Renal arterial blood flow measurement by breath-held MRI: Accuracy in phantom scans and reproducibility in healthy subjects

This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled‐flow‐loop phantom studies. Measurements using prospective and retrospec...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 63; no. 4; pp. 940 - 950
Main Authors Dambreville, Samuel, Chapman, Arlene B., Torres, Vicente E., King, Bernard F., Wallin, Ashley K., Frakes, David H., Yoganathan, Ajit P., Wijayawardana, Sameera R., Easley, Kirk, Bae, Kyongtae T., Brummer, Marijn E.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled‐flow‐loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week‐to‐week variation in repeated studies. The standard deviation in the 4‐week protocol of repeated in vivo measurements of single‐kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath‐held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. Magn Reson Med 63:940–950, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow.
This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. Magn Reson Med 63:940-950, 2010. [copy 2010 Wiley-Liss, Inc.
This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled flow loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy with deviations from true flow consistently below 13% for vessel diameters 3 mm and above. Reproducibility in human subjects was evaluated by repeat studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the four-week protocol of repeated in-vivo measurements of single-kidney renal flow in normal subjects was 59.7 ml/min, corresponding with an average coefficient of variation of 10.55%. Comparison of RBF reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 ml/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 ml/min (6.90%) for repeated plane scouting, and 40.76 ml/min ( 7.20%) for weekly fluctuations in renal blood flow.
This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow.This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled-flow-loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week-to-week variation in repeated studies. The standard deviation in the 4-week protocol of repeated in vivo measurements of single-kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath-held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow.
This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was determined by comparing MRI measurements with known flow in controlled‐flow‐loop phantom studies. Measurements using prospective and retrospective gating methods were compared in phantom studies with pulsatile flow, not revealing significant differences. Phantom study results showed good accuracy, with deviations from true flow consistently below 13% for vessel diameters 3mm and above. Reproducibility in human subjects was evaluated by repeated studies in six healthy control subjects, comparing immediate repetition of the scan, repetition of the scan plane scouting, and week‐to‐week variation in repeated studies. The standard deviation in the 4‐week protocol of repeated in vivo measurements of single‐kidney renal flow in normal subjects was 59.7 mL/min, corresponding with an average coefficient of variation of 10.55%. Comparison of renal arterial blood flow reproducibility with and without gadolinium contrast showed no significant differences in mean or standard deviation. A breakdown among error components showed corresponding marginal standard deviations (coefficients of variation) 23.8 mL/min (4.21%) for immediate repetition of the breath‐held flow scan, 39.13 mL/min (6.90%) for repeated plane scouting, and 40.76 mL/min (7.20%) for weekly fluctuations in renal blood flow. Magn Reson Med 63:940–950, 2010. © 2010 Wiley‐Liss, Inc.
Author Torres, Vicente E.
Wallin, Ashley K.
Bae, Kyongtae T.
King, Bernard F.
Chapman, Arlene B.
Dambreville, Samuel
Wijayawardana, Sameera R.
Brummer, Marijn E.
Frakes, David H.
Yoganathan, Ajit P.
Easley, Kirk
AuthorAffiliation 1 Georgia Institute of Technology, Atlanta, GA
4 Arizona State University, Tempe, AZ
2 Emory University, Atlanta, GA
5 University of Pittsburgh, Pittsburgh, PA
3 Mayo Clinic, Rochester, MN
AuthorAffiliation_xml – name: 5 University of Pittsburgh, Pittsburgh, PA
– name: 2 Emory University, Atlanta, GA
– name: 3 Mayo Clinic, Rochester, MN
– name: 4 Arizona State University, Tempe, AZ
– name: 1 Georgia Institute of Technology, Atlanta, GA
Author_xml – sequence: 1
  givenname: Samuel
  surname: Dambreville
  fullname: Dambreville, Samuel
  organization: Georgia Institute of Technology, Atlanta, Georgia, USA
– sequence: 2
  givenname: Arlene B.
  surname: Chapman
  fullname: Chapman, Arlene B.
  organization: Emory University, Atlanta, Georgia, USA
– sequence: 3
  givenname: Vicente E.
  surname: Torres
  fullname: Torres, Vicente E.
  organization: Mayo Clinic, Rochester, Minnesota, USA
– sequence: 4
  givenname: Bernard F.
  surname: King
  fullname: King, Bernard F.
  organization: Mayo Clinic, Rochester, Minnesota, USA
– sequence: 5
  givenname: Ashley K.
  surname: Wallin
  fullname: Wallin, Ashley K.
  organization: Georgia Institute of Technology, Atlanta, Georgia, USA
– sequence: 6
  givenname: David H.
  surname: Frakes
  fullname: Frakes, David H.
  organization: Arizona State University, Tempe, Arizona, USA
– sequence: 7
  givenname: Ajit P.
  surname: Yoganathan
  fullname: Yoganathan, Ajit P.
  organization: Georgia Institute of Technology, Atlanta, Georgia, USA
– sequence: 8
  givenname: Sameera R.
  surname: Wijayawardana
  fullname: Wijayawardana, Sameera R.
  organization: Emory University, Atlanta, Georgia, USA
– sequence: 9
  givenname: Kirk
  surname: Easley
  fullname: Easley, Kirk
  organization: Emory University, Atlanta, Georgia, USA
– sequence: 10
  givenname: Kyongtae T.
  surname: Bae
  fullname: Bae, Kyongtae T.
  organization: University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– sequence: 11
  givenname: Marijn E.
  surname: Brummer
  fullname: Brummer, Marijn E.
  email: mbrumme@emory.edu
  organization: Emory University, Atlanta, Georgia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20373395$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFBS-AvEMs0jp2nDgskKrClEozIA1_S8t2boiLEw-2Qxnx8qSdmQoQiNW1dL9zdK7PEToY_AAIPc7JSU4IPe1Df0IprcQ9NMs5pRnldXGAZqQqSMbyujhERzFeEULquioeoENKWMVYzWfoxwoG5bAKCYKdHtp53-DW-Wvcg4pjgB6GhPUG6wAqdVkHrsHL1eVzfGbMGJTZYDvgdaeG5HscjRoiVkODA6yDb0ZjtXU23UIdKJe6DY6jvgKT4kN0v1UuwqPdPEYf5q_en7_OFm8vLs_PFpnhnIis1EpzyktodcNbrnmuNNFMFEwImK42GspGNS0RZV02RFcFaMKrUkArOBOGHaMXW9_1qHtozHRQUE6ug-1V2EivrPx9M9hOfvbfJKtKQstyMni6Mwj-6wgxyd5GA86pAfwYpRCM5Dyv2X_J6ddFObVQT-STX0PdpdlXMwGnW8AEH2OAVhqbVLL-JqN1Mifypnw5lS9vy58Uz_5Q7E3_xu7cr62Dzb9BuVwt94psq7Axwfc7hQpfZFmxistPby7ku5fLj_NFMZeU_QSYMtBb
CitedBy_id crossref_primary_10_1002_jmri_24446
crossref_primary_10_1002_jmri_24322
crossref_primary_10_3389_fphys_2017_00696
crossref_primary_10_1186_s12968_014_0105_x
crossref_primary_10_1016_j_semnephrol_2011_05_003
crossref_primary_10_1093_ndt_gfy152
crossref_primary_10_1097_MCC_0000000000000768
crossref_primary_10_1186_s13063_019_3563_5
crossref_primary_10_1002_jmri_24889
crossref_primary_10_1152_ajprenal_00486_2018
crossref_primary_10_1007_s10334_019_00772_0
crossref_primary_10_1038_ki_2011_119
crossref_primary_10_1038_ki_2015_59
crossref_primary_10_2463_jjmrm_2023_1793
crossref_primary_10_1152_ajpheart_00697_2013
crossref_primary_10_1152_ajprenal_00311_2020
crossref_primary_10_1007_s00330_015_3877_y
crossref_primary_10_1186_s41747_024_00435_3
crossref_primary_10_1111_1440_1681_12042
Cites_doi 10.1080/00031305.1989.10475665
10.1016/j.juro.2008.05.005
10.2214/ajr.143.6.1157
10.1046/j.1523-1755.2003.00326.x
10.1159/000149628
10.1002/mrm.1910300113
10.1097/00004424-199206000-00012
10.1097/00004728-198406000-00012
10.1148/radiol.2461062129
10.1148/radiology.203.1.9122415
10.2214/ajr.161.5.8273644
10.1148/radiology.190.2.8284383
10.1097/00004728-198408000-00002
10.1177/096228029900800204
10.1016/S0140-6736(00)02694-5
10.1007/BF02446086
10.1002/jmri.1880080419
10.1002/jmri.1880050405
10.1002/mrm.1910370230
10.1002/jmri.1880040217
10.1016/j.cca.2008.05.020
10.1097/01.RVI.0000161144.98350.28
10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9
10.1016/0730-725X(93)90411-6
10.1007/s003300000362
10.2307/2532051
10.1148/radiology.185.3.1438767
10.3109/02841859609174364
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
CorporateAuthor Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP)
CorporateAuthor_xml – name: Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP)
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1002/mrm.22278
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 950
ExternalDocumentID PMC3760266
20373395
10_1002_mrm_22278
MRM22278
ark_67375_WNG_SDMVFL4F_2
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: UO1‐DK56956; MO1‐RR00039
– fundername: NCRR NIH HHS
  grantid: M01-RR00039
– fundername: NIDDK NIH HHS
  grantid: U01 DK056957
– fundername: NCRR NIH HHS
  grantid: M01 RR000039
– fundername: NCATS NIH HHS
  grantid: UL1 TR000454
– fundername: NCRR NIH HHS
  grantid: UL1 RR025008
– fundername: NIDDK NIH HHS
  grantid: U01-DK-56956
– fundername: NIDDK NIH HHS
  grantid: U01 DK056956
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: U01 DK056956 || DK
– fundername: National Center for Research Resources : NCRR
  grantid: UL1 RR025008 || RR
– fundername: National Center for Research Resources : NCRR
  grantid: M01 RR000039 || RR
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c5508-6bab5256efbd5f5b51ab0b384388e227cbe6dadf08696d0b74eb05768ef8538c3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 13:40:21 EDT 2025
Thu Jul 10 20:49:02 EDT 2025
Fri Jul 11 05:17:46 EDT 2025
Wed Feb 19 02:41:51 EST 2025
Tue Jul 01 01:20:43 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Wed Jan 22 16:34:04 EST 2025
Wed Oct 30 09:57:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5508-6bab5256efbd5f5b51ab0b384388e227cbe6dadf08696d0b74eb05768ef8538c3
Notes NIH - No. UO1-DK56956; No. MO1-RR00039
istex:FC0618B7F6B60C9A4DF7045CE93A6F4D63CFC810
ark:/67375/WNG-SDMVFL4F-2
ArticleID:MRM22278
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22278
PMID 20373395
PQID 733860999
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3760266
proquest_miscellaneous_883015193
proquest_miscellaneous_733860999
pubmed_primary_20373395
crossref_citationtrail_10_1002_mrm_22278
crossref_primary_10_1002_mrm_22278
wiley_primary_10_1002_mrm_22278_MRM22278
istex_primary_ark_67375_WNG_SDMVFL4F_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Papoulis A. Probability, random variables, and stochastic processes. 2nd edition. New York, NY: McGraw Hill; 1984, 576 p.
Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 1993; 30: 82-91.
Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol 2008; 180: 830-835.
Schoenberg SO, Just A, Bock M, Knopp MV, Persson PB, Kirchheim HR. Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. Am J Physiol 1997; 272: H2477-H2484.
Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984; 8: 588-593.
Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8: 135-160.
Bock M, Schoenberg SO, Schad LR, Knopp MV, Essig M, van Kaick G. Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery. J Magn Reson Imaging 1998; 8: 889-895.
Lundin B, Cooper TG, Meyer RA, Potchen EJ. Measurement of total and unilateral renal blood flow by oblique-angle velocity encoded 2D-cine magnetic resonance angiography. Magn Reson Imaging 1993; 11: 51-59.
Toffaletti JG, McDonnell EH. Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function. Clin Chim Acta 2008; 395: 115-119.
Chu KC, Rutt BK. Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magn Reson Med 1997; 37: 314-319.
Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999; 42: 361-370.
Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000; 356: 1000-1001.
Fredrickson JO, Pelc NJ. Time-resolved MR imaging by automatic data segmentation. J Magn Reson Imaging 1994; 4: 189-196.
King BF, Torres VE, Brummer ME, Chapman AB, Bae KT, Glockner, JF, Arya K, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP; the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease. Kidney Int 2003; 64: 2214-2221.
Debatin JF, Ting RH, Wegmüller H, Sommer FG, Fredrickson JO, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 1994; 190: 371-378.
Sommer G, Noorbehesht B, Pelc N, Jamison R, Pinevich AJ, Newton L, Myers B. Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging. Invest Radiol 1992; 27: 465-470.
Martin DR, Sharma P, Salman K, Jones RA, Grattan-Smith JD, Mao H, Lauenstein TC, Burrow BK, Tudorascu DL, Votaw JR. Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging. Radiology 2008; 246: 241-248.
Bax L, Bakker CJG, Klein WM, Blanken N, Beutler JJ, Mali WPTRM. Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol 2005; 16: 807-814.
Cortsen M, Petersen LJ, Ståhlberg F, Thomsen C, Søndergaard L, Petersen JR, Ladefoged SD, Henriksen O. MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function. Acta Radiol 1996; 37: 79-84.
Bradley EL, Blackwood LG. Comparing paired data: a simultaneous test of means and variances. Am Stat 1989; 43: 234-235.
de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol 2000; 10: 1133-1137.
Axel L. Blood flow effects in magnetic resonance imaging. AJR Am J Roentgenol 1984; 143: 1157-1166.
Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Schad L, van Kaick G. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 1997; 203: 45-53.
Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 1992; 185: 809-812.
Wolf RL, King BF, Torres VE, Wilson DM, Ehman RL. Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate. AJR Am J Roentgenol 1993; 161: 995-1002.
Thomsen C, Cortsen M, Söndergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quantification of renal arterial blood flow during breath-holding. J Magn Reson Imaging 1995; 4: 393-401.
Nainani N, Panesar M. Nephrogenic systemic fibrosis. Am J Nephrol 2008; 29: 1-9.
Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-268.
Pelc NJ, Shimakawa A, Glover G. Phase contrast cine MRI. Magn Reson Med 1989; 1: 101.
Holdsworth DW, Rickey DW, Drangova M, Miller DJ, Fenster A. Computer-controlled positive displacement pump for physiological flow simulation. Med Biol Eng Comput 1991; 29: 565-570.
Van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984; 8: 429-436.
1984; 143
1989; 45
1989; 1
1989; 43
1992; 185
2000; 356
1994; 190
1997; 272
1993; 161
1999; 42
2008; 246
1999; 8
1995; 4
1996; 37
2008; 180
1997; 203
1991; 29
1984; 8
1993; 11
2000; 10
1997; 37
2008; 29
1993; 30
1984
1992; 27
2005; 16
2008; 395
2003; 64
1994; 4
1998; 8
Sommer (10.1002/mrm.22278-BIB14) 1992; 27
Van Dijk (10.1002/mrm.22278-BIB3) 1984; 8
Bax (10.1002/mrm.22278-BIB19) 2005; 16
Lundin (10.1002/mrm.22278-BIB11) 1993; 11
Papoulis (10.1002/mrm.22278-BIB27) 1984
Fredrickson (10.1002/mrm.22278-BIB7) 1994; 4
Toffaletti (10.1002/mrm.22278-BIB31) 2008; 395
Cortsen (10.1002/mrm.22278-BIB12) 1996; 37
Bland (10.1002/mrm.22278-BIB24) 1999; 8
Thomsen (10.1002/mrm.22278-BIB8) 1995; 4
Fischer (10.1002/mrm.22278-BIB10) 1999; 42
Pelc (10.1002/mrm.22278-BIB15) 1992; 185
Axel (10.1002/mrm.22278-BIB5) 1984; 143
Schoenberg (10.1002/mrm.22278-BIB20) 1997; 272
Bradley (10.1002/mrm.22278-BIB26) 1989; 43
Debatin (10.1002/mrm.22278-BIB18) 1994; 190
Holdsworth (10.1002/mrm.22278-BIB23) 1991; 29
de Haan (10.1002/mrm.22278-BIB21) 2000; 10
Bhave (10.1002/mrm.22278-BIB30) 2008; 180
King (10.1002/mrm.22278-BIB2) 2003; 64
Pelc (10.1002/mrm.22278-BIB6) 1989; 1
Martin (10.1002/mrm.22278-BIB13) 2008; 246
Bock (10.1002/mrm.22278-BIB9) 1998; 8
Wolf (10.1002/mrm.22278-BIB16) 1993; 161
Cowper (10.1002/mrm.22278-BIB28) 2000; 356
Lin (10.1002/mrm.22278-BIB25) 1989; 45
Chu (10.1002/mrm.22278-BIB22) 1997; 37
Nainani (10.1002/mrm.22278-BIB29) 2008; 29
Wolf (10.1002/mrm.22278-BIB17) 1993; 30
Schoenberg (10.1002/mrm.22278-BIB1) 1997; 203
Bryant (10.1002/mrm.22278-BIB4) 1984; 8
18573244 - Clin Chim Acta. 2008 Sep;395(1-2):115-9
2720055 - Biometrics. 1989 Mar;45(1):255-68
9702891 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):889-95
14635157 - J Magn Reson Imaging. 2003 Dec;18(6):714-25
9122415 - Radiology. 1997 Apr;203(1):45-53
14633145 - Kidney Int. 2003 Dec;64(6):2214-21
1438767 - Radiology. 1992 Dec;185(3):809-12
18096538 - Radiology. 2008 Jan;246(1):241-8
10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60
18635232 - J Urol. 2008 Sep;180(3):830-5; discussion 835
6725689 - J Comput Assist Tomogr. 1984 Jun;8(3):429-36
9001158 - Magn Reson Med. 1997 Feb;37(2):314-9
11003410 - Eur Radiol. 2000;10(7):1133-7
8284383 - Radiology. 1994 Feb;190(2):371-8
18663283 - Am J Nephrol. 2009;29(1):1-9
8611330 - Acta Radiol. 1996 Jan;37(1):79-84
7549200 - J Magn Reson Imaging. 1995 Jul-Aug;5(4):393-401
6333785 - AJR Am J Roentgenol. 1984 Dec;143(6):1157-66
1813750 - Med Biol Eng Comput. 1991 Nov;29(6):565-70
10440961 - Magn Reson Med. 1999 Aug;42(2):361-70
8423722 - Magn Reson Imaging. 1993;11(1):51-9
6736356 - J Comput Assist Tomogr. 1984 Aug;8(4):588-93
9176319 - Am J Physiol. 1997 May;272(5 Pt 2):H2477-84
1607260 - Invest Radiol. 1992 Jun;27(6):465-70
8273644 - AJR Am J Roentgenol. 1993 Nov;161(5):995-1002
8371679 - Magn Reson Med. 1993 Jul;30(1):82-91
8180460 - J Magn Reson Imaging. 1994 Mar-Apr;4(2):189-96
11041404 - Lancet. 2000 Sep 16;356(9234):1000-1
15947044 - J Vasc Interv Radiol. 2005 Jun;16(6):807-14
References_xml – reference: Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999; 42: 361-370.
– reference: Nainani N, Panesar M. Nephrogenic systemic fibrosis. Am J Nephrol 2008; 29: 1-9.
– reference: Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984; 8: 588-593.
– reference: Axel L. Blood flow effects in magnetic resonance imaging. AJR Am J Roentgenol 1984; 143: 1157-1166.
– reference: Martin DR, Sharma P, Salman K, Jones RA, Grattan-Smith JD, Mao H, Lauenstein TC, Burrow BK, Tudorascu DL, Votaw JR. Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging. Radiology 2008; 246: 241-248.
– reference: de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol 2000; 10: 1133-1137.
– reference: Sommer G, Noorbehesht B, Pelc N, Jamison R, Pinevich AJ, Newton L, Myers B. Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging. Invest Radiol 1992; 27: 465-470.
– reference: Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8: 135-160.
– reference: Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 1993; 30: 82-91.
– reference: Pelc NJ, Shimakawa A, Glover G. Phase contrast cine MRI. Magn Reson Med 1989; 1: 101.
– reference: Bock M, Schoenberg SO, Schad LR, Knopp MV, Essig M, van Kaick G. Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery. J Magn Reson Imaging 1998; 8: 889-895.
– reference: Bradley EL, Blackwood LG. Comparing paired data: a simultaneous test of means and variances. Am Stat 1989; 43: 234-235.
– reference: Bax L, Bakker CJG, Klein WM, Blanken N, Beutler JJ, Mali WPTRM. Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol 2005; 16: 807-814.
– reference: Wolf RL, King BF, Torres VE, Wilson DM, Ehman RL. Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate. AJR Am J Roentgenol 1993; 161: 995-1002.
– reference: Cortsen M, Petersen LJ, Ståhlberg F, Thomsen C, Søndergaard L, Petersen JR, Ladefoged SD, Henriksen O. MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function. Acta Radiol 1996; 37: 79-84.
– reference: Debatin JF, Ting RH, Wegmüller H, Sommer FG, Fredrickson JO, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 1994; 190: 371-378.
– reference: Schoenberg SO, Just A, Bock M, Knopp MV, Persson PB, Kirchheim HR. Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. Am J Physiol 1997; 272: H2477-H2484.
– reference: Papoulis A. Probability, random variables, and stochastic processes. 2nd edition. New York, NY: McGraw Hill; 1984, 576 p.
– reference: Thomsen C, Cortsen M, Söndergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quantification of renal arterial blood flow during breath-holding. J Magn Reson Imaging 1995; 4: 393-401.
– reference: Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-268.
– reference: Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000; 356: 1000-1001.
– reference: Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol 2008; 180: 830-835.
– reference: Fredrickson JO, Pelc NJ. Time-resolved MR imaging by automatic data segmentation. J Magn Reson Imaging 1994; 4: 189-196.
– reference: Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 1992; 185: 809-812.
– reference: Lundin B, Cooper TG, Meyer RA, Potchen EJ. Measurement of total and unilateral renal blood flow by oblique-angle velocity encoded 2D-cine magnetic resonance angiography. Magn Reson Imaging 1993; 11: 51-59.
– reference: Van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984; 8: 429-436.
– reference: Toffaletti JG, McDonnell EH. Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function. Clin Chim Acta 2008; 395: 115-119.
– reference: Holdsworth DW, Rickey DW, Drangova M, Miller DJ, Fenster A. Computer-controlled positive displacement pump for physiological flow simulation. Med Biol Eng Comput 1991; 29: 565-570.
– reference: Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Schad L, van Kaick G. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 1997; 203: 45-53.
– reference: Chu KC, Rutt BK. Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity. Magn Reson Med 1997; 37: 314-319.
– reference: King BF, Torres VE, Brummer ME, Chapman AB, Bae KT, Glockner, JF, Arya K, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP; the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease. Kidney Int 2003; 64: 2214-2221.
– volume: 356
  start-page: 1000
  year: 2000
  end-page: 1001
  article-title: Scleromyxoedema‐like cutaneous diseases in renal‐dialysis patients
  publication-title: Lancet
– volume: 11
  start-page: 51
  year: 1993
  end-page: 59
  article-title: Measurement of total and unilateral renal blood flow by oblique‐angle velocity encoded 2D‐cine magnetic resonance angiography
  publication-title: Magn Reson Imaging
– volume: 190
  start-page: 371
  year: 1994
  end-page: 378
  article-title: Renal artery blood flow: quantitation with phase‐contrast MR imaging with and without breath holding
  publication-title: Radiology
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 8
  start-page: 588
  year: 1984
  end-page: 593
  article-title: Measurement of flow with NMR imaging using a gradient pulse and phase difference technique
  publication-title: J Comput Assist Tomogr
– volume: 8
  start-page: 135
  year: 1999
  end-page: 160
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat Methods Med Res
– volume: 246
  start-page: 241
  year: 2008
  end-page: 248
  article-title: Individual kidney blood flow measured with contrast‐enhanced first‐pass perfusion MR imaging
  publication-title: Radiology
– volume: 185
  start-page: 809
  year: 1992
  end-page: 812
  article-title: Arterial and venous blood flow: noninvasive quantitation with MR imaging
  publication-title: Radiology
– volume: 4
  start-page: 189
  year: 1994
  end-page: 196
  article-title: Time‐resolved MR imaging by automatic data segmentation
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 1133
  year: 2000
  end-page: 1137
  article-title: Renal artery blood flow: quantification with breath‐hold or respiratory triggered phase‐contrast MR imaging
  publication-title: Eur Radiol
– volume: 16
  start-page: 807
  year: 2005
  end-page: 814
  article-title: Renal blood flow measurements with use of phase‐contrast magnetic resonance imaging: normal values and reproducibility
  publication-title: J Vasc Interv Radiol
– volume: 203
  start-page: 45
  year: 1997
  end-page: 53
  article-title: Renal artery stenosis: grading of hemodynamic changes with cine phase‐contrast MR blood flow measurements
  publication-title: Radiology
– volume: 272
  start-page: H2477
  year: 1997
  end-page: H2484
  article-title: Noninvasive analysis of renal artery blood flow dynamics with MR cine phase‐contrast flow measurements
  publication-title: Am J Physiol
– volume: 37
  start-page: 314
  year: 1997
  end-page: 319
  article-title: Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity
  publication-title: Magn Reson Med
– volume: 37
  start-page: 79
  year: 1996
  end-page: 84
  article-title: MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function
  publication-title: Acta Radiol
– volume: 8
  start-page: 889
  year: 1998
  end-page: 895
  article-title: Interleaved gradient echo planar (IGEPI) and phase contrast CINE‐PC flow measurements in the renal artery
  publication-title: J Magn Reson Imaging
– volume: 42
  start-page: 361
  year: 1999
  end-page: 370
  article-title: Novel real‐time R‐wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions
  publication-title: Magn Reson Med
– volume: 8
  start-page: 429
  year: 1984
  end-page: 436
  article-title: Direct cardiac NMR imaging of heart wall and blood flow velocity
  publication-title: J Comput Assist Tomogr
– volume: 43
  start-page: 234
  year: 1989
  end-page: 235
  article-title: Comparing paired data: a simultaneous test of means and variances
  publication-title: Am Stat
– volume: 1
  start-page: 101
  year: 1989
  article-title: Phase contrast cine MRI
  publication-title: Magn Reson Med
– start-page: 576
  year: 1984
– volume: 30
  start-page: 82
  year: 1993
  end-page: 91
  article-title: Analysis of systematic and random error in MR volumetric flow measurements
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1
  year: 2008
  end-page: 9
  article-title: Nephrogenic systemic fibrosis
  publication-title: Am J Nephrol
– volume: 161
  start-page: 995
  year: 1993
  end-page: 1002
  article-title: Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p‐aminohippurate
  publication-title: AJR Am J Roentgenol
– volume: 143
  start-page: 1157
  year: 1984
  end-page: 1166
  article-title: Blood flow effects in magnetic resonance imaging
  publication-title: AJR Am J Roentgenol
– volume: 27
  start-page: 465
  year: 1992
  end-page: 470
  article-title: Normal renal blood flow measurement using phase‐contrast cine magnetic resonance imaging
  publication-title: Invest Radiol
– volume: 29
  start-page: 565
  year: 1991
  end-page: 570
  article-title: Computer‐controlled positive displacement pump for physiological flow simulation
  publication-title: Med Biol Eng Comput
– volume: 180
  start-page: 830
  year: 2008
  end-page: 835
  article-title: Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis
  publication-title: J Urol
– volume: 395
  start-page: 115
  year: 2008
  end-page: 119
  article-title: Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function
  publication-title: Clin Chim Acta
– volume: 4
  start-page: 393
  year: 1995
  end-page: 401
  article-title: A segmented k‐space velocity mapping protocol for quantification of renal arterial blood flow during breath‐holding
  publication-title: J Magn Reson Imaging
– volume: 64
  start-page: 2214
  year: 2003
  end-page: 2221
  article-title: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease
  publication-title: Kidney Int
– volume: 43
  start-page: 234
  year: 1989
  ident: 10.1002/mrm.22278-BIB26
  article-title: Comparing paired data: a simultaneous test of means and variances
  publication-title: Am Stat
  doi: 10.1080/00031305.1989.10475665
– volume: 180
  start-page: 830
  year: 2008
  ident: 10.1002/mrm.22278-BIB30
  article-title: Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis
  publication-title: J Urol
  doi: 10.1016/j.juro.2008.05.005
– volume: 143
  start-page: 1157
  year: 1984
  ident: 10.1002/mrm.22278-BIB5
  article-title: Blood flow effects in magnetic resonance imaging
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.143.6.1157
– volume: 64
  start-page: 2214
  year: 2003
  ident: 10.1002/mrm.22278-BIB2
  article-title: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal dominant polycystic kidney disease
  publication-title: Kidney Int
  doi: 10.1046/j.1523-1755.2003.00326.x
– start-page: 576
  volume-title: Probability, random variables, and stochastic processes
  year: 1984
  ident: 10.1002/mrm.22278-BIB27
– volume: 29
  start-page: 1
  year: 2008
  ident: 10.1002/mrm.22278-BIB29
  article-title: Nephrogenic systemic fibrosis
  publication-title: Am J Nephrol
  doi: 10.1159/000149628
– volume: 30
  start-page: 82
  year: 1993
  ident: 10.1002/mrm.22278-BIB17
  article-title: Analysis of systematic and random error in MR volumetric flow measurements
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910300113
– volume: 27
  start-page: 465
  year: 1992
  ident: 10.1002/mrm.22278-BIB14
  article-title: Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging
  publication-title: Invest Radiol
  doi: 10.1097/00004424-199206000-00012
– volume: 8
  start-page: 429
  year: 1984
  ident: 10.1002/mrm.22278-BIB3
  article-title: Direct cardiac NMR imaging of heart wall and blood flow velocity
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-198406000-00012
– volume: 246
  start-page: 241
  year: 2008
  ident: 10.1002/mrm.22278-BIB13
  article-title: Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2461062129
– volume: 203
  start-page: 45
  year: 1997
  ident: 10.1002/mrm.22278-BIB1
  article-title: Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements
  publication-title: Radiology
  doi: 10.1148/radiology.203.1.9122415
– volume: 161
  start-page: 995
  year: 1993
  ident: 10.1002/mrm.22278-BIB16
  article-title: Measurement of renal artery blood flow: cine phase contrast MR imaging vs clearance of p-aminohippurate
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.161.5.8273644
– volume: 190
  start-page: 371
  year: 1994
  ident: 10.1002/mrm.22278-BIB18
  article-title: Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding
  publication-title: Radiology
  doi: 10.1148/radiology.190.2.8284383
– volume: 8
  start-page: 588
  year: 1984
  ident: 10.1002/mrm.22278-BIB4
  article-title: Measurement of flow with NMR imaging using a gradient pulse and phase difference technique
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-198408000-00002
– volume: 8
  start-page: 135
  year: 1999
  ident: 10.1002/mrm.22278-BIB24
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228029900800204
– volume: 356
  start-page: 1000
  year: 2000
  ident: 10.1002/mrm.22278-BIB28
  article-title: Scleromyxoedema-like cutaneous diseases in renal-dialysis patients
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02694-5
– volume: 29
  start-page: 565
  year: 1991
  ident: 10.1002/mrm.22278-BIB23
  article-title: Computer-controlled positive displacement pump for physiological flow simulation
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02446086
– volume: 1
  start-page: 101
  year: 1989
  ident: 10.1002/mrm.22278-BIB6
  article-title: Phase contrast cine MRI
  publication-title: Magn Reson Med
– volume: 8
  start-page: 889
  year: 1998
  ident: 10.1002/mrm.22278-BIB9
  article-title: Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880080419
– volume: 4
  start-page: 393
  year: 1995
  ident: 10.1002/mrm.22278-BIB8
  article-title: A segmented k-space velocity mapping protocol for quantification of renal arterial blood flow during breath-holding
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880050405
– volume: 37
  start-page: 314
  year: 1997
  ident: 10.1002/mrm.22278-BIB22
  article-title: Polyvinyl alcohol Cryogel: an ideal phantom material for MR studies of arterial flow and elasticity
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910370230
– volume: 4
  start-page: 189
  year: 1994
  ident: 10.1002/mrm.22278-BIB7
  article-title: Time-resolved MR imaging by automatic data segmentation
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880040217
– volume: 272
  start-page: H2477
  year: 1997
  ident: 10.1002/mrm.22278-BIB20
  article-title: Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements
  publication-title: Am J Physiol
– volume: 395
  start-page: 115
  year: 2008
  ident: 10.1002/mrm.22278-BIB31
  article-title: Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2008.05.020
– volume: 16
  start-page: 807
  year: 2005
  ident: 10.1002/mrm.22278-BIB19
  article-title: Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility
  publication-title: J Vasc Interv Radiol
  doi: 10.1097/01.RVI.0000161144.98350.28
– volume: 42
  start-page: 361
  year: 1999
  ident: 10.1002/mrm.22278-BIB10
  article-title: Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9
– volume: 11
  start-page: 51
  year: 1993
  ident: 10.1002/mrm.22278-BIB11
  article-title: Measurement of total and unilateral renal blood flow by oblique-angle velocity encoded 2D-cine magnetic resonance angiography
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(93)90411-6
– volume: 10
  start-page: 1133
  year: 2000
  ident: 10.1002/mrm.22278-BIB21
  article-title: Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging
  publication-title: Eur Radiol
  doi: 10.1007/s003300000362
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.1002/mrm.22278-BIB25
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 185
  start-page: 809
  year: 1992
  ident: 10.1002/mrm.22278-BIB15
  article-title: Arterial and venous blood flow: noninvasive quantitation with MR imaging
  publication-title: Radiology
  doi: 10.1148/radiology.185.3.1438767
– volume: 37
  start-page: 79
  year: 1996
  ident: 10.1002/mrm.22278-BIB12
  article-title: MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function
  publication-title: Acta Radiol
  doi: 10.3109/02841859609174364
– reference: 8273644 - AJR Am J Roentgenol. 1993 Nov;161(5):995-1002
– reference: 2720055 - Biometrics. 1989 Mar;45(1):255-68
– reference: 14633145 - Kidney Int. 2003 Dec;64(6):2214-21
– reference: 1813750 - Med Biol Eng Comput. 1991 Nov;29(6):565-70
– reference: 18096538 - Radiology. 2008 Jan;246(1):241-8
– reference: 14635157 - J Magn Reson Imaging. 2003 Dec;18(6):714-25
– reference: 10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60
– reference: 18635232 - J Urol. 2008 Sep;180(3):830-5; discussion 835
– reference: 6736356 - J Comput Assist Tomogr. 1984 Aug;8(4):588-93
– reference: 9176319 - Am J Physiol. 1997 May;272(5 Pt 2):H2477-84
– reference: 8371679 - Magn Reson Med. 1993 Jul;30(1):82-91
– reference: 6333785 - AJR Am J Roentgenol. 1984 Dec;143(6):1157-66
– reference: 9001158 - Magn Reson Med. 1997 Feb;37(2):314-9
– reference: 18663283 - Am J Nephrol. 2009;29(1):1-9
– reference: 6725689 - J Comput Assist Tomogr. 1984 Jun;8(3):429-36
– reference: 18573244 - Clin Chim Acta. 2008 Sep;395(1-2):115-9
– reference: 1607260 - Invest Radiol. 1992 Jun;27(6):465-70
– reference: 8611330 - Acta Radiol. 1996 Jan;37(1):79-84
– reference: 9702891 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):889-95
– reference: 9122415 - Radiology. 1997 Apr;203(1):45-53
– reference: 8180460 - J Magn Reson Imaging. 1994 Mar-Apr;4(2):189-96
– reference: 1438767 - Radiology. 1992 Dec;185(3):809-12
– reference: 15947044 - J Vasc Interv Radiol. 2005 Jun;16(6):807-14
– reference: 8423722 - Magn Reson Imaging. 1993;11(1):51-9
– reference: 11003410 - Eur Radiol. 2000;10(7):1133-7
– reference: 7549200 - J Magn Reson Imaging. 1995 Jul-Aug;5(4):393-401
– reference: 11041404 - Lancet. 2000 Sep 16;356(9234):1000-1
– reference: 10440961 - Magn Reson Med. 1999 Aug;42(2):361-70
– reference: 8284383 - Radiology. 1994 Feb;190(2):371-8
SSID ssj0009974
Score 2.073568
Snippet This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath‐held velocity‐encoded MRI. Overall accuracy was...
This study evaluates reliability of current technology for measurement of renal arterial blood flow by breath-held velocity-encoded MRI. Overall accuracy was...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 940
SubjectTerms Adult
Blood Flow Velocity - physiology
Cardiac-Gated Imaging Techniques - methods
Contrast Media
Female
flow validation
Gadolinium DTPA
Humans
Image Processing, Computer-Assisted
Kidney - blood supply
kidney imaging
Magnetic Resonance Imaging - methods
Male
Phantoms, Imaging
phase velocity imaging
Pulsatile Flow - physiology
quantitative flow
Renal Artery - physiology
renal blood flow
Reproducibility of Results
Title Renal arterial blood flow measurement by breath-held MRI: Accuracy in phantom scans and reproducibility in healthy subjects
URI https://api.istex.fr/ark:/67375/WNG-SDMVFL4F-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22278
https://www.ncbi.nlm.nih.gov/pubmed/20373395
https://www.proquest.com/docview/733860999
https://www.proquest.com/docview/883015193
https://pubmed.ncbi.nlm.nih.gov/PMC3760266
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTSBeuAwY4SYLIcRLujRXB54moAxE9lAY7AHJ8vFFndamU9NoFAmJn8Bv5Jfg4zQphU1CvEXKSSIfH598tj9_h5DHioFUJgl8E6nYj2WgfaZsMhRJaIIMcgOuxlJxkO4fxm-PkqMN8rw9C9PoQ3QLbjgyXL7GAS6g2l2Jhk5mk547yGnzL3K1EBANV9JRed4oMGcx5pk8blWFgnC3e3LtX7SFbv1yHtD8my_5O451P6LBNfK5bULDPznp1XPoya9_qDv-Zxuvk6tLgEr3moi6QTZ0uU0uF8st-G1yyXFGZXWTfBtqtHSkUBvF1HHgqRlPz-hktfJIYUEBkeno5_cfIz1WtBi-eUb3pKxnQi7ocUlPR1jJeEIr280VFaWiKLWJSrQNddcZNQc2F7SqAZeOqlvkcPDqw4t9f1nNwZd2FsT8FAQkFmBpAyoxCSR9AQFELI4Y07aNEnSqhDJ2jpWnKoAs1hDgbEgbCymYjG6TzXJa6juEMh0rnWqbf0IRK-iD0RoyAVpb-GRM3yNP237lcil1jhU3xrwRaQ65dSx3jvXIo870tNH3OM_oiQuOzkLMTpAQlyX808Fr_v5l8XHwLh7w0CO0jR5uhynuvYhST-uKZ1HEUkTjF5swZpMtAmqP7DTx1n0vDCL7gjzxSLYWiZ0BioSv3ymPR04sHElPFoRZl7hAu7iRvBgW7uLuv5veI1caNgUyme6Tzfms1g8sSJvDQzcafwGeKz3G
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am7i8cBm3cLUQQrykS3N1EC8TUDpo-lC2sRdk5fiiTmvTqWkFRULiJ_Ab-SXYTpNS2CTEW6ScJLJ9fPL5-PN3AJ4KilyoyHNVIEI35J50qdDBMI985SWYKrQ1lrJ-3D0I3x1FRxvwsj4LU-lDNAk3MzNsvDYT3CSkd1aqoePpuGVPcl6ALVPR2y6oBivxqDStNJiT0ESaNKx1hTx_p3l07W-0ZTr2y1lQ82_G5O9I1v6KOtfgU92IioFy0prPsMW__qHv-L-tvA5XlxiV7FZOdQM2ZLENl7LlLvw2XLS0UV7ehG8DaSwtL1Q7MrE0eKJGk89kvEo-ElwQNOB0-PP7j6EcCZIN9l6QXc7n05wvyHFBToemmPGYlHqkS5IXghi1TSNGW7F3rVF1ZnNByjma7FF5Cw46b_Zfdd1lQQeX64UQdWPMMdIYSyoUkYowaufoYUDDgFKp28hRxiIXSi-z0lh4mIQSPbMgkkqjCsqD27BZTAp5FwiVoZCx1CHIz0OBbVRSYpKjlBpBKdV24Hk9sIwv1c5N0Y0Rq3SafaY7ltmOdeBJY3paSXycZfTMekdjkU9PDCcuidjH_lv24XV22OmFHeY7QGr3YXqmmu2XvJCTecmSIKCxAeTnm1Cq463B1A7cqRyu-Z7vBfoFaeRAsuaKjYHRCV-_UxwPrV644T1pHKa7xHra-Y1k2SCzF_f-3fQxXO7uZz3W2-u_vw9XKnKFITY9gM3ZdC4fasw2w0d2av4CPghB4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5h44TJu5WohhHhJlyZO4sDTRCkbLBUqDPaAZOX4ok5r06ppBUVC4ifwG_kl2E6bUtgkxFuknCTy8fHJZ_vzdwAeS4ZC6sj3dCipR4WvPCZNMsyjQPsJphpdjaWsG-8f0dfH0fEGPF-ehan0IeoFNzsyXL62A3ws9e5KNHQ4GTbdQc4LsEVjn9mQbvdW2lFpWkkwJ9QmmpQuZYX8YLd-dO1ntGX9-uUspPk3YfJ3IOv-RJ0r8GnZhoqActqcTbEpvv4h7_ifjbwKlxcIlexVIXUNNlSxA9vZYg9-By460qgor8O3nrKWjhVqwpg4EjzRg9FnMlwtPRKcE7TQtP_z-4--GkiS9Q6ekT0hZpNczMlJQcZ9W8p4SErTzyXJC0ms1qaVoq24u86oOrE5J-UM7dpReQOOOi_fv9j3FuUcPGGmQcyLMcfIICylUUY6wqiVo48hoyFjyrRRoIplLrWZZKWx9DGhCn07HVLaYAomwpuwWYwKdRsIU1SqWJkEFORUYgu1UpjkqJTBT1q3GvB02a9cLLTObcmNAa9UmgNuHMudYxvwqDYdVwIfZxk9ccFRW-STU8uISyL-sfuKv2tnHzqHtMODBpBl9HAzTu3mS16o0azkSRiy2MLx800YM9nWIuoG3Krirf5e4IfmBWnUgGQtEmsDqxK-fqc46Tu1cMt6MijMuMQF2vmN5Fkvcxd3_t30IWy_bXf44UH3zV24VDErLKvpHmxOJzN13wC2KT5wA_MXeNlAmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+arterial+blood+flow+measurement+by+breath-held+MRI%3A+Accuracy+in+phantom+scans+and+reproducibility+in+healthy+subjects&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Dambreville%2C+Samuel&rft.au=Chapman%2C+Arlene+B&rft.au=Torres%2C+Vicente+E&rft.au=King%2C+Bernard+F&rft.date=2010-04-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=63&rft.issue=4&rft.spage=940&rft_id=info:doi/10.1002%2Fmrm.22278&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon