Second-generation sequencing for gene discovery in the Brassicaceae
Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involv...
Saved in:
Published in | Plant biotechnology journal Vol. 10; no. 6; pp. 750 - 759 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2012
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen‐fixing rhizobia bacteria. This study applied second‐generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution. |
---|---|
AbstractList | Summary
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen‐fixing rhizobia bacteria. This study applied second‐generation sequencing (SGS) and analysis tools to discover that two such genes,
NSP1
(
Nodulation Signalling Pathway 1
) and
NSP2
, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that
Brassica NSP
genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution. The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution. Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen‐fixing rhizobia bacteria. This study applied second‐generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution. Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant-microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution. |
Author | Hayward, Alice Delay, Christina McKenzie, Megan Stiller, Jiri Edwards, David Manoli, Sahana Vighnesh, Guru Samian, Mohd Rafizan Batley, Jacqueline |
Author_xml | – sequence: 1 givenname: Alice surname: Hayward fullname: Hayward, Alice organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 2 givenname: Guru surname: Vighnesh fullname: Vighnesh, Guru organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 3 givenname: Christina surname: Delay fullname: Delay, Christina organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 4 givenname: Mohd Rafizan surname: Samian fullname: Samian, Mohd Rafizan organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 5 givenname: Sahana surname: Manoli fullname: Manoli, Sahana organization: Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 6 givenname: Jiri surname: Stiller fullname: Stiller, Jiri organization: Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 7 givenname: Megan surname: McKenzie fullname: McKenzie, Megan organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 8 givenname: David surname: Edwards fullname: Edwards, David organization: Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia – sequence: 9 givenname: Jacqueline surname: Batley fullname: Batley, Jacqueline email: j.batley@uq.edu.au organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22765874$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1URB_wF9BIbNjMYF-_xhIbGkFbKeKhgpDYWB7PnTIhsYud0OTf4yElCzbFG1_pfufca59TchRiQEIqRhtWzqtFw4TStVYSGqAMGko1M832ETk5NI4OtRDH5DTnBaXAlFRPyDFAIVotTsjsGn0MfX2DAZNbjzFUGX9uMPgx3FRDTNXUqfox-_gL064aQ7X-jtV5cjmP3nl0-JQ8Htwy47P7-4x8eff28-yynn-4uJq9mddeSmpqztzQMjBC065jMEjTowKg2HFltEOpnOqNNoxS7hXrBuTA0bO240KgHvgZebn3vU2xrJjXdlXWwuXSBYybbJnSTEIZZR5GBTcAQrX6YZSCoEZyIwr64h90ETcplDdbTlX5aA2MFqrdUz7FnBMO9jaNK5d2xcpO8dmFnZKxU0p2is_-ic9ui_T5_YBNt8L-IPybVwFe74G7cYm7_za2H8-vSlHk9V4-5jVuD3KXfliluZb26_sLO2fXCj7xmf3GfwORYrZc |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2022_104581 crossref_primary_10_1007_s00122_012_1964_x crossref_primary_10_1139_cjb_2014_0039 crossref_primary_10_2139_ssrn_3985893 crossref_primary_10_1016_j_funbio_2013_02_001 crossref_primary_10_1007_s00122_015_2488_y crossref_primary_10_1111_1755_0998_12078 crossref_primary_10_1139_gen_2021_0021 crossref_primary_10_1007_s12041_021_01285_3 crossref_primary_10_1007_s10142_013_0324_5 crossref_primary_10_1371_journal_pone_0081992 |
Cites_doi | 10.1038/nature07272 10.1007/s13199-009-0009-y 10.1038/nature07271 10.1073/pnas.1112862108 10.1186/1746-4811-6-19 10.1111/j.1574-6941.2006.00060.x 10.1105/tpc.111.089771 10.1111/j.1744-7909.2010.00899.x 10.1104/pp.110.166645 10.1111/j.1467-7652.2009.00459.x 10.1080/10635150390235520 10.1111/j.1467-7652.2009.00406.x 10.1105/tpc.108.064501 10.1038/nature09622 10.1093/pcp/pcq124 10.1146/annurev.py.06.090168.002145 10.1007/s00572-005-0033-6 10.1634/stemcells.21-4-459 10.1111/j.1365-313X.2010.04324.x 10.1534/genetics.105.051185 10.1007/s00425-004-1203-z 10.1074/jbc.M500447200 10.1093/jxb/erm286 10.1080/00275514.1998.12026983 10.1105/tpc.107.056754 10.1126/science.1110951 10.1007/s00122-006-0411-2 10.1016/j.jplph.2010.02.013 10.1038/ng.919 10.1093/nar/gkm238 10.1111/j.1365-313X.2007.03028.x 10.1016/j.ab.2010.05.032 10.1104/pp.106.089508 10.1073/pnas.0508882103 10.1038/nprot.2009.86 10.1104/pp.123.2.439 10.1093/jxb/err291 10.1139/b87-051 10.1073/pnas.0705147104 10.1007/BF02670897 10.1104/pp.109.137646 10.1126/science.289.5486.1920 10.1139/G10-057 |
ContentType | Journal Article |
Copyright | 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. 2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd – notice: 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. – notice: 2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 M7N RC3 7U5 F28 L7M |
DOI | 10.1111/j.1467-7652.2012.00719.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Genetics Abstracts Solid State and Superconductivity Abstracts ANTE: Abstracts in New Technology & Engineering Advanced Technologies Database with Aerospace |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Genetics Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Engineering Research Database MEDLINE - Academic MEDLINE Solid State and Superconductivity Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1467-7652 |
EndPage | 759 |
ExternalDocumentID | 10_1111_j_1467_7652_2012_00719_x 22765874 PBI719 ark_67375_WNG_L1S62Q3C_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACIWK ACPRK ACSCC ACXQS ADBBV ADIZJ ADKYN ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BSCLL BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 M7N RC3 7U5 F28 L7M |
ID | FETCH-LOGICAL-c5509-31af8129470bb12f59de6220eb3697ae56a6d9791003c61bfe323ec18b344e7f3 |
IEDL.DBID | 24P |
ISSN | 1467-7644 |
IngestDate | Fri Aug 16 21:01:54 EDT 2024 Fri Aug 16 07:14:59 EDT 2024 Fri Aug 16 01:06:09 EDT 2024 Thu Oct 10 16:53:35 EDT 2024 Thu Sep 26 17:17:48 EDT 2024 Sat Sep 28 07:54:35 EDT 2024 Sat Aug 24 00:51:12 EDT 2024 Wed Oct 30 10:02:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5509-31af8129470bb12f59de6220eb3697ae56a6d9791003c61bfe323ec18b344e7f3 |
Notes | ArticleID:PBI719 istex:00BCBDB0B643B911AD9D900C9590F1F132C3A0E0 ark:/67375/WNG-L1S62Q3C-Z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1467-7652.2012.00719.x |
PMID | 22765874 |
PQID | 3067647210 |
PQPubID | 1096352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1671525099 proquest_miscellaneous_1439224687 proquest_miscellaneous_1024095394 proquest_journals_3067647210 crossref_primary_10_1111_j_1467_7652_2012_00719_x pubmed_primary_22765874 wiley_primary_10_1111_j_1467_7652_2012_00719_x_PBI719 istex_primary_ark_67375_WNG_L1S62Q3C_Z |
PublicationCentury | 2000 |
PublicationDate | 2012-08 August 2012 2012-Aug 2012-08-00 20120801 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Southampton |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. (2006) Plant cells recognize chitin fragments for defense signalling through a plasma membrane receptor. Proc. Natl Acad. Sci. USA, 103, 11086-11091. Redecker, D., Kodner, R. and Graham, L.E. (2000) Glomalean fungi from the Ordovician. Science, 289, 1920-1921. Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J. and Yamaguchi, S. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195-200. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. Gerdemann, J.W. (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol. 6, 397-418. Tester, M., Smith, S.E. and Smith, F.A. (1987) The phenomenon of "nonmycorrhizal" plants. Can. J. Bot. 65, 419-431. Lopez-Gomez, M., Sandal, N., Stougaard, J. and Boller, T. (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63, 393-401. Shahollari, B., Vadassery, J., Varma, A. and Oelmüller, R. (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J. 50, 1-13. Duran, C., Eales, D., Marshall, D., Imelfort, M., Stiller, J., Berkman, P., Clark, T., McKenzie, M., Appleby, N., Batley, J., Basford, K. and Edwards, D. (2010) Future tools for association mapping in crop plants. Genome, 53, 1017-1023. Oelmüller, R., Sherameti, I., Tripathi, S. and Varma, A. (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 1-17. Kumar, P., Henikoff, S. and Ng, P.C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073-1081. Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M.H., Lin, Y.H., Reid, D.E. and Gresshoff, P.M. (2010) Molecular analysis of legume nodule development and autoregulation. J. Integr Plant Biol. 52, 61-76. Hayward, A., Stirnberg, P., Beveridge, C. and Leyser, O. (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151, 400-412. Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.H., Bancroft, I., Cheng, F., Huang, S., Li, X., Hua, W., Wang, J., Wang, X., Freeling, M., Pires, J.C., Paterson, A.H., Chalhoub, B., Wang, B., Hayward, A., Sharpe, A.G., Park, B.S., Weisshaar, B., Liu, B., Li, B., Liu, B., Tong, C., Song, C., Duran, C., Peng, C., Geng, C., Koh, C., Lin, C., Edwards, D., Mu, D., Shen, D., Soumpourou, E., Li, F., Fraser, F., Conant, G., Lassalle, G., King, G.J., Bonnema, G., Tang, H., Wang, H., Belcram, H., Zhou, H., Hirakawa, H., Abe, H., Guo, H., Wang, H., Jin, H., Parkin, I.A., Batley, J., Kim, J.S., Just, J., Li, J., Xu, J., Deng, J., Kim, J.A., Li, J., Yu, J., Meng, J., Wang, J., Min, J., Poulain, J., Wang, J., Hatakeyama, K., Wu, K., Wang, L., Fang, L., Trick, M., Links, M.G., Zhao, M., Jin, M., Ramchiary, N., Drou, N., Berkman, P.J., Cai, Q., Huang, Q., Li, R., Tabata, S., Cheng, S., Zhang, S., Zhang, S., Huang, S., Sato, S., Sun, S., Kwon, S.J., Choi, S.R., Lee, T.H., Fan, W., Zhao, X., Tan, X., Xu, X., Wang, Y., Qiu, Y., Yin, Y., Li, Y., Du, Y., Liao, Y., Lim, Y., Narusaka, Y., Wang, Y., Wang, Z., Li, Z., Wang, Z., Xiong, Z., Zhang, Z. and Brassica rapa Genome Sequencing Project Consortium (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039. Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.-J., Cullimore, J.V., Jehle, A.K., Götz, F., Kulik, A., Molinaro, A., Lipka, V., Gust, A.A. and Nürnberger, T. (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl Acad. Sci. USA, 108, 19824-19829. Yokota, K., Soyano, T., Kouchi, H. and Hayashi, M. (2010) Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice. Plant Cell Physiol. 51, 1436-1442. Chen, X., Truksa, M., Shah, S. and Weselake, R.J. (2010) A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal. Biochem. 405, 138-140. Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. and Oelmüller, R. (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 280, 26241-26247. Sun, C., Johnson, J.M., Cai, D., Sherameti, I., Oelmüller, R. and Lou, B. (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Plant Physiol. 167, 1009-1017. Fulton, T.M., Chunwongse, J. and Tanksley, S.D. (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13, 207-209. McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol, 123, 439-442. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. USA, 104, 19613-19618. Wang, B. and Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299-363. Hirsch, S., Kim, J., Muñoz, A., Heckmann, A.B., Downie, J.A. and Oldroyd, G.E.D. (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 21, 545-557. Zhu, H., Riely, B.K., Burns, N.J. and Ané, J.M. (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics, 172, 2491-2499. Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H. and Shibuya, N. (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64, 204-214. Wan, J., Zhang, X.C., Neece, D., Ramonell, K.M., Clough, S., Kim, S.Y., Stacey, M.G. and Stacey, G. (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 20, 471-481. Guindon, S. and Gascuel, O. (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704. Marshall, D.J., Hayward, A., Eales, D., Imelfort, M., Stiller, J., Berkman, P.J., Clark, T., McKenzie, M., Lai, K., Duran, C., Batley, J. and Edwards, D. (2010) Targeted identification of genomic regions using TAGdb. Plant Methods, doi:10.1186/1746-4811-6-19. Sprent, J.I. (2008) 60 Ma of legume nodulation. What's new? What's changing? J. Exp. Bot. 59, 1081-1084. Kaló, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., Kiss, G.B., Downie, J.A. and Oldroyd, G.E. (2005) Nodulation signaling in legumes requires NSP2, amember of the GRAS family of transcriptional regulators. Science, 308, 1786-1789. Bromberg, Y. and Rost, B. (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 35, 3823-3835. Ramakers, C., Ruijter, J.M., Deprez, R.H. and Moorman, A.F. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62-66. Heckmann, A.B., Lombardo, F., Miwa, H., Perry, J.A., Bunnewell, S., Parniske, M., Wang, T.L. and Downie, J.A. (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 142, 1739-1750. Liu, W., Kohlen, W., Lillo, A., Op den Camp, R., Ivanov, S., Hartog, M., Limpens, E., Jamil, M., Smaczniak, C., Kaufmann, K., Yang, W.C., Hooiveld, G.J., Charnikhova, T., Bouwmeester, H.J., Bisseling, T. and Geurts, R. (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 23, 3853-3865. Verma, S. and Varma, A. (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90, 896-903. Edwards, D. and Batley, J. (2010) Plant genome sequencing: applications for crop improvement. Plant Biotech. J. 8, 2-9. Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G. and Dénarié, J. (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469, 58-63. Qiu, D., Morgan, C., Shi, J., Long, Y., Liu, J., Li, R., Zhuang, X., Wang, Y., Tan, X., Dietrich, E., Weihmann, T., Everett, C., Vanstraelen, S., Beckett, P., Fraser, F., Trick, M., Barnes, S., Wilmer, J., Schmidt, R., Li, J., Li, D., Meng, J. and Bancroft, I. (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor. Appl. Genet. 114, 67-80. Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., Cardoso, C., Lopez-Raez, J.A., Matusova, R., Bours, R., Verstappen, F. and Bouwmeester, H. (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 155, 721-734. Bolle, C. (2004) The role of GRAS proteins in plant sign 2007; 104 2010; 53 2003; 339 2009; 21 2010; 405 2011 2010 1995; 13 2006; 16 2010; 167 1968; 6 2008; 59 2009; 151 2007; 50 2006; 172 2006; 2 2003; 52 2007; 35 2009; 49 2011; 155 2006; 114 2004; 32 2005; 280 2010; 64 1987; 65 2011; 108 2011; 469 2000; 289 1998; 90 2006; 142 2005; 308 2011; 43 2009; 7 2011; 23 2008; 455 2009; 4 2000; 123 2008; 20 2004; 218 2010; 52 2010; 51 2006; 103 2012; 63 2010; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Snowdon R. (e_1_2_6_36_1) 2006 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 Hayward A. (e_1_2_6_14_1) 2011 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – year: 2011 – volume: 21 start-page: 545 year: 2009 end-page: 557 article-title: GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in publication-title: Plant Cell – volume: 405 start-page: 138 year: 2010 end-page: 140 article-title: A survey of quantitative real‐time polymerase chain reaction internal reference genes for expression studies in publication-title: Anal. Biochem. – volume: 16 start-page: 299 year: 2006 end-page: 363 article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants publication-title: Mycorrhiza – volume: 49 start-page: 1 year: 2009 end-page: 17 article-title: , a cultivable root endophyte with multiple biotechnological applications publication-title: Symbiosis – volume: 172 start-page: 2491 year: 2006 end-page: 2499 article-title: Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses publication-title: Genetics – year: 2010 article-title: Targeted identification of genomic regions using TAGdb publication-title: Plant Methods – start-page: 1 year: 2011 end-page: 13 – volume: 53 start-page: 1017 year: 2010 end-page: 1023 article-title: Future tools for association mapping in crop plants publication-title: Genome – volume: 64 start-page: 204 year: 2010 end-page: 214 article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice publication-title: Plant J. – volume: 289 start-page: 1920 year: 2000 end-page: 1921 article-title: Glomalean fungi from the Ordovician publication-title: Science – volume: 114 start-page: 67 year: 2006 end-page: 80 article-title: A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content publication-title: Theor. Appl. Genet. – volume: 63 start-page: 393 year: 2012 end-page: 401 article-title: Interplay of flg22‐induced defence responses and nodulation in publication-title: J. Exp. Bot. – volume: 90 start-page: 896 year: 1998 end-page: 903 article-title: , gen. et sp. nov., a new root‐colonizing fungus publication-title: Mycologia – volume: 8 start-page: 2 year: 2010 end-page: 9 article-title: Plant genome sequencing: applications for crop improvement publication-title: Plant Biotech. J. – volume: 108 start-page: 19824 year: 2011 end-page: 19829 article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection publication-title: Proc. Natl Acad. Sci. USA – volume: 52 start-page: 696 year: 2003 end-page: 704 article-title: A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood publication-title: Syst. Biol. – volume: 151 start-page: 400 year: 2009 end-page: 412 article-title: Interactions between auxin and strigolactone in shoot branching control publication-title: Plant Physiol. – volume: 59 start-page: 1081 year: 2008 end-page: 1084 article-title: 60 Ma of legume nodulation. What’s new? What’s changing? publication-title: J. Exp. Bot. – volume: 6 start-page: 397 year: 1968 end-page: 418 article-title: Vesicular‐arbuscular mycorrhiza and plant growth publication-title: Annu. Rev. Phytopathol. – volume: 51 start-page: 1436 year: 2010 end-page: 1442 article-title: Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non‐legume, rice publication-title: Plant Cell Physiol. – volume: 35 start-page: 3823 year: 2007 end-page: 3835 article-title: SNAP: predict effect of non‐synonymous polymorphisms on function publication-title: Nucleic Acids Res. – volume: 167 start-page: 1009 year: 2010 end-page: 1017 article-title: confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought‐related genes and the plastid‐localized CAS protein publication-title: Plant Physiol. – volume: 308 start-page: 1786 year: 2005 end-page: 1789 article-title: Nodulation signaling in legumes requires NSP2, amember of the GRAS family of transcriptional regulators publication-title: Science – volume: 455 start-page: 195 year: 2008 end-page: 200 article-title: Inhibition of shoot branching by new terpenoid plant hormones publication-title: Nature – volume: 50 start-page: 1 year: 2007 end-page: 13 article-title: A leucine‐rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus publication-title: Plant J. – volume: 4 start-page: 1073 year: 2009 end-page: 1081 article-title: Predicting the effects of coding non‐synonymous variants on protein function using the SIFT algorithm publication-title: Nat. Protoc. – volume: 455 start-page: 189 year: 2008 end-page: 194 article-title: Strigolactone inhibition of shoot branching publication-title: Nature – volume: 123 start-page: 439 year: 2000 end-page: 442 article-title: Targeting induced local lesions IN genomes (TILLING) for plant functional genomics publication-title: Plant Physiol – volume: 7 start-page: 312 year: 2009 end-page: 317 article-title: Discovering genetic polymorphisms in next generation sequencing data publication-title: Plant Biotechnol. J. – volume: 52 start-page: 61 year: 2010 end-page: 76 article-title: Molecular analysis of legume nodule development and autoregulation publication-title: J. Integr Plant Biol. – volume: 65 start-page: 419 year: 1987 end-page: 431 article-title: The phenomenon of “nonmycorrhizal” plants publication-title: Can. J. Bot. – volume: 103 start-page: 11086 year: 2006 end-page: 11091 article-title: Plant cells recognize chitin fragments for defense signalling through a plasma membrane receptor publication-title: Proc. Natl Acad. Sci. USA – volume: 339 start-page: 62 year: 2003 end-page: 66 article-title: Assumption‐free analysis of quantitative real‐time polymerase chain reaction (PCR) data publication-title: Neurosci. Lett. – volume: 13 start-page: 207 year: 1995 end-page: 209 article-title: Microprep protocol for extraction of DNA from tomato and other herbaceous plants publication-title: Plant Mol. Biol. Rep – volume: 469 start-page: 58 year: 2011 end-page: 63 article-title: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza publication-title: Nature – volume: 43 start-page: 1035 year: 2011 end-page: 1039 article-title: The genome of the mesopolyploid crop species publication-title: Nat. Genet – volume: 104 start-page: 19613 year: 2007 end-page: 19618 article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis publication-title: Proc. Natl Acad. Sci. USA – volume: 23 start-page: 3853 year: 2011 end-page: 3865 article-title: Strigolactone biosynthesis in and rice requires the symbiotic GRAS‐type transcription factors NSP1 and NSP2 publication-title: Plant Cell – volume: 20 start-page: 471 year: 2008 end-page: 481 article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis publication-title: Plant Cell – volume: 155 start-page: 721 year: 2011 end-page: 734 article-title: Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? publication-title: Plant Physiol. – volume: 280 start-page: 26241 year: 2005 end-page: 26247 article-title: The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch‐degrading enzyme glucan‐water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters publication-title: J. Biol. Chem. – volume: 32 start-page: 1792 year: 2004 end-page: 1797 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. – volume: 142 start-page: 1739 year: 2006 end-page: 1750 article-title: nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non‐legume publication-title: Plant Physiol. – volume: 2 start-page: 55 year: 2006 end-page: 114 – volume: 218 start-page: 683 year: 2004 end-page: 692 article-title: The role of GRAS proteins in plant signal transduction and development publication-title: Planta – ident: e_1_2_6_40_1 doi: 10.1038/nature07272 – ident: e_1_2_6_28_1 doi: 10.1007/s13199-009-0009-y – ident: e_1_2_6_12_1 doi: 10.1038/nature07271 – ident: e_1_2_6_45_1 doi: 10.1073/pnas.1112862108 – ident: e_1_2_6_25_1 doi: 10.1186/1746-4811-6-19 – ident: e_1_2_6_7_1 doi: 10.1111/j.1574-6941.2006.00060.x – ident: e_1_2_6_22_1 doi: 10.1105/tpc.111.089771 – ident: e_1_2_6_9_1 doi: 10.1111/j.1744-7909.2010.00899.x – ident: e_1_2_6_32_1 doi: 10.1104/pp.110.166645 – ident: e_1_2_6_8_1 doi: 10.1111/j.1467-7652.2009.00459.x – ident: e_1_2_6_13_1 doi: 10.1080/10635150390235520 – ident: e_1_2_6_18_1 doi: 10.1111/j.1467-7652.2009.00406.x – start-page: 1 volume-title: Oilseed Brassicas year: 2011 ident: e_1_2_6_14_1 contributor: fullname: Hayward A. – ident: e_1_2_6_17_1 doi: 10.1105/tpc.108.064501 – ident: e_1_2_6_24_1 doi: 10.1038/nature09622 – ident: e_1_2_6_46_1 doi: 10.1093/pcp/pcq124 – ident: e_1_2_6_11_1 doi: 10.1146/annurev.py.06.090168.002145 – ident: e_1_2_6_43_1 doi: 10.1007/s00572-005-0033-6 – ident: e_1_2_6_30_1 doi: 10.1634/stemcells.21-4-459 – ident: e_1_2_6_35_1 doi: 10.1111/j.1365-313X.2010.04324.x – ident: e_1_2_6_47_1 doi: 10.1534/genetics.105.051185 – ident: e_1_2_6_2_1 doi: 10.1007/s00425-004-1203-z – ident: e_1_2_6_5_1 – ident: e_1_2_6_34_1 doi: 10.1074/jbc.M500447200 – ident: e_1_2_6_37_1 doi: 10.1093/jxb/erm286 – ident: e_1_2_6_41_1 doi: 10.1080/00275514.1998.12026983 – ident: e_1_2_6_42_1 doi: 10.1105/tpc.107.056754 – ident: e_1_2_6_20_1 doi: 10.1126/science.1110951 – ident: e_1_2_6_29_1 doi: 10.1007/s00122-006-0411-2 – ident: e_1_2_6_38_1 doi: 10.1016/j.jplph.2010.02.013 – ident: e_1_2_6_44_1 doi: 10.1038/ng.919 – ident: e_1_2_6_3_1 doi: 10.1093/nar/gkm238 – ident: e_1_2_6_33_1 doi: 10.1111/j.1365-313X.2007.03028.x – ident: e_1_2_6_4_1 doi: 10.1016/j.ab.2010.05.032 – ident: e_1_2_6_16_1 doi: 10.1104/pp.106.089508 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.0508882103 – ident: e_1_2_6_21_1 doi: 10.1038/nprot.2009.86 – ident: e_1_2_6_26_1 doi: 10.1104/pp.123.2.439 – ident: e_1_2_6_23_1 doi: 10.1093/jxb/err291 – ident: e_1_2_6_39_1 doi: 10.1139/b87-051 – ident: e_1_2_6_27_1 doi: 10.1073/pnas.0705147104 – start-page: 55 volume-title: Genome Mapping and Molecular Breeding in Plants year: 2006 ident: e_1_2_6_36_1 contributor: fullname: Snowdon R. – ident: e_1_2_6_10_1 doi: 10.1007/BF02670897 – ident: e_1_2_6_15_1 doi: 10.1104/pp.109.137646 – ident: e_1_2_6_31_1 doi: 10.1126/science.289.5486.1920 – ident: e_1_2_6_6_1 doi: 10.1139/G10-057 |
SSID | ssj0021656 |
Score | 2.1438534 |
Snippet | Summary
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few... The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that... Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 750 |
SubjectTerms | Bacteria Brasses Brassica Brassica rapa - genetics Brassicaceae Brassicaceae - genetics Crops evolution Fabaceae - genetics Fungi Gene Expression Profiling Gene sequencing Genes Genes, Plant Genetics Genomes Genomics homolog Kinases Legumes Nitrogen fixation Nitrogenation Nodulation NSP Oilseeds Pathways Phylogeny Plants (organisms) Polymerase chain reaction Polyploidy Proteins Rape plants second-generation sequencing Seeds Sequence Alignment Sequence Analysis, DNA Sequence Homology, Nucleic Acid Signal transduction Soil improvement Soil microorganisms Symbiosis TAGdb |
Title | Second-generation sequencing for gene discovery in the Brassicaceae |
URI | https://api.istex.fr/ark:/67375/WNG-L1S62Q3C-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-7652.2012.00719.x https://www.ncbi.nlm.nih.gov/pubmed/22765874 https://www.proquest.com/docview/3067647210 https://search.proquest.com/docview/1024095394 https://search.proquest.com/docview/1439224687 https://search.proquest.com/docview/1671525099 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTt0wELUq2JQFAkrb8JIrIXapYsePeHl5g1oEpQjUjWXHDqoqBXTvRYIdn8A38iXMJCHSFQhVbKIozuQx9njOJDPHhKwXpQlMVD710oVUBO9Sz4qYBiF9pkodZFOV9vNI7Z-Jwwt50eU_YS1Myw_Rf3BDy2jmazRw50cvjVwrifVU-EkPvKX5DnhyGglkkEefi-M--EKWmbbSCGWEmMzqefVKE65qGrV--xoOnYS1jV_anSOzHaCkg3YEzJMPsV4gM4PLYUeqET-RnVOMesPj_cNlQzKNfUG7HGrwXBRwK8UWiiW6mNJ5R__WFJAh3RwCtoZuLKOLi-Rsd-f31n7aLZ-QlhB2GJhdXQXu2widec94JU2IivMMwmdltItSORWMBryQ5aVivoo5z2PJCp8LEXWVfyZT9VUdvxKaobRGzxU5dKwqHHNFGSC4ZdrJgiWEPWvKXrcsGXYiutAWtWtRu7bRrr1NyEaj0l7ADf9hlpmW9vxoz_5gp4qf5Fv2T0JWnnVuOwMbWYx0kPmeZQn51jeDaeD_DlfHq5sRPAHAFSNzI944BwAZcuoV-o1zlMZVogBLJ-RL2-f9Q3MOL1ZouINsBsF_v7493jyAnaV3yi2Tj3i0TUVcIVPj4U1cBXg09mvNuIft9i_-BHAUAes |
link.rule.ids | 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT90wDLcmOGw7oDG2UQZbkKbdOjVt_jRHQLDH9nhiAjS0S5Q0KUJIBT1Agts-wj7jPsnstlR6AiG0W6XEbWLH8c-p7QB8KisTuKh96qULqQjepZ6XMQ1C-kxVOsg2K21vokZH4tuxPO6vA6JcmK4-xHDgRprR7tek4HQgfV_LtZKUUEVnemguzRcElPNC4bqkMs9if_C-qMxMl2pENELMhvU8-KYZWzVPbL95CIjO4trWMO28goUeUbKNbgkswrPYvIaXGyfTvqpGXILtA3J7w9_ff07aKtMkDNYHUaPpYghcGbUwytGlmM5bdtowhIZsc4rgGuVYRRffwNHO9uHWKO3vT0gr9DsMbq-uRvtthM6853ktTYgqzzP0n5XRLkrlVDAaAUNWVIr7OhZ5ESte-kKIqOviLcw1501cBpYRtSbTFXOUrCodd2UV0Lvl2smSJ8DvOGUvujIZdsa90Ja4a4m7tuWuvUngc8vSgcBNzyjMTEv7c_LVjvmByn8UW_ZXAqt3PLe9hl1acnWo9D3PElgfmlE36IeHa-L59SWOAPGKkYURj_RBREZF9Ur9SB-l6ZooBNMJvOtkPgw6z3FipcYvyHYRPHn6dn9zFx9W_pPuIzwfHe6N7Xh38v09vKAeXVziKsxdTa_jGmKlK_-h1YF_bHQEdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqVkLtAfFoS8rLlareUsWOH_FxoSzQwoqKbou4WHbsIFQpoAUkeutP6G_sL-lMEiKtQKjqLZI9iT3j8XzjzIwJeVeUJjBR-dRLF1IRvEs9K2IahPSZKnWQTVba0VjtT8SnU3naxT9hLkxbH6I_cEPNaPZrVPCrUD1Ucq0k5lPhkR5YS_MB8OQAQAeH1T4YfpucTXr3C-vMtLlGSCXEbFzPo--aMVYD5PvdY0h0Ftg2lmm0SBY6SEmH7RpYIs9ivUxeDM-nXVmNuEJ2T9DvDX9-_T5vykyjNGgXRQ22iwJypdhCMUkXgzp_0ouaAjak21NA1yDIMrr4kkxGu1939tPuAoW0BMfDwP7qKjDgRujMe8YraUJUnGfgQCujXZTKqWA0IIYsLxXzVcx5HktW-FyIqKv8FZmrL-u4SmiG1BptV-QgWlU45ooygHvLtJMFSwi755S9autk2Bn_QlvkrkXu2oa79i4h7xuW9gRu-gPjzLS038d79pCdKP4l37FnCVm_57ntVOzaoq-Dte9ZlpC3fTMoB_7xcHW8vL2GEQBgMTI34ok-AMmwql6hn-ijNN4TBWg6Ia9bmfeD5hwmVmj4gmwWwT9P3x5vH8DDm_-k2yLzxx9H9vBg_HmNPMcObVziOpm7md7GDcBKN36zU4K_sskFZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second%E2%80%90generation+sequencing+for+gene+discovery+in+the+Brassicaceae&rft.jtitle=Plant+biotechnology+journal&rft.au=Hayward%2C+Alice&rft.au=Vighnesh%2C+Guru&rft.au=Delay%2C+Christina&rft.au=Samian%2C+Mohd+Rafizan&rft.date=2012-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=10&rft.issue=6&rft.spage=750&rft.epage=759&rft_id=info:doi/10.1111%2Fj.1467-7652.2012.00719.x&rft.externalDBID=10.1111%252Fj.1467-7652.2012.00719.x&rft.externalDocID=PBI719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |