A comparison of estimates of global carbon dioxide emissions from fossil carbon sources
Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estima...
Saved in:
Published in | Earth system science data Vol. 12; no. 2; pp. 1437 - 1465 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
29.06.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the first estimate of global CO2 emissions was
published in 1894, important progress has been made in the development of
estimation methods while the number of available datasets has grown. The
existence of parallel efforts should lead to improved accuracy and
understanding of emissions estimates, but there remains significant
deviation between estimates and relatively poor understanding of the reasons
for this. Here I describe the most important global emissions datasets
available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for
differences. In many cases differences in emissions come down to differences
in system boundaries: which emissions sources are included and which are
omitted. With minimal work in harmonising these system boundaries across
datasets, the range of estimates of global emissions drops to 5 %, and
further work on harmonisation would likely result in an even lower range,
without changing the data. Some potential errors were found, and some
discrepancies remain unexplained, but it is shown to be inappropriate to
conclude that uncertainty in emissions is high simply because estimates
exhibit a wide range. While “true” emissions cannot be known, by comparing
different datasets methodically, differences that result from system
boundaries and allocation approaches can be highlighted and set aside to
enable identification of true differences, and potential errors. This must
be an important way forward in improving global datasets of CO2
emissions. Data used to generate Figs. 3–18 are available at
https://doi.org/10.5281/zenodo.3687042 (Andrew, 2020). |
---|---|
AbstractList | Since the first estimate of global CO.sub.2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and - by way of global, large-emitter, and case examples - quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While "true" emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO.sub.2 emissions. Data used to generate Figs. 3-18 are available at Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While “true” emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO2 emissions. Data used to generate Figs. 3–18 are available at https://doi.org/10.5281/zenodo.3687042 (Andrew, 2020). Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While “true” emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO2 emissions. Data used to generate Figs. 3–18 are available at https://doi.org/10.5281/zenodo.3687042 (Andrew, 2020). Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While “true” emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO2 emissions. Data used to generate Figs. 3–18 are available at10.5281/zenodo.3687042 (Andrew, 2020). |
Audience | Academic |
Author | Andrew, Robbie M. |
Author_xml | – sequence: 1 givenname: Robbie M. orcidid: 0000-0001-8590-6431 surname: Andrew fullname: Andrew, Robbie M. |
BookMark | eNp1Uk1v3CAQtapUapL2B_RmqacenALGgI-rqB8rRarUJMoRAQMrVl6zBVZK_33H2X5t1YoDzPDem-ExF83ZnGbfNK8puRroyN_5UqCjrKO8lx0jjDxrzqkSousHKs7-OL9oLkrZEiI4lcN587BqXdrtTY4lzW0KrS817kz1ZQk2U7Jmap3JFm8hpscIvvW7WEpMc2lDTrs2JIx-gUo6ZOfLy-Z5MFPxr37sl839h_d315-6m88f19erm84NfKwdsJGBspQYKZz0RkDwvfBgiXBghBUwuuDBcS6V8UCIJHQkwEER75hh_WWzPupCMlu9z9h7_qaTifopkfJGm1yjm7yWNgwG5CiGgLUVUWBHHyxwO0AQjKLWm6PWPqevBzRCb_ExM7avGaeKyJ73_W_UxqBonEOq2Ti0xOmVYIpQpp5QV_9A4QJ0z-HfhYj5E8LbEwJiqn-sG3MoRa9vv5xi5RHrMnqffdAuVlPxS7BInDQlehkKvQyFpkwvQ6GXoUAm_Yv507L_c74Dd_q8Sg |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_133643 crossref_primary_10_1039_D4JA00287C crossref_primary_10_1002_cben_202300062 crossref_primary_10_1016_j_ecolecon_2022_107633 crossref_primary_10_5194_essd_15_4295_2023 crossref_primary_10_5194_essd_16_245_2024 crossref_primary_10_1360_N072023_0188 crossref_primary_10_2139_ssrn_4123754 crossref_primary_10_1016_j_scitotenv_2022_161237 crossref_primary_10_1130_B35918_1 crossref_primary_10_3390_ma17235787 crossref_primary_10_1016_j_envsci_2021_04_012 crossref_primary_10_5194_essd_17_965_2025 crossref_primary_10_1039_D4SU00749B crossref_primary_10_3233_JCM_247574 crossref_primary_10_1039_D1CY01378E crossref_primary_10_1016_j_wds_2024_100188 crossref_primary_10_5194_essd_13_5311_2021 crossref_primary_10_3389_fevo_2023_1248426 crossref_primary_10_1057_s41599_024_03318_5 crossref_primary_10_5194_essd_12_2411_2020 crossref_primary_10_5194_essd_14_1917_2022 crossref_primary_10_5194_essd_16_2669_2024 crossref_primary_10_1016_j_jclepro_2023_139446 crossref_primary_10_1017_eds_2023_38 crossref_primary_10_1016_j_nanoen_2023_108242 crossref_primary_10_1016_j_ecolind_2021_108066 crossref_primary_10_1016_j_scitotenv_2024_175177 crossref_primary_10_1016_j_nxmate_2025_100559 crossref_primary_10_1029_2021RG000736 crossref_primary_10_5194_essd_12_3269_2020 crossref_primary_10_5194_essd_15_963_2023 crossref_primary_10_2139_ssrn_4658722 crossref_primary_10_1016_j_rse_2024_114368 crossref_primary_10_5194_essd_13_1667_2021 crossref_primary_10_5194_essd_13_5213_2021 crossref_primary_10_5194_essd_15_1197_2023 crossref_primary_10_1016_j_scitotenv_2021_146861 crossref_primary_10_1038_s43247_023_01190_w crossref_primary_10_1029_2023JG007526 crossref_primary_10_1016_j_erss_2021_102172 crossref_primary_10_1016_j_scitotenv_2023_161387 crossref_primary_10_1016_j_gloplacha_2024_104485 crossref_primary_10_1016_j_cogsc_2022_100716 crossref_primary_10_3389_fbioe_2024_1379121 crossref_primary_10_1007_s41062_023_01247_x crossref_primary_10_1007_s11430_023_1230_3 crossref_primary_10_1007_s41062_024_01477_7 crossref_primary_10_47481_jscmt_1607846 crossref_primary_10_5194_essd_14_4811_2022 crossref_primary_10_1088_1757_899X_1200_1_012003 crossref_primary_10_5194_bg_22_1447_2025 crossref_primary_10_1007_s10668_022_02853_y crossref_primary_10_1007_s13762_024_05896_y crossref_primary_10_1016_j_heliyon_2022_e11729 crossref_primary_10_1038_s43016_025_01128_9 crossref_primary_10_5194_essd_13_2363_2021 crossref_primary_10_56124_cct_v2i1_009 crossref_primary_10_1016_j_fuel_2023_128849 crossref_primary_10_1007_s10784_024_09637_x crossref_primary_10_1021_acsomega_4c09642 crossref_primary_10_3390_rs14163899 crossref_primary_10_5194_essd_16_4325_2024 crossref_primary_10_5194_essd_15_5301_2023 crossref_primary_10_1038_s41467_020_18922_7 crossref_primary_10_1177_20530196241279373 crossref_primary_10_3390_atmos15030323 crossref_primary_10_1007_s11356_021_15347_7 crossref_primary_10_1088_1748_9326_abee4e |
Cites_doi | 10.1007/s11027-019-09877-2 10.5194/essd-8-571-2016 10.5194/acp-16-14979-2016 10.5194/essd-11-959-2019 10.1016/S1462-9011(99)00018-0 10.1016/j.apenergy.2019.113537 10.1016/j.fuel.2014.12.065 10.1016/j.enpol.2013.01.028 10.5194/acp-17-935-2017 10.1088/1748-9326/8/3/034011 10.1016/j.apenergy.2015.10.185 10.1111/j.1365-2486.2009.02098.x 10.5194/essd-2016-12 10.2172/207068 10.1002/qj.49706427503 10.1111/j.2153-3490.1973.tb00635.x 10.3334/CDIAC/ffe.ndp058 10.5194/essd-10-1427-2018 10.1098/rspa.1970.0141 10.1038/nature08047 10.3402/tellusa.v8i2.8969 10.5194/essd-11-1783-2019 10.4155/cmt.11.10 10.1038/nclimate2868 10.1016/S1462-9011(99)00027-1 10.5194/essd-2018-3 10.5194/acp-11-543-2011 10.1002/2013JD021296 10.1007/978-3-642-84608-3_5 10.1029/JC088iC02p01301 10.5194/bg-9-1845-2012 10.5194/essd-10-87-2018 10.1111/j.1600-0889.1984.tb00245.x 10.5194/gmd-11-369-2018 10.1073/pnas.0906974107 10.1016/j.marpol.2011.02.009 10.1007/s10584-010-9930-6 10.5194/essd-11-1675-2019 10.1111/j.2153-3490.1973.tb01604.x 10.1016/0004-6981(74)90159-0 10.3402/tellusb.v66.23616 10.5194/essd-2020-34 10.1038/nature14677 10.1007/s10584-013-0865-6 10.1038/nature08019 10.1111/j.2153-3490.1957.tb01849.x 10.1038/nclimate2963 10.1088/1748-9326/4/3/034012 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/essd-12-1437-2020 |
DatabaseName | CrossRef Gale In Context: Science Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1866-3516 |
EndPage | 1465 |
ExternalDocumentID | oai_doaj_org_article_7bf5ad7965f549808db9efbd4b5df621 A628012833 10_5194_essd_12_1437_2020 |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA BBORY PQGLB 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c549t-d292d8b10a76c7ea6dfe36edb06cda6b6d9cfedc4478aed0070190d4d80ec2a23 |
IEDL.DBID | DOA |
ISSN | 1866-3516 1866-3508 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Fri Jul 25 10:47:16 EDT 2025 Tue Jun 17 22:04:23 EDT 2025 Thu Jul 17 05:59:26 EDT 2025 Fri Jun 27 05:25:21 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Tue Jul 01 02:14:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-d292d8b10a76c7ea6dfe36edb06cda6b6d9cfedc4478aed0070190d4d80ec2a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8590-6431 |
OpenAccessLink | https://doaj.org/article/7bf5ad7965f549808db9efbd4b5df621 |
PQID | 2418073433 |
PQPubID | 105729 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7bf5ad7965f549808db9efbd4b5df621 proquest_journals_2418073433 gale_infotracmisc_A628012833 gale_infotracacademiconefile_A628012833 gale_incontextgauss_ISR_A628012833 crossref_citationtrail_10_5194_essd_12_1437_2020 crossref_primary_10_5194_essd_12_1437_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-29 |
PublicationDateYYYYMMDD | 2020-06-29 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref131 ref94 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref62 – ident: ref98 doi: 10.1007/s11027-019-09877-2 – ident: ref91 – ident: ref50 doi: 10.5194/essd-8-571-2016 – ident: ref116 – ident: ref6 doi: 10.5194/acp-16-14979-2016 – ident: ref99 – ident: ref27 – ident: ref122 – ident: ref131 – ident: ref30 – ident: ref13 – ident: ref76 doi: 10.5194/essd-11-959-2019 – ident: ref113 – ident: ref36 – ident: ref65 – ident: ref44 – ident: ref90 doi: 10.1016/S1462-9011(99)00018-0 – ident: ref31 doi: 10.1016/j.apenergy.2019.113537 – ident: ref29 doi: 10.1016/j.fuel.2014.12.065 – ident: ref102 – ident: ref47 – ident: ref127 – ident: ref71 – ident: ref16 – ident: ref33 – ident: ref78 doi: 10.1016/j.enpol.2013.01.028 – ident: ref114 – ident: ref84 doi: 10.5194/acp-17-935-2017 – ident: ref83 – ident: ref68 – ident: ref120 – ident: ref9 doi: 10.1088/1748-9326/8/3/034011 – ident: ref41 – ident: ref25 doi: 10.1016/j.apenergy.2015.10.185 – ident: ref74 – ident: ref128 – ident: ref26 doi: 10.1111/j.1365-2486.2009.02098.x – ident: ref51 doi: 10.5194/essd-2016-12 – ident: ref18 doi: 10.2172/207068 – ident: ref38 – ident: ref63 – ident: ref24 doi: 10.1002/qj.49706427503 – ident: ref111 – ident: ref119 – ident: ref80 – ident: ref108 doi: 10.1111/j.2153-3490.1973.tb00635.x – ident: ref21 – ident: ref49 – ident: ref100 – ident: ref125 – ident: ref10 – ident: ref35 – ident: ref2 doi: 10.3334/CDIAC/ffe.ndp058 – ident: ref37 – ident: ref77 doi: 10.5194/essd-10-1427-2018 – ident: ref89 – ident: ref5 – ident: ref66 – ident: ref112 – ident: ref20 – ident: ref81 – ident: ref43 – ident: ref15 doi: 10.1098/rspa.1970.0141 – ident: ref92 doi: 10.1038/nature08047 – ident: ref104 doi: 10.3402/tellusa.v8i2.8969 – ident: ref126 – ident: ref103 – ident: ref72 – ident: ref69 – ident: ref95 – ident: ref46 doi: 10.5194/essd-11-1783-2019 – ident: ref57 – ident: ref86 doi: 10.4155/cmt.11.10 – ident: ref11 – ident: ref17 – ident: ref52 doi: 10.5194/essd-2016-12 – ident: ref61 – ident: ref107 doi: 10.1038/nclimate2868 – ident: ref101 doi: 10.1016/S1462-9011(99)00027-1 – ident: ref117 – ident: ref53 doi: 10.5194/essd-2018-3 – ident: ref96 doi: 10.5194/acp-11-543-2011 – ident: ref12 doi: 10.1002/2013JD021296 – ident: ref40 – ident: ref23 – ident: ref88 doi: 10.1007/978-3-642-84608-3_5 – ident: ref75 – ident: ref110 doi: 10.1029/JC088iC02p01301 – ident: ref123 – ident: ref130 – ident: ref106 – ident: ref54 – ident: ref3 doi: 10.5194/bg-9-1845-2012 – ident: ref39 – ident: ref64 – ident: ref118 – ident: ref97 doi: 10.5194/essd-10-87-2018 – ident: ref87 doi: 10.1111/j.1600-0889.1984.tb00245.x – ident: ref45 – ident: ref22 – ident: ref48 – ident: ref58 doi: 10.5194/gmd-11-369-2018 – ident: ref32 doi: 10.1073/pnas.0906974107 – ident: ref55 doi: 10.1016/j.marpol.2011.02.009 – ident: ref124 – ident: ref19 – ident: ref93 – ident: ref70 – ident: ref60 doi: 10.1007/s10584-010-9930-6 – ident: ref8 doi: 10.5194/essd-11-1675-2019 – ident: ref59 – ident: ref115 – ident: ref67 – ident: ref121 – ident: ref28 – ident: ref79 doi: 10.1111/j.2153-3490.1973.tb01604.x – ident: ref42 – ident: ref109 doi: 10.1016/0004-6981(74)90159-0 – ident: ref4 doi: 10.3402/tellusb.v66.23616 – ident: ref7 doi: 10.5194/essd-2020-34 – ident: ref85 doi: 10.1038/nature14677 – ident: ref73 – ident: ref129 – ident: ref34 doi: 10.1007/s10584-013-0865-6 – ident: ref56 – ident: ref1 doi: 10.1038/nature08019 – ident: ref105 doi: 10.1111/j.2153-3490.1957.tb01849.x – ident: ref82 doi: 10.1038/nclimate2963 – ident: ref94 doi: 10.1088/1748-9326/4/3/034012 – ident: ref14 |
SSID | ssj0064175 |
Score | 2.4370208 |
Snippet | Since the first estimate of global CO2 emissions was
published in 1894, important progress has been made in the development of
estimation methods while the... Since the first estimate of global CO.sub.2 emissions was published in 1894, important progress has been made in the development of estimation methods while... Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1437 |
SubjectTerms | Boundaries Carbon cycle Carbon dioxide Carbon dioxide emissions Carbon sources Coal Datasets Emissions Emitters Energy Errors Estimates Fossil fuels Fossils International agreements |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA56RfBF_IlnqwQRBGHpbjab3X2Sq7RWwSLVYt9CMpOUg3pbb69Q_3tndnOn92AfdzMLm8lkMjNJvk-IN6BDa2KtMqCUhxIUqDMHbZlVIXeuyAGU5x3dLyfm-Ex_Pq_OU8GtT8cq1z5xcNTYAdfI92mlacgcdVm-v_qVMWsU764mCo27YodccNNMxM7B4cnX07UvNroYoHYZ1S0rKRYZ9zUpatH75EiQzyVQwFCTrTDh9z8r0wDg_z83Paw9Rw_FgxQ0ytk4yo_EnbB4LO59HEh5fz8RP2YSNnSCsouSkTN-chDJDyPkhwS39NSK8-5mjkEyzRsXynrJF0xkpD-ab4TGin7_VJwdHX7_cJwlwoQMKM1bZahahY0vclcbqIMzGENpAvrcADrjDbYQA4LWdeMCMtQPxQOosckDKKfKZ2Ky6BbhuZAu6FAVTpk2Rk1poYPYGJr-usLINKFTka-VZSGhiTOpxaWlrIL1a1m_tlCW9WtZv1PxbvPJ1QilcZvwAY_ARpBRsIcX3fLCpkllax8rh3Vrqkj9b_IGfRuiR-3pL40qpuI1j59lnIsFH6S5cNd9bz99O7Uzo4a1uSyn4m0Sih31AFy6l0B6YGisLcm9LUkaKNhuXpuJTY6gt3_N9sXtzbviPvebT6Gpdk9MVsvr8JLinZV_lYz6D7Q__j4 priority: 102 providerName: ProQuest |
Title | A comparison of estimates of global carbon dioxide emissions from fossil carbon sources |
URI | https://www.proquest.com/docview/2418073433 https://doaj.org/article/7bf5ad7965f549808db9efbd4b5df621 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZJSiGXkL7opskiQqBQMLFlWbaPu0k2D0goaUNzE9KMVBba3RJvoP33nbG9S_bQ9tKTsTUG6dNoNKPHN0IcgQ61iaVKgEIeClCgTBzUeVKE1LksBVCed3Svb8zFnb66L-6fpPriM2EdPXAH3HHpY-GwrE0RKZSp0gp9HaJH7QuMpr1CrmjOWwZTnQ02OmspdpnNLcnJB-n2M8lb0cdkQJDPI5CjUJKOcKLvJzNSS9z_J_PczjmTXbHTO4ty1FXyhdgIs5fi-XmbjPfXK_FlJGGVRlDOo2TGjO_sPPJLR_UhwT14KsXp_OcUg-T0brxA1ki-WCIj1Wi6EupW8pvX4m5y9vnkIukTJSRAmCwSVLXCymepKw2UwRmMITcBfWoAnfEGa4gBQeuycgGZ4of8ANRYpQGUU_kbsTWbz8JbIV3QocicMnWMmsJBB7EyNOw1oc3pQQciXYJloWcR52QW3yxFE4yvZXxtpizjaxnfgfiw-uVHR6HxN-Ex98BKkNmv2w-kE7bXCfsvnRiIQ-4_y_wWMz5A89U9No29_HRrR0a1c3KeD8T7XijOqQXg-vsIhANTYq1J7q9JUkfBevFSTWxvABpLjlFF1lPn-d7_aNE7sc3o8Bk1Ve-LrcXDYzggb2jhh2KzmpwPxbPR-HQ8oef47Obj7bAdDr8Bn28Kbw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgguqLzEQgELgZCQoiaO4yQHVC2P7S59HKAVvbn22K5Wgk3ZbAX9U_2NzOSxsAd66zHxRHLG43n48X2MvQLpSxVyEQGWPFigQB4ZKNMo87ExSQwgLO3oHhyq8bH8fJKdrLGr_i4MHavsfWLjqF0FtEa-jZGmQHOUabpz_jMi1ijaXe0pNFqz2POXv7Bkq99NPuL4vhZi9OnowzjqWAUiwFpoETlRClfYJDa5gtwb5YJPlXc2VuCMssqVELwDKfPCeEd4OBg0nXRF7EEYAjpAl7-BHSmp2CtGu73nVzJpgH0JQy5KMfNpd1ExR5Lb6LYcnYLA9CRHyyR68X_iYEMX8L-g0ES60Sa726WofNja1D225mf32a3dhgL48gH7NuSwJC_kVeCE0_GDUlZ6aAFGOJi5xVY3rX5PnedEKkfLcjWn6yw8YI-mS6F2_6B-yI5vRJGP2PqsmvnHjBsvfZYYocoQJBahBkKh0NnIzAUiJR2wuFeWhg67nCg0vmusYUi_mvSrE6FJv5r0O2Bvl5-ct8Ad1wm_pxFYChLmdvOimp_pbgrr3IbMuLxUWcD_L-LC2dIH66TFXiqRDNhLGj9NqBozOrZzZi7qWk--ftFDJZpMIE0H7E0nFCr8AzDdLQjUAwFxrUhurUjiQMFqc28munM7tf47SZ5c3_yC3R4fHezr_cnh3lN2h3RA599EucXWF_ML_wwzrYV93pg3Z6c3PZ_-AM2lPCU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUBcEE8RKLBCICQkK_Z6vbYPCKW0oaEQVYWK3pZ9VpEgLnEq6F_j1zHjRyAHeuvR3rG0np2dxz6-D-C5Fb6UIeeRxZIHCxSbR9qWaZT5WOsktpYb2tH9OJX7x-L9SXayAb_7uzB0rLL3iY2jdpWlNfIhRpoCzVGk6TB0xyIOd8dvzn5ExCBFO609nUZrIgf-4ieWb_XryS6O9QvOx3uf3-5HHcNAZLEuWkaOl9wVJol1Lm3utXTBp9I7E0vrtDTSlTZ4Z4XIC-0dYeNgAHXCFbG3XBPoAbr_rZyqok3Y2tmbHh71cUCKpIH5JUS5KMU8qN1TxYxJDNGJOToTgclKjnZKZOP_RMWGPOB_IaKJe-NbcLNLWNmotbDbsOHnd-Dau4YQ-OIufBkxu6IyZFVghNrxnRJYemjhRpjVC4Otblb9mjnPiGKOFulqRpdbWMAezVZC7W5CfQ-Or0SV92FzXs39A2DaC58lmssyBIElqbahkOh6ROYCUZQOIO6VpWyHZE6EGt8UVjSkX0X6VQlXpF9F-h3Aq9UnZy2Mx2XCOzQCK0FC4G5eVItT1U1olZuQaZeXMgv4_0VcOFP6YJww2EvJkwE8o_FThLExJ2s91ed1rSafjtRI8iYvSNMBvOyEQoV_YHV3JwL1QLBca5Lba5I4UHa9uTcT1TmhWv2dMg8vb34K13EuqQ-T6cEjuEEqoMNwvNyGzeXi3D_GtGtpnnT2zeDrVU-pP7LmQbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+estimates+of+global+carbon+dioxide+emissions+from+fossil+carbon+sources&rft.jtitle=Earth+system+science+data&rft.au=Andrew%2C+Robbie+M.&rft.date=2020-06-29&rft.issn=1866-3516&rft.eissn=1866-3516&rft.volume=12&rft.issue=2&rft.spage=1437&rft.epage=1465&rft_id=info:doi/10.5194%2Fessd-12-1437-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_essd_12_1437_2020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |