A Survey on Physiological Signal-Based Emotion Recognition
Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition...
Saved in:
Published in | Bioengineering (Basel) Vol. 9; no. 11; p. 688 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition such as pre-processing, feature extraction, and classification. While these are important steps, such steps are required for any signal processing application. Emotion recognition poses its own set of challenges that are very important to address for a robust system. Thus, to bridge the gap in the existing literature, in this paper, we review the effect of inter-subject data variance on emotion recognition, important data annotation techniques for emotion recognition and their comparison, data pre-processing techniques for each physiological signal, data splitting techniques for improving the generalization of emotion recognition models and different multimodal fusion techniques and their comparison. Finally, we discuss key challenges and future directions in this field. |
---|---|
AbstractList | Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition such as pre-processing, feature extraction, and classification. While these are important steps, such steps are required for any signal processing application. Emotion recognition poses its own set of challenges that are very important to address for a robust system. Thus, to bridge the gap in the existing literature, in this paper, we review the effect of inter-subject data variance on emotion recognition, important data annotation techniques for emotion recognition and their comparison, data pre-processing techniques for each physiological signal, data splitting techniques for improving the generalization of emotion recognition models and different multimodal fusion techniques and their comparison. Finally, we discuss key challenges and future directions in this field. Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition such as pre-processing, feature extraction, and classification. While these are important steps, such steps are required for any signal processing application. Emotion recognition poses its own set of challenges that are very important to address for a robust system. Thus, to bridge the gap in the existing literature, in this paper, we review the effect of inter-subject data variance on emotion recognition, important data annotation techniques for emotion recognition and their comparison, data pre-processing techniques for each physiological signal, data splitting techniques for improving the generalization of emotion recognition models and different multimodal fusion techniques and their comparison. Finally, we discuss key challenges and future directions in this field.Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition such as pre-processing, feature extraction, and classification. While these are important steps, such steps are required for any signal processing application. Emotion recognition poses its own set of challenges that are very important to address for a robust system. Thus, to bridge the gap in the existing literature, in this paper, we review the effect of inter-subject data variance on emotion recognition, important data annotation techniques for emotion recognition and their comparison, data pre-processing techniques for each physiological signal, data splitting techniques for improving the generalization of emotion recognition models and different multimodal fusion techniques and their comparison. Finally, we discuss key challenges and future directions in this field. |
Audience | Academic |
Author | Ahmad, Zeeshan Khan, Naimul |
AuthorAffiliation | Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada |
AuthorAffiliation_xml | – name: Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada |
Author_xml | – sequence: 1 givenname: Zeeshan orcidid: 0000-0003-2950-2840 surname: Ahmad fullname: Ahmad, Zeeshan – sequence: 2 givenname: Naimul orcidid: 0000-0002-8229-0747 surname: Khan fullname: Khan, Naimul |
BookMark | eNp9km9rFDEQxoNUbK39CMKCb3yzbTbJ5o-CcJZaCwXF6uuQzU62OXaTmuwV7tub9Sp6pUgCGZLf8wwzmZfoIMQACL1u8CmlCp91PkIYfABIPgyqaTCX8hk6IhTzuqUtO_gnPkQnOa8xxg0lLeHsBTqknJEGS3WE3q2qm026h20VQ_X1dpt9HOPgrRmrGz8EM9YfTYa-upji7AvyDWwcgl_iV-i5M2OGk4fzGP34dPH9_HN9_eXy6nx1XduWqbl2gnTW0l7a3nFJSUdAWalYz0jHiFKcME6caaXFshfQKdVxaR3hWGFFTUeP0dXOt49mre-Sn0za6mi8_n0R06BNmr0dQTtBjRCOglSU4ZKgJ0Q4A0zZrqXOFK8PO6-7TTdBbyHMyYx7pvsvwd_qId5rxaUoXSsGbx8MUvy5gTzryWcL42gCxE3WRFC1bNwW9M0jdB03qbR0oZhcCmTiLzWYUoAPLpa8djHVK8FYIRWmhTp9giqrh8nbMhzOl_s9wfudwKaYcwKnrZ_N8m1F6EfdYL1Mkn5ykoq6faT-06H_634BS-7RKQ |
CitedBy_id | crossref_primary_10_1007_s43154_023_00107_x crossref_primary_10_1155_2024_5581443 crossref_primary_10_1016_j_bspc_2024_106353 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_2196_52171 crossref_primary_10_3390_app142310788 crossref_primary_10_1080_10447318_2025_2478265 crossref_primary_10_4108_eetsis_5036 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1016_j_compbiomed_2024_108658 crossref_primary_10_1145_3678569 crossref_primary_10_1007_s11042_023_16933_2 crossref_primary_10_3389_fpsyg_2025_1455177 crossref_primary_10_1109_ACCESS_2024_3420103 crossref_primary_10_1016_j_dsm_2024_12_004 crossref_primary_10_3389_fnhum_2024_1347327 crossref_primary_10_3390_sci6010010 crossref_primary_10_3390_s23031743 crossref_primary_10_7717_peerj_cs_2024 crossref_primary_10_1007_s00530_024_01302_2 |
Cites_doi | 10.1109/ACCESS.2019.2914872 10.15439/2016F263 10.1109/ISSC49989.2020.9180193 10.1109/TBME.2011.2112658 10.1109/EMBC44109.2020.9176590 10.1109/SSCI44817.2019.9003164 10.1109/JBHI.2017.2688239 10.1109/EMBC.2015.7318961 10.1109/ACCESS.2021.3097614 10.1111/j.1468-8986.2005.00264.x 10.1002/9781118287798 10.1016/j.measurement.2020.108747 10.1109/TAFFC.2019.2954118 10.1109/ACIIAsia.2018.8470381 10.1080/02699939208411068 10.1109/SSCI.2016.7849931 10.1109/ICRAI47710.2019.8967398 10.1109/CVPR.2016.90 10.1109/TAFFC.2015.2436926 10.1109/ACCESS.2019.2922037 10.1080/00049539908255353 10.1109/TENCON.2005.300986 10.3389/fnhum.2013.00138 10.1109/SYSOSE.2016.7542941 10.1109/ACCESS.2016.2628407 10.1109/ICDIS.2019.00028 10.1109/JIOT.2021.3058587 10.1109/ACCESS.2018.2794346 10.1109/ICACCS51430.2021.9441999 10.1098/rspa.1998.0193 10.1145/1178657.1178661 10.20944/preprints202206.0112.v1 10.1109/ACCESS.2021.3051281 10.1109/ISCID51228.2020.00025 10.1155/2020/8875426 10.1080/03772063.2020.1725663 10.1037/0022-3514.54.6.1063 10.1109/4233.966104 10.3390/s18072074 10.23919/EUSIPCO.2018.8553191 10.1109/AIMS52415.2021.9466092 10.1016/j.clinph.2006.10.019 10.1109/T-AFFC.2011.15 10.1109/JSEN.2018.2883497 10.1109/ACCESS.2019.2944001 10.1109/SMC.2016.7844928 10.1109/HSI.2013.6577877 10.3758/BF03193159 10.3390/bioengineering9010008 10.1109/T-AFFC.2011.25 10.1016/j.specom.2019.12.001 10.1109/T-AFFC.2011.20 10.1080/02699939508408966 10.1511/2001.28.344 10.1109/JBHI.2021.3091187 10.1109/ACII52823.2021.9597442 10.1109/FG47880.2020.00050 10.1109/EMBC.2019.8856895 10.1109/ACIIAsia.2018.8470373 10.1109/HI-POCT45284.2019.8962891 10.1016/j.neucom.2017.08.015 10.1037/h0077714 10.1038/s41598-019-52891-2 10.36227/techrxiv.16689484 10.1016/0005-7916(94)90063-9 10.1159/000104430 10.3758/BF03209415 10.2196/32140 10.1145/3242969.3242985 10.1109/JSEN.2020.3020828 10.1002/9781118910566.ch14 10.1109/IHMSC.2016.66 10.1109/ACCESS.2021.3055933 10.1109/TCAD.2020.3012169 10.1109/TCYB.2020.2987575 10.7551/mitpress/8022.001.0001 10.3758/s13428-017-0915-5 10.1109/EMBC.2019.8857852 10.1109/86.895946 10.1109/WIFS.2010.5711466 10.1109/EMBC44109.2020.9175928 10.1109/ICASSP40776.2020.9053985 10.1109/ICASSP39728.2021.9414709 10.1109/ACCESS.2020.3023871 10.1109/ACII.2013.21 10.1109/ISCAS45731.2020.9180909 10.1037/0022-3514.65.1.45 10.1109/ACCESS.2019.2891579 10.1109/ACII.2019.8925486 10.1145/2818740 10.3390/bioengineering8030035 10.1109/TAFFC.2017.2781732 10.1145/2070942.2070970 10.1109/TAMD.2015.2431497 10.1109/ICPICS47731.2019.8942482 10.1016/j.procs.2017.12.003 10.1145/3524499 10.1109/TAFFC.2018.2874986 10.1109/TAFFC.2016.2625250 10.1016/0092-6566(77)90037-X 10.1109/CSNDSP16145.2010.5580317 10.1109/ACCESS.2019.2904400 10.1109/ACCESS.2021.3131733 10.1109/AICAS.2019.8771622 10.1017/S0954579405050340 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.3390/bioengineering9110688 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_f73a77f3e8934042bd227fae49cb53fa PMC9687364 A744274903 10_3390_bioengineering9110688 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: SSHRC grantid: NFRFR-2021-00343 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM PMFND ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c549t-f72bcc3d8cdf6832b2e9c894d42b429962462fa58c08d7eb99b68cf2609093ab3 |
IEDL.DBID | DOA |
ISSN | 2306-5354 |
IngestDate | Wed Aug 27 01:24:58 EDT 2025 Thu Aug 21 18:39:29 EDT 2025 Fri Jul 11 16:54:54 EDT 2025 Fri Jul 25 11:49:16 EDT 2025 Tue Jun 17 21:33:53 EDT 2025 Tue Jun 10 20:49:03 EDT 2025 Tue Jul 01 03:12:15 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-f72bcc3d8cdf6832b2e9c894d42b429962462fa58c08d7eb99b68cf2609093ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2950-2840 0000-0002-8229-0747 |
OpenAccessLink | https://doaj.org/article/f73a77f3e8934042bd227fae49cb53fa |
PMID | 36421089 |
PQID | 2748260947 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f73a77f3e8934042bd227fae49cb53fa pubmedcentral_primary_oai_pubmedcentral_nih_gov_9687364 proquest_miscellaneous_2739739705 proquest_journals_2748260947 gale_infotracmisc_A744274903 gale_infotracacademiconefile_A744274903 crossref_citationtrail_10_3390_bioengineering9110688 crossref_primary_10_3390_bioengineering9110688 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_93 ref_92 Yang (ref_12) 2018; 125 Cordeiro (ref_77) 2020; 39 ref_90 Siddharth (ref_10) 2019; 9 ref_14 ref_99 ref_97 ref_96 Xing (ref_114) 2019; 7 ref_95 ref_18 ref_17 Chao (ref_106) 2020; 21 Zhang (ref_13) 2016; 4 Wei (ref_80) 2001; 5 Watson (ref_50) 1988; 54 Li (ref_20) 2021; 172 Posner (ref_57) 2005; 17 Muthukumaraswamy (ref_68) 2013; 7 Nagel (ref_60) 2007; 39 Ekman (ref_38) 1992; 6 ref_25 ref_24 ref_23 Cimtay (ref_110) 2020; 8 Romeo (ref_58) 2019; 13 ref_29 ref_28 Croft (ref_72) 2005; 42 ref_27 ref_26 Russell (ref_55) 1977; 11 Gratton (ref_70) 1998; 30 Venkatesan (ref_74) 2018; 6 Alcaraz (ref_75) 2011; 58 ref_79 ref_78 ref_73 Ullah (ref_102) 2019; 7 Abdulhay (ref_98) 2018; 7 Khateeb (ref_112) 2021; 9 ref_82 ref_81 Noroozi (ref_16) 2018; 12 Zheng (ref_48) 2015; 7 ref_89 Fatourechi (ref_69) 2007; 118 ref_87 ref_86 ref_85 ref_84 Suhaimi (ref_21) 2020; 2020 Soleymani (ref_62) 2015; 7 Katsigiannis (ref_45) 2017; 22 Song (ref_47) 2019; 7 Bradley (ref_51) 1994; 25 ref_56 Schubert (ref_61) 1999; 51 ref_53 Ramoser (ref_71) 2000; 8 Ahmad (ref_88) 2021; 9 Soleymani (ref_46) 2011; 3 Wang (ref_11) 2018; 272 Fredrickson (ref_59) 1993; 65 Koelstra (ref_44) 2011; 3 Gross (ref_52) 1995; 9 ref_67 ref_65 ref_63 Giordano (ref_2) 2007; 106 Piana (ref_15) 2016; 6 McKeown (ref_64) 2011; 3 Bota (ref_30) 2019; 7 ref_115 Schluter (ref_3) 2022; 8 ref_36 ref_35 ref_34 Hsu (ref_22) 2017; 11 ref_32 Plutchik (ref_39) 2001; 89 Subramanian (ref_42) 2016; 9 Zhang (ref_101) 2020; 51 ref_111 Saganowski (ref_33) 2022; 1 Huang (ref_83) 1998; 454 ref_113 Muhammad (ref_9) 2021; 8 Gupta (ref_91) 2018; 19 ref_37 Abadi (ref_41) 2018; 12 Russell (ref_40) 1980; 39 Girard (ref_66) 2018; 50 ref_104 ref_103 Dalvi (ref_31) 2021; 9 ref_105 ref_108 ref_107 ref_109 Patro (ref_76) 2022; 68 ref_43 ref_100 (ref_19) 2020; 116 Hssayeni (ref_116) 2021; 9 Althobaiti (ref_54) 2019; 7 ref_49 Phillips (ref_1) 2002; 57 ref_8 Kim (ref_94) 2021; 26 ref_5 ref_4 ref_7 ref_6 |
References_xml | – volume: 7 start-page: 59844 year: 2019 ident: ref_114 article-title: Exploiting EEG signals and audiovisual feature fusion for video emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914872 – ident: ref_6 doi: 10.15439/2016F263 – ident: ref_105 doi: 10.1109/ISSC49989.2020.9180193 – volume: 58 start-page: 1441 year: 2011 ident: ref_75 article-title: Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2112658 – ident: ref_96 doi: 10.1109/EMBC44109.2020.9176590 – ident: ref_92 doi: 10.1109/SSCI44817.2019.9003164 – ident: ref_100 – volume: 22 start-page: 98 year: 2017 ident: ref_45 article-title: DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2688239 – ident: ref_86 doi: 10.1109/EMBC.2015.7318961 – volume: 9 start-page: 100615 year: 2021 ident: ref_88 article-title: ECG heartbeat classification using multimodal fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3097614 – ident: ref_65 – volume: 42 start-page: 16 year: 2005 ident: ref_72 article-title: EOG correction: A comparison of four methods publication-title: Psychophysiology doi: 10.1111/j.1468-8986.2005.00264.x – ident: ref_85 doi: 10.1002/9781118287798 – volume: 172 start-page: 108747 year: 2021 ident: ref_20 article-title: Physiological-signal-based emotion recognition: An odyssey from methodology to philosophy publication-title: Measurement doi: 10.1016/j.measurement.2020.108747 – volume: 13 start-page: 389 year: 2019 ident: ref_58 article-title: Multiple instance learning for emotion recognition using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2019.2954118 – ident: ref_111 doi: 10.1109/ACIIAsia.2018.8470381 – volume: 6 start-page: 169 year: 1992 ident: ref_38 article-title: An argument for basic emotions publication-title: Cogn. Emot. doi: 10.1080/02699939208411068 – ident: ref_43 doi: 10.1109/SSCI.2016.7849931 – ident: ref_89 doi: 10.1109/ICRAI47710.2019.8967398 – ident: ref_97 doi: 10.1109/CVPR.2016.90 – volume: 7 start-page: 17 year: 2015 ident: ref_62 article-title: Analysis of EEG signals and facial expressions for continuous emotion detection publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2015.2436926 – volume: 7 start-page: 77857 year: 2019 ident: ref_54 article-title: Examining human-horse interaction by means of affect recognition via physiological signals publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922037 – volume: 51 start-page: 154 year: 1999 ident: ref_61 article-title: Measuring emotion continuously: Validity and reliability of the two-dimensional emotion-space publication-title: Aust. J. Psychol. doi: 10.1080/00049539908255353 – ident: ref_79 doi: 10.1109/TENCON.2005.300986 – volume: 7 start-page: 138 year: 2013 ident: ref_68 article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00138 – ident: ref_4 doi: 10.1109/SYSOSE.2016.7542941 – volume: 4 start-page: 8375 year: 2016 ident: ref_13 article-title: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2628407 – ident: ref_56 doi: 10.1109/ICDIS.2019.00028 – volume: 8 start-page: 16894 year: 2021 ident: ref_9 article-title: Emotion recognition for cognitive edge computing using deep learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3058587 – ident: ref_53 – volume: 6 start-page: 9767 year: 2018 ident: ref_74 article-title: ECG signal pre-processing and SVM classifier-based abnormality detection in remote healthcare applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2794346 – ident: ref_28 doi: 10.1109/ICACCS51430.2021.9441999 – volume: 454 start-page: 903 year: 1998 ident: ref_83 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – ident: ref_67 doi: 10.1145/1178657.1178661 – ident: ref_35 doi: 10.20944/preprints202206.0112.v1 – volume: 9 start-page: 12134 year: 2021 ident: ref_112 article-title: Multi-domain feature fusion for emotion classification using DEAP dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051281 – ident: ref_29 doi: 10.1109/ISCID51228.2020.00025 – volume: 2020 start-page: 8875426 year: 2020 ident: ref_21 article-title: EEG-based emotion recognition: A state-of-the-art review of current trends and opportunities publication-title: Comput. Intell. Neurosci. doi: 10.1155/2020/8875426 – volume: 68 start-page: 2743 year: 2022 ident: ref_76 article-title: An efficient optimized feature selection with machine learning approach for ECG biometric recognition publication-title: IETE J. Res. doi: 10.1080/03772063.2020.1725663 – volume: 54 start-page: 1063 year: 1988 ident: ref_50 article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales publication-title: J. Personal. Soc. Psychol. doi: 10.1037/0022-3514.54.6.1063 – volume: 5 start-page: 290 year: 2001 ident: ref_80 article-title: ECG data compression using truncated singular value decomposition publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/4233.966104 – ident: ref_26 doi: 10.3390/s18072074 – ident: ref_84 doi: 10.23919/EUSIPCO.2018.8553191 – ident: ref_27 doi: 10.1109/AIMS52415.2021.9466092 – volume: 118 start-page: 480 year: 2007 ident: ref_69 article-title: EMG and EOG artifacts in brain computer interface systems: A survey publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.10.019 – volume: 3 start-page: 18 year: 2011 ident: ref_44 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 19 start-page: 2266 year: 2018 ident: ref_91 article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2883497 – volume: 7 start-page: 140990 year: 2019 ident: ref_30 article-title: A review, current challenges, and future possibilities on emotion recognition using machine learning and physiological signals publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944001 – ident: ref_73 doi: 10.1109/SMC.2016.7844928 – ident: ref_7 doi: 10.1109/HSI.2013.6577877 – volume: 39 start-page: 283 year: 2007 ident: ref_60 article-title: EMuJoy: Software for continuous measurement of perceived emotions in music publication-title: Behav. Res. Methods doi: 10.3758/BF03193159 – ident: ref_36 doi: 10.3390/bioengineering9010008 – volume: 3 start-page: 42 year: 2011 ident: ref_46 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.25 – volume: 116 start-page: 56 year: 2020 ident: ref_19 article-title: Speech emotion recognition: Emotional models, databases, features, pre-processing methods, supporting modalities, and classifiers publication-title: Speech Commun. doi: 10.1016/j.specom.2019.12.001 – volume: 3 start-page: 5 year: 2011 ident: ref_64 article-title: The semaine database: Annotated multimodal records of emotionally colored conversations between a person and a limited agent publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.20 – volume: 9 start-page: 87 year: 1995 ident: ref_52 article-title: Emotion elicitation using films publication-title: Cogn. Emot. doi: 10.1080/02699939508408966 – ident: ref_78 – volume: 89 start-page: 344 year: 2001 ident: ref_39 article-title: The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice publication-title: Am. Sci. doi: 10.1511/2001.28.344 – ident: ref_49 – ident: ref_32 – volume: 12 start-page: 479 year: 2018 ident: ref_41 article-title: Amigos: A dataset for affect, personality and mood research on individuals and groups publication-title: IEEE Trans. Affect. Comput. – volume: 26 start-page: 264 year: 2021 ident: ref_94 article-title: Wedea: A new eeg-based framework for emotion recognition publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3091187 – ident: ref_90 doi: 10.1109/ACII52823.2021.9597442 – ident: ref_109 doi: 10.1109/FG47880.2020.00050 – ident: ref_115 doi: 10.1109/EMBC.2019.8856895 – ident: ref_107 doi: 10.1109/ACIIAsia.2018.8470373 – volume: 57 start-page: P526 year: 2002 ident: ref_1 article-title: Age and the understanding of emotions: Neuropsychological and sociocognitive perspectives publication-title: J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. – ident: ref_93 doi: 10.1109/HI-POCT45284.2019.8962891 – volume: 272 start-page: 668 year: 2018 ident: ref_11 article-title: Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.015 – volume: 39 start-page: 1161 year: 1980 ident: ref_40 article-title: A circumplex model of affect publication-title: J. Personal. Soc. Psychol. doi: 10.1037/h0077714 – volume: 9 start-page: 16295 year: 2019 ident: ref_10 article-title: Impact of affective multimedia content on the electroencephalogram and facial expressions publication-title: Sci. Rep. doi: 10.1038/s41598-019-52891-2 – ident: ref_18 doi: 10.36227/techrxiv.16689484 – volume: 25 start-page: 49 year: 1994 ident: ref_51 article-title: Measuring emotion: The self-assessment manikin and the semantic differential publication-title: J. Behav. Ther. Exp. Psychiatry doi: 10.1016/0005-7916(94)90063-9 – volume: 106 start-page: c187 year: 2007 ident: ref_2 article-title: Screening of Depressive Symptoms in Young–Old Hemodialysis Patients: Relationship between Beck Depression Inventory and 15-Item Geriatric Depression Scale publication-title: Nephron Clin. Pract. doi: 10.1159/000104430 – ident: ref_8 – volume: 30 start-page: 44 year: 1998 ident: ref_70 article-title: Dealing with artifacts: The EOG contamination of the event-related brain potential publication-title: Behav. Res. Methods Instrum. Comput. doi: 10.3758/BF03209415 – volume: 8 start-page: e32140 year: 2022 ident: ref_3 article-title: Patterns of suicide ideation across eight countries in four continents during the COVID-19 pandemic era: Repeated cross-sectional study publication-title: JMIR Public Health Surveill. doi: 10.2196/32140 – ident: ref_95 doi: 10.1145/3242969.3242985 – volume: 21 start-page: 2024 year: 2020 ident: ref_106 article-title: Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3020828 – ident: ref_14 doi: 10.1002/9781118910566.ch14 – ident: ref_24 doi: 10.1109/IHMSC.2016.66 – volume: 9 start-page: 21642 year: 2021 ident: ref_116 article-title: Multi-modal physiological data fusion for affect estimation using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3055933 – volume: 39 start-page: 3373 year: 2020 ident: ref_77 article-title: Ecg-based authentication using timing-aware domain-specific architecture publication-title: IEEE Trans.-Comput.-Aided Des. Integr. Syst. doi: 10.1109/TCAD.2020.3012169 – volume: 51 start-page: 4386 year: 2020 ident: ref_101 article-title: Emotion recognition from multimodal physiological signals using a regularized deep fusion of kernel machine publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2987575 – ident: ref_25 doi: 10.7551/mitpress/8022.001.0001 – volume: 50 start-page: 902 year: 2018 ident: ref_66 article-title: DARMA: Software for dual axis rating and media annotation publication-title: Behav. Res. Methods doi: 10.3758/s13428-017-0915-5 – ident: ref_113 doi: 10.1109/EMBC.2019.8857852 – volume: 8 start-page: 441 year: 2000 ident: ref_71 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – ident: ref_82 doi: 10.1109/WIFS.2010.5711466 – ident: ref_99 doi: 10.1109/EMBC44109.2020.9175928 – ident: ref_23 doi: 10.1109/ICASSP40776.2020.9053985 – ident: ref_87 doi: 10.1109/ICASSP39728.2021.9414709 – volume: 8 start-page: 168865 year: 2020 ident: ref_110 article-title: Cross-subject multimodal emotion recognition based on hybrid fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023871 – ident: ref_63 doi: 10.1109/ACII.2013.21 – ident: ref_104 doi: 10.1109/ISCAS45731.2020.9180909 – volume: 65 start-page: 45 year: 1993 ident: ref_59 article-title: Duration neglect in retrospective evaluations of affective episodes publication-title: J. Personal. Soc. Psychol. doi: 10.1037/0022-3514.65.1.45 – volume: 7 start-page: 12177 year: 2019 ident: ref_47 article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – ident: ref_108 doi: 10.1109/ACII.2019.8925486 – volume: 6 start-page: 1 year: 2016 ident: ref_15 article-title: Adaptive body gesture representation for automatic emotion recognition publication-title: ACM Trans. Interact. Intell. Syst. TiiS doi: 10.1145/2818740 – ident: ref_37 doi: 10.3390/bioengineering8030035 – volume: 11 start-page: 85 year: 2017 ident: ref_22 article-title: Automatic ECG-based emotion recognition in music listening publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2781732 – ident: ref_5 doi: 10.1145/2070942.2070970 – volume: 7 start-page: 162 year: 2015 ident: ref_48 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – ident: ref_17 doi: 10.1109/ICPICS47731.2019.8942482 – volume: 125 start-page: 2 year: 2018 ident: ref_12 article-title: An emotion recognition model based on facial recognition in virtual learning environment publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.12.003 – ident: ref_34 doi: 10.1145/3524499 – volume: 12 start-page: 505 year: 2018 ident: ref_16 article-title: Survey on emotional body gesture recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2874986 – volume: 9 start-page: 147 year: 2016 ident: ref_42 article-title: ASCERTAIN: Emotion and personality recognition using commercial sensors publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2016.2625250 – volume: 11 start-page: 273 year: 1977 ident: ref_55 article-title: Evidence for a three-factor theory of emotions publication-title: J. Res. Personal. doi: 10.1016/0092-6566(77)90037-X – ident: ref_81 doi: 10.1109/CSNDSP16145.2010.5580317 – volume: 1 start-page: 1 year: 2022 ident: ref_33 article-title: Emotion Recognition for Everyday Life Using Physiological Signals from Wearables: A Systematic Literature Review publication-title: IEEE Trans. Affect. Comput. – volume: 7 start-page: 40144 year: 2019 ident: ref_102 article-title: Internal emotion classification using EEG signal with sparse discriminative ensemble publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904400 – volume: 9 start-page: 165806 year: 2021 ident: ref_31 article-title: A Survey of AI-Based Facial Emotion Recognition: Features, ML & DL Techniques, Age-Wise Datasets and Future Directions publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3131733 – ident: ref_103 doi: 10.1109/AICAS.2019.8771622 – volume: 17 start-page: 715 year: 2005 ident: ref_57 article-title: The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology publication-title: Dev. Psychopathol. doi: 10.1017/S0954579405050340 – volume: 7 start-page: 57 year: 2018 ident: ref_98 article-title: Using deep convolutional neural network for emotion detection on a physiological signals dataset (AMIGOS) publication-title: IEEE Access |
SSID | ssj0001325264 |
Score | 2.345678 |
Snippet | Physiological signals are the most reliable form of signals for emotion recognition, as they cannot be controlled deliberately by the subject. Existing review... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 688 |
SubjectTerms | Annotations Bioengineering challenges Classification Coronaviruses COVID-19 data annotation Data processing data variability Deep learning Electrocardiography Electroencephalography emotion models Emotion recognition Emotions Feature extraction Literature reviews Machine learning Medical research Methods Pandemics physiological signals Physiology review Signal processing Workflow |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEB9070UfxE-snlJB8CleTdKk8UV2ZY9D8JA7D-6tNF93C9Kee7uC_70z3XT3qqLQlzYZ2ibzmUzmB_C6IaA3tMOsdNEyGX3FrDPvWBNLAkBSxgTa0f18rI7O5Kfz8jwtuF2ntMpBJ_aK2neO1sgPMHpCTxiDEf3h6jsj1CjaXU0QGrdhD1VwVU1gbzY__nKyW2URvESTvzm6IzC-P7CLLuwq_aGoJ9SVnVHqa_f_qaF_z5q8YYYO78O95D_m082EP4BboX0Id29UFXwE76f56Xr5I_zMuzbvMzwHBZefLi6Qms3QdPl8vkHwyU-GHKKufQxnh_OvH49YgkhgDgO7FYuaW-cEQRBFhcJpeTCuMtJLbsnSKC4Vj01ZuaLyOlhjrKpcpIEsjGiseAKTtmvDU8hVLAz3sZReU5CiGm_wXtsYeYyx9BnIYYxql-qHE4zFtxrjCBra-q9Dm8HbLdnVpoDG_whmNAHbzlT_un_QLS_qJE511KLROoqA7pZEvWM95zo2QRpnSxGbDN7Q9NUkpfiRrkmHDfBXqd5VPdVSIkeZQmSwP-qJ0uXGzQMD1Em6r-sdL2bwattMlJSx1oZuTX3Q08OrKDPQI8YZ_dm4pV1c9hW-jaq0UPLZv1_-HO5wOozRn4zch8lquQ4v0EVa2ZdJDn4B4EAVeQ priority: 102 providerName: ProQuest |
Title | A Survey on Physiological Signal-Based Emotion Recognition |
URI | https://www.proquest.com/docview/2748260947 https://www.proquest.com/docview/2739739705 https://pubmed.ncbi.nlm.nih.gov/PMC9687364 https://doaj.org/article/f73a77f3e8934042bd227fae49cb53fa |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0vuhDqV8YrUcEwafYuJ_Zvl30ziJYpLXQtyW72a0Hkkh7J_S_70ySu15U6IsQCMnswO7szM5OMvsbgLcVFXpDP5xJH10mYl1kzpsPWRUlFUBSxgT6o_v1WB2diS_n8nyr1BflhPXwwL3gDqLmldaRB3SsAjXM1YzpWAVhvJM8dlsj9HlbwVT3dYUzia6-P7LDMa4_cIs23CL8oYkP1VZunVGH2f_3yvxntuSW-5nvwe6wb0ynfX8fw73QPIFHW2iCT-Fwmp6uLn-H67Rt0i6zc72wpaeLC-TOSnRZdTrrK_ekJ-vcobZ5Bmfz2fePR9lQGiHzGNAts6iZ855T6aGo0CgdC8YXRtQoIPIwignFYiULnxe1Ds4YpwofMXgxueGV489hp2mb8AJSFXPD6ihFrSk4UVVt8Fm7GFmMUdYJiLWMrB9ww6l8xU-L8QOJ1v5TtAm837D96oEz7mIoaQI2jQn3unuB2mAHbbB3aUMC72j6LFkndtJXwyEDHCrhXNmpFgLjcJPzBPZHLdGq_Ji8VgA7WPWVRVJBIhQ6gTcbMnFSploT2hW1wR0eXrlMQI8UZzSyMaVZ_OiQvY0qNFfi5f8QxSt4yOioRnduch92lper8Bo3UEs3gfvF_PMEHkzLT-Uc7-Xs-NvJpLOgG_P0IP0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFAgSiFNocBw7RkJoC1229HGgrdSbG7_KSigp211Q_xS_kZk8druA4FQpl8R2nNjjedgz8wE8LwnoDeVwkttgEh5ckRirXidlyAkASSjl6UR3d0-MDvmno_xoBX72sTDkVtnzxIZRu9rSHvk6Wk-oCaMxIt-dfksINYpOV3sIjZYstv35DzTZzt5ufcD5fcHYcPPg_SjpUAUSi7bQNAmSGWszQu0JAunZMK9sobjjzBBzFowLFsq8sGnhpDdKGVHYQH2j9V-aDN97Ba7yDCU5RaYPPy72dDKWo4LRBgphebpuxrVf5BVExtJhvCxEYIMU8Kc8-N1H84LQG96Cm522Gg9a8roNK766Azcu5DC8C28G8f5s8t2fx3UVN_6kPTuN98cn2DrZQEHp4s0WLyj-3Hss1dU9OLyUobsPq1Vd-QcQi5Aq5kLOnSSTSJRO4b00IbAQQu4i4P0YadtlKyfQjK8arRYaWv3XoY3g1bzZaZuu438NNmgC5pUp23bzoJ6c6G7x6iCzUsqQeVTuOHI54xiTofRcWZNnoYzgJU2fJp6AH2nLLrQBf5Wya-mB5BzpV6VZBGtLNXEt2-XingB0x0vO9ILyI3g2L6aW5B9X-XpGdZAa8UrzCOQS4Sz92XJJNf7S5BNXopCZ4A__3flTuDY62N3RO1t724_gOqMwkCYmcw1Wp5OZf4zK2dQ8aVZEDMeXvQR_AfN-UQk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUgQFBAvEUGmwnjpEQalmrjUE1bUzam4kde1RCyeha0P41_jru0qRdAMHTpLwktvNh36dzdz-AZzkBvaEejhLrTSR8kUXGqldR7hMCQEqVcvRH9-Mk3TkS74-T4w342ebCUFhlKxNrQV1UlvbI--g9oSWMzojs-yYsYn97_Pb0W0QIUvSntYXTWJLInjv_ge7b2ZvdbVzr54yNR5_e7UQNwkBk0S-aR14yYy0nBB-fIm0b5pTNlCgEMySoUyZS5vMks3FWSGeUMmlmPb1HrHhuON73CmxK8op6sDkcTfYP1js8nCVobizThjhXcd9MK7euMohipkF8WSvEGjfgT-3we8TmBRU4vgk3Gts1HCyJ7RZsuPI2XL9Q0fAOvB6Eh4vZd3ceVmVYR5e2wjU8nJ7g6GiIarMIR0v0oPCgjV-qyrtwdCmTdw96ZVW6-xCmPlas8IkoJDlIaV4oPJfGe-a9T4oARDtH2ja1ywlC46tGH4amVv91agN4uRp2uize8b8BQ1qAVWeqvV1fqGYnumFl7SXPpfTcoaknUOaZgjHpcyeUNQn3eQAvaPk0SQh8SZs3iQ74qVRrSw-kEEjNKuYBbHV6ImfbbnNLALqRLGd6zQcBPF0100iKlitdtaA-aGXiEScByA7hdL6s21JOv9TVxVWaSZ6KB_9--BO4iuynP-xO9h7CNUY5IXWC5hb05rOFe4SW2tw8blgihM-XzYW_APRUVps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Physiological+Signal-Based+Emotion+Recognition&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Ahmad%2C+Zeeshan&rft.au=Khan%2C+Naimul&rft.date=2022-11-01&rft.pub=MDPI&rft.eissn=2306-5354&rft.volume=9&rft.issue=11&rft_id=info:doi/10.3390%2Fbioengineering9110688&rft_id=info%3Apmid%2F36421089&rft.externalDocID=PMC9687364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |