A Survey on Physiological Signal-Based Emotion Recognition

Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 9; no. 11; p. 688
Main Authors Ahmad, Zeeshan, Khan, Naimul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition such as pre-processing, feature extraction, and classification. While these are important steps, such steps are required for any signal processing application. Emotion recognition poses its own set of challenges that are very important to address for a robust system. Thus, to bridge the gap in the existing literature, in this paper, we review the effect of inter-subject data variance on emotion recognition, important data annotation techniques for emotion recognition and their comparison, data pre-processing techniques for each physiological signal, data splitting techniques for improving the generalization of emotion recognition models and different multimodal fusion techniques and their comparison. Finally, we discuss key challenges and future directions in this field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering9110688