Second-generation sequencing for gene discovery in the Brassicaceae

Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involv...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 10; no. 6; pp. 750 - 759
Main Authors Hayward, Alice, Vighnesh, Guru, Delay, Christina, Samian, Mohd Rafizan, Manoli, Sahana, Stiller, Jiri, McKenzie, Megan, Edwards, David, Batley, Jacqueline
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2012
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen‐fixing rhizobia bacteria. This study applied second‐generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.
AbstractList Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen‐fixing rhizobia bacteria. This study applied second‐generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 ( Nodulation Signalling Pathway 1 ) and NSP2 , remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.
Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen‐fixing rhizobia bacteria. This study applied second‐generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant–microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.
Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant-microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.
Author Hayward, Alice
Delay, Christina
McKenzie, Megan
Stiller, Jiri
Edwards, David
Manoli, Sahana
Vighnesh, Guru
Samian, Mohd Rafizan
Batley, Jacqueline
Author_xml – sequence: 1
  givenname: Alice
  surname: Hayward
  fullname: Hayward, Alice
  organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 2
  givenname: Guru
  surname: Vighnesh
  fullname: Vighnesh, Guru
  organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 3
  givenname: Christina
  surname: Delay
  fullname: Delay, Christina
  organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 4
  givenname: Mohd Rafizan
  surname: Samian
  fullname: Samian, Mohd Rafizan
  organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 5
  givenname: Sahana
  surname: Manoli
  fullname: Manoli, Sahana
  organization: Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 6
  givenname: Jiri
  surname: Stiller
  fullname: Stiller, Jiri
  organization: Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 7
  givenname: Megan
  surname: McKenzie
  fullname: McKenzie, Megan
  organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 8
  givenname: David
  surname: Edwards
  fullname: Edwards, David
  organization: Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
– sequence: 9
  givenname: Jacqueline
  surname: Batley
  fullname: Batley, Jacqueline
  email: j.batley@uq.edu.au
  organization: ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22765874$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URB_wF9BIbNjMYF-_xhIbGkFbKeKhgpDYWB7PnTIhsYud0OTf4yElCzbFG1_pfufca59TchRiQEIqRhtWzqtFw4TStVYSGqAMGko1M832ETk5NI4OtRDH5DTnBaXAlFRPyDFAIVotTsjsGn0MfX2DAZNbjzFUGX9uMPgx3FRDTNXUqfox-_gL064aQ7X-jtV5cjmP3nl0-JQ8Htwy47P7-4x8eff28-yynn-4uJq9mddeSmpqztzQMjBC065jMEjTowKg2HFltEOpnOqNNoxS7hXrBuTA0bO240KgHvgZebn3vU2xrJjXdlXWwuXSBYybbJnSTEIZZR5GBTcAQrX6YZSCoEZyIwr64h90ETcplDdbTlX5aA2MFqrdUz7FnBMO9jaNK5d2xcpO8dmFnZKxU0p2is_-ic9ui_T5_YBNt8L-IPybVwFe74G7cYm7_za2H8-vSlHk9V4-5jVuD3KXfliluZb26_sLO2fXCj7xmf3GfwORYrZc
CitedBy_id crossref_primary_10_1016_j_apsoil_2022_104581
crossref_primary_10_1007_s00122_012_1964_x
crossref_primary_10_1139_cjb_2014_0039
crossref_primary_10_2139_ssrn_3985893
crossref_primary_10_1016_j_funbio_2013_02_001
crossref_primary_10_1007_s00122_015_2488_y
crossref_primary_10_1111_1755_0998_12078
crossref_primary_10_1139_gen_2021_0021
crossref_primary_10_1007_s12041_021_01285_3
crossref_primary_10_1007_s10142_013_0324_5
crossref_primary_10_1371_journal_pone_0081992
Cites_doi 10.1038/nature07272
10.1007/s13199-009-0009-y
10.1038/nature07271
10.1073/pnas.1112862108
10.1186/1746-4811-6-19
10.1111/j.1574-6941.2006.00060.x
10.1105/tpc.111.089771
10.1111/j.1744-7909.2010.00899.x
10.1104/pp.110.166645
10.1111/j.1467-7652.2009.00459.x
10.1080/10635150390235520
10.1111/j.1467-7652.2009.00406.x
10.1105/tpc.108.064501
10.1038/nature09622
10.1093/pcp/pcq124
10.1146/annurev.py.06.090168.002145
10.1007/s00572-005-0033-6
10.1634/stemcells.21-4-459
10.1111/j.1365-313X.2010.04324.x
10.1534/genetics.105.051185
10.1007/s00425-004-1203-z
10.1074/jbc.M500447200
10.1093/jxb/erm286
10.1080/00275514.1998.12026983
10.1105/tpc.107.056754
10.1126/science.1110951
10.1007/s00122-006-0411-2
10.1016/j.jplph.2010.02.013
10.1038/ng.919
10.1093/nar/gkm238
10.1111/j.1365-313X.2007.03028.x
10.1016/j.ab.2010.05.032
10.1104/pp.106.089508
10.1073/pnas.0508882103
10.1038/nprot.2009.86
10.1104/pp.123.2.439
10.1093/jxb/err291
10.1139/b87-051
10.1073/pnas.0705147104
10.1007/BF02670897
10.1104/pp.109.137646
10.1126/science.289.5486.1920
10.1139/G10-057
ContentType Journal Article
Copyright 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd
2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd
– notice: 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
– notice: 2012. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
M7N
RC3
7U5
F28
L7M
DOI 10.1111/j.1467-7652.2012.00719.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Genetics Abstracts
Solid State and Superconductivity Abstracts
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies Database with Aerospace
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Genetics Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Engineering Research Database
MEDLINE - Academic
MEDLINE

Solid State and Superconductivity Abstracts
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1467-7652
EndPage 759
ExternalDocumentID 10_1111_j_1467_7652_2012_00719_x
22765874
PBI719
ark_67375_WNG_L1S62Q3C_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADIZJ
ADKYN
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
M7N
RC3
7U5
F28
L7M
ID FETCH-LOGICAL-c5509-31af8129470bb12f59de6220eb3697ae56a6d9791003c61bfe323ec18b344e7f3
IEDL.DBID 24P
ISSN 1467-7644
IngestDate Fri Aug 16 21:01:54 EDT 2024
Fri Aug 16 07:14:59 EDT 2024
Fri Aug 16 01:06:09 EDT 2024
Thu Oct 10 16:53:35 EDT 2024
Thu Sep 26 17:17:48 EDT 2024
Sat Sep 28 07:54:35 EDT 2024
Sat Aug 24 00:51:12 EDT 2024
Wed Oct 30 10:02:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5509-31af8129470bb12f59de6220eb3697ae56a6d9791003c61bfe323ec18b344e7f3
Notes ArticleID:PBI719
istex:00BCBDB0B643B911AD9D900C9590F1F132C3A0E0
ark:/67375/WNG-L1S62Q3C-Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1467-7652.2012.00719.x
PMID 22765874
PQID 3067647210
PQPubID 1096352
PageCount 10
ParticipantIDs proquest_miscellaneous_1671525099
proquest_miscellaneous_1439224687
proquest_miscellaneous_1024095394
proquest_journals_3067647210
crossref_primary_10_1111_j_1467_7652_2012_00719_x
pubmed_primary_22765874
wiley_primary_10_1111_j_1467_7652_2012_00719_x_PBI719
istex_primary_ark_67375_WNG_L1S62Q3C_Z
PublicationCentury 2000
PublicationDate 2012-08
August 2012
2012-Aug
2012-08-00
20120801
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Southampton
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2012
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. (2006) Plant cells recognize chitin fragments for defense signalling through a plasma membrane receptor. Proc. Natl Acad. Sci. USA, 103, 11086-11091.
Redecker, D., Kodner, R. and Graham, L.E. (2000) Glomalean fungi from the Ordovician. Science, 289, 1920-1921.
Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J. and Yamaguchi, S. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195-200.
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.
Gerdemann, J.W. (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol. 6, 397-418.
Tester, M., Smith, S.E. and Smith, F.A. (1987) The phenomenon of "nonmycorrhizal" plants. Can. J. Bot. 65, 419-431.
Lopez-Gomez, M., Sandal, N., Stougaard, J. and Boller, T. (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63, 393-401.
Shahollari, B., Vadassery, J., Varma, A. and Oelmüller, R. (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J. 50, 1-13.
Duran, C., Eales, D., Marshall, D., Imelfort, M., Stiller, J., Berkman, P., Clark, T., McKenzie, M., Appleby, N., Batley, J., Basford, K. and Edwards, D. (2010) Future tools for association mapping in crop plants. Genome, 53, 1017-1023.
Oelmüller, R., Sherameti, I., Tripathi, S. and Varma, A. (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 1-17.
Kumar, P., Henikoff, S. and Ng, P.C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073-1081.
Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M.H., Lin, Y.H., Reid, D.E. and Gresshoff, P.M. (2010) Molecular analysis of legume nodule development and autoregulation. J. Integr Plant Biol. 52, 61-76.
Hayward, A., Stirnberg, P., Beveridge, C. and Leyser, O. (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151, 400-412.
Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.H., Bancroft, I., Cheng, F., Huang, S., Li, X., Hua, W., Wang, J., Wang, X., Freeling, M., Pires, J.C., Paterson, A.H., Chalhoub, B., Wang, B., Hayward, A., Sharpe, A.G., Park, B.S., Weisshaar, B., Liu, B., Li, B., Liu, B., Tong, C., Song, C., Duran, C., Peng, C., Geng, C., Koh, C., Lin, C., Edwards, D., Mu, D., Shen, D., Soumpourou, E., Li, F., Fraser, F., Conant, G., Lassalle, G., King, G.J., Bonnema, G., Tang, H., Wang, H., Belcram, H., Zhou, H., Hirakawa, H., Abe, H., Guo, H., Wang, H., Jin, H., Parkin, I.A., Batley, J., Kim, J.S., Just, J., Li, J., Xu, J., Deng, J., Kim, J.A., Li, J., Yu, J., Meng, J., Wang, J., Min, J., Poulain, J., Wang, J., Hatakeyama, K., Wu, K., Wang, L., Fang, L., Trick, M., Links, M.G., Zhao, M., Jin, M., Ramchiary, N., Drou, N., Berkman, P.J., Cai, Q., Huang, Q., Li, R., Tabata, S., Cheng, S., Zhang, S., Zhang, S., Huang, S., Sato, S., Sun, S., Kwon, S.J., Choi, S.R., Lee, T.H., Fan, W., Zhao, X., Tan, X., Xu, X., Wang, Y., Qiu, Y., Yin, Y., Li, Y., Du, Y., Liao, Y., Lim, Y., Narusaka, Y., Wang, Y., Wang, Z., Li, Z., Wang, Z., Xiong, Z., Zhang, Z. and Brassica rapa Genome Sequencing Project Consortium (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039.
Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.-J., Cullimore, J.V., Jehle, A.K., Götz, F., Kulik, A., Molinaro, A., Lipka, V., Gust, A.A. and Nürnberger, T. (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl Acad. Sci. USA, 108, 19824-19829.
Yokota, K., Soyano, T., Kouchi, H. and Hayashi, M. (2010) Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice. Plant Cell Physiol. 51, 1436-1442.
Chen, X., Truksa, M., Shah, S. and Weselake, R.J. (2010) A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal. Biochem. 405, 138-140.
Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. and Oelmüller, R. (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 280, 26241-26247.
Sun, C., Johnson, J.M., Cai, D., Sherameti, I., Oelmüller, R. and Lou, B. (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Plant Physiol. 167, 1009-1017.
Fulton, T.M., Chunwongse, J. and Tanksley, S.D. (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13, 207-209.
McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol, 123, 439-442.
Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. USA, 104, 19613-19618.
Wang, B. and Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299-363.
Hirsch, S., Kim, J., Muñoz, A., Heckmann, A.B., Downie, J.A. and Oldroyd, G.E.D. (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 21, 545-557.
Zhu, H., Riely, B.K., Burns, N.J. and Ané, J.M. (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics, 172, 2491-2499.
Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H. and Shibuya, N. (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64, 204-214.
Wan, J., Zhang, X.C., Neece, D., Ramonell, K.M., Clough, S., Kim, S.Y., Stacey, M.G. and Stacey, G. (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 20, 471-481.
Guindon, S. and Gascuel, O. (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704.
Marshall, D.J., Hayward, A., Eales, D., Imelfort, M., Stiller, J., Berkman, P.J., Clark, T., McKenzie, M., Lai, K., Duran, C., Batley, J. and Edwards, D. (2010) Targeted identification of genomic regions using TAGdb. Plant Methods, doi:10.1186/1746-4811-6-19.
Sprent, J.I. (2008) 60 Ma of legume nodulation. What's new? What's changing? J. Exp. Bot. 59, 1081-1084.
Kaló, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., Kiss, G.B., Downie, J.A. and Oldroyd, G.E. (2005) Nodulation signaling in legumes requires NSP2, amember of the GRAS family of transcriptional regulators. Science, 308, 1786-1789.
Bromberg, Y. and Rost, B. (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 35, 3823-3835.
Ramakers, C., Ruijter, J.M., Deprez, R.H. and Moorman, A.F. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62-66.
Heckmann, A.B., Lombardo, F., Miwa, H., Perry, J.A., Bunnewell, S., Parniske, M., Wang, T.L. and Downie, J.A. (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 142, 1739-1750.
Liu, W., Kohlen, W., Lillo, A., Op den Camp, R., Ivanov, S., Hartog, M., Limpens, E., Jamil, M., Smaczniak, C., Kaufmann, K., Yang, W.C., Hooiveld, G.J., Charnikhova, T., Bouwmeester, H.J., Bisseling, T. and Geurts, R. (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 23, 3853-3865.
Verma, S. and Varma, A. (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90, 896-903.
Edwards, D. and Batley, J. (2010) Plant genome sequencing: applications for crop improvement. Plant Biotech. J. 8, 2-9.
Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G. and Dénarié, J. (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469, 58-63.
Qiu, D., Morgan, C., Shi, J., Long, Y., Liu, J., Li, R., Zhuang, X., Wang, Y., Tan, X., Dietrich, E., Weihmann, T., Everett, C., Vanstraelen, S., Beckett, P., Fraser, F., Trick, M., Barnes, S., Wilmer, J., Schmidt, R., Li, J., Li, D., Meng, J. and Bancroft, I. (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor. Appl. Genet. 114, 67-80.
Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., Cardoso, C., Lopez-Raez, J.A., Matusova, R., Bours, R., Verstappen, F. and Bouwmeester, H. (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 155, 721-734.
Bolle, C. (2004) The role of GRAS proteins in plant sign
2007; 104
2010; 53
2003; 339
2009; 21
2010; 405
2011
2010
1995; 13
2006; 16
2010; 167
1968; 6
2008; 59
2009; 151
2007; 50
2006; 172
2006; 2
2003; 52
2007; 35
2009; 49
2011; 155
2006; 114
2004; 32
2005; 280
2010; 64
1987; 65
2011; 108
2011; 469
2000; 289
1998; 90
2006; 142
2005; 308
2011; 43
2009; 7
2011; 23
2008; 455
2009; 4
2000; 123
2008; 20
2004; 218
2010; 52
2010; 51
2006; 103
2012; 63
2010; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Snowdon R. (e_1_2_6_36_1) 2006
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
Hayward A. (e_1_2_6_14_1) 2011
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – year: 2011
– volume: 21
  start-page: 545
  year: 2009
  end-page: 557
  article-title: GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in
  publication-title: Plant Cell
– volume: 405
  start-page: 138
  year: 2010
  end-page: 140
  article-title: A survey of quantitative real‐time polymerase chain reaction internal reference genes for expression studies in
  publication-title: Anal. Biochem.
– volume: 16
  start-page: 299
  year: 2006
  end-page: 363
  article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants
  publication-title: Mycorrhiza
– volume: 49
  start-page: 1
  year: 2009
  end-page: 17
  article-title: , a cultivable root endophyte with multiple biotechnological applications
  publication-title: Symbiosis
– volume: 172
  start-page: 2491
  year: 2006
  end-page: 2499
  article-title: Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses
  publication-title: Genetics
– year: 2010
  article-title: Targeted identification of genomic regions using TAGdb
  publication-title: Plant Methods
– start-page: 1
  year: 2011
  end-page: 13
– volume: 53
  start-page: 1017
  year: 2010
  end-page: 1023
  article-title: Future tools for association mapping in crop plants
  publication-title: Genome
– volume: 64
  start-page: 204
  year: 2010
  end-page: 214
  article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice
  publication-title: Plant J.
– volume: 289
  start-page: 1920
  year: 2000
  end-page: 1921
  article-title: Glomalean fungi from the Ordovician
  publication-title: Science
– volume: 114
  start-page: 67
  year: 2006
  end-page: 80
  article-title: A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content
  publication-title: Theor. Appl. Genet.
– volume: 63
  start-page: 393
  year: 2012
  end-page: 401
  article-title: Interplay of flg22‐induced defence responses and nodulation in
  publication-title: J. Exp. Bot.
– volume: 90
  start-page: 896
  year: 1998
  end-page: 903
  article-title: , gen. et sp. nov., a new root‐colonizing fungus
  publication-title: Mycologia
– volume: 8
  start-page: 2
  year: 2010
  end-page: 9
  article-title: Plant genome sequencing: applications for crop improvement
  publication-title: Plant Biotech. J.
– volume: 108
  start-page: 19824
  year: 2011
  end-page: 19829
  article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 52
  start-page: 696
  year: 2003
  end-page: 704
  article-title: A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood
  publication-title: Syst. Biol.
– volume: 151
  start-page: 400
  year: 2009
  end-page: 412
  article-title: Interactions between auxin and strigolactone in shoot branching control
  publication-title: Plant Physiol.
– volume: 59
  start-page: 1081
  year: 2008
  end-page: 1084
  article-title: 60 Ma of legume nodulation. What’s new? What’s changing?
  publication-title: J. Exp. Bot.
– volume: 6
  start-page: 397
  year: 1968
  end-page: 418
  article-title: Vesicular‐arbuscular mycorrhiza and plant growth
  publication-title: Annu. Rev. Phytopathol.
– volume: 51
  start-page: 1436
  year: 2010
  end-page: 1442
  article-title: Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non‐legume, rice
  publication-title: Plant Cell Physiol.
– volume: 35
  start-page: 3823
  year: 2007
  end-page: 3835
  article-title: SNAP: predict effect of non‐synonymous polymorphisms on function
  publication-title: Nucleic Acids Res.
– volume: 167
  start-page: 1009
  year: 2010
  end-page: 1017
  article-title: confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought‐related genes and the plastid‐localized CAS protein
  publication-title: Plant Physiol.
– volume: 308
  start-page: 1786
  year: 2005
  end-page: 1789
  article-title: Nodulation signaling in legumes requires NSP2, amember of the GRAS family of transcriptional regulators
  publication-title: Science
– volume: 455
  start-page: 195
  year: 2008
  end-page: 200
  article-title: Inhibition of shoot branching by new terpenoid plant hormones
  publication-title: Nature
– volume: 50
  start-page: 1
  year: 2007
  end-page: 13
  article-title: A leucine‐rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus
  publication-title: Plant J.
– volume: 4
  start-page: 1073
  year: 2009
  end-page: 1081
  article-title: Predicting the effects of coding non‐synonymous variants on protein function using the SIFT algorithm
  publication-title: Nat. Protoc.
– volume: 455
  start-page: 189
  year: 2008
  end-page: 194
  article-title: Strigolactone inhibition of shoot branching
  publication-title: Nature
– volume: 123
  start-page: 439
  year: 2000
  end-page: 442
  article-title: Targeting induced local lesions IN genomes (TILLING) for plant functional genomics
  publication-title: Plant Physiol
– volume: 7
  start-page: 312
  year: 2009
  end-page: 317
  article-title: Discovering genetic polymorphisms in next generation sequencing data
  publication-title: Plant Biotechnol. J.
– volume: 52
  start-page: 61
  year: 2010
  end-page: 76
  article-title: Molecular analysis of legume nodule development and autoregulation
  publication-title: J. Integr Plant Biol.
– volume: 65
  start-page: 419
  year: 1987
  end-page: 431
  article-title: The phenomenon of “nonmycorrhizal” plants
  publication-title: Can. J. Bot.
– volume: 103
  start-page: 11086
  year: 2006
  end-page: 11091
  article-title: Plant cells recognize chitin fragments for defense signalling through a plasma membrane receptor
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 339
  start-page: 62
  year: 2003
  end-page: 66
  article-title: Assumption‐free analysis of quantitative real‐time polymerase chain reaction (PCR) data
  publication-title: Neurosci. Lett.
– volume: 13
  start-page: 207
  year: 1995
  end-page: 209
  article-title: Microprep protocol for extraction of DNA from tomato and other herbaceous plants
  publication-title: Plant Mol. Biol. Rep
– volume: 469
  start-page: 58
  year: 2011
  end-page: 63
  article-title: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza
  publication-title: Nature
– volume: 43
  start-page: 1035
  year: 2011
  end-page: 1039
  article-title: The genome of the mesopolyploid crop species
  publication-title: Nat. Genet
– volume: 104
  start-page: 19613
  year: 2007
  end-page: 19618
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 23
  start-page: 3853
  year: 2011
  end-page: 3865
  article-title: Strigolactone biosynthesis in and rice requires the symbiotic GRAS‐type transcription factors NSP1 and NSP2
  publication-title: Plant Cell
– volume: 20
  start-page: 471
  year: 2008
  end-page: 481
  article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis
  publication-title: Plant Cell
– volume: 155
  start-page: 721
  year: 2011
  end-page: 734
  article-title: Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?
  publication-title: Plant Physiol.
– volume: 280
  start-page: 26241
  year: 2005
  end-page: 26247
  article-title: The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch‐degrading enzyme glucan‐water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
– volume: 142
  start-page: 1739
  year: 2006
  end-page: 1750
  article-title: nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non‐legume
  publication-title: Plant Physiol.
– volume: 2
  start-page: 55
  year: 2006
  end-page: 114
– volume: 218
  start-page: 683
  year: 2004
  end-page: 692
  article-title: The role of GRAS proteins in plant signal transduction and development
  publication-title: Planta
– ident: e_1_2_6_40_1
  doi: 10.1038/nature07272
– ident: e_1_2_6_28_1
  doi: 10.1007/s13199-009-0009-y
– ident: e_1_2_6_12_1
  doi: 10.1038/nature07271
– ident: e_1_2_6_45_1
  doi: 10.1073/pnas.1112862108
– ident: e_1_2_6_25_1
  doi: 10.1186/1746-4811-6-19
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1574-6941.2006.00060.x
– ident: e_1_2_6_22_1
  doi: 10.1105/tpc.111.089771
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1744-7909.2010.00899.x
– ident: e_1_2_6_32_1
  doi: 10.1104/pp.110.166645
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1467-7652.2009.00459.x
– ident: e_1_2_6_13_1
  doi: 10.1080/10635150390235520
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1467-7652.2009.00406.x
– start-page: 1
  volume-title: Oilseed Brassicas
  year: 2011
  ident: e_1_2_6_14_1
  contributor:
    fullname: Hayward A.
– ident: e_1_2_6_17_1
  doi: 10.1105/tpc.108.064501
– ident: e_1_2_6_24_1
  doi: 10.1038/nature09622
– ident: e_1_2_6_46_1
  doi: 10.1093/pcp/pcq124
– ident: e_1_2_6_11_1
  doi: 10.1146/annurev.py.06.090168.002145
– ident: e_1_2_6_43_1
  doi: 10.1007/s00572-005-0033-6
– ident: e_1_2_6_30_1
  doi: 10.1634/stemcells.21-4-459
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1365-313X.2010.04324.x
– ident: e_1_2_6_47_1
  doi: 10.1534/genetics.105.051185
– ident: e_1_2_6_2_1
  doi: 10.1007/s00425-004-1203-z
– ident: e_1_2_6_5_1
– ident: e_1_2_6_34_1
  doi: 10.1074/jbc.M500447200
– ident: e_1_2_6_37_1
  doi: 10.1093/jxb/erm286
– ident: e_1_2_6_41_1
  doi: 10.1080/00275514.1998.12026983
– ident: e_1_2_6_42_1
  doi: 10.1105/tpc.107.056754
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1110951
– ident: e_1_2_6_29_1
  doi: 10.1007/s00122-006-0411-2
– ident: e_1_2_6_38_1
  doi: 10.1016/j.jplph.2010.02.013
– ident: e_1_2_6_44_1
  doi: 10.1038/ng.919
– ident: e_1_2_6_3_1
  doi: 10.1093/nar/gkm238
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1365-313X.2007.03028.x
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ab.2010.05.032
– ident: e_1_2_6_16_1
  doi: 10.1104/pp.106.089508
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.0508882103
– ident: e_1_2_6_21_1
  doi: 10.1038/nprot.2009.86
– ident: e_1_2_6_26_1
  doi: 10.1104/pp.123.2.439
– ident: e_1_2_6_23_1
  doi: 10.1093/jxb/err291
– ident: e_1_2_6_39_1
  doi: 10.1139/b87-051
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.0705147104
– start-page: 55
  volume-title: Genome Mapping and Molecular Breeding in Plants
  year: 2006
  ident: e_1_2_6_36_1
  contributor:
    fullname: Snowdon R.
– ident: e_1_2_6_10_1
  doi: 10.1007/BF02670897
– ident: e_1_2_6_15_1
  doi: 10.1104/pp.109.137646
– ident: e_1_2_6_31_1
  doi: 10.1126/science.289.5486.1920
– ident: e_1_2_6_6_1
  doi: 10.1139/G10-057
SSID ssj0021656
Score 2.1438534
Snippet Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few...
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that...
Summary The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 750
SubjectTerms Bacteria
Brasses
Brassica
Brassica rapa - genetics
Brassicaceae
Brassicaceae - genetics
Crops
evolution
Fabaceae - genetics
Fungi
Gene Expression Profiling
Gene sequencing
Genes
Genes, Plant
Genetics
Genomes
Genomics
homolog
Kinases
Legumes
Nitrogen fixation
Nitrogenation
Nodulation
NSP
Oilseeds
Pathways
Phylogeny
Plants (organisms)
Polymerase chain reaction
Polyploidy
Proteins
Rape plants
second-generation sequencing
Seeds
Sequence Alignment
Sequence Analysis, DNA
Sequence Homology, Nucleic Acid
Signal transduction
Soil improvement
Soil microorganisms
Symbiosis
TAGdb
Title Second-generation sequencing for gene discovery in the Brassicaceae
URI https://api.istex.fr/ark:/67375/WNG-L1S62Q3C-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-7652.2012.00719.x
https://www.ncbi.nlm.nih.gov/pubmed/22765874
https://www.proquest.com/docview/3067647210
https://search.proquest.com/docview/1024095394
https://search.proquest.com/docview/1439224687
https://search.proquest.com/docview/1671525099
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTt0wELUq2JQFAkrb8JIrIXapYsePeHl5g1oEpQjUjWXHDqoqBXTvRYIdn8A38iXMJCHSFQhVbKIozuQx9njOJDPHhKwXpQlMVD710oVUBO9Sz4qYBiF9pkodZFOV9vNI7Z-Jwwt50eU_YS1Myw_Rf3BDy2jmazRw50cvjVwrifVU-EkPvKX5DnhyGglkkEefi-M--EKWmbbSCGWEmMzqefVKE65qGrV--xoOnYS1jV_anSOzHaCkg3YEzJMPsV4gM4PLYUeqET-RnVOMesPj_cNlQzKNfUG7HGrwXBRwK8UWiiW6mNJ5R__WFJAh3RwCtoZuLKOLi-Rsd-f31n7aLZ-QlhB2GJhdXQXu2widec94JU2IivMMwmdltItSORWMBryQ5aVivoo5z2PJCp8LEXWVfyZT9VUdvxKaobRGzxU5dKwqHHNFGSC4ZdrJgiWEPWvKXrcsGXYiutAWtWtRu7bRrr1NyEaj0l7ADf9hlpmW9vxoz_5gp4qf5Fv2T0JWnnVuOwMbWYx0kPmeZQn51jeDaeD_DlfHq5sRPAHAFSNzI944BwAZcuoV-o1zlMZVogBLJ-RL2-f9Q3MOL1ZouINsBsF_v7493jyAnaV3yi2Tj3i0TUVcIVPj4U1cBXg09mvNuIft9i_-BHAUAes
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT90wDLcmOGw7oDG2UQZbkKbdOjVt_jRHQLDH9nhiAjS0S5Q0KUJIBT1Agts-wj7jPsnstlR6AiG0W6XEbWLH8c-p7QB8KisTuKh96qULqQjepZ6XMQ1C-kxVOsg2K21vokZH4tuxPO6vA6JcmK4-xHDgRprR7tek4HQgfV_LtZKUUEVnemguzRcElPNC4bqkMs9if_C-qMxMl2pENELMhvU8-KYZWzVPbL95CIjO4trWMO28goUeUbKNbgkswrPYvIaXGyfTvqpGXILtA3J7w9_ff07aKtMkDNYHUaPpYghcGbUwytGlmM5bdtowhIZsc4rgGuVYRRffwNHO9uHWKO3vT0gr9DsMbq-uRvtthM6853ktTYgqzzP0n5XRLkrlVDAaAUNWVIr7OhZ5ESte-kKIqOviLcw1501cBpYRtSbTFXOUrCodd2UV0Lvl2smSJ8DvOGUvujIZdsa90Ja4a4m7tuWuvUngc8vSgcBNzyjMTEv7c_LVjvmByn8UW_ZXAqt3PLe9hl1acnWo9D3PElgfmlE36IeHa-L59SWOAPGKkYURj_RBREZF9Ur9SB-l6ZooBNMJvOtkPgw6z3FipcYvyHYRPHn6dn9zFx9W_pPuIzwfHe6N7Xh38v09vKAeXVziKsxdTa_jGmKlK_-h1YF_bHQEdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqVkLtAfFoS8rLlareUsWOH_FxoSzQwoqKbou4WHbsIFQpoAUkeutP6G_sL-lMEiKtQKjqLZI9iT3j8XzjzIwJeVeUJjBR-dRLF1IRvEs9K2IahPSZKnWQTVba0VjtT8SnU3naxT9hLkxbH6I_cEPNaPZrVPCrUD1Ucq0k5lPhkR5YS_MB8OQAQAeH1T4YfpucTXr3C-vMtLlGSCXEbFzPo--aMVYD5PvdY0h0Ftg2lmm0SBY6SEmH7RpYIs9ivUxeDM-nXVmNuEJ2T9DvDX9-_T5vykyjNGgXRQ22iwJypdhCMUkXgzp_0ouaAjak21NA1yDIMrr4kkxGu1939tPuAoW0BMfDwP7qKjDgRujMe8YraUJUnGfgQCujXZTKqWA0IIYsLxXzVcx5HktW-FyIqKv8FZmrL-u4SmiG1BptV-QgWlU45ooygHvLtJMFSwi755S9autk2Bn_QlvkrkXu2oa79i4h7xuW9gRu-gPjzLS038d79pCdKP4l37FnCVm_57ntVOzaoq-Dte9ZlpC3fTMoB_7xcHW8vL2GEQBgMTI34ok-AMmwql6hn-ijNN4TBWg6Ia9bmfeD5hwmVmj4gmwWwT9P3x5vH8DDm_-k2yLzxx9H9vBg_HmNPMcObVziOpm7md7GDcBKN36zU4K_sskFZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second%E2%80%90generation+sequencing+for+gene+discovery+in+the+Brassicaceae&rft.jtitle=Plant+biotechnology+journal&rft.au=Hayward%2C+Alice&rft.au=Vighnesh%2C+Guru&rft.au=Delay%2C+Christina&rft.au=Samian%2C+Mohd+Rafizan&rft.date=2012-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=10&rft.issue=6&rft.spage=750&rft.epage=759&rft_id=info:doi/10.1111%2Fj.1467-7652.2012.00719.x&rft.externalDBID=10.1111%252Fj.1467-7652.2012.00719.x&rft.externalDocID=PBI719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon