident: CR24
  article-title: LEDGF (p75) promotes DNA-end resection and homologous recombination
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2314
– volume: 69
  start-page: 260
  year: 2006
  end-page: 266
  ident: CR61
  article-title: Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.20294
– volume: 23
  start-page: 1829
  year: 2013
  end-page: 1838
  ident: CR25
  article-title: High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome
  publication-title: Genome Res.
  doi: 10.1101/gr.157008.113
– volume: 41
  start-page: 169
  year: 2007
  end-page: 192
  ident: CR50
  article-title: Chromosome fragile sites
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.41.042007.165900
– volume: 10
  start-page: 361
  year: 2013
  end-page: 365
  ident: CR37
  article-title: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2408
– volume: 13
  start-page: 243
  year: 2011
  end-page: 253
  ident: CR49
  article-title: 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2201
– volume: 9
  start-page: e92640
  year: 2014
  ident: CR9
  article-title: ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092640
– volume: 39
  start-page: 6489
  year: 2011
  end-page: 6499
  ident: CR33
  article-title: DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr230
– volume: 147
  start-page: 95
  year: 2011
  end-page: 106
  ident: CR43
  article-title: Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.048
– volume: 5
  start-page: 572
  year: 2003
  end-page: 577
  ident: CR4
  article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb997
– volume: 23
  start-page: 912
  year: 2009
  end-page: 927
  ident: CR31
  article-title: Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery
  publication-title: Genes Dev.
  doi: 10.1101/gad.1782209
– volume: 46
  start-page: 1
  year: 2017
  end-page: 8
  ident: CR14
  article-title: Organizing DNA repair in the nucleus: DSBs hit the road
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.12.003
– volume: 33
  start-page: 335
  year: 2009
  end-page: 343
  ident: CR52
  article-title: Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.016
– volume: 171
  start-page: 405
  year: 2009
  end-page: 418
  ident: CR10
  article-title: Positional stability of damaged chromatin domains along radiation tracks in mammalian cells
  publication-title: Radiat. Res.
  doi: 10.1667/RR1520.1
– volume: 13
  start-page: 251
  year: 2015
  end-page: 259
  ident: CR34
  article-title: ATM dependent silencing links nucleolar chromatin reorganization to DNA damage recognition
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.08.085
– volume: 26
  start-page: 369
  year: 2012
  end-page: 383
  ident: CR3
  article-title: Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination
  publication-title: Genes Dev.
  doi: 10.1101/gad.176156.111
– volume: 316
  start-page: 1160
  year: 2007
  end-page: 1166
  ident: CR54
  article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
  publication-title: Science
  doi: 10.1126/science.1140321
– volume: 21
  start-page: 103
  year: 2014
  end-page: 109
  ident: CR41
  article-title: Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2737
– volume: 125
  start-page: 2127
  year: 2012
  end-page: 2133
  ident: CR6
  article-title: Chromatin mobility is increased at sites of DNA double-strand breaks
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.089847
– volume: 159
  start-page: 108
  year: 2014
  end-page: 121
  ident: CR15
  article-title: Interchromosomal homology searches drive directional ALT telomere movement and synapsis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.030
– volume: 9
  start-page: 517
  year: 2014
  end-page: 528
  ident: CR36
  article-title: Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.031
– volume: 37-38
  start-page: 51
  year: 2016
  end-page: 64
  ident: CR18
  article-title: DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2016.03.003
– volume: 147
  start-page: 107
  year: 2011
  ident: BFnsmb3387_CR42
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.049
– volume: 13
  start-page: 13
  year: 2014
  ident: BFnsmb3387_CR60
  publication-title: Cancer Inform.
  doi: 10.4137/CIN.S13495
– volume: 164
  start-page: 644
  year: 2016
  ident: BFnsmb3387_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.039
– volume: 316
  start-page: 1160
  year: 2007
  ident: BFnsmb3387_CR54
  publication-title: Science
  doi: 10.1126/science.1140321
– volume: 46
  start-page: 1
  year: 2017
  ident: BFnsmb3387_CR14
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.12.003
– volume: 5
  start-page: 1910
  year: 2006
  ident: BFnsmb3387_CR12
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.17.3169
– volume: 322
  start-page: 597
  year: 2008
  ident: BFnsmb3387_CR30
  publication-title: Science
  doi: 10.1126/science.1162790
– volume: 5
  start-page: 572
  year: 2003
  ident: BFnsmb3387_CR4
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb997
– volume: 19
  start-page: 803
  year: 2012
  ident: BFnsmb3387_CR24
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2314
– volume: 163
  start-page: 880
  year: 2015
  ident: BFnsmb3387_CR39
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.057
– volume: 13
  start-page: 251
  year: 2015
  ident: BFnsmb3387_CR34
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.08.085
– volume: 3
  start-page: e02482
  year: 2014
  ident: BFnsmb3387_CR23
  publication-title: eLife
  doi: 10.7554/eLife.02482
– volume: 49
  start-page: 922
  year: 2013
  ident: BFnsmb3387_CR55
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.023
– volume: 9
  start-page: e1003118
  year: 2013
  ident: BFnsmb3387_CR58
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003118
– volume: 9
  start-page: 675
  year: 2007
  ident: BFnsmb3387_CR13
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1591
– volume: 172
  start-page: 823
  year: 2006
  ident: BFnsmb3387_CR11
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200510015
– volume: 6
  start-page: 107
  year: 2015
  ident: BFnsmb3387_CR20
  publication-title: Nucleus
  doi: 10.1080/19491034.2015.1010946
– volume: 39
  start-page: 6489
  year: 2011
  ident: BFnsmb3387_CR33
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr230
– volume: 69
  start-page: 260
  year: 2006
  ident: BFnsmb3387_CR61
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.20294
– volume: 16
  start-page: 175
  year: 2015
  ident: BFnsmb3387_CR56
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0753-7
– volume: 21
  start-page: 103
  year: 2014
  ident: BFnsmb3387_CR41
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2737
– volume: 29
  start-page: 1151
  year: 2015
  ident: BFnsmb3387_CR35
  publication-title: Genes Dev.
  doi: 10.1101/gad.260703.115
– volume: 37-38
  start-page: 51
  year: 2016
  ident: BFnsmb3387_CR18
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2016.03.003
– volume: 109
  start-page: 443
  year: 2012
  ident: BFnsmb3387_CR8
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1117849108
– volume: 29
  start-page: 1446
  year: 2010
  ident: BFnsmb3387_CR27
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.38
– volume: 41
  start-page: 169
  year: 2007
  ident: BFnsmb3387_CR50
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.41.042007.165900
– volume: 23
  start-page: 1590
  year: 2013
  ident: BFnsmb3387_CR47
  publication-title: Genome Res.
  doi: 10.1101/gr.158436.113
– volume: 9
  start-page: 517
  year: 2014
  ident: BFnsmb3387_CR36
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.031
– volume: 528
  start-page: 422
  year: 2015
  ident: BFnsmb3387_CR19
  publication-title: Nature
  doi: 10.1038/nature16142
– volume: 147
  start-page: 95
  year: 2011
  ident: BFnsmb3387_CR43
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.048
– volume: 26
  start-page: 369
  year: 2012
  ident: BFnsmb3387_CR3
  publication-title: Genes Dev.
  doi: 10.1101/gad.176156.111
– volume: 171
  start-page: 405
  year: 2009
  ident: BFnsmb3387_CR10
  publication-title: Radiat. Res.
  doi: 10.1667/RR1520.1
– volume: 193
  start-page: 97
  year: 2011
  ident: BFnsmb3387_CR48
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201011083
– volume: 14
  start-page: 510
  year: 2012
  ident: BFnsmb3387_CR2
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2472
– volume: 122
  start-page: 150
  year: 2006
  ident: BFnsmb3387_CR7
  publication-title: Radiat. Prot. Dosimetry
  doi: 10.1093/rpd/ncl479
– volume: 25
  start-page: 582
  year: 2015
  ident: BFnsmb3387_CR26
  publication-title: Genome Res.
  doi: 10.1101/gr.185272.114
– volume: 14
  start-page: 502
  year: 2012
  ident: BFnsmb3387_CR1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2465
– volume: 4
  start-page: 420
  year: 2013
  ident: BFnsmb3387_CR51
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.003
– volume: 303
  start-page: 92
  year: 2004
  ident: BFnsmb3387_CR5
  publication-title: Science
  doi: 10.1126/science.1088845
– volume: 125
  start-page: 2127
  year: 2012
  ident: BFnsmb3387_CR6
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.089847
– volume: 10
  start-page: 361
  year: 2013
  ident: BFnsmb3387_CR37
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2408
– volume: 26
  start-page: 139
  year: 2010
  ident: BFnsmb3387_CR59
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 113
  start-page: 2258
  year: 2016
  ident: BFnsmb3387_CR45
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1525564113
– volume: 4
  start-page: 1310
  year: 2015
  ident: BFnsmb3387_CR57
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7334.1
– volume: 9
  start-page: e92640
  year: 2014
  ident: BFnsmb3387_CR9
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092640
– volume: 10
  start-page: e0120520
  year: 2015
  ident: BFnsmb3387_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120520
– volume: 63
  start-page: 293
  year: 2016
  ident: BFnsmb3387_CR46
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.06.002
– volume: 7
  start-page: 2006
  year: 2014
  ident: BFnsmb3387_CR22
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.026
– volume: 159
  start-page: 108
  year: 2014
  ident: BFnsmb3387_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.030
– volume: 3
  start-page: e1134411
  year: 2016
  ident: BFnsmb3387_CR28
  publication-title: Mol. Cell. Oncol.
  doi: 10.1080/23723556.2015.1134411
– volume: 4
  start-page: e07735
  year: 2015
  ident: BFnsmb3387_CR40
  publication-title: eLife
  doi: 10.7554/eLife.07735
– volume: 13
  start-page: 243
  year: 2011
  ident: BFnsmb3387_CR49
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2201
– volume: 144
  start-page: 732
  year: 2011
  ident: BFnsmb3387_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.012
– volume: 341
  start-page: 660
  year: 2013
  ident: BFnsmb3387_CR17
  publication-title: Science
  doi: 10.1126/science.1237150
– volume: 21
  start-page: 366
  year: 2014
  ident: BFnsmb3387_CR21
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2796
– volume: 23
  start-page: 1829
  year: 2013
  ident: BFnsmb3387_CR25
  publication-title: Genome Res.
  doi: 10.1101/gr.157008.113
– volume: 23
  start-page: 912
  year: 2009
  ident: BFnsmb3387_CR31
  publication-title: Genes Dev.
  doi: 10.1101/gad.1782209
– volume: 33
  start-page: 335
  year: 2009
  ident: BFnsmb3387_CR52
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.016
– volume: 3
  start-page: e157
  year: 2005
  ident: BFnsmb3387_CR29
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030157
– volume: 13
  start-page: 1598
  year: 2015
  ident: BFnsmb3387_CR16
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.10.024
– volume: 17
  start-page: 1401
  year: 2015
  ident: BFnsmb3387_CR53
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3258
SSID ssj0025573
Score 2.5997944
Snippet Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed...
The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a...
Translocations, which occur when two DNA DSBs are abnormally rejoined, are highly deleterious genome rearrangements favoring cancer initiation and progression....
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 353
SubjectTerms 38/22
45/23
45/77
631/337/1427/2122
631/337/386
Active sites (Biochemistry)
Biochemistry
Biological Microscopy
Cell Line
Chromosome Mapping
Chromosomes
Cluster Analysis
Deoxyribonucleic acid
DNA
DNA Breaks, Double-Stranded - drug effects
DNA repair
DNA Repair - drug effects
DNA Repair - genetics
DNA Replication - drug effects
DNA Replication - genetics
DNA, Intergenic - genetics
G1 Phase - drug effects
G1 Phase - genetics
Genes
Genome, Human
Genomes
Histones - metabolism
Humans
Life Sciences
Membrane Biology
Methods
Models, Biological
Nuclear Proteins - metabolism
Observations
Properties
Protein Domains
Protein Structure
Recombination, Genetic - drug effects
RNA, Small Interfering - metabolism
Tamoxifen - analogs & derivatives
Tamoxifen - pharmacology
Transcription, Genetic - drug effects
Translocation
Yeasts
Title Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes
URI https://link.springer.com/article/10.1038/nsmb.3387
https://www.ncbi.nlm.nih.gov/pubmed/28263325
https://www.proquest.com/docview/1884532248
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagFRIvqOVcWioLkODFdHM48T6h7UVBYoUKlfbN8pVVRdZpmwTEv2cmcdruCvGcceJ4xnN4xt8Q8paDC5HpLGMGrA8EKDpjytiI4WWEIk10ah0Gil9n2el5-mXO5-HArQ5llYNO7BS1rQyeke9HQqQcpC8VHy-vGHaNwuxqaKFxn2widBmWdOXz24CL8y7DjF4CA0coGZCFErHv66X-AOFZvmKP1rXyHbO0liftzM_JFnkU_EY67Rm9Te45_5g86DtJ_nlCrj45Xy0d-31hHV0qBF1Y0KqgZeUX7BovEFAsSlemqWnrf7mLsqambBElIVAezabUVq0uHcPTD28pBMvqZ01VQ61agtqxVHXKkS5QPz4l5yfHPw5PWeimwAxEIQ2LcjtWwoE5N7DxdKRyYEPulFAmypUQRQ6RWhYb0JEqTotiMrHjfDIWBnjHTWGSZ2TDV969IJTHWgtMDmtl0iy2QrkoUSk3xuhxVEQj8n5YU2kC1Dh2vChll_JOhMTll7j8I_L6hvSyx9f4JxEyRiJehceCmIVq61p-_n4mp6CAMFPL-Yi8C0RFBR-Daff3C2DKCHG1Qrm7Qgkbyqw-Hvgvw4au5a34jcjzXiZu5gtRa5YkMQx8MwjJnYHrP_Py_6_fIQ9j9By64qBdstFct-4V-D2N3uuEe49sHhzPvp39BVlbAu4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJuUAhYPwcVt9uFd54BQoC0JbSNUWqk349dGVTe7bTdL1T_Fb2RmH6GJELeed-y1x-OZ-Tz2DCFvObgQkY4iZsD6AEDREVPGegwfIyRhoEPrECjuj6PhUfjtmB-vkN_tWxi8VtnqxEpR29zgGfmmJ0TIQfpC8ensnGHVKIyutiU0arHYdVeXANmKj6MtWN93vr-zffhlyJqqAsyANz5jXmx7SjgwawYEUHsqhuHETgllvFgJkcSAWCLfgK5Qfpgk_b7txf2eMDAHbhITQL-3yGoYAJTpkNXP2-PvB3OIx3kV00a_hIHrFbS5jAKxmRVTvQGAMF6wgMt24JohXIrMVgZv5z6513iqdFCL1gOy4rKH5HZdu_LqETn_6rJ86tjliXV0qjDNw4TmCU3zbMIu8MkCxWvwyswKWma_3ElaUJOWmJehodwaD6jNS506huctmaUAz9VpQdWMWjUFRWepqtQxnaBGfkyOboTTT0gnyzP3jFDuay0wHK2VCSPfCuW8QIXcGKN7XuJ1yYeWp9I0yc2xxkYqqyB7ICSyXyL7u-T1nPSszujxTyJcGIkZMjK8gjNRZVHI0Y8DOQCVh7FhzrvkfUOU5PAzGHb9ogGGjEm1FijXFyhhC5vFz-36y0aFFPKvwHfJ01om5uMFnBwFgQ8N37RCcq3h8mTW_t_9K3JneLi_J_dG493n5K6Pfkt1NWmddGYXpXsBXtdMv2xEnZKfN727_gA1DUAB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+mapping+of+long-range+contacts+unveils+clustering+of+DNA+double-strand+breaks+at+damaged+active+genes&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=Aymard%2C+Fran%C3%A7ois&rft.au=Aguirrebengoa%2C+Marion&rft.au=Guillou%2C+Emmanuelle&rft.au=Javierre%2C+Biola+M&rft.date=2017-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1545-9993&rft.eissn=1545-9985&rft.volume=24&rft.issue=4&rft.spage=353&rft_id=info:doi/10.1038%2Fnsmb.3387&rft.externalDocID=4321475963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon