Enabling malic acid production from corn-stover hydrolysate in Lipomyces starkeyi via metabolic engineering and bioprocess optimization

Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel an...

Full description

Saved in:
Bibliographic Details
Published inMicrobial cell factories Vol. 24; no. 1; pp. 117 - 14
Main Authors Czajka, Jeffrey J., Dai, Ziyu, Radivojević, Tijana, Kim, Joonhoon, Deng, Shuang, Lemmon, Teresa, Swita, Marie, Burnet, Meagan C, Munoz, Nathalie, Gao, Yuqian, Kim, Young-Mo, Hofstad, Beth, Magnuson, Jon K., Garcia Martin, Hector, Burnum-Johnson, Kristin E., Pomraning, Kyle R.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.05.2025
Springer Science + Business Media
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast. Heterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts. Together, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work.
AbstractList Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast.BACKGROUNDLipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast.Heterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts.RESULTSHeterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts.Together, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work.CONCLUSIONSTogether, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work.
Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast. Heterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts. Together, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work.
Abstract Background Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast. Results Heterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts. Conclusions Together, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work.
Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast. Heterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts. Together, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work.
Background Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast. Results Heterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts. Conclusions Together, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work. Keywords: Oleaginous yeast, Lipomyces starkeyi, Malic acid production, Machine learning medium optimization
ArticleNumber 117
Audience Academic
Author Burnum-Johnson, Kristin E.
Garcia Martin, Hector
Deng, Shuang
Swita, Marie
Burnet, Meagan C
Gao, Yuqian
Kim, Joonhoon
Magnuson, Jon K.
Radivojević, Tijana
Kim, Young-Mo
Czajka, Jeffrey J.
Hofstad, Beth
Munoz, Nathalie
Pomraning, Kyle R.
Dai, Ziyu
Lemmon, Teresa
Author_xml – sequence: 1
  givenname: Jeffrey J.
  surname: Czajka
  fullname: Czajka, Jeffrey J.
– sequence: 2
  givenname: Ziyu
  surname: Dai
  fullname: Dai, Ziyu
– sequence: 3
  givenname: Tijana
  surname: Radivojević
  fullname: Radivojević, Tijana
– sequence: 4
  givenname: Joonhoon
  surname: Kim
  fullname: Kim, Joonhoon
– sequence: 5
  givenname: Shuang
  surname: Deng
  fullname: Deng, Shuang
– sequence: 6
  givenname: Teresa
  surname: Lemmon
  fullname: Lemmon, Teresa
– sequence: 7
  givenname: Marie
  surname: Swita
  fullname: Swita, Marie
– sequence: 8
  givenname: Meagan C
  surname: Burnet
  fullname: Burnet, Meagan C
– sequence: 9
  givenname: Nathalie
  surname: Munoz
  fullname: Munoz, Nathalie
– sequence: 10
  givenname: Yuqian
  surname: Gao
  fullname: Gao, Yuqian
– sequence: 11
  givenname: Young-Mo
  surname: Kim
  fullname: Kim, Young-Mo
– sequence: 12
  givenname: Beth
  surname: Hofstad
  fullname: Hofstad, Beth
– sequence: 13
  givenname: Jon K.
  surname: Magnuson
  fullname: Magnuson, Jon K.
– sequence: 14
  givenname: Hector
  surname: Garcia Martin
  fullname: Garcia Martin, Hector
– sequence: 15
  givenname: Kristin E.
  surname: Burnum-Johnson
  fullname: Burnum-Johnson, Kristin E.
– sequence: 16
  givenname: Kyle R.
  surname: Pomraning
  fullname: Pomraning, Kyle R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40394595$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2567792$$D View this record in Osti.gov
BookMark eNptkstu1DAUhiNURC_wAiyQBRtYpPgSO8mqqqoCI42ExGVtnTgnMy6JPdieiuEFeG08Tak6ErJ8kf2d_5eP_tPiyHmHRfGS0XPGGvU-Mt6KqqRc5lnTvD4pTlhVy5I3sj16dD4uTmO8oZTVTS2eFccVFW0lW3lS_Ll20I3WrcgEozUEjO3JJvh-a5L1jgzBT8T44MqY_C0Gst71wY-7CAmJdWRpN37aGYwkJgg_cGfJrQUyYYLO7wXRraxDDHsLcD3prM_yuSASv0l2sr9hb_S8eDrAGPHF_X5WfP9w_e3qU7n8_HFxdbksjZQ0lYwZqqhhSoCkrTFNxREUctkZNHSgXAjVQjuAahltmqETQiqlZEM7Bqw34qxYzLq9hxu9CXaCsNMerL678GGlISRrRtRQy46q3OG6o1W271TTN0h709RdXWGftS5mrc22m7A36FKA8UD08MXZtV75W804bYVsm6zwelbwMVkdjU1o1sY7hyZpLlVdtzxDb-9tgv-5xZj0ZKPBcQSHfhu14FTx_M1KZvTNjK4gf8C6wWdfs8f1ZVPRuqJKskyd_4fKo8fJZnccbL4_KHh3UJCZhL_SCrYx6sXXL4fsq8dNeejGv8hlgM-ACT7GgMMDwqje51rPudY51_ou15qKv3jt6vo
Cites_doi 10.1007/s00253-017-8357-7
10.1128/AEM.02591-07
10.3389/fbioe.2021.765685
10.1073/pnas.232392299
10.1007/s12010-013-0651-y
10.1016/j.bej.2018.05.022
10.1093/femsle/fnv052
10.1093/femsyr/fow038
10.3389/fbioe.2021.603832
10.1038/s41467-020-17910-1
10.1007/s00253-013-5132-2
10.1038/s41592-018-0046-7
10.1016/j.jclepro.2017.12.012
10.1016/j.jbiotec.2017.05.011
10.1016/j.biortech.2010.02.111
10.1016/j.ces.2020.115933
10.1093/nar/gkaa1004
10.1007/s00253-019-10054-3
10.21203/rs.3.rs-5072705/v1
10.1186/s12934-021-01712-1
10.1016/0032-9592(95)00077-1
10.3389/fbioe.2024.1356551
10.3390/fermentation7020050
10.1038/s41467-019-11518-w
10.1016/j.biortech.2021.125290
10.1016/j.biortech.2020.123790
10.3390/microorganisms9081724
10.1186/s13068-019-1510-z
10.1016/j.ygeno.2010.10.006
10.1016/j.ymben.2013.05.002
10.3390/fermentation6040112
10.1038/s41467-020-18008-4
10.1021/acssynbio.8b00130
10.1007/s00253-021-11213-1
10.1007/s11157-015-9372-8
10.1016/j.molcel.2010.08.001
10.1186/s12934-017-0660-6
10.1021/acssuschemeng.5b01242
10.1016/j.procbio.2009.09.016
10.1099/00221287-129-11-3421
10.1039/C5EE03718B
10.1021/acssuschemeng.0c00894
10.1073/pnas.1603941113
10.1016/j.jbiosc.2018.12.002
10.1021/acssuschemeng.1c05441
10.1128/AEM.01855-21
10.1038/s41467-023-37031-9
10.1007/s00294-014-0427-0
10.1016/B978-0-12-802980-0.00009-2
10.1093/bioinformatics/btt656
10.1007/s00253-013-5054-z
10.1021/acssynbio.0c00096
10.1007/s00294-018-0875-z
10.1007/s00449-018-1939-7
10.1016/j.ymben.2019.05.007
10.1186/1475-2859-11-1
10.1016/j.bbagen.2014.01.032
10.1534/genetics.105.043000
10.1111/j.1574-6968.2006.00556.x
10.1128/aem.56.4.1109-1113.1990
10.1042/BJ20041582
ContentType Journal Article
Copyright 2025. Battelle Memorial Institute, and Lawrence Berkely National Laboratory.
COPYRIGHT 2025 BioMed Central Ltd.
Battelle Memorial Institute, and Lawrence Berkely National Laboratory 2025 2025
Copyright_xml – notice: 2025. Battelle Memorial Institute, and Lawrence Berkely National Laboratory.
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: Battelle Memorial Institute, and Lawrence Berkely National Laboratory 2025 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
OTOTI
5PM
DOA
DOI 10.1186/s12934-025-02705-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1475-2859
EndPage 14
ExternalDocumentID oai_doaj_org_article_a75b069347b04c55b68d8e0dc87b74ed
PMC12093598
2567792
A840740651
40394595
10_1186_s12934_025_02705_0
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Biological and Environmental Research
  grantid: DE-AC0205CH11231
– fundername: Office of Energy Efficiency and Renewable Energy
  grantid: DE-NL0030038
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SCM
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
OTOTI
5PM
PUEGO
ID FETCH-LOGICAL-c550t-11c060c163a509cc842ea6e25bcec0f023369a9fa691088fb335666580b1a1dc3
IEDL.DBID DOA
ISSN 1475-2859
IngestDate Wed Aug 27 01:32:16 EDT 2025
Thu Aug 21 18:30:38 EDT 2025
Mon May 26 02:33:29 EDT 2025
Fri Jul 11 17:23:40 EDT 2025
Tue Jun 17 21:56:06 EDT 2025
Tue Jun 10 20:53:39 EDT 2025
Fri Jun 27 05:16:33 EDT 2025
Mon Jul 21 06:07:07 EDT 2025
Tue Jul 01 04:45:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Malic acid production
Machine learning medium optimization
Oleaginous yeast
Lipomyces starkeyi
Language English
License 2025. Battelle Memorial Institute, and Lawrence Berkely National Laboratory.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c550t-11c060c163a509cc842ea6e25bcec0f023369a9fa691088fb335666580b1a1dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
NL0030038; AC0205CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink https://doaj.org/article/a75b069347b04c55b68d8e0dc87b74ed
PMID 40394595
PQID 3206235645
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_a75b069347b04c55b68d8e0dc87b74ed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12093598
osti_scitechconnect_2567792
proquest_miscellaneous_3206235645
gale_infotracmisc_A840740651
gale_infotracacademiconefile_A840740651
gale_incontextgauss_ISR_A840740651
pubmed_primary_40394595
crossref_primary_10_1186_s12934_025_02705_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-21
PublicationDateYYYYMMDD 2025-05-21
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: United Kingdom
– name: London
PublicationTitle Microbial cell factories
PublicationTitleAlternate Microb Cell Fact
PublicationYear 2025
Publisher BioMed Central Ltd
Springer Science + Business Media
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: Springer Science + Business Media
– name: BioMed Central
– name: BMC
References 2705_CR6
M Côrte-Real (2705_CR41) 1990; 56
Y Xu (2705_CR15) 2020; 9
X Chen (2705_CR18) 2013; 19
SB Jilani (2705_CR60) 2021; 87
2705_CR31
M Yang (2705_CR36) 2005; 386
2705_CR1
2705_CR37
J Takano (2705_CR35) 2007; 267
S Wu (2705_CR51) 2010; 101
C Pimentel (2705_CR38) 2014; 1840
M Zelle Rintze (2705_CR20) 2008; 74
J Li (2705_CR16) 2020; 61
Z Dai (2705_CR11) 2017; 101
J Zhang (2705_CR55) 2020; 11
CH Calvey (2705_CR12) 2014; 60
Z Dai (2705_CR5) 2019; 65
H Girstmair (2705_CR46) 2019; 10
KR Pomraning (2705_CR10) 2019; 12
M Singh (2705_CR59) 2015; 14
2705_CR24
C Huang (2705_CR9) 2014; 172
2705_CR25
X Chen (2705_CR27) 2016; 4
H Fu (2705_CR62) 2021; 335
Y Liao (2705_CR32) 2014; 30
M Hassan (2705_CR50) 1996; 31
MH Saier Jr (2705_CR45) 2021; 49
GM Adamo (2705_CR39) 2012; 11
C-G Liu (2705_CR61) 2020; 227
N Di Fidio (2705_CR7) 2020; 315
SS Bhagwat (2705_CR42) 2021; 9
B Grüning (2705_CR33) 2018; 15
X Chen (2705_CR26) 2016; 9
A Naude (2705_CR40) 2018; 137
J Liu (2705_CR58) 2018; 7
IG Morgunov (2705_CR53) 2013; 97
J Liu (2705_CR57) 2017; 253
J Linger (2705_CR48) 2005; 171
MA Islam (2705_CR8) 2018; 172
I Uluisik (2705_CR56) 2011; 97
LN Jayakody (2705_CR49) 2021; 105
2705_CR54
B Alriksson (2705_CR63) 2010; 45
T Zhang (2705_CR21) 2015; 362
T Radivojević (2705_CR23) 2020; 11
J Chopra (2705_CR52) 2018; 41
KR Pomraning (2705_CR30) 2021; 9
Z Wei (2705_CR14) 2021; 9
L Yang (2705_CR22) 2017; 16
R Vinoth Kumar (2705_CR13) 2016
SH Brown (2705_CR17) 2013; 97
AA Sibirny (2705_CR44) 2016; 16
AB Juanssilfero (2705_CR3) 2019; 127
JJ Czajka (2705_CR43) 2024; 12
MT Smith (2705_CR4) 1998
Y Xu (2705_CR19) 2019; 103
JL Mowll (2705_CR34) 1983; 129
F Abeln (2705_CR2) 2021; 20
EM Kuhn (2705_CR28) 2020; 8
A Bilbao (2705_CR29) 2023; 14
S Welker (2705_CR47) 2010; 39
References_xml – volume: 101
  start-page: 6099
  issue: 15
  year: 2017
  ident: 2705_CR11
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-017-8357-7
– start-page: 248
  volume-title: The yeasts (Fourth Edition)
  year: 1998
  ident: 2705_CR4
– volume: 74
  start-page: 2766
  issue: 9
  year: 2008
  ident: 2705_CR20
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02591-07
– volume: 9
  start-page: 765685
  year: 2021
  ident: 2705_CR14
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.765685
– ident: 2705_CR37
  doi: 10.1073/pnas.232392299
– volume: 172
  start-page: 2197
  issue: 4
  year: 2014
  ident: 2705_CR9
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-013-0651-y
– volume: 137
  start-page: 152
  year: 2018
  ident: 2705_CR40
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2018.05.022
– volume: 362
  start-page: fnv052
  issue: 9
  year: 2015
  ident: 2705_CR21
  publication-title: FEMS Microbiol Lett
  doi: 10.1093/femsle/fnv052
– volume: 16
  start-page: fow038
  issue: 4
  year: 2016
  ident: 2705_CR44
  publication-title: FEMS Yeast Res
  doi: 10.1093/femsyr/fow038
– volume: 9
  start-page: 603832
  year: 2021
  ident: 2705_CR30
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.603832
– volume: 11
  start-page: 4880
  issue: 1
  year: 2020
  ident: 2705_CR55
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17910-1
– volume: 97
  start-page: 8903
  issue: 20
  year: 2013
  ident: 2705_CR17
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-013-5132-2
– volume: 15
  start-page: 475
  issue: 7
  year: 2018
  ident: 2705_CR33
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0046-7
– volume: 172
  start-page: 1779
  year: 2018
  ident: 2705_CR8
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.12.012
– volume: 253
  start-page: 1
  year: 2017
  ident: 2705_CR57
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2017.05.011
– volume: 101
  start-page: 6124
  issue: 15
  year: 2010
  ident: 2705_CR51
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.02.111
– volume: 227
  start-page: 115933
  year: 2020
  ident: 2705_CR61
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2020.115933
– volume: 49
  start-page: D461
  issue: D1
  year: 2021
  ident: 2705_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1004
– volume: 103
  start-page: 8105
  issue: 19
  year: 2019
  ident: 2705_CR19
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-019-10054-3
– ident: 2705_CR24
  doi: 10.21203/rs.3.rs-5072705/v1
– volume: 20
  start-page: 221
  issue: 1
  year: 2021
  ident: 2705_CR2
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-021-01712-1
– volume: 31
  start-page: 355
  issue: 4
  year: 1996
  ident: 2705_CR50
  publication-title: Process Biochem
  doi: 10.1016/0032-9592(95)00077-1
– volume: 12
  start-page: 1356551
  year: 2024
  ident: 2705_CR43
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2024.1356551
– ident: 2705_CR1
  doi: 10.3390/fermentation7020050
– volume: 10
  start-page: 3626
  issue: 1
  year: 2019
  ident: 2705_CR46
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11518-w
– volume: 335
  start-page: 125290
  year: 2021
  ident: 2705_CR62
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.125290
– volume: 315
  start-page: 123790
  year: 2020
  ident: 2705_CR7
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.123790
– ident: 2705_CR6
  doi: 10.3390/microorganisms9081724
– volume: 12
  start-page: 162
  issue: 1
  year: 2019
  ident: 2705_CR10
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1510-z
– volume: 97
  start-page: 106
  issue: 2
  year: 2011
  ident: 2705_CR56
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2010.10.006
– volume: 19
  start-page: 10
  year: 2013
  ident: 2705_CR18
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2013.05.002
– ident: 2705_CR54
  doi: 10.3390/fermentation6040112
– volume: 11
  start-page: 4879
  issue: 1
  year: 2020
  ident: 2705_CR23
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18008-4
– volume: 7
  start-page: 2139
  issue: 9
  year: 2018
  ident: 2705_CR58
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.8b00130
– volume: 105
  start-page: 2675
  issue: 7
  year: 2021
  ident: 2705_CR49
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-021-11213-1
– volume: 14
  start-page: 407
  issue: 3
  year: 2015
  ident: 2705_CR59
  publication-title: Reviews Environ Sci Bio/Technology
  doi: 10.1007/s11157-015-9372-8
– volume: 39
  start-page: 507
  issue: 4
  year: 2010
  ident: 2705_CR47
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.08.001
– volume: 16
  start-page: 43
  issue: 1
  year: 2017
  ident: 2705_CR22
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-017-0660-6
– volume: 4
  start-page: 324
  issue: 1
  year: 2016
  ident: 2705_CR27
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.5b01242
– volume: 45
  start-page: 264
  issue: 2
  year: 2010
  ident: 2705_CR63
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2009.09.016
– volume: 129
  start-page: 3421
  issue: 11
  year: 1983
  ident: 2705_CR34
  publication-title: Microbiology
  doi: 10.1099/00221287-129-11-3421
– volume: 9
  start-page: 1237
  issue: 4
  year: 2016
  ident: 2705_CR26
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE03718B
– volume: 8
  start-page: 6734
  issue: 17
  year: 2020
  ident: 2705_CR28
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c00894
– ident: 2705_CR31
  doi: 10.1073/pnas.1603941113
– volume: 127
  start-page: 726
  issue: 6
  year: 2019
  ident: 2705_CR3
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2018.12.002
– volume: 9
  start-page: 16659
  issue: 49
  year: 2021
  ident: 2705_CR42
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.1c05441
– volume: 87
  start-page: e0185521
  issue: 23
  year: 2021
  ident: 2705_CR60
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01855-21
– volume: 14
  start-page: 2461
  issue: 1
  year: 2023
  ident: 2705_CR29
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-37031-9
– volume: 60
  start-page: 223
  issue: 3
  year: 2014
  ident: 2705_CR12
  publication-title: Curr Genet
  doi: 10.1007/s00294-014-0427-0
– start-page: 159
  volume-title: Platform chemical biorefinery
  year: 2016
  ident: 2705_CR13
  doi: 10.1016/B978-0-12-802980-0.00009-2
– volume: 30
  start-page: 923
  issue: 7
  year: 2014
  ident: 2705_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 97
  start-page: 7387
  issue: 16
  year: 2013
  ident: 2705_CR53
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-013-5054-z
– volume: 9
  start-page: 1418
  issue: 6
  year: 2020
  ident: 2705_CR15
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.0c00096
– volume: 65
  start-page: 269
  issue: 1
  year: 2019
  ident: 2705_CR5
  publication-title: Curr Genet
  doi: 10.1007/s00294-018-0875-z
– ident: 2705_CR25
– volume: 41
  start-page: 1103
  issue: 8
  year: 2018
  ident: 2705_CR52
  publication-title: Bioprocess Biosyst Eng
  doi: 10.1007/s00449-018-1939-7
– volume: 61
  start-page: 416
  year: 2020
  ident: 2705_CR16
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2019.05.007
– volume: 11
  start-page: 1
  issue: 1
  year: 2012
  ident: 2705_CR39
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-11-1
– volume: 1840
  start-page: 1977
  issue: 6
  year: 2014
  ident: 2705_CR38
  publication-title: Gen Subj
  doi: 10.1016/j.bbagen.2014.01.032
– volume: 171
  start-page: 1513
  issue: 4
  year: 2005
  ident: 2705_CR48
  publication-title: Genetics
  doi: 10.1534/genetics.105.043000
– volume: 267
  start-page: 230
  issue: 2
  year: 2007
  ident: 2705_CR35
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2006.00556.x
– volume: 56
  start-page: 1109
  issue: 4
  year: 1990
  ident: 2705_CR41
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.56.4.1109-1113.1990
– volume: 386
  start-page: 479
  issue: Pt 3
  year: 2005
  ident: 2705_CR36
  publication-title: Biochem J
  doi: 10.1042/BJ20041582
SSID ssj0017873
Score 2.4134028
Snippet Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste...
Background Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic...
Abstract Background Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex...
SourceID doaj
pubmedcentral
osti
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 117
SubjectTerms Amino acids
Aspergillus oryzae - genetics
Bioreactors
Corn
Engineers
Fermentation
Genetic engineering
Genetically modified organisms
Hydrolysis
Lipids
Lipomyces - genetics
Lipomyces - metabolism
Lipomyces starkeyi
Machine learning
Machine learning medium optimization
Malate Dehydrogenase - genetics
Malate Dehydrogenase - metabolism
Malates - metabolism
Malic acid
Malic acid production
Metabolic engineering
Metabolic Engineering - methods
Methods
Oleaginous yeast
Physiological aspects
Pyruvate Carboxylase - genetics
Pyruvate Carboxylase - metabolism
Yeast fungi
Zea mays - chemistry
Zea mays - metabolism
Title Enabling malic acid production from corn-stover hydrolysate in Lipomyces starkeyi via metabolic engineering and bioprocess optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/40394595
https://www.proquest.com/docview/3206235645
https://www.osti.gov/biblio/2567792
https://pubmed.ncbi.nlm.nih.gov/PMC12093598
https://doaj.org/article/a75b069347b04c55b68d8e0dc87b74ed
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagXOCAeJPdpTIIiQOK1okdxzl2UVdLhVZol5V6s_wqG4kmVR8r9Rfwt5lJ0tIgJC6cWtVuk3i-8Xyjznwm5D04mSkySFNFKGQsculjlICOLSsUhDPnrWnUPi_lxY2YTLPpwVFfWBPWygO3C3dq8swyWXCRWyZcllmpvArMO5XbXASPuy_EvF0y1f1_ADDkuxYZJU9XGNVEjEe3QhqG5Wq9MNSo9e_35EENzvU3wvln3eRBIDp_Qh53DJKO2jt_Su6F6hl5dKAr-Jz8HGNHFLylc6DZjhpXerpotV3BDhR7SiiknVUM1A-wTG-3fln_2K6AeNKyol_KRT3fwg5CgTsuwc1LelcaOg9rgAz-YPh9NWoqT21ZL9qOA1rDHjTvmjtfkJvz8bdPF3F34kIMK8vWcZI4JpkDjmaASDinRBqMDGlmXXBsBvGdy8IUMyOBZSg1s5wDHQQSw2xiEu_4SzKo6iq8JtQpzpNEKmFZEFmAqKd4mHmgA6kHzpZE5OPOAHrRCmvoJiFRUrfm0mAu3ZhLs4icoY32M1EUu_kAoKI7qOh_QSUi79DCGmUvKqyr-W42q5X-fH2lR5Dn5sBtMrivD92kWQ1GdqZrU4CnQqWs3syT3kzwS9cbPkYgaWAyKMfrsG7JrTVQzDwv0oi83eFL4xex1K0K9WalecqAkqLIT0RetXjbP7ZgvBBZASOqh8TeuvRHqvK2EQ3HHmlUazz6Hyt5TB6mjTNlcZqckMF6uQlvgJyt7ZDcz6f5kDwYjSbXE3g9G19-vRo23vkLTio7lA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+malic+acid+production+from+corn-stover+hydrolysate+in+Lipomyces+starkeyi+via+metabolic+engineering+and+bioprocess+optimization&rft.jtitle=Microbial+cell+factories&rft.au=Czajka%2C+Jeffrey+J&rft.au=Dai%2C+Ziyu&rft.au=Radivojevi%C4%87%2C+Tijana&rft.au=Kim%2C+Joonhoon&rft.date=2025-05-21&rft.pub=BioMed+Central+Ltd&rft.issn=1475-2859&rft.eissn=1475-2859&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12934-025-02705-0&rft.externalDocID=A840740651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon