Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes
Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed repair in the G1 phase of the cell cycle. The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of inte...
Saved in:
Published in | Nature structural & molecular biology Vol. 24; no. 4; pp. 353 - 361 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1545-9993 1545-9985 |
DOI | 10.1038/nsmb.3387 |
Cover
Loading…
Abstract | Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed repair in the G1 phase of the cell cycle.
The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells. |
---|---|
AbstractList | The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells. Translocations, which occur when two DNA DSBs are abnormally rejoined, are highly deleterious genome rearrangements favoring cancer initiation and progression. However, the mechanisms that drive their formation remain poorly understood. One prerequisite for translocation is the juxtaposition of two distant DSBs, an event that would be favored if DSBs cluster, i.e. are brought together in spatial proximity within the nucleus. In budding yeast, a lacO- or TetO-tagged genomic locus exhibits increased motion when it is damaged with the I-SceI endonuclease. Intriguingly, this phenomenon, referred to as local mobility, is accompanied by a global mobility process whereby the other chromosomes also explore wider volumes in the nuclear space, although to a lesser extent than the damaged locus itself13. Moreover, induction of two DSBs by the HO and I-SceI endonucleases triggers formation of a single Rad52 focus, thus suggesting that DSBs can indeed coalesce in yeast. Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed repair in the G1 phase of the cell cycle. The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells. |
Audience | Academic |
Author | Aguirrebengoa, Marion Rocher, Vincent Bugler, Beatrix Guillou, Emmanuelle Arnould, Coline Iacovoni, Jason S Ginalski, Krzysztof Biernacka, Anna Skrzypczak, Magdalena Fraser, Peter Aymard, François Rowicka, Maga Javierre, Biola M Legube, Gaëlle |
Author_xml | – sequence: 1 givenname: François surname: Aymard fullname: Aymard, François organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3 – sequence: 2 givenname: Marion surname: Aguirrebengoa fullname: Aguirrebengoa, Marion organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3 – sequence: 3 givenname: Emmanuelle surname: Guillou fullname: Guillou, Emmanuelle organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3 – sequence: 4 givenname: Biola M surname: Javierre fullname: Javierre, Biola M organization: Nuclear Dynamics Programme, Babraham Institute – sequence: 5 givenname: Beatrix surname: Bugler fullname: Bugler, Beatrix organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3 – sequence: 6 givenname: Coline surname: Arnould fullname: Arnould, Coline organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3 – sequence: 7 givenname: Vincent surname: Rocher fullname: Rocher, Vincent organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3 – sequence: 8 givenname: Jason S surname: Iacovoni fullname: Iacovoni, Jason S organization: Bioinformatic Plateau I2MC, INSERM and University of Toulouse – sequence: 9 givenname: Anna orcidid: 0000-0002-0080-5947 surname: Biernacka fullname: Biernacka, Anna organization: Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw – sequence: 10 givenname: Magdalena surname: Skrzypczak fullname: Skrzypczak, Magdalena organization: Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw – sequence: 11 givenname: Krzysztof surname: Ginalski fullname: Ginalski, Krzysztof organization: Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw – sequence: 12 givenname: Maga surname: Rowicka fullname: Rowicka, Maga organization: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston – sequence: 13 givenname: Peter orcidid: 0000-0002-0041-1227 surname: Fraser fullname: Fraser, Peter organization: Nuclear Dynamics Programme, Babraham Institute – sequence: 14 givenname: Gaëlle surname: Legube fullname: Legube, Gaëlle email: gaelle.legube@univ-tlse3.fr organization: LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28263325$$D View this record in MEDLINE/PubMed |
BookMark | eNptkltv1DAQhS1URC_wwB9AlngCKVsnjjfO46qFUqkCicuzNbEnkUtip7ZT4N_jVZeWhcoPtqzvzNhnzjE5cN4hIS9LtioZl6cuTt2Kc9k8IUelqEXRtlIc3J9bfkiOY7xmrBKi4c_IYSWrNeeVOCI3F-j8hMUPa5BOMM_WDdT3dPRuKAK4Aan2LoFOkS7uFu0YqR6XmDDsyPOPG2r80o1YxJQVhnYB4XukkKiBCQY0NMvtLdIBHcbn5GkPY8QXu_2EfHv_7uvZh-Lq08Xl2eaq0EKwVJSNYSCxqmvNBO9KaAyWDYIEXTYgZd_UtVxXmjEGVd33bWtY0zKpQRuhe81PyOu7unPwNwvGpK79ElxuqUopa8GrqpYP1AAjKut6n_-gJxu12tRSNmwthMjU6hEqL4OTzf5gb_P9nuDNnmDrIf5MAywxqssvn_fZV7uHLt2ERs3BThB-qT9Deiimg48xYH-PlExtA6C2AVDbAGT29B9W2wTJ5v4B7Pio4u2dIs7bkWL4y6f_4N9q87_l |
CitedBy_id | crossref_primary_10_1016_j_ceb_2020_11_001 crossref_primary_10_1016_j_mrfmmm_2020_111714 crossref_primary_10_1080_19491034_2017_1380138 crossref_primary_10_1016_j_ceb_2024_102376 crossref_primary_10_1073_pnas_1913280117 crossref_primary_10_1016_j_molcel_2018_08_020 crossref_primary_10_1021_acschembio_7b00760 crossref_primary_10_1038_s41467_024_55724_7 crossref_primary_10_1016_j_ymeth_2018_02_023 crossref_primary_10_1007_s00294_019_01015_4 crossref_primary_10_3389_fmolb_2019_00051 crossref_primary_10_1016_j_molcel_2019_08_023 crossref_primary_10_1259_bjr_20191054 crossref_primary_10_3390_ijms23179824 crossref_primary_10_1038_s41467_019_10332_8 crossref_primary_10_1016_j_bbadis_2022_166527 crossref_primary_10_3390_epigenomes2030015 crossref_primary_10_1016_j_bulcan_2022_02_014 crossref_primary_10_1155_2020_4834965 crossref_primary_10_1016_j_dnarep_2019_102661 crossref_primary_10_1016_j_tig_2021_08_016 crossref_primary_10_15252_msb_20188214 crossref_primary_10_1073_pnas_1818595116 crossref_primary_10_1093_nar_gkae574 crossref_primary_10_3390_e26060502 crossref_primary_10_3389_fcell_2021_682294 crossref_primary_10_3390_cancers17060949 crossref_primary_10_1038_s41556_019_0379_1 crossref_primary_10_1038_s12276_022_00862_5 crossref_primary_10_1042_BST20230705 crossref_primary_10_1002_bies_201700229 crossref_primary_10_1016_j_cell_2024_01_015 crossref_primary_10_1134_S0006297923070040 crossref_primary_10_3389_fmolb_2022_895795 crossref_primary_10_3390_cancers13153819 crossref_primary_10_1016_j_jmb_2019_07_036 crossref_primary_10_1038_s41467_018_02893_x crossref_primary_10_1038_s41467_023_41790_w crossref_primary_10_1016_j_ymeth_2018_02_013 crossref_primary_10_15252_embj_2019101751 crossref_primary_10_1091_mbc_E18_10_0645 crossref_primary_10_1126_scisignal_aar4195 crossref_primary_10_15252_embj_2018101379 crossref_primary_10_31857_S0320972523070047 crossref_primary_10_1146_annurev_genet_120417_031334 crossref_primary_10_1038_s41467_023_44167_1 crossref_primary_10_1038_s41596_020_00448_3 crossref_primary_10_1242_jcs_261630 crossref_primary_10_1007_s11427_017_9164_1 crossref_primary_10_3389_fcell_2025_1548946 crossref_primary_10_1016_j_dnarep_2019_05_002 crossref_primary_10_7554_eLife_78015 crossref_primary_10_1016_j_molcel_2022_07_011 crossref_primary_10_1038_s41467_024_53313_2 crossref_primary_10_1038_s41467_018_05009_7 crossref_primary_10_1016_j_molcel_2019_12_021 crossref_primary_10_1038_s41586_023_05838_7 crossref_primary_10_15252_embj_2019103002 crossref_primary_10_1111_jmi_12799 crossref_primary_10_1038_s41467_019_08889_5 crossref_primary_10_1038_s41586_023_05981_1 crossref_primary_10_2139_ssrn_4104813 crossref_primary_10_3390_cancers13010018 crossref_primary_10_1016_j_tig_2019_07_001 crossref_primary_10_1016_j_jmb_2019_09_010 crossref_primary_10_1039_C7NR08145F crossref_primary_10_1016_j_ceb_2020_02_014 crossref_primary_10_18632_aging_202810 crossref_primary_10_1016_j_molcel_2023_09_023 crossref_primary_10_1038_s41467_023_43183_5 crossref_primary_10_1172_JCI120518 crossref_primary_10_18632_aging_203583 crossref_primary_10_1016_j_tig_2024_10_008 crossref_primary_10_1038_s41594_022_00893_6 crossref_primary_10_1016_j_dnarep_2017_06_010 crossref_primary_10_1038_s41467_018_06586_3 crossref_primary_10_1101_gad_307702_117 crossref_primary_10_1038_s41586_018_0237_5 crossref_primary_10_1016_j_drup_2024_101077 crossref_primary_10_3390_genes9120632 crossref_primary_10_1038_s41419_019_1546_9 crossref_primary_10_1093_nar_gkaa640 crossref_primary_10_1016_j_dnarep_2021_103183 crossref_primary_10_1038_s41598_024_51756_7 crossref_primary_10_1242_jcs_249706 crossref_primary_10_3389_fcell_2021_703466 crossref_primary_10_1134_S002689332470002X crossref_primary_10_1038_s41568_022_00488_9 crossref_primary_10_1016_j_gde_2021_09_007 crossref_primary_10_1038_s41467_023_39517_y crossref_primary_10_1038_s41467_021_23835_0 crossref_primary_10_1088_1361_6560_ac35f1 crossref_primary_10_3390_genes13020215 crossref_primary_10_1016_j_ceb_2018_08_005 crossref_primary_10_1016_j_dnarep_2023_103571 crossref_primary_10_1016_j_dnarep_2023_103570 crossref_primary_10_1016_j_tcb_2019_11_003 crossref_primary_10_1039_D1SM00983D crossref_primary_10_1038_s41598_020_58084_6 crossref_primary_10_1038_s41467_022_29629_2 crossref_primary_10_1007_s00412_017_0632_y crossref_primary_10_31857_S0026898424030029 crossref_primary_10_1128_MCB_00181_19 crossref_primary_10_1186_s13059_018_1411_7 crossref_primary_10_1016_j_molcel_2023_08_007 crossref_primary_10_1242_jcs_259114 crossref_primary_10_1073_pnas_2002193117 crossref_primary_10_1016_j_dnarep_2021_103170 crossref_primary_10_1016_j_tcb_2021_06_002 crossref_primary_10_1371_journal_pone_0225578 crossref_primary_10_1016_j_tig_2019_02_003 crossref_primary_10_1038_s41467_023_43873_0 crossref_primary_10_1038_s41556_021_00663_4 crossref_primary_10_1093_jmcb_mjaa060 crossref_primary_10_7554_eLife_53402 crossref_primary_10_1016_j_it_2019_11_006 crossref_primary_10_1083_jcb_201904202 crossref_primary_10_2139_ssrn_3526272 crossref_primary_10_7554_eLife_60577 crossref_primary_10_3389_fmolb_2019_00141 crossref_primary_10_1038_s41467_020_19504_3 crossref_primary_10_1186_s13039_018_0368_2 crossref_primary_10_3389_fgene_2020_00800 crossref_primary_10_1016_j_tig_2020_09_006 crossref_primary_10_1242_dev_161190 crossref_primary_10_1038_s41388_021_01856_9 crossref_primary_10_1038_s41598_019_40770_9 crossref_primary_10_3390_cancers10010025 crossref_primary_10_1126_sciadv_abb2947 crossref_primary_10_1016_j_tibs_2017_06_011 crossref_primary_10_3389_fmolb_2020_00024 crossref_primary_10_1038_s41586_023_06635_y crossref_primary_10_1007_s00412_018_0669_6 crossref_primary_10_3390_genes13010007 crossref_primary_10_1016_j_dnarep_2021_103162 crossref_primary_10_3390_cells11244086 crossref_primary_10_1038_s41556_019_0392_4 crossref_primary_10_1038_s41467_020_20047_w crossref_primary_10_1016_j_jmb_2017_03_024 crossref_primary_10_3389_fgene_2018_00095 crossref_primary_10_1177_1535370219876651 crossref_primary_10_1016_j_cell_2023_08_038 crossref_primary_10_3390_ijms18122611 crossref_primary_10_1038_s41467_020_16926_x crossref_primary_10_1080_07388551_2023_2226339 crossref_primary_10_1016_j_mrrev_2021_108397 crossref_primary_10_1038_s41467_024_54159_4 crossref_primary_10_1039_C9NR03696B crossref_primary_10_1016_j_gde_2020_12_007 crossref_primary_10_1093_nar_gkz518 crossref_primary_10_1016_j_ceb_2020_08_002 crossref_primary_10_1016_j_dnarep_2025_103825 crossref_primary_10_1101_cshperspect_a040477 crossref_primary_10_1016_j_molcel_2023_06_016 crossref_primary_10_1016_j_dnarep_2023_103592 crossref_primary_10_1016_j_dnarep_2019_102646 crossref_primary_10_1016_j_molcel_2022_09_025 crossref_primary_10_3390_cells13131093 crossref_primary_10_1016_j_dnarep_2022_103430 crossref_primary_10_1073_pnas_2309306120 crossref_primary_10_1016_j_mrfmmm_2021_111773 crossref_primary_10_1093_nar_gkac690 crossref_primary_10_1098_rstb_2016_0291 crossref_primary_10_1016_j_neuron_2024_12_001 crossref_primary_10_1016_j_dnarep_2021_103139 crossref_primary_10_1093_nar_gkae914 crossref_primary_10_3389_fgene_2021_746380 crossref_primary_10_1038_s41467_020_14546_z crossref_primary_10_1016_j_semcdb_2018_07_002 crossref_primary_10_1101_gad_324012_119 crossref_primary_10_1038_s41467_018_02894_w crossref_primary_10_1093_nar_gkab1093 crossref_primary_10_1093_narcan_zcad049 crossref_primary_10_15252_embj_2022112684 crossref_primary_10_15252_embr_202153902 crossref_primary_10_1038_s41580_025_00828_1 crossref_primary_10_1371_journal_pone_0249691 crossref_primary_10_15252_embj_2018100986 crossref_primary_10_3390_molecules25112496 crossref_primary_10_1007_s00412_023_00807_5 crossref_primary_10_1016_j_tcb_2019_02_010 crossref_primary_10_1016_j_ceb_2020_01_012 crossref_primary_10_1038_s41594_022_00906_4 crossref_primary_10_1016_j_gde_2020_03_001 crossref_primary_10_1101_gad_348667_121 crossref_primary_10_3389_fcell_2022_928113 crossref_primary_10_1016_j_molcel_2021_02_007 |
Cites_doi | 10.1038/ncb3258 10.1186/s13059-015-0753-7 10.1083/jcb.200510015 10.1016/j.celrep.2013.07.003 10.1093/bioinformatics/btp616 10.4161/cc.5.17.3169 10.1080/23723556.2015.1134411 10.1016/j.cell.2011.07.049 10.1016/j.molcel.2012.12.023 10.7554/eLife.02482 10.1016/j.cell.2015.09.057 10.1016/j.molcel.2016.06.002 10.1016/j.cell.2015.12.039 10.12688/f1000research.7334.1 10.1038/ncb1591 10.1101/gr.158436.113 10.1038/nature16142 10.1126/science.1162790 10.1016/j.cell.2011.02.012 10.1371/journal.pcbi.1003118 10.1371/journal.pone.0120520 10.1073/pnas.1525564113 10.1126/science.1237150 10.1038/ncb2465 10.1101/gr.185272.114 10.1038/emboj.2010.38 10.1038/nsmb.2796 10.4137/CIN.S13495 10.1083/jcb.201011083 10.1073/pnas.1117849108 10.1126/science.1088845 10.1093/rpd/ncl479 10.1101/gad.260703.115 10.1038/ncb2472 10.7554/eLife.07735 10.1016/j.celrep.2014.05.026 10.1080/19491034.2015.1010946 10.1371/journal.pbio.0030157 10.1016/j.celrep.2015.10.024 10.1038/nsmb.2314 10.1002/jemt.20294 10.1101/gr.157008.113 10.1146/annurev.genet.41.042007.165900 10.1038/nmeth.2408 10.1038/ncb2201 10.1371/journal.pone.0092640 10.1093/nar/gkr230 10.1016/j.cell.2011.07.048 10.1038/ncb997 10.1101/gad.1782209 10.1016/j.ceb.2016.12.003 10.1016/j.molcel.2009.01.016 10.1667/RR1520.1 10.1016/j.celrep.2015.08.085 10.1101/gad.176156.111 10.1126/science.1140321 10.1038/nsmb.2737 10.1242/jcs.089847 10.1016/j.cell.2014.08.030 10.1038/nprot.2014.031 10.1016/j.semcancer.2016.03.003 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Apr 2017 |
Copyright_xml | – notice: Springer Nature America, Inc. 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 |
DOI | 10.1038/nsmb.3387 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale Science in Context ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) |
DatabaseTitleList | MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1545-9985 |
EndPage | 361 |
ExternalDocumentID | 4321475963 A488706555 28263325 10_1038_nsmb_3387 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/L007150/1 – fundername: NIGMS NIH HHS grantid: R01 GM112131 – fundername: European Research Council grantid: 647344 |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5S5 6TJ 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFO ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADFRT ADNMO AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT AJQPL ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU DB5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IGS IH2 IHR INH INR ISR ITC L-9 L7B LK8 M0L M1P M2O M7P MVM N9A NNMJJ O9- ODYON P2P PADUT PKN PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT ZXP ~8M AAYXX ACMFV ACSTC AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AGQPQ AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 |
ID | FETCH-LOGICAL-c550t-17d0a8e244c053b1a7de17ea8ac17a88f744862c000a24ff99d07908cacd5cfc3 |
IEDL.DBID | 7X7 |
ISSN | 1545-9993 |
IngestDate | Fri Jul 25 08:57:39 EDT 2025 Tue Jun 17 21:35:26 EDT 2025 Tue Jun 10 20:51:29 EDT 2025 Fri Jun 27 04:10:43 EDT 2025 Mon Jul 21 06:02:38 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 Tue Jul 01 01:59:41 EDT 2025 Fri Feb 21 02:40:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c550t-17d0a8e244c053b1a7de17ea8ac17a88f744862c000a24ff99d07908cacd5cfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0080-5947 0000-0002-0041-1227 |
OpenAccessLink | http://doi.org/10.1038/nsmb.3387 |
PMID | 28263325 |
PQID | 1884532248 |
PQPubID | 27587 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1884532248 gale_infotracmisc_A488706555 gale_infotracacademiconefile_A488706555 gale_incontextgauss_ISR_A488706555 pubmed_primary_28263325 crossref_primary_10_1038_nsmb_3387 crossref_citationtrail_10_1038_nsmb_3387 springer_journals_10_1038_nsmb_3387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature structural & molecular biology |
PublicationTitleAbbrev | Nat Struct Mol Biol |
PublicationTitleAlternate | Nat Struct Mol Biol |
PublicationYear | 2017 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Harding, Boiarsky, Greenberg (CR34) 2015; 13 Kalocsay, Hiller, Jentsch (CR52) 2009; 33 Ryu (CR53) 2015; 17 Marnef, Legube (CR14) 2017; 46 Lisby, Mortensen, Rothstein (CR4) 2003; 5 Kruhlak (CR11) 2006; 172 van Sluis, McStay (CR35) 2015; 29 Neumaier (CR8) 2012; 109 Soutoglou (CR13) 2007; 9 Bolzer (CR29) 2005; 3 Ginno, Lim, Lott, Korf, Chédin (CR47) 2013; 23 Mitra, Skrzypczak, Ginalski, Rowicka (CR38) 2015; 10 Harrigan (CR48) 2011; 193 Jakob, Splinter, Taucher-Scholz (CR10) 2009; 171 Orthwein (CR19) 2015; 528 Yamada, Ono, Perkins, Rocha, Lamond (CR55) 2013; 49 Dion, Kalck, Horigome, Towbin, Gasser (CR1) 2012; 14 Neumann (CR3) 2012; 26 Jakob (CR33) 2011; 39 Tsouroula (CR46) 2016; 63 Crosetto (CR37) 2013; 10 Durkin, Glover (CR50) 2007; 41 Robinson, McCarthy, Smyth (CR59) 2010; 26 Chailleux (CR36) 2014; 9 Lee, Lee, Legube, Haber (CR41) 2014; 21 Becker, Durante, Taucher-Scholz, Jakob (CR9) 2014; 9 Daugaard (CR24) 2012; 19 Wei (CR44) 2016; 164 Nagano (CR56) 2015; 16 Cho, Dilley, Lampson, Greenberg (CR15) 2014; 159 Chiarle (CR42) 2011; 147 Klein (CR43) 2011; 147 Aymard, Legube (CR28) 2016; 3 Schoenfelder (CR26) 2015; 25 Miné-Hattab, Rothstein (CR2) 2012; 14 Kruhlak, Celeste, Nussenzweig (CR12) 2006; 5 Krawczyk (CR6) 2012; 125 Aymard (CR21) 2014; 21 Pfister (CR22) 2014; 7 Lottersberger, Karssemeijer, Dimitrova, de Lange (CR39) 2015; 163 Krawczyk, Stap, van Oven, Hoebe, Aten (CR7) 2006; 122 Caron (CR16) 2015; 13 Matsuoka (CR54) 2007; 316 Dey (CR61) 2006; 69 Roukos (CR17) 2013; 341 Iacovoni (CR27) 2010; 29 Le Tallec (CR51) 2013; 4 Lawrence (CR58) 2013; 9 Hu (CR60) 2014; 13 Nagai (CR30) 2008; 322 Clouaire, Legube (CR20) 2015; 6 Oza, Jaspersen, Miele, Dekker, Peterson (CR31) 2009; 23 Wingett (CR57) 2015; 4 Belin, Lee, Mullins (CR40) 2015; 4 Chiolo (CR32) 2011; 144 Schwer (CR45) 2016; 113 Aten (CR5) 2004; 303 Mladenov, Magin, Soni, Iliakis (CR18) 2016; 37-38 Carvalho (CR23) 2014; 3 Hajjoul (CR25) 2013; 23 Lukas (CR49) 2011; 13 B Le Tallec (BFnsmb3387_CR51) 2013; 4 SG Durkin (BFnsmb3387_CR50) 2007; 41 A Orthwein (BFnsmb3387_CR19) 2015; 528 S Nagai (BFnsmb3387_CR30) 2008; 322 M Daugaard (BFnsmb3387_CR24) 2012; 19 SX Pfister (BFnsmb3387_CR22) 2014; 7 T Nagano (BFnsmb3387_CR56) 2015; 16 JS Iacovoni (BFnsmb3387_CR27) 2010; 29 V Dion (BFnsmb3387_CR1) 2012; 14 T Neumaier (BFnsmb3387_CR8) 2012; 109 S Matsuoka (BFnsmb3387_CR54) 2007; 316 PC Wei (BFnsmb3387_CR44) 2016; 164 E Mladenov (BFnsmb3387_CR18) 2016; 37-38 SM Harding (BFnsmb3387_CR34) 2015; 13 MJ Kruhlak (BFnsmb3387_CR12) 2006; 5 C Lukas (BFnsmb3387_CR49) 2011; 13 K Tsouroula (BFnsmb3387_CR46) 2016; 63 E Soutoglou (BFnsmb3387_CR13) 2007; 9 PA Ginno (BFnsmb3387_CR47) 2013; 23 PM Krawczyk (BFnsmb3387_CR7) 2006; 122 B Jakob (BFnsmb3387_CR33) 2011; 39 V Roukos (BFnsmb3387_CR17) 2013; 341 M Lisby (BFnsmb3387_CR4) 2003; 5 M van Sluis (BFnsmb3387_CR35) 2015; 29 M Kalocsay (BFnsmb3387_CR52) 2009; 33 PM Krawczyk (BFnsmb3387_CR6) 2012; 125 B Jakob (BFnsmb3387_CR10) 2009; 171 P Caron (BFnsmb3387_CR16) 2015; 13 S Schoenfelder (BFnsmb3387_CR26) 2015; 25 BJ Belin (BFnsmb3387_CR40) 2015; 4 B Schwer (BFnsmb3387_CR45) 2016; 113 F Aymard (BFnsmb3387_CR21) 2014; 21 FR Neumann (BFnsmb3387_CR3) 2012; 26 IA Klein (BFnsmb3387_CR43) 2011; 147 A Mitra (BFnsmb3387_CR38) 2015; 10 T Ryu (BFnsmb3387_CR53) 2015; 17 F Aymard (BFnsmb3387_CR28) 2016; 3 MJ Kruhlak (BFnsmb3387_CR11) 2006; 172 CS Lee (BFnsmb3387_CR41) 2014; 21 M Lawrence (BFnsmb3387_CR58) 2013; 9 A Marnef (BFnsmb3387_CR14) 2017; 46 P Oza (BFnsmb3387_CR31) 2009; 23 A Becker (BFnsmb3387_CR9) 2014; 9 R Chiarle (BFnsmb3387_CR42) 2011; 147 MD Robinson (BFnsmb3387_CR59) 2010; 26 Y Hu (BFnsmb3387_CR60) 2014; 13 JA Harrigan (BFnsmb3387_CR48) 2011; 193 T Clouaire (BFnsmb3387_CR20) 2015; 6 JA Aten (BFnsmb3387_CR5) 2004; 303 S Carvalho (BFnsmb3387_CR23) 2014; 3 K Yamada (BFnsmb3387_CR55) 2013; 49 N Dey (BFnsmb3387_CR61) 2006; 69 H Hajjoul (BFnsmb3387_CR25) 2013; 23 C Chailleux (BFnsmb3387_CR36) 2014; 9 I Chiolo (BFnsmb3387_CR32) 2011; 144 N Crosetto (BFnsmb3387_CR37) 2013; 10 J Miné-Hattab (BFnsmb3387_CR2) 2012; 14 A Bolzer (BFnsmb3387_CR29) 2005; 3 F Lottersberger (BFnsmb3387_CR39) 2015; 163 NW Cho (BFnsmb3387_CR15) 2014; 159 S Wingett (BFnsmb3387_CR57) 2015; 4 |
References_xml | – volume: 17 start-page: 1401 year: 2015 end-page: 1411 ident: CR53 article-title: Heterochromatic breaks move to the nuclear periphery to continue recombinational repair publication-title: Nat. Cell Biol. doi: 10.1038/ncb3258 – volume: 16 start-page: 175 year: 2015 ident: CR56 article-title: Comparison of Hi-C results using in-solution versus in-nucleus ligation publication-title: Genome Biol. doi: 10.1186/s13059-015-0753-7 – volume: 172 start-page: 823 year: 2006 end-page: 834 ident: CR11 article-title: Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks publication-title: J. Cell Biol. doi: 10.1083/jcb.200510015 – volume: 4 start-page: 420 year: 2013 end-page: 428 ident: CR51 article-title: Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.07.003 – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: CR59 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 5 start-page: 1910 year: 2006 end-page: 1912 ident: CR12 article-title: Spatio-temporal dynamics of chromatin containing DNA breaks publication-title: Cell Cycle doi: 10.4161/cc.5.17.3169 – volume: 3 start-page: e1134411 year: 2016 ident: CR28 article-title: A TAD closer to ATM publication-title: Mol. Cell. Oncol. doi: 10.1080/23723556.2015.1134411 – volume: 147 start-page: 107 year: 2011 end-page: 119 ident: CR42 article-title: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells publication-title: Cell doi: 10.1016/j.cell.2011.07.049 – volume: 49 start-page: 922 year: 2013 end-page: 933 ident: CR55 article-title: Identification and functional characterization of FMN2, a regulator of the cyclin-dependent kinase inhibitor p21 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.023 – volume: 3 start-page: e02482 year: 2014 ident: CR23 article-title: SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint publication-title: eLife doi: 10.7554/eLife.02482 – volume: 163 start-page: 880 year: 2015 end-page: 893 ident: CR39 article-title: 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair publication-title: Cell doi: 10.1016/j.cell.2015.09.057 – volume: 63 start-page: 293 year: 2016 end-page: 305 ident: CR46 article-title: Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.002 – volume: 164 start-page: 644 year: 2016 end-page: 655 ident: CR44 article-title: Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells publication-title: Cell doi: 10.1016/j.cell.2015.12.039 – volume: 4 start-page: 1310 year: 2015 ident: CR57 article-title: HiCUP: pipeline for mapping and processing Hi-C data publication-title: F1000Res. doi: 10.12688/f1000research.7334.1 – volume: 9 start-page: 675 year: 2007 end-page: 682 ident: CR13 article-title: Positional stability of single double-strand breaks in mammalian cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1591 – volume: 23 start-page: 1590 year: 2013 end-page: 1600 ident: CR47 article-title: GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination publication-title: Genome Res. doi: 10.1101/gr.158436.113 – volume: 528 start-page: 422 year: 2015 end-page: 426 ident: CR19 article-title: A mechanism for the suppression of homologous recombination in G1 cells publication-title: Nature doi: 10.1038/nature16142 – volume: 322 start-page: 597 year: 2008 end-page: 602 ident: CR30 article-title: Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase publication-title: Science doi: 10.1126/science.1162790 – volume: 144 start-page: 732 year: 2011 end-page: 744 ident: CR32 article-title: Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair publication-title: Cell doi: 10.1016/j.cell.2011.02.012 – volume: 9 start-page: e1003118 year: 2013 ident: CR58 article-title: Software for computing and annotating genomic ranges publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1003118 – volume: 10 start-page: e0120520 year: 2015 ident: CR38 article-title: Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform publication-title: PLoS One doi: 10.1371/journal.pone.0120520 – volume: 113 start-page: 2258 year: 2016 end-page: 2263 ident: CR45 article-title: Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1525564113 – volume: 341 start-page: 660 year: 2013 end-page: 664 ident: CR17 article-title: Spatial dynamics of chromosome translocations in living cells publication-title: Science doi: 10.1126/science.1237150 – volume: 14 start-page: 502 year: 2012 end-page: 509 ident: CR1 article-title: Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery publication-title: Nat. Cell Biol. doi: 10.1038/ncb2465 – volume: 25 start-page: 582 year: 2015 end-page: 597 ident: CR26 article-title: The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements publication-title: Genome Res. doi: 10.1101/gr.185272.114 – volume: 29 start-page: 1446 year: 2010 end-page: 1457 ident: CR27 article-title: High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome publication-title: EMBO J. doi: 10.1038/emboj.2010.38 – volume: 21 start-page: 366 year: 2014 end-page: 374 ident: CR21 article-title: Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2796 – volume: 13 start-page: 13 year: 2014 end-page: 20 ident: CR60 article-title: OmicCircos: a simple-to-use R Package for the circular visualization of multidimensional omics data publication-title: Cancer Inform. doi: 10.4137/CIN.S13495 – volume: 193 start-page: 97 year: 2011 end-page: 108 ident: CR48 article-title: Replication stress induces 53BP1-containing OPT domains in G1 cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201011083 – volume: 109 start-page: 443 year: 2012 end-page: 448 ident: CR8 article-title: Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117849108 – volume: 303 start-page: 92 year: 2004 end-page: 95 ident: CR5 article-title: Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains publication-title: Science doi: 10.1126/science.1088845 – volume: 122 start-page: 150 year: 2006 end-page: 153 ident: CR7 article-title: Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins publication-title: Radiat. Prot. Dosimetry doi: 10.1093/rpd/ncl479 – volume: 29 start-page: 1151 year: 2015 end-page: 1163 ident: CR35 article-title: A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage publication-title: Genes Dev. doi: 10.1101/gad.260703.115 – volume: 14 start-page: 510 year: 2012 end-page: 517 ident: CR2 article-title: Increased chromosome mobility facilitates homology search during recombination publication-title: Nat. Cell Biol. doi: 10.1038/ncb2472 – volume: 4 start-page: e07735 year: 2015 ident: CR40 article-title: DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA repair publication-title: eLife doi: 10.7554/eLife.07735 – volume: 7 start-page: 2006 year: 2014 end-page: 2018 ident: CR22 article-title: SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.026 – volume: 6 start-page: 107 year: 2015 end-page: 113 ident: CR20 article-title: DNA double strand break repair pathway choice: a chromatin based decision? publication-title: Nucleus doi: 10.1080/19491034.2015.1010946 – volume: 3 start-page: e157 year: 2005 ident: CR29 article-title: Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030157 – volume: 13 start-page: 1598 year: 2015 end-page: 1609 ident: CR16 article-title: Non-redundant functions of ATM and DNA-PKcs in response to DNA double-strand breaks publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.10.024 – volume: 19 start-page: 803 year: 2012 end-page: 810 ident: CR24 article-title: LEDGF (p75) promotes DNA-end resection and homologous recombination publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2314 – volume: 69 start-page: 260 year: 2006 end-page: 266 ident: CR61 article-title: Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.20294 – volume: 23 start-page: 1829 year: 2013 end-page: 1838 ident: CR25 article-title: High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome publication-title: Genome Res. doi: 10.1101/gr.157008.113 – volume: 41 start-page: 169 year: 2007 end-page: 192 ident: CR50 article-title: Chromosome fragile sites publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.41.042007.165900 – volume: 10 start-page: 361 year: 2013 end-page: 365 ident: CR37 article-title: Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.2408 – volume: 13 start-page: 243 year: 2011 end-page: 253 ident: CR49 article-title: 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress publication-title: Nat. Cell Biol. doi: 10.1038/ncb2201 – volume: 9 start-page: e92640 year: 2014 ident: CR9 article-title: ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells publication-title: PLoS One doi: 10.1371/journal.pone.0092640 – volume: 39 start-page: 6489 year: 2011 end-page: 6499 ident: CR33 article-title: DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr230 – volume: 147 start-page: 95 year: 2011 end-page: 106 ident: CR43 article-title: Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes publication-title: Cell doi: 10.1016/j.cell.2011.07.048 – volume: 5 start-page: 572 year: 2003 end-page: 577 ident: CR4 article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre publication-title: Nat. Cell Biol. doi: 10.1038/ncb997 – volume: 23 start-page: 912 year: 2009 end-page: 927 ident: CR31 article-title: Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery publication-title: Genes Dev. doi: 10.1101/gad.1782209 – volume: 46 start-page: 1 year: 2017 end-page: 8 ident: CR14 article-title: Organizing DNA repair in the nucleus: DSBs hit the road publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.12.003 – volume: 33 start-page: 335 year: 2009 end-page: 343 ident: CR52 article-title: Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.016 – volume: 171 start-page: 405 year: 2009 end-page: 418 ident: CR10 article-title: Positional stability of damaged chromatin domains along radiation tracks in mammalian cells publication-title: Radiat. Res. doi: 10.1667/RR1520.1 – volume: 13 start-page: 251 year: 2015 end-page: 259 ident: CR34 article-title: ATM dependent silencing links nucleolar chromatin reorganization to DNA damage recognition publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.08.085 – volume: 26 start-page: 369 year: 2012 end-page: 383 ident: CR3 article-title: Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination publication-title: Genes Dev. doi: 10.1101/gad.176156.111 – volume: 316 start-page: 1160 year: 2007 end-page: 1166 ident: CR54 article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage publication-title: Science doi: 10.1126/science.1140321 – volume: 21 start-page: 103 year: 2014 end-page: 109 ident: CR41 article-title: Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2737 – volume: 125 start-page: 2127 year: 2012 end-page: 2133 ident: CR6 article-title: Chromatin mobility is increased at sites of DNA double-strand breaks publication-title: J. Cell Sci. doi: 10.1242/jcs.089847 – volume: 159 start-page: 108 year: 2014 end-page: 121 ident: CR15 article-title: Interchromosomal homology searches drive directional ALT telomere movement and synapsis publication-title: Cell doi: 10.1016/j.cell.2014.08.030 – volume: 9 start-page: 517 year: 2014 end-page: 528 ident: CR36 article-title: Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.031 – volume: 37-38 start-page: 51 year: 2016 end-page: 64 ident: CR18 article-title: DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2016.03.003 – volume: 147 start-page: 107 year: 2011 ident: BFnsmb3387_CR42 publication-title: Cell doi: 10.1016/j.cell.2011.07.049 – volume: 13 start-page: 13 year: 2014 ident: BFnsmb3387_CR60 publication-title: Cancer Inform. doi: 10.4137/CIN.S13495 – volume: 164 start-page: 644 year: 2016 ident: BFnsmb3387_CR44 publication-title: Cell doi: 10.1016/j.cell.2015.12.039 – volume: 316 start-page: 1160 year: 2007 ident: BFnsmb3387_CR54 publication-title: Science doi: 10.1126/science.1140321 – volume: 46 start-page: 1 year: 2017 ident: BFnsmb3387_CR14 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.12.003 – volume: 5 start-page: 1910 year: 2006 ident: BFnsmb3387_CR12 publication-title: Cell Cycle doi: 10.4161/cc.5.17.3169 – volume: 322 start-page: 597 year: 2008 ident: BFnsmb3387_CR30 publication-title: Science doi: 10.1126/science.1162790 – volume: 5 start-page: 572 year: 2003 ident: BFnsmb3387_CR4 publication-title: Nat. Cell Biol. doi: 10.1038/ncb997 – volume: 19 start-page: 803 year: 2012 ident: BFnsmb3387_CR24 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2314 – volume: 163 start-page: 880 year: 2015 ident: BFnsmb3387_CR39 publication-title: Cell doi: 10.1016/j.cell.2015.09.057 – volume: 13 start-page: 251 year: 2015 ident: BFnsmb3387_CR34 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.08.085 – volume: 3 start-page: e02482 year: 2014 ident: BFnsmb3387_CR23 publication-title: eLife doi: 10.7554/eLife.02482 – volume: 49 start-page: 922 year: 2013 ident: BFnsmb3387_CR55 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.023 – volume: 9 start-page: e1003118 year: 2013 ident: BFnsmb3387_CR58 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1003118 – volume: 9 start-page: 675 year: 2007 ident: BFnsmb3387_CR13 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1591 – volume: 172 start-page: 823 year: 2006 ident: BFnsmb3387_CR11 publication-title: J. Cell Biol. doi: 10.1083/jcb.200510015 – volume: 6 start-page: 107 year: 2015 ident: BFnsmb3387_CR20 publication-title: Nucleus doi: 10.1080/19491034.2015.1010946 – volume: 39 start-page: 6489 year: 2011 ident: BFnsmb3387_CR33 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr230 – volume: 69 start-page: 260 year: 2006 ident: BFnsmb3387_CR61 publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.20294 – volume: 16 start-page: 175 year: 2015 ident: BFnsmb3387_CR56 publication-title: Genome Biol. doi: 10.1186/s13059-015-0753-7 – volume: 21 start-page: 103 year: 2014 ident: BFnsmb3387_CR41 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2737 – volume: 29 start-page: 1151 year: 2015 ident: BFnsmb3387_CR35 publication-title: Genes Dev. doi: 10.1101/gad.260703.115 – volume: 37-38 start-page: 51 year: 2016 ident: BFnsmb3387_CR18 publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2016.03.003 – volume: 109 start-page: 443 year: 2012 ident: BFnsmb3387_CR8 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117849108 – volume: 29 start-page: 1446 year: 2010 ident: BFnsmb3387_CR27 publication-title: EMBO J. doi: 10.1038/emboj.2010.38 – volume: 41 start-page: 169 year: 2007 ident: BFnsmb3387_CR50 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.41.042007.165900 – volume: 23 start-page: 1590 year: 2013 ident: BFnsmb3387_CR47 publication-title: Genome Res. doi: 10.1101/gr.158436.113 – volume: 9 start-page: 517 year: 2014 ident: BFnsmb3387_CR36 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.031 – volume: 528 start-page: 422 year: 2015 ident: BFnsmb3387_CR19 publication-title: Nature doi: 10.1038/nature16142 – volume: 147 start-page: 95 year: 2011 ident: BFnsmb3387_CR43 publication-title: Cell doi: 10.1016/j.cell.2011.07.048 – volume: 26 start-page: 369 year: 2012 ident: BFnsmb3387_CR3 publication-title: Genes Dev. doi: 10.1101/gad.176156.111 – volume: 171 start-page: 405 year: 2009 ident: BFnsmb3387_CR10 publication-title: Radiat. Res. doi: 10.1667/RR1520.1 – volume: 193 start-page: 97 year: 2011 ident: BFnsmb3387_CR48 publication-title: J. Cell Biol. doi: 10.1083/jcb.201011083 – volume: 14 start-page: 510 year: 2012 ident: BFnsmb3387_CR2 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2472 – volume: 122 start-page: 150 year: 2006 ident: BFnsmb3387_CR7 publication-title: Radiat. Prot. Dosimetry doi: 10.1093/rpd/ncl479 – volume: 25 start-page: 582 year: 2015 ident: BFnsmb3387_CR26 publication-title: Genome Res. doi: 10.1101/gr.185272.114 – volume: 14 start-page: 502 year: 2012 ident: BFnsmb3387_CR1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2465 – volume: 4 start-page: 420 year: 2013 ident: BFnsmb3387_CR51 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.07.003 – volume: 303 start-page: 92 year: 2004 ident: BFnsmb3387_CR5 publication-title: Science doi: 10.1126/science.1088845 – volume: 125 start-page: 2127 year: 2012 ident: BFnsmb3387_CR6 publication-title: J. Cell Sci. doi: 10.1242/jcs.089847 – volume: 10 start-page: 361 year: 2013 ident: BFnsmb3387_CR37 publication-title: Nat. Methods doi: 10.1038/nmeth.2408 – volume: 26 start-page: 139 year: 2010 ident: BFnsmb3387_CR59 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 113 start-page: 2258 year: 2016 ident: BFnsmb3387_CR45 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1525564113 – volume: 4 start-page: 1310 year: 2015 ident: BFnsmb3387_CR57 publication-title: F1000Res. doi: 10.12688/f1000research.7334.1 – volume: 9 start-page: e92640 year: 2014 ident: BFnsmb3387_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0092640 – volume: 10 start-page: e0120520 year: 2015 ident: BFnsmb3387_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0120520 – volume: 63 start-page: 293 year: 2016 ident: BFnsmb3387_CR46 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.002 – volume: 7 start-page: 2006 year: 2014 ident: BFnsmb3387_CR22 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.026 – volume: 159 start-page: 108 year: 2014 ident: BFnsmb3387_CR15 publication-title: Cell doi: 10.1016/j.cell.2014.08.030 – volume: 3 start-page: e1134411 year: 2016 ident: BFnsmb3387_CR28 publication-title: Mol. Cell. Oncol. doi: 10.1080/23723556.2015.1134411 – volume: 4 start-page: e07735 year: 2015 ident: BFnsmb3387_CR40 publication-title: eLife doi: 10.7554/eLife.07735 – volume: 13 start-page: 243 year: 2011 ident: BFnsmb3387_CR49 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2201 – volume: 144 start-page: 732 year: 2011 ident: BFnsmb3387_CR32 publication-title: Cell doi: 10.1016/j.cell.2011.02.012 – volume: 341 start-page: 660 year: 2013 ident: BFnsmb3387_CR17 publication-title: Science doi: 10.1126/science.1237150 – volume: 21 start-page: 366 year: 2014 ident: BFnsmb3387_CR21 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2796 – volume: 23 start-page: 1829 year: 2013 ident: BFnsmb3387_CR25 publication-title: Genome Res. doi: 10.1101/gr.157008.113 – volume: 23 start-page: 912 year: 2009 ident: BFnsmb3387_CR31 publication-title: Genes Dev. doi: 10.1101/gad.1782209 – volume: 33 start-page: 335 year: 2009 ident: BFnsmb3387_CR52 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.016 – volume: 3 start-page: e157 year: 2005 ident: BFnsmb3387_CR29 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030157 – volume: 13 start-page: 1598 year: 2015 ident: BFnsmb3387_CR16 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.10.024 – volume: 17 start-page: 1401 year: 2015 ident: BFnsmb3387_CR53 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3258 |
SSID | ssj0025573 |
Score | 2.5997944 |
Snippet | Capture Hi-C analysis reveals that DNA double-strand breaks within transcriptionally active regions of the human genome form clusters that exhibit delayed... The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a... Translocations, which occur when two DNA DSBs are abnormally rejoined, are highly deleterious genome rearrangements favoring cancer initiation and progression.... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 353 |
SubjectTerms | 38/22 45/23 45/77 631/337/1427/2122 631/337/386 Active sites (Biochemistry) Biochemistry Biological Microscopy Cell Line Chromosome Mapping Chromosomes Cluster Analysis Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded - drug effects DNA repair DNA Repair - drug effects DNA Repair - genetics DNA Replication - drug effects DNA Replication - genetics DNA, Intergenic - genetics G1 Phase - drug effects G1 Phase - genetics Genes Genome, Human Genomes Histones - metabolism Humans Life Sciences Membrane Biology Methods Models, Biological Nuclear Proteins - metabolism Observations Properties Protein Domains Protein Structure Recombination, Genetic - drug effects RNA, Small Interfering - metabolism Tamoxifen - analogs & derivatives Tamoxifen - pharmacology Transcription, Genetic - drug effects Translocation Yeasts |
Title | Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes |
URI | https://link.springer.com/article/10.1038/nsmb.3387 https://www.ncbi.nlm.nih.gov/pubmed/28263325 https://www.proquest.com/docview/1884532248 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagFRIvqOVcWioLkODFdHM48T6h7UVBYoUKlfbN8pVVRdZpmwTEv2cmcdruCvGcceJ4xnN4xt8Q8paDC5HpLGMGrA8EKDpjytiI4WWEIk10ah0Gil9n2el5-mXO5-HArQ5llYNO7BS1rQyeke9HQqQcpC8VHy-vGHaNwuxqaKFxn2widBmWdOXz24CL8y7DjF4CA0coGZCFErHv66X-AOFZvmKP1rXyHbO0liftzM_JFnkU_EY67Rm9Te45_5g86DtJ_nlCrj45Xy0d-31hHV0qBF1Y0KqgZeUX7BovEFAsSlemqWnrf7mLsqambBElIVAezabUVq0uHcPTD28pBMvqZ01VQ61agtqxVHXKkS5QPz4l5yfHPw5PWeimwAxEIQ2LcjtWwoE5N7DxdKRyYEPulFAmypUQRQ6RWhYb0JEqTotiMrHjfDIWBnjHTWGSZ2TDV969IJTHWgtMDmtl0iy2QrkoUSk3xuhxVEQj8n5YU2kC1Dh2vChll_JOhMTll7j8I_L6hvSyx9f4JxEyRiJehceCmIVq61p-_n4mp6CAMFPL-Yi8C0RFBR-Daff3C2DKCHG1Qrm7Qgkbyqw-Hvgvw4au5a34jcjzXiZu5gtRa5YkMQx8MwjJnYHrP_Py_6_fIQ9j9By64qBdstFct-4V-D2N3uuEe49sHhzPvp39BVlbAu4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJuUAhYPwcVt9uFd54BQoC0JbSNUWqk349dGVTe7bTdL1T_Fb2RmH6GJELeed-y1x-OZ-Tz2DCFvObgQkY4iZsD6AEDREVPGegwfIyRhoEPrECjuj6PhUfjtmB-vkN_tWxi8VtnqxEpR29zgGfmmJ0TIQfpC8ensnGHVKIyutiU0arHYdVeXANmKj6MtWN93vr-zffhlyJqqAsyANz5jXmx7SjgwawYEUHsqhuHETgllvFgJkcSAWCLfgK5Qfpgk_b7txf2eMDAHbhITQL-3yGoYAJTpkNXP2-PvB3OIx3kV00a_hIHrFbS5jAKxmRVTvQGAMF6wgMt24JohXIrMVgZv5z6513iqdFCL1gOy4rKH5HZdu_LqETn_6rJ86tjliXV0qjDNw4TmCU3zbMIu8MkCxWvwyswKWma_3ElaUJOWmJehodwaD6jNS506huctmaUAz9VpQdWMWjUFRWepqtQxnaBGfkyOboTTT0gnyzP3jFDuay0wHK2VCSPfCuW8QIXcGKN7XuJ1yYeWp9I0yc2xxkYqqyB7ICSyXyL7u-T1nPSszujxTyJcGIkZMjK8gjNRZVHI0Y8DOQCVh7FhzrvkfUOU5PAzGHb9ogGGjEm1FijXFyhhC5vFz-36y0aFFPKvwHfJ01om5uMFnBwFgQ8N37RCcq3h8mTW_t_9K3JneLi_J_dG493n5K6Pfkt1NWmddGYXpXsBXtdMv2xEnZKfN727_gA1DUAB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+mapping+of+long-range+contacts+unveils+clustering+of+DNA+double-strand+breaks+at+damaged+active+genes&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=Aymard%2C+Fran%C3%A7ois&rft.au=Aguirrebengoa%2C+Marion&rft.au=Guillou%2C+Emmanuelle&rft.au=Javierre%2C+Biola+M&rft.date=2017-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1545-9993&rft.eissn=1545-9985&rft.volume=24&rft.issue=4&rft.spage=353&rft_id=info:doi/10.1038%2Fnsmb.3387&rft.externalDocID=4321475963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon |