Renal arterial blood flow measurement by breath-held MRI: Accuracy in phantom scans and reproducibility in healthy subjects
This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled‐flow‐loop phantom studies. Measurements using prospective and retrospec...
Saved in:
Published in | Magnetic resonance in medicine Vol. 63; no. 4; pp. 940 - 950 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled‐flow‐loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week‐to‐week variation in repeated studies. The standard deviation in the 4‐week protocol of repeated in vivo measurements of single‐kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath‐held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. Magn Reson Med 63:940–950, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. Magn Reson Med 63:940-950, 2010. [copy 2010 Wiley-Liss, Inc. This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled flow loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy with deviations from true flow consistently below 13% for vessel diameters 3 mm and above. Reproducibility in human subjects was evaluated by repeat studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the four-week protocol of repeated in-vivo measurements of single-kidney renal flow in normal subjects was 59.7 ml/min, corresponding with an average coefficient of variation of 10.55%. Comparison of RBF reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 ml/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 ml/min (6.90%) for repeated plane scouting, and 40.76 ml/min ( 7.20%) for weekly fluctuations in renal blood flow. This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow.This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled‐flow‐loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week‐to‐week variation in repeated studies. The standard deviation in the 4‐week protocol of repeated in vivo measurements of single‐kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath‐held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. Magn Reson Med 63:940–950, 2010. © 2010 Wiley‐Liss, Inc. |
Author | Torres, Vicente E. Wallin, Ashley K. Bae, Kyongtae T. King, Bernard F. Chapman, Arlene B. Dambreville, Samuel Wijayawardana, Sameera R. Brummer, Marijn E. Frakes, David H. Yoganathan, Ajit P. Easley, Kirk |
AuthorAffiliation | 1 Georgia Institute of Technology, Atlanta, GA 4 Arizona State University, Tempe, AZ 2 Emory University, Atlanta, GA 5 University of Pittsburgh, Pittsburgh, PA 3 Mayo Clinic, Rochester, MN |
AuthorAffiliation_xml | – name: 5 University of Pittsburgh, Pittsburgh, PA – name: 2 Emory University, Atlanta, GA – name: 3 Mayo Clinic, Rochester, MN – name: 4 Arizona State University, Tempe, AZ – name: 1 Georgia Institute of Technology, Atlanta, GA |
Author_xml | – sequence: 1 givenname: Samuel surname: Dambreville fullname: Dambreville, Samuel organization: Georgia Institute of Technology, Atlanta, Georgia, USA – sequence: 2 givenname: Arlene B. surname: Chapman fullname: Chapman, Arlene B. organization: Emory University, Atlanta, Georgia, USA – sequence: 3 givenname: Vicente E. surname: Torres fullname: Torres, Vicente E. organization: Mayo Clinic, Rochester, Minnesota, USA – sequence: 4 givenname: Bernard F. surname: King fullname: King, Bernard F. organization: Mayo Clinic, Rochester, Minnesota, USA – sequence: 5 givenname: Ashley K. surname: Wallin fullname: Wallin, Ashley K. organization: Georgia Institute of Technology, Atlanta, Georgia, USA – sequence: 6 givenname: David H. surname: Frakes fullname: Frakes, David H. organization: Arizona State University, Tempe, Arizona, USA – sequence: 7 givenname: Ajit P. surname: Yoganathan fullname: Yoganathan, Ajit P. organization: Georgia Institute of Technology, Atlanta, Georgia, USA – sequence: 8 givenname: Sameera R. surname: Wijayawardana fullname: Wijayawardana, Sameera R. organization: Emory University, Atlanta, Georgia, USA – sequence: 9 givenname: Kirk surname: Easley fullname: Easley, Kirk organization: Emory University, Atlanta, Georgia, USA – sequence: 10 givenname: Kyongtae T. surname: Bae fullname: Bae, Kyongtae T. organization: University of Pittsburgh, Pittsburgh, Pennsylvania, USA – sequence: 11 givenname: Marijn E. surname: Brummer fullname: Brummer, Marijn E. email: mbrumme@emory.edu organization: Emory University, Atlanta, Georgia, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20373395$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFBS-AvEMs0jp2nDgskKrClEozIA1_S8t2boiLEw-2Qxnx8qSdmQoQiNW1dL9zdK7PEToY_AAIPc7JSU4IPe1Df0IprcQ9NMs5pRnldXGAZqQqSMbyujhERzFeEULquioeoENKWMVYzWfoxwoG5bAKCYKdHtp53-DW-Wvcg4pjgB6GhPUG6wAqdVkHrsHL1eVzfGbMGJTZYDvgdaeG5HscjRoiVkODA6yDb0ZjtXU23UIdKJe6DY6jvgKT4kN0v1UuwqPdPEYf5q_en7_OFm8vLs_PFpnhnIis1EpzyktodcNbrnmuNNFMFEwImK42GspGNS0RZV02RFcFaMKrUkArOBOGHaMXW9_1qHtozHRQUE6ug-1V2EivrPx9M9hOfvbfJKtKQstyMni6Mwj-6wgxyd5GA86pAfwYpRCM5Dyv2X_J6ddFObVQT-STX0PdpdlXMwGnW8AEH2OAVhqbVLL-JqN1Mifypnw5lS9vy58Uz_5Q7E3_xu7cr62Dzb9BuVwt94psq7Axwfc7hQpfZFmxistPby7ku5fLj_NFMZeU_QSYMtBb |
CitedBy_id | crossref_primary_10_1002_jmri_24446 crossref_primary_10_1002_jmri_24322 crossref_primary_10_3389_fphys_2017_00696 crossref_primary_10_1186_s12968_014_0105_x crossref_primary_10_1016_j_semnephrol_2011_05_003 crossref_primary_10_1093_ndt_gfy152 crossref_primary_10_1097_MCC_0000000000000768 crossref_primary_10_1186_s13063_019_3563_5 crossref_primary_10_1002_jmri_24889 crossref_primary_10_1152_ajprenal_00486_2018 crossref_primary_10_1007_s10334_019_00772_0 crossref_primary_10_1038_ki_2011_119 crossref_primary_10_1038_ki_2015_59 crossref_primary_10_2463_jjmrm_2023_1793 crossref_primary_10_1152_ajpheart_00697_2013 crossref_primary_10_1152_ajprenal_00311_2020 crossref_primary_10_1007_s00330_015_3877_y crossref_primary_10_1186_s41747_024_00435_3 crossref_primary_10_1111_1440_1681_12042 |
Cites_doi | 10.1080/00031305.1989.10475665 10.1016/j.juro.2008.05.005 10.2214/ajr.143.6.1157 10.1046/j.1523-1755.2003.00326.x 10.1159/000149628 10.1002/mrm.1910300113 10.1097/00004424-199206000-00012 10.1097/00004728-198406000-00012 10.1148/radiol.2461062129 10.1148/radiology.203.1.9122415 10.2214/ajr.161.5.8273644 10.1148/radiology.190.2.8284383 10.1097/00004728-198408000-00002 10.1177/096228029900800204 10.1016/S0140-6736(00)02694-5 10.1007/BF02446086 10.1002/jmri.1880080419 10.1002/jmri.1880050405 10.1002/mrm.1910370230 10.1002/jmri.1880040217 10.1016/j.cca.2008.05.020 10.1097/01.RVI.0000161144.98350.28 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9 10.1016/0730-725X(93)90411-6 10.1007/s003300000362 10.2307/2532051 10.1148/radiology.185.3.1438767 10.3109/02841859609174364 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. |
CorporateAuthor | Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) |
CorporateAuthor_xml | – name: Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1002/mrm.22278 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 950 |
ExternalDocumentID | PMC3760266 20373395 10_1002_mrm_22278 MRM22278 ark_67375_WNG_SDMVFL4F_2 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: UO1‐DK56956; MO1‐RR00039 – fundername: NCRR NIH HHS grantid: M01-RR00039 – fundername: NIDDK NIH HHS grantid: U01 DK056957 – fundername: NCRR NIH HHS grantid: M01 RR000039 – fundername: NCATS NIH HHS grantid: UL1 TR000454 – fundername: NCRR NIH HHS grantid: UL1 RR025008 – fundername: NIDDK NIH HHS grantid: U01-DK-56956 – fundername: NIDDK NIH HHS grantid: U01 DK056956 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: U01 DK056956 || DK – fundername: National Center for Research Resources : NCRR grantid: UL1 RR025008 || RR – fundername: National Center for Research Resources : NCRR grantid: M01 RR000039 || RR |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c5508-6bab5256efbd5f5b51ab0b384388e227cbe6dadf08696d0b74eb05768ef8538c3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 13:40:21 EDT 2025 Thu Jul 10 20:49:02 EDT 2025 Fri Jul 11 05:17:46 EDT 2025 Wed Feb 19 02:41:51 EST 2025 Tue Jul 01 01:20:43 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Wed Jan 22 16:34:04 EST 2025 Wed Oct 30 09:57:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5508-6bab5256efbd5f5b51ab0b384388e227cbe6dadf08696d0b74eb05768ef8538c3 |
Notes | NIH - No. UO1-DK56956; No. MO1-RR00039 istex:FC0618B7F6B60C9A4DF7045CE93A6F4D63CFC810 ark:/67375/WNG-SDMVFL4F-2 ArticleID:MRM22278 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22278 |
PMID | 20373395 |
PQID | 733860999 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3760266 proquest_miscellaneous_883015193 proquest_miscellaneous_733860999 pubmed_primary_20373395 crossref_citationtrail_10_1002_mrm_22278 crossref_primary_10_1002_mrm_22278 wiley_primary_10_1002_mrm_22278_MRM22278 istex_primary_ark_67375_WNG_SDMVFL4F_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2010 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: April 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Papoulis A. Probability, random variables, and stochastic processes. 2nd edition. New York, NY: McGraw Hill; 1984, 576 p. Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 1993; 30: 82-91. Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol 2008; 180: 830-835. Schoenberg SO, Just A, Bock M, Knopp MV, Persson PB, Kirchheim HR. Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. Am J Physiol 1997; 272: H2477-H2484. Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984; 8: 588-593. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8: 135-160. Bock M, Schoenberg SO, Schad LR, Knopp MV, Essig M, van Kaick G. Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery. J Magn Reson Imaging 1998; 8: 889-895. Lundin B, Cooper TG, Meyer RA, Potchen EJ. Measurement of total and unilateral renal blood flow by oblique-angle velocity encoded 2D-cine magnetic resonance angiography. Magn Reson Imaging 1993; 11: 51-59. Toffaletti JG, McDonnell EH. Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function. Clin Chim Acta 2008; 395: 115-119. Chu KC, Rutt BK. Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magn Reson Med 1997; 37: 314-319. Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999; 42: 361-370. Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000; 356: 1000-1001. Fredrickson JO, Pelc NJ. Time-resolved MR imaging by automatic data segmentation. J Magn Reson Imaging 1994; 4: 189-196. King BF, Torres VE, Brummer ME, Chapman AB, Bae KT, Glockner, JF, Arya K, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP; the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease. Kidney Int 2003; 64: 2214-2221. Debatin JF, Ting RH, Wegmüller H, Sommer FG, Fredrickson JO, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 1994; 190: 371-378. Sommer G, Noorbehesht B, Pelc N, Jamison R, Pinevich AJ, Newton L, Myers B. Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging. Invest Radiol 1992; 27: 465-470. Martin DR, Sharma P, Salman K, Jones RA, Grattan-Smith JD, Mao H, Lauenstein TC, Burrow BK, Tudorascu DL, Votaw JR. Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging. Radiology 2008; 246: 241-248. Bax L, Bakker CJG, Klein WM, Blanken N, Beutler JJ, Mali WPTRM. Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol 2005; 16: 807-814. Cortsen M, Petersen LJ, Ståhlberg F, Thomsen C, Søndergaard L, Petersen JR, Ladefoged SD, Henriksen O. MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function. Acta Radiol 1996; 37: 79-84. Bradley EL, Blackwood LG. Comparing paired data: a simultaneous test of means and variances. Am Stat 1989; 43: 234-235. de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol 2000; 10: 1133-1137. Axel L. Blood flow effects in magnetic resonance imaging. AJR Am J Roentgenol 1984; 143: 1157-1166. Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Schad L, van Kaick G. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 1997; 203: 45-53. Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 1992; 185: 809-812. Wolf RL, King BF, Torres VE, Wilson DM, Ehman RL. Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate. AJR Am J Roentgenol 1993; 161: 995-1002. Thomsen C, Cortsen M, Söndergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quantification of renal arterial blood flow during breath-holding. J Magn Reson Imaging 1995; 4: 393-401. Nainani N, Panesar M. Nephrogenic systemic fibrosis. Am J Nephrol 2008; 29: 1-9. Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-268. Pelc NJ, Shimakawa A, Glover G. Phase contrast cine MRI. Magn Reson Med 1989; 1: 101. Holdsworth DW, Rickey DW, Drangova M, Miller DJ, Fenster A. Computer-controlled positive displacement pump for physiological flow simulation. Med Biol Eng Comput 1991; 29: 565-570. Van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984; 8: 429-436. 1984; 143 1989; 45 1989; 1 1989; 43 1992; 185 2000; 356 1994; 190 1997; 272 1993; 161 1999; 42 2008; 246 1999; 8 1995; 4 1996; 37 2008; 180 1997; 203 1991; 29 1984; 8 1993; 11 2000; 10 1997; 37 2008; 29 1993; 30 1984 1992; 27 2005; 16 2008; 395 2003; 64 1994; 4 1998; 8 Sommer (10.1002/mrm.22278-BIB14) 1992; 27 Van Dijk (10.1002/mrm.22278-BIB3) 1984; 8 Bax (10.1002/mrm.22278-BIB19) 2005; 16 Lundin (10.1002/mrm.22278-BIB11) 1993; 11 Papoulis (10.1002/mrm.22278-BIB27) 1984 Fredrickson (10.1002/mrm.22278-BIB7) 1994; 4 Toffaletti (10.1002/mrm.22278-BIB31) 2008; 395 Cortsen (10.1002/mrm.22278-BIB12) 1996; 37 Bland (10.1002/mrm.22278-BIB24) 1999; 8 Thomsen (10.1002/mrm.22278-BIB8) 1995; 4 Fischer (10.1002/mrm.22278-BIB10) 1999; 42 Pelc (10.1002/mrm.22278-BIB15) 1992; 185 Axel (10.1002/mrm.22278-BIB5) 1984; 143 Schoenberg (10.1002/mrm.22278-BIB20) 1997; 272 Bradley (10.1002/mrm.22278-BIB26) 1989; 43 Debatin (10.1002/mrm.22278-BIB18) 1994; 190 Holdsworth (10.1002/mrm.22278-BIB23) 1991; 29 de Haan (10.1002/mrm.22278-BIB21) 2000; 10 Bhave (10.1002/mrm.22278-BIB30) 2008; 180 King (10.1002/mrm.22278-BIB2) 2003; 64 Pelc (10.1002/mrm.22278-BIB6) 1989; 1 Martin (10.1002/mrm.22278-BIB13) 2008; 246 Bock (10.1002/mrm.22278-BIB9) 1998; 8 Wolf (10.1002/mrm.22278-BIB16) 1993; 161 Cowper (10.1002/mrm.22278-BIB28) 2000; 356 Lin (10.1002/mrm.22278-BIB25) 1989; 45 Chu (10.1002/mrm.22278-BIB22) 1997; 37 Nainani (10.1002/mrm.22278-BIB29) 2008; 29 Wolf (10.1002/mrm.22278-BIB17) 1993; 30 Schoenberg (10.1002/mrm.22278-BIB1) 1997; 203 Bryant (10.1002/mrm.22278-BIB4) 1984; 8 18573244 - Clin Chim Acta. 2008 Sep;395(1-2):115-9 2720055 - Biometrics. 1989 Mar;45(1):255-68 9702891 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):889-95 14635157 - J Magn Reson Imaging. 2003 Dec;18(6):714-25 9122415 - Radiology. 1997 Apr;203(1):45-53 14633145 - Kidney Int. 2003 Dec;64(6):2214-21 1438767 - Radiology. 1992 Dec;185(3):809-12 18096538 - Radiology. 2008 Jan;246(1):241-8 10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60 18635232 - J Urol. 2008 Sep;180(3):830-5; discussion 835 6725689 - J Comput Assist Tomogr. 1984 Jun;8(3):429-36 9001158 - Magn Reson Med. 1997 Feb;37(2):314-9 11003410 - Eur Radiol. 2000;10(7):1133-7 8284383 - Radiology. 1994 Feb;190(2):371-8 18663283 - Am J Nephrol. 2009;29(1):1-9 8611330 - Acta Radiol. 1996 Jan;37(1):79-84 7549200 - J Magn Reson Imaging. 1995 Jul-Aug;5(4):393-401 6333785 - AJR Am J Roentgenol. 1984 Dec;143(6):1157-66 1813750 - Med Biol Eng Comput. 1991 Nov;29(6):565-70 10440961 - Magn Reson Med. 1999 Aug;42(2):361-70 8423722 - Magn Reson Imaging. 1993;11(1):51-9 6736356 - J Comput Assist Tomogr. 1984 Aug;8(4):588-93 9176319 - Am J Physiol. 1997 May;272(5 Pt 2):H2477-84 1607260 - Invest Radiol. 1992 Jun;27(6):465-70 8273644 - AJR Am J Roentgenol. 1993 Nov;161(5):995-1002 8371679 - Magn Reson Med. 1993 Jul;30(1):82-91 8180460 - J Magn Reson Imaging. 1994 Mar-Apr;4(2):189-96 11041404 - Lancet. 2000 Sep 16;356(9234):1000-1 15947044 - J Vasc Interv Radiol. 2005 Jun;16(6):807-14 |
References_xml | – reference: Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999; 42: 361-370. – reference: Nainani N, Panesar M. Nephrogenic systemic fibrosis. Am J Nephrol 2008; 29: 1-9. – reference: Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984; 8: 588-593. – reference: Axel L. Blood flow effects in magnetic resonance imaging. AJR Am J Roentgenol 1984; 143: 1157-1166. – reference: Martin DR, Sharma P, Salman K, Jones RA, Grattan-Smith JD, Mao H, Lauenstein TC, Burrow BK, Tudorascu DL, Votaw JR. Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging. Radiology 2008; 246: 241-248. – reference: de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol 2000; 10: 1133-1137. – reference: Sommer G, Noorbehesht B, Pelc N, Jamison R, Pinevich AJ, Newton L, Myers B. Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging. Invest Radiol 1992; 27: 465-470. – reference: Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8: 135-160. – reference: Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 1993; 30: 82-91. – reference: Pelc NJ, Shimakawa A, Glover G. Phase contrast cine MRI. Magn Reson Med 1989; 1: 101. – reference: Bock M, Schoenberg SO, Schad LR, Knopp MV, Essig M, van Kaick G. Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery. J Magn Reson Imaging 1998; 8: 889-895. – reference: Bradley EL, Blackwood LG. Comparing paired data: a simultaneous test of means and variances. Am Stat 1989; 43: 234-235. – reference: Bax L, Bakker CJG, Klein WM, Blanken N, Beutler JJ, Mali WPTRM. Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol 2005; 16: 807-814. – reference: Wolf RL, King BF, Torres VE, Wilson DM, Ehman RL. Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate. AJR Am J Roentgenol 1993; 161: 995-1002. – reference: Cortsen M, Petersen LJ, Ståhlberg F, Thomsen C, Søndergaard L, Petersen JR, Ladefoged SD, Henriksen O. MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function. Acta Radiol 1996; 37: 79-84. – reference: Debatin JF, Ting RH, Wegmüller H, Sommer FG, Fredrickson JO, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 1994; 190: 371-378. – reference: Schoenberg SO, Just A, Bock M, Knopp MV, Persson PB, Kirchheim HR. Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. Am J Physiol 1997; 272: H2477-H2484. – reference: Papoulis A. Probability, random variables, and stochastic processes. 2nd edition. New York, NY: McGraw Hill; 1984, 576 p. – reference: Thomsen C, Cortsen M, Söndergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quantification of renal arterial blood flow during breath-holding. J Magn Reson Imaging 1995; 4: 393-401. – reference: Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-268. – reference: Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000; 356: 1000-1001. – reference: Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol 2008; 180: 830-835. – reference: Fredrickson JO, Pelc NJ. Time-resolved MR imaging by automatic data segmentation. J Magn Reson Imaging 1994; 4: 189-196. – reference: Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 1992; 185: 809-812. – reference: Lundin B, Cooper TG, Meyer RA, Potchen EJ. Measurement of total and unilateral renal blood flow by oblique-angle velocity encoded 2D-cine magnetic resonance angiography. Magn Reson Imaging 1993; 11: 51-59. – reference: Van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984; 8: 429-436. – reference: Toffaletti JG, McDonnell EH. Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function. Clin Chim Acta 2008; 395: 115-119. – reference: Holdsworth DW, Rickey DW, Drangova M, Miller DJ, Fenster A. Computer-controlled positive displacement pump for physiological flow simulation. Med Biol Eng Comput 1991; 29: 565-570. – reference: Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Schad L, van Kaick G. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 1997; 203: 45-53. – reference: Chu KC, Rutt BK. Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magn Reson Med 1997; 37: 314-319. – reference: King BF, Torres VE, Brummer ME, Chapman AB, Bae KT, Glockner, JF, Arya K, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP; the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease. Kidney Int 2003; 64: 2214-2221. – volume: 356 start-page: 1000 year: 2000 end-page: 1001 article-title: Scleromyxoedema‐like cutaneous diseases in renal‐dialysis patients publication-title: Lancet – volume: 11 start-page: 51 year: 1993 end-page: 59 article-title: Measurement of total and unilateral renal blood flow by oblique‐angle velocity encoded 2D‐cine magnetic resonance angiography publication-title: Magn Reson Imaging – volume: 190 start-page: 371 year: 1994 end-page: 378 article-title: Renal artery blood flow: quantitation with phase‐contrast MR imaging with and without breath holding publication-title: Radiology – volume: 45 start-page: 255 year: 1989 end-page: 268 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 8 start-page: 588 year: 1984 end-page: 593 article-title: Measurement of flow with NMR imaging using a gradient pulse and phase difference technique publication-title: J Comput Assist Tomogr – volume: 8 start-page: 135 year: 1999 end-page: 160 article-title: Measuring agreement in method comparison studies publication-title: Stat Methods Med Res – volume: 246 start-page: 241 year: 2008 end-page: 248 article-title: Individual kidney blood flow measured with contrast‐enhanced first‐pass perfusion MR imaging publication-title: Radiology – volume: 185 start-page: 809 year: 1992 end-page: 812 article-title: Arterial and venous blood flow: noninvasive quantitation with MR imaging publication-title: Radiology – volume: 4 start-page: 189 year: 1994 end-page: 196 article-title: Time‐resolved MR imaging by automatic data segmentation publication-title: J Magn Reson Imaging – volume: 10 start-page: 1133 year: 2000 end-page: 1137 article-title: Renal artery blood flow: quantification with breath‐hold or respiratory triggered phase‐contrast MR imaging publication-title: Eur Radiol – volume: 16 start-page: 807 year: 2005 end-page: 814 article-title: Renal blood flow measurements with use of phase‐contrast magnetic resonance imaging: normal values and reproducibility publication-title: J Vasc Interv Radiol – volume: 203 start-page: 45 year: 1997 end-page: 53 article-title: Renal artery stenosis: grading of hemodynamic changes with cine phase‐contrast MR blood flow measurements publication-title: Radiology – volume: 272 start-page: H2477 year: 1997 end-page: H2484 article-title: Noninvasive analysis of renal artery blood flow dynamics with MR cine phase‐contrast flow measurements publication-title: Am J Physiol – volume: 37 start-page: 314 year: 1997 end-page: 319 article-title: Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity publication-title: Magn Reson Med – volume: 37 start-page: 79 year: 1996 end-page: 84 article-title: MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function publication-title: Acta Radiol – volume: 8 start-page: 889 year: 1998 end-page: 895 article-title: Interleaved gradient echo planar (IGEPI) and phase contrast CINE‐PC flow measurements in the renal artery publication-title: J Magn Reson Imaging – volume: 42 start-page: 361 year: 1999 end-page: 370 article-title: Novel real‐time R‐wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions publication-title: Magn Reson Med – volume: 8 start-page: 429 year: 1984 end-page: 436 article-title: Direct cardiac NMR imaging of heart wall and blood flow velocity publication-title: J Comput Assist Tomogr – volume: 43 start-page: 234 year: 1989 end-page: 235 article-title: Comparing paired data: a simultaneous test of means and variances publication-title: Am Stat – volume: 1 start-page: 101 year: 1989 article-title: Phase contrast cine MRI publication-title: Magn Reson Med – start-page: 576 year: 1984 – volume: 30 start-page: 82 year: 1993 end-page: 91 article-title: Analysis of systematic and random error in MR volumetric flow measurements publication-title: Magn Reson Med – volume: 29 start-page: 1 year: 2008 end-page: 9 article-title: Nephrogenic systemic fibrosis publication-title: Am J Nephrol – volume: 161 start-page: 995 year: 1993 end-page: 1002 article-title: Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p‐aminohippurate publication-title: AJR Am J Roentgenol – volume: 143 start-page: 1157 year: 1984 end-page: 1166 article-title: Blood flow effects in magnetic resonance imaging publication-title: AJR Am J Roentgenol – volume: 27 start-page: 465 year: 1992 end-page: 470 article-title: Normal renal blood flow measurement using phase‐contrast cine magnetic resonance imaging publication-title: Invest Radiol – volume: 29 start-page: 565 year: 1991 end-page: 570 article-title: Computer‐controlled positive displacement pump for physiological flow simulation publication-title: Med Biol Eng Comput – volume: 180 start-page: 830 year: 2008 end-page: 835 article-title: Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis publication-title: J Urol – volume: 395 start-page: 115 year: 2008 end-page: 119 article-title: Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function publication-title: Clin Chim Acta – volume: 4 start-page: 393 year: 1995 end-page: 401 article-title: A segmented k‐space velocity mapping protocol for quantification of renal arterial blood flow during breath‐holding publication-title: J Magn Reson Imaging – volume: 64 start-page: 2214 year: 2003 end-page: 2221 article-title: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease publication-title: Kidney Int – volume: 43 start-page: 234 year: 1989 ident: 10.1002/mrm.22278-BIB26 article-title: Comparing paired data: a simultaneous test of means and variances publication-title: Am Stat doi: 10.1080/00031305.1989.10475665 – volume: 180 start-page: 830 year: 2008 ident: 10.1002/mrm.22278-BIB30 article-title: Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis publication-title: J Urol doi: 10.1016/j.juro.2008.05.005 – volume: 143 start-page: 1157 year: 1984 ident: 10.1002/mrm.22278-BIB5 article-title: Blood flow effects in magnetic resonance imaging publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.143.6.1157 – volume: 64 start-page: 2214 year: 2003 ident: 10.1002/mrm.22278-BIB2 article-title: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease publication-title: Kidney Int doi: 10.1046/j.1523-1755.2003.00326.x – start-page: 576 volume-title: Probability, random variables, and stochastic processes year: 1984 ident: 10.1002/mrm.22278-BIB27 – volume: 29 start-page: 1 year: 2008 ident: 10.1002/mrm.22278-BIB29 article-title: Nephrogenic systemic fibrosis publication-title: Am J Nephrol doi: 10.1159/000149628 – volume: 30 start-page: 82 year: 1993 ident: 10.1002/mrm.22278-BIB17 article-title: Analysis of systematic and random error in MR volumetric flow measurements publication-title: Magn Reson Med doi: 10.1002/mrm.1910300113 – volume: 27 start-page: 465 year: 1992 ident: 10.1002/mrm.22278-BIB14 article-title: Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging publication-title: Invest Radiol doi: 10.1097/00004424-199206000-00012 – volume: 8 start-page: 429 year: 1984 ident: 10.1002/mrm.22278-BIB3 article-title: Direct cardiac NMR imaging of heart wall and blood flow velocity publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-198406000-00012 – volume: 246 start-page: 241 year: 2008 ident: 10.1002/mrm.22278-BIB13 article-title: Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging publication-title: Radiology doi: 10.1148/radiol.2461062129 – volume: 203 start-page: 45 year: 1997 ident: 10.1002/mrm.22278-BIB1 article-title: Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements publication-title: Radiology doi: 10.1148/radiology.203.1.9122415 – volume: 161 start-page: 995 year: 1993 ident: 10.1002/mrm.22278-BIB16 article-title: Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.161.5.8273644 – volume: 190 start-page: 371 year: 1994 ident: 10.1002/mrm.22278-BIB18 article-title: Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding publication-title: Radiology doi: 10.1148/radiology.190.2.8284383 – volume: 8 start-page: 588 year: 1984 ident: 10.1002/mrm.22278-BIB4 article-title: Measurement of flow with NMR imaging using a gradient pulse and phase difference technique publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-198408000-00002 – volume: 8 start-page: 135 year: 1999 ident: 10.1002/mrm.22278-BIB24 article-title: Measuring agreement in method comparison studies publication-title: Stat Methods Med Res doi: 10.1177/096228029900800204 – volume: 356 start-page: 1000 year: 2000 ident: 10.1002/mrm.22278-BIB28 article-title: Scleromyxoedema-like cutaneous diseases in renal-dialysis patients publication-title: Lancet doi: 10.1016/S0140-6736(00)02694-5 – volume: 29 start-page: 565 year: 1991 ident: 10.1002/mrm.22278-BIB23 article-title: Computer-controlled positive displacement pump for physiological flow simulation publication-title: Med Biol Eng Comput doi: 10.1007/BF02446086 – volume: 1 start-page: 101 year: 1989 ident: 10.1002/mrm.22278-BIB6 article-title: Phase contrast cine MRI publication-title: Magn Reson Med – volume: 8 start-page: 889 year: 1998 ident: 10.1002/mrm.22278-BIB9 article-title: Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880080419 – volume: 4 start-page: 393 year: 1995 ident: 10.1002/mrm.22278-BIB8 article-title: A segmented k-space velocity mapping protocol for quantification of renal arterial blood flow during breath-holding publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880050405 – volume: 37 start-page: 314 year: 1997 ident: 10.1002/mrm.22278-BIB22 article-title: Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity publication-title: Magn Reson Med doi: 10.1002/mrm.1910370230 – volume: 4 start-page: 189 year: 1994 ident: 10.1002/mrm.22278-BIB7 article-title: Time-resolved MR imaging by automatic data segmentation publication-title: J Magn Reson Imaging doi: 10.1002/jmri.1880040217 – volume: 272 start-page: H2477 year: 1997 ident: 10.1002/mrm.22278-BIB20 article-title: Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements publication-title: Am J Physiol – volume: 395 start-page: 115 year: 2008 ident: 10.1002/mrm.22278-BIB31 article-title: Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function publication-title: Clin Chim Acta doi: 10.1016/j.cca.2008.05.020 – volume: 16 start-page: 807 year: 2005 ident: 10.1002/mrm.22278-BIB19 article-title: Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility publication-title: J Vasc Interv Radiol doi: 10.1097/01.RVI.0000161144.98350.28 – volume: 42 start-page: 361 year: 1999 ident: 10.1002/mrm.22278-BIB10 article-title: Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions publication-title: Magn Reson Med doi: 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9 – volume: 11 start-page: 51 year: 1993 ident: 10.1002/mrm.22278-BIB11 article-title: Measurement of total and unilateral renal blood flow by oblique-angle velocity encoded 2D-cine magnetic resonance angiography publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(93)90411-6 – volume: 10 start-page: 1133 year: 2000 ident: 10.1002/mrm.22278-BIB21 article-title: Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging publication-title: Eur Radiol doi: 10.1007/s003300000362 – volume: 45 start-page: 255 year: 1989 ident: 10.1002/mrm.22278-BIB25 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – volume: 185 start-page: 809 year: 1992 ident: 10.1002/mrm.22278-BIB15 article-title: Arterial and venous blood flow: noninvasive quantitation with MR imaging publication-title: Radiology doi: 10.1148/radiology.185.3.1438767 – volume: 37 start-page: 79 year: 1996 ident: 10.1002/mrm.22278-BIB12 article-title: MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function publication-title: Acta Radiol doi: 10.3109/02841859609174364 – reference: 8273644 - AJR Am J Roentgenol. 1993 Nov;161(5):995-1002 – reference: 2720055 - Biometrics. 1989 Mar;45(1):255-68 – reference: 14633145 - Kidney Int. 2003 Dec;64(6):2214-21 – reference: 1813750 - Med Biol Eng Comput. 1991 Nov;29(6):565-70 – reference: 18096538 - Radiology. 2008 Jan;246(1):241-8 – reference: 14635157 - J Magn Reson Imaging. 2003 Dec;18(6):714-25 – reference: 10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60 – reference: 18635232 - J Urol. 2008 Sep;180(3):830-5; discussion 835 – reference: 6736356 - J Comput Assist Tomogr. 1984 Aug;8(4):588-93 – reference: 9176319 - Am J Physiol. 1997 May;272(5 Pt 2):H2477-84 – reference: 8371679 - Magn Reson Med. 1993 Jul;30(1):82-91 – reference: 6333785 - AJR Am J Roentgenol. 1984 Dec;143(6):1157-66 – reference: 9001158 - Magn Reson Med. 1997 Feb;37(2):314-9 – reference: 18663283 - Am J Nephrol. 2009;29(1):1-9 – reference: 6725689 - J Comput Assist Tomogr. 1984 Jun;8(3):429-36 – reference: 18573244 - Clin Chim Acta. 2008 Sep;395(1-2):115-9 – reference: 1607260 - Invest Radiol. 1992 Jun;27(6):465-70 – reference: 8611330 - Acta Radiol. 1996 Jan;37(1):79-84 – reference: 9702891 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):889-95 – reference: 9122415 - Radiology. 1997 Apr;203(1):45-53 – reference: 8180460 - J Magn Reson Imaging. 1994 Mar-Apr;4(2):189-96 – reference: 1438767 - Radiology. 1992 Dec;185(3):809-12 – reference: 15947044 - J Vasc Interv Radiol. 2005 Jun;16(6):807-14 – reference: 8423722 - Magn Reson Imaging. 1993;11(1):51-9 – reference: 11003410 - Eur Radiol. 2000;10(7):1133-7 – reference: 7549200 - J Magn Reson Imaging. 1995 Jul-Aug;5(4):393-401 – reference: 11041404 - Lancet. 2000 Sep 16;356(9234):1000-1 – reference: 10440961 - Magn Reson Med. 1999 Aug;42(2):361-70 – reference: 8284383 - Radiology. 1994 Feb;190(2):371-8 |
SSID | ssj0009974 |
Score | 2.073568 |
Snippet | This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was... This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 940 |
SubjectTerms | Adult Blood Flow Velocity - physiology Cardiac-Gated Imaging Techniques - methods Contrast Media Female flow validation Gadolinium DTPA Humans Image Processing, Computer-Assisted Kidney - blood supply kidney imaging Magnetic Resonance Imaging - methods Male Phantoms, Imaging phase velocity imaging Pulsatile Flow - physiology quantitative flow Renal Artery - physiology renal blood flow Reproducibility of Results |
Title | Renal arterial blood flow measurement by breath-held MRI: Accuracy in phantom scans and reproducibility in healthy subjects |
URI | https://api.istex.fr/ark:/67375/WNG-SDMVFL4F-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22278 https://www.ncbi.nlm.nih.gov/pubmed/20373395 https://www.proquest.com/docview/733860999 https://www.proquest.com/docview/883015193 https://pubmed.ncbi.nlm.nih.gov/PMC3760266 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTSBeuAwY4SYLIcRLujRXB54moAxE9lAY7AHJ8vFFndamU9NoFAmJn8Bv5Jfg4zQphU1CvEXKSSIfH598tj9_h5DHioFUJgl8E6nYj2WgfaZsMhRJaIIMcgOuxlJxkO4fxm-PkqMN8rw9C9PoQ3QLbjgyXL7GAS6g2l2Jhk5mk547yGnzL3K1EBANV9JRed4oMGcx5pk8blWFgnC3e3LtX7SFbv1yHtD8my_5O451P6LBNfK5bULDPznp1XPoya9_qDv-Zxuvk6tLgEr3moi6QTZ0uU0uF8st-G1yyXFGZXWTfBtqtHSkUBvF1HHgqRlPz-hktfJIYUEBkeno5_cfIz1WtBi-eUb3pKxnQi7ocUlPR1jJeEIr280VFaWiKLWJSrQNddcZNQc2F7SqAZeOqlvkcPDqw4t9f1nNwZd2FsT8FAQkFmBpAyoxCSR9AQFELI4Y07aNEnSqhDJ2jpWnKoAs1hDgbEgbCymYjG6TzXJa6juEMh0rnWqbf0IRK-iD0RoyAVpb-GRM3yNP237lcil1jhU3xrwRaQ65dSx3jvXIo870tNH3OM_oiQuOzkLMTpAQlyX808Fr_v5l8XHwLh7w0CO0jR5uhynuvYhST-uKZ1HEUkTjF5swZpMtAmqP7DTx1n0vDCL7gjzxSLYWiZ0BioSv3ymPR04sHElPFoRZl7hAu7iRvBgW7uLuv5veI1caNgUyme6Tzfms1g8sSJvDQzcafwGeKz3G |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7i8cBm3cLUQQrykS3N1EC8TUDpo-lC2sRdk5fiiTmvTqWkFRULiJ_Ab-SXYTpNS2CTEW6ScJLJ9fPL5-PN3AJ4KilyoyHNVIEI35J50qdDBMI985SWYKrQ1lrJ-3D0I3x1FRxvwsj4LU-lDNAk3MzNsvDYT3CSkd1aqoePpuGVPcl6ALVPR2y6oBivxqDStNJiT0ESaNKx1hTx_p3l07W-0ZTr2y1lQ82_G5O9I1v6KOtfgU92IioFy0prPsMW__qHv-L-tvA5XlxiV7FZOdQM2ZLENl7LlLvw2XLS0UV7ehG8DaSwtL1Q7MrE0eKJGk89kvEo-ElwQNOB0-PP7j6EcCZIN9l6QXc7n05wvyHFBToemmPGYlHqkS5IXghi1TSNGW7F3rVF1ZnNByjma7FF5Cw46b_Zfdd1lQQeX64UQdWPMMdIYSyoUkYowaufoYUDDgFKp28hRxiIXSi-z0lh4mIQSPbMgkkqjCsqD27BZTAp5FwiVoZCx1CHIz0OBbVRSYpKjlBpBKdV24Hk9sIwv1c5N0Y0Rq3SafaY7ltmOdeBJY3paSXycZfTMekdjkU9PDCcuidjH_lv24XV22OmFHeY7QGr3YXqmmu2XvJCTecmSIKCxAeTnm1Cq463B1A7cqRyu-Z7vBfoFaeRAsuaKjYHRCV-_UxwPrV644T1pHKa7xHra-Y1k2SCzF_f-3fQxXO7uZz3W2-u_vw9XKnKFITY9gM3ZdC4fasw2w0d2av4CPghB4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5h44TJu5WohhHhJlyZO4sDTRCkbLBUqDPaAZOX4ok5r06ppBUVC4ifwG_kl2E6bUtgkxFuknCTy8fHJZ_vzdwAeS4ZC6sj3dCipR4WvPCZNMsyjQPsJphpdjaWsG-8f0dfH0fEGPF-ehan0IeoFNzsyXL62A3ws9e5KNHQ4GTbdQc4LsEVjn9mQbvdW2lFpWkkwJ9QmmpQuZYX8YLd-dO1ntGX9-uUspPk3YfJ3IOv-RJ0r8GnZhoqActqcTbEpvv4h7_ifjbwKlxcIlexVIXUNNlSxA9vZYg9-By460qgor8O3nrKWjhVqwpg4EjzRg9FnMlwtPRKcE7TQtP_z-4--GkiS9Q6ekT0hZpNczMlJQcZ9W8p4SErTzyXJC0ms1qaVoq24u86oOrE5J-UM7dpReQOOOi_fv9j3FuUcPGGmQcyLMcfIICylUUY6wqiVo48hoyFjyrRRoIplLrWZZKWx9DGhCn07HVLaYAomwpuwWYwKdRsIU1SqWJkEFORUYgu1UpjkqJTBT1q3GvB02a9cLLTObcmNAa9UmgNuHMudYxvwqDYdVwIfZxk9ccFRW-STU8uISyL-sfuKv2tnHzqHtMODBpBl9HAzTu3mS16o0azkSRiy2MLx800YM9nWIuoG3Krirf5e4IfmBWnUgGQtEmsDqxK-fqc46Tu1cMt6MijMuMQF2vmN5Fkvcxd3_t30IWy_bXf44UH3zV24VDErLKvpHmxOJzN13wC2KT5wA_MXeNlAmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+arterial+blood+flow+measurement+by+breath-held+MRI%3A+Accuracy+in+phantom+scans+and+reproducibility+in+healthy+subjects&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Dambreville%2C+Samuel&rft.au=Chapman%2C+Arlene+B&rft.au=Torres%2C+Vicente+E&rft.au=King%2C+Bernard+F&rft.date=2010-04-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=63&rft.issue=4&rft.spage=940&rft_id=info:doi/10.1002%2Fmrm.22278&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |