A comparison of estimates of global carbon dioxide emissions from fossil carbon sources

Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estima...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 12; no. 2; pp. 1437 - 1465
Main Author Andrew, Robbie M.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 29.06.2020
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While “true” emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO2 emissions. Data used to generate Figs. 3–18 are available at https://doi.org/10.5281/zenodo.3687042 (Andrew, 2020).
AbstractList Since the first estimate of global CO.sub.2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and - by way of global, large-emitter, and case examples - quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While "true" emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO.sub.2 emissions. Data used to generate Figs. 3-18 are available at
Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While “true” emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO2 emissions. Data used to generate Figs. 3–18 are available at https://doi.org/10.5281/zenodo.3687042 (Andrew, 2020).
Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While “true” emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO2 emissions. Data used to generate Figs. 3–18 are available at https://doi.org/10.5281/zenodo.3687042 (Andrew, 2020).
Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In many cases differences in emissions come down to differences in system boundaries: which emissions sources are included and which are omitted. With minimal work in harmonising these system boundaries across datasets, the range of estimates of global emissions drops to 5 %, and further work on harmonisation would likely result in an even lower range, without changing the data. Some potential errors were found, and some discrepancies remain unexplained, but it is shown to be inappropriate to conclude that uncertainty in emissions is high simply because estimates exhibit a wide range. While “true” emissions cannot be known, by comparing different datasets methodically, differences that result from system boundaries and allocation approaches can be highlighted and set aside to enable identification of true differences, and potential errors. This must be an important way forward in improving global datasets of CO2 emissions. Data used to generate Figs. 3–18 are available at10.5281/zenodo.3687042 (Andrew, 2020).
Audience Academic
Author Andrew, Robbie M.
Author_xml – sequence: 1
  givenname: Robbie M.
  orcidid: 0000-0001-8590-6431
  surname: Andrew
  fullname: Andrew, Robbie M.
BookMark eNp1Uk1v3CAQtapUapL2B_RmqacenALGgI-rqB8rRarUJMoRAQMrVl6zBVZK_33H2X5t1YoDzPDem-ExF83ZnGbfNK8puRroyN_5UqCjrKO8lx0jjDxrzqkSousHKs7-OL9oLkrZEiI4lcN587BqXdrtTY4lzW0KrS817kz1ZQk2U7Jmap3JFm8hpscIvvW7WEpMc2lDTrs2JIx-gUo6ZOfLy-Z5MFPxr37sl839h_d315-6m88f19erm84NfKwdsJGBspQYKZz0RkDwvfBgiXBghBUwuuDBcS6V8UCIJHQkwEER75hh_WWzPupCMlu9z9h7_qaTifopkfJGm1yjm7yWNgwG5CiGgLUVUWBHHyxwO0AQjKLWm6PWPqevBzRCb_ExM7avGaeKyJ73_W_UxqBonEOq2Ti0xOmVYIpQpp5QV_9A4QJ0z-HfhYj5E8LbEwJiqn-sG3MoRa9vv5xi5RHrMnqffdAuVlPxS7BInDQlehkKvQyFpkwvQ6GXoUAm_Yv507L_c74Dd_q8Sg
CitedBy_id crossref_primary_10_1016_j_energy_2024_133643
crossref_primary_10_1039_D4JA00287C
crossref_primary_10_1002_cben_202300062
crossref_primary_10_1016_j_ecolecon_2022_107633
crossref_primary_10_5194_essd_15_4295_2023
crossref_primary_10_5194_essd_16_245_2024
crossref_primary_10_1360_N072023_0188
crossref_primary_10_2139_ssrn_4123754
crossref_primary_10_1016_j_scitotenv_2022_161237
crossref_primary_10_1130_B35918_1
crossref_primary_10_3390_ma17235787
crossref_primary_10_1016_j_envsci_2021_04_012
crossref_primary_10_5194_essd_17_965_2025
crossref_primary_10_1039_D4SU00749B
crossref_primary_10_3233_JCM_247574
crossref_primary_10_1039_D1CY01378E
crossref_primary_10_1016_j_wds_2024_100188
crossref_primary_10_5194_essd_13_5311_2021
crossref_primary_10_3389_fevo_2023_1248426
crossref_primary_10_1057_s41599_024_03318_5
crossref_primary_10_5194_essd_12_2411_2020
crossref_primary_10_5194_essd_14_1917_2022
crossref_primary_10_5194_essd_16_2669_2024
crossref_primary_10_1016_j_jclepro_2023_139446
crossref_primary_10_1017_eds_2023_38
crossref_primary_10_1016_j_nanoen_2023_108242
crossref_primary_10_1016_j_ecolind_2021_108066
crossref_primary_10_1016_j_scitotenv_2024_175177
crossref_primary_10_1016_j_nxmate_2025_100559
crossref_primary_10_1029_2021RG000736
crossref_primary_10_5194_essd_12_3269_2020
crossref_primary_10_5194_essd_15_963_2023
crossref_primary_10_2139_ssrn_4658722
crossref_primary_10_1016_j_rse_2024_114368
crossref_primary_10_5194_essd_13_1667_2021
crossref_primary_10_5194_essd_13_5213_2021
crossref_primary_10_5194_essd_15_1197_2023
crossref_primary_10_1016_j_scitotenv_2021_146861
crossref_primary_10_1038_s43247_023_01190_w
crossref_primary_10_1029_2023JG007526
crossref_primary_10_1016_j_erss_2021_102172
crossref_primary_10_1016_j_scitotenv_2023_161387
crossref_primary_10_1016_j_gloplacha_2024_104485
crossref_primary_10_1016_j_cogsc_2022_100716
crossref_primary_10_3389_fbioe_2024_1379121
crossref_primary_10_1007_s41062_023_01247_x
crossref_primary_10_1007_s11430_023_1230_3
crossref_primary_10_1007_s41062_024_01477_7
crossref_primary_10_47481_jscmt_1607846
crossref_primary_10_5194_essd_14_4811_2022
crossref_primary_10_1088_1757_899X_1200_1_012003
crossref_primary_10_5194_bg_22_1447_2025
crossref_primary_10_1007_s10668_022_02853_y
crossref_primary_10_1007_s13762_024_05896_y
crossref_primary_10_1016_j_heliyon_2022_e11729
crossref_primary_10_1038_s43016_025_01128_9
crossref_primary_10_5194_essd_13_2363_2021
crossref_primary_10_56124_cct_v2i1_009
crossref_primary_10_1016_j_fuel_2023_128849
crossref_primary_10_1007_s10784_024_09637_x
crossref_primary_10_1021_acsomega_4c09642
crossref_primary_10_3390_rs14163899
crossref_primary_10_5194_essd_16_4325_2024
crossref_primary_10_5194_essd_15_5301_2023
crossref_primary_10_1038_s41467_020_18922_7
crossref_primary_10_1177_20530196241279373
crossref_primary_10_3390_atmos15030323
crossref_primary_10_1007_s11356_021_15347_7
crossref_primary_10_1088_1748_9326_abee4e
Cites_doi 10.1007/s11027-019-09877-2
10.5194/essd-8-571-2016
10.5194/acp-16-14979-2016
10.5194/essd-11-959-2019
10.1016/S1462-9011(99)00018-0
10.1016/j.apenergy.2019.113537
10.1016/j.fuel.2014.12.065
10.1016/j.enpol.2013.01.028
10.5194/acp-17-935-2017
10.1088/1748-9326/8/3/034011
10.1016/j.apenergy.2015.10.185
10.1111/j.1365-2486.2009.02098.x
10.5194/essd-2016-12
10.2172/207068
10.1002/qj.49706427503
10.1111/j.2153-3490.1973.tb00635.x
10.3334/CDIAC/ffe.ndp058
10.5194/essd-10-1427-2018
10.1098/rspa.1970.0141
10.1038/nature08047
10.3402/tellusa.v8i2.8969
10.5194/essd-11-1783-2019
10.4155/cmt.11.10
10.1038/nclimate2868
10.1016/S1462-9011(99)00027-1
10.5194/essd-2018-3
10.5194/acp-11-543-2011
10.1002/2013JD021296
10.1007/978-3-642-84608-3_5
10.1029/JC088iC02p01301
10.5194/bg-9-1845-2012
10.5194/essd-10-87-2018
10.1111/j.1600-0889.1984.tb00245.x
10.5194/gmd-11-369-2018
10.1073/pnas.0906974107
10.1016/j.marpol.2011.02.009
10.1007/s10584-010-9930-6
10.5194/essd-11-1675-2019
10.1111/j.2153-3490.1973.tb01604.x
10.1016/0004-6981(74)90159-0
10.3402/tellusb.v66.23616
10.5194/essd-2020-34
10.1038/nature14677
10.1007/s10584-013-0865-6
10.1038/nature08019
10.1111/j.2153-3490.1957.tb01849.x
10.1038/nclimate2963
10.1088/1748-9326/4/3/034012
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/essd-12-1437-2020
DatabaseName CrossRef
Gale In Context: Science
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-3516
EndPage 1465
ExternalDocumentID oai_doaj_org_article_7bf5ad7965f549808db9efbd4b5df621
A628012833
10_5194_essd_12_1437_2020
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RKB
RNS
TR2
TUS
ZBA
BBORY
PQGLB
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c549t-d292d8b10a76c7ea6dfe36edb06cda6b6d9cfedc4478aed0070190d4d80ec2a23
IEDL.DBID DOA
ISSN 1866-3516
1866-3508
IngestDate Wed Aug 27 01:30:27 EDT 2025
Fri Jul 25 10:47:16 EDT 2025
Tue Jun 17 22:04:23 EDT 2025
Thu Jul 17 05:59:26 EDT 2025
Fri Jun 27 05:25:21 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Tue Jul 01 02:14:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-d292d8b10a76c7ea6dfe36edb06cda6b6d9cfedc4478aed0070190d4d80ec2a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8590-6431
OpenAccessLink https://doaj.org/article/7bf5ad7965f549808db9efbd4b5df621
PQID 2418073433
PQPubID 105729
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_7bf5ad7965f549808db9efbd4b5df621
proquest_journals_2418073433
gale_infotracmisc_A628012833
gale_infotracacademiconefile_A628012833
gale_incontextgauss_ISR_A628012833
crossref_citationtrail_10_5194_essd_12_1437_2020
crossref_primary_10_5194_essd_12_1437_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-29
PublicationDateYYYYMMDD 2020-06-29
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-29
  day: 29
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref131
ref94
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref62
– ident: ref98
  doi: 10.1007/s11027-019-09877-2
– ident: ref91
– ident: ref50
  doi: 10.5194/essd-8-571-2016
– ident: ref116
– ident: ref6
  doi: 10.5194/acp-16-14979-2016
– ident: ref99
– ident: ref27
– ident: ref122
– ident: ref131
– ident: ref30
– ident: ref13
– ident: ref76
  doi: 10.5194/essd-11-959-2019
– ident: ref113
– ident: ref36
– ident: ref65
– ident: ref44
– ident: ref90
  doi: 10.1016/S1462-9011(99)00018-0
– ident: ref31
  doi: 10.1016/j.apenergy.2019.113537
– ident: ref29
  doi: 10.1016/j.fuel.2014.12.065
– ident: ref102
– ident: ref47
– ident: ref127
– ident: ref71
– ident: ref16
– ident: ref33
– ident: ref78
  doi: 10.1016/j.enpol.2013.01.028
– ident: ref114
– ident: ref84
  doi: 10.5194/acp-17-935-2017
– ident: ref83
– ident: ref68
– ident: ref120
– ident: ref9
  doi: 10.1088/1748-9326/8/3/034011
– ident: ref41
– ident: ref25
  doi: 10.1016/j.apenergy.2015.10.185
– ident: ref74
– ident: ref128
– ident: ref26
  doi: 10.1111/j.1365-2486.2009.02098.x
– ident: ref51
  doi: 10.5194/essd-2016-12
– ident: ref18
  doi: 10.2172/207068
– ident: ref38
– ident: ref63
– ident: ref24
  doi: 10.1002/qj.49706427503
– ident: ref111
– ident: ref119
– ident: ref80
– ident: ref108
  doi: 10.1111/j.2153-3490.1973.tb00635.x
– ident: ref21
– ident: ref49
– ident: ref100
– ident: ref125
– ident: ref10
– ident: ref35
– ident: ref2
  doi: 10.3334/CDIAC/ffe.ndp058
– ident: ref37
– ident: ref77
  doi: 10.5194/essd-10-1427-2018
– ident: ref89
– ident: ref5
– ident: ref66
– ident: ref112
– ident: ref20
– ident: ref81
– ident: ref43
– ident: ref15
  doi: 10.1098/rspa.1970.0141
– ident: ref92
  doi: 10.1038/nature08047
– ident: ref104
  doi: 10.3402/tellusa.v8i2.8969
– ident: ref126
– ident: ref103
– ident: ref72
– ident: ref69
– ident: ref95
– ident: ref46
  doi: 10.5194/essd-11-1783-2019
– ident: ref57
– ident: ref86
  doi: 10.4155/cmt.11.10
– ident: ref11
– ident: ref17
– ident: ref52
  doi: 10.5194/essd-2016-12
– ident: ref61
– ident: ref107
  doi: 10.1038/nclimate2868
– ident: ref101
  doi: 10.1016/S1462-9011(99)00027-1
– ident: ref117
– ident: ref53
  doi: 10.5194/essd-2018-3
– ident: ref96
  doi: 10.5194/acp-11-543-2011
– ident: ref12
  doi: 10.1002/2013JD021296
– ident: ref40
– ident: ref23
– ident: ref88
  doi: 10.1007/978-3-642-84608-3_5
– ident: ref75
– ident: ref110
  doi: 10.1029/JC088iC02p01301
– ident: ref123
– ident: ref130
– ident: ref106
– ident: ref54
– ident: ref3
  doi: 10.5194/bg-9-1845-2012
– ident: ref39
– ident: ref64
– ident: ref118
– ident: ref97
  doi: 10.5194/essd-10-87-2018
– ident: ref87
  doi: 10.1111/j.1600-0889.1984.tb00245.x
– ident: ref45
– ident: ref22
– ident: ref48
– ident: ref58
  doi: 10.5194/gmd-11-369-2018
– ident: ref32
  doi: 10.1073/pnas.0906974107
– ident: ref55
  doi: 10.1016/j.marpol.2011.02.009
– ident: ref124
– ident: ref19
– ident: ref93
– ident: ref70
– ident: ref60
  doi: 10.1007/s10584-010-9930-6
– ident: ref8
  doi: 10.5194/essd-11-1675-2019
– ident: ref59
– ident: ref115
– ident: ref67
– ident: ref121
– ident: ref28
– ident: ref79
  doi: 10.1111/j.2153-3490.1973.tb01604.x
– ident: ref42
– ident: ref109
  doi: 10.1016/0004-6981(74)90159-0
– ident: ref4
  doi: 10.3402/tellusb.v66.23616
– ident: ref7
  doi: 10.5194/essd-2020-34
– ident: ref85
  doi: 10.1038/nature14677
– ident: ref73
– ident: ref129
– ident: ref34
  doi: 10.1007/s10584-013-0865-6
– ident: ref56
– ident: ref1
  doi: 10.1038/nature08019
– ident: ref105
  doi: 10.1111/j.2153-3490.1957.tb01849.x
– ident: ref82
  doi: 10.1038/nclimate2963
– ident: ref94
  doi: 10.1088/1748-9326/4/3/034012
– ident: ref14
SSID ssj0064175
Score 2.4370208
Snippet Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the...
Since the first estimate of global CO.sub.2 emissions was published in 1894, important progress has been made in the development of estimation methods while...
Since the first estimate of global CO2 emissions was published in 1894, important progress has been made in the development of estimation methods while the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1437
SubjectTerms Boundaries
Carbon cycle
Carbon dioxide
Carbon dioxide emissions
Carbon sources
Coal
Datasets
Emissions
Emitters
Energy
Errors
Estimates
Fossil fuels
Fossils
International agreements
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA56RfBF_IlnqwQRBGHpbjab3X2Sq7RWwSLVYt9CMpOUg3pbb69Q_3tndnOn92AfdzMLm8lkMjNJvk-IN6BDa2KtMqCUhxIUqDMHbZlVIXeuyAGU5x3dLyfm-Ex_Pq_OU8GtT8cq1z5xcNTYAdfI92mlacgcdVm-v_qVMWsU764mCo27YodccNNMxM7B4cnX07UvNroYoHYZ1S0rKRYZ9zUpatH75EiQzyVQwFCTrTDh9z8r0wDg_z83Paw9Rw_FgxQ0ytk4yo_EnbB4LO59HEh5fz8RP2YSNnSCsouSkTN-chDJDyPkhwS39NSK8-5mjkEyzRsXynrJF0xkpD-ab4TGin7_VJwdHX7_cJwlwoQMKM1bZahahY0vclcbqIMzGENpAvrcADrjDbYQA4LWdeMCMtQPxQOosckDKKfKZ2Ky6BbhuZAu6FAVTpk2Rk1poYPYGJr-usLINKFTka-VZSGhiTOpxaWlrIL1a1m_tlCW9WtZv1PxbvPJ1QilcZvwAY_ARpBRsIcX3fLCpkllax8rh3Vrqkj9b_IGfRuiR-3pL40qpuI1j59lnIsFH6S5cNd9bz99O7Uzo4a1uSyn4m0Sih31AFy6l0B6YGisLcm9LUkaKNhuXpuJTY6gt3_N9sXtzbviPvebT6Gpdk9MVsvr8JLinZV_lYz6D7Q__j4
  priority: 102
  providerName: ProQuest
Title A comparison of estimates of global carbon dioxide emissions from fossil carbon sources
URI https://www.proquest.com/docview/2418073433
https://doaj.org/article/7bf5ad7965f549808db9efbd4b5df621
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZJSiGXkL7opskiQqBQMLFlWbaPu0k2D0goaUNzE9KMVBba3RJvoP33nbG9S_bQ9tKTsTUG6dNoNKPHN0IcgQ61iaVKgEIeClCgTBzUeVKE1LksBVCed3Svb8zFnb66L-6fpPriM2EdPXAH3HHpY-GwrE0RKZSp0gp9HaJH7QuMpr1CrmjOWwZTnQ02OmspdpnNLcnJB-n2M8lb0cdkQJDPI5CjUJKOcKLvJzNSS9z_J_PczjmTXbHTO4ty1FXyhdgIs5fi-XmbjPfXK_FlJGGVRlDOo2TGjO_sPPJLR_UhwT14KsXp_OcUg-T0brxA1ki-WCIj1Wi6EupW8pvX4m5y9vnkIukTJSRAmCwSVLXCymepKw2UwRmMITcBfWoAnfEGa4gBQeuycgGZ4of8ANRYpQGUU_kbsTWbz8JbIV3QocicMnWMmsJBB7EyNOw1oc3pQQciXYJloWcR52QW3yxFE4yvZXxtpizjaxnfgfiw-uVHR6HxN-Ex98BKkNmv2w-kE7bXCfsvnRiIQ-4_y_wWMz5A89U9No29_HRrR0a1c3KeD8T7XijOqQXg-vsIhANTYq1J7q9JUkfBevFSTWxvABpLjlFF1lPn-d7_aNE7sc3o8Bk1Ve-LrcXDYzggb2jhh2KzmpwPxbPR-HQ8oef47Obj7bAdDr8Bn28Kbw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgguqLzEQgELgZCQoiaO4yQHVC2P7S59HKAVvbn22K5Wgk3ZbAX9U_2NzOSxsAd66zHxRHLG43n48X2MvQLpSxVyEQGWPFigQB4ZKNMo87ExSQwgLO3oHhyq8bH8fJKdrLGr_i4MHavsfWLjqF0FtEa-jZGmQHOUabpz_jMi1ijaXe0pNFqz2POXv7Bkq99NPuL4vhZi9OnowzjqWAUiwFpoETlRClfYJDa5gtwb5YJPlXc2VuCMssqVELwDKfPCeEd4OBg0nXRF7EEYAjpAl7-BHSmp2CtGu73nVzJpgH0JQy5KMfNpd1ExR5Lb6LYcnYLA9CRHyyR68X_iYEMX8L-g0ES60Sa726WofNja1D225mf32a3dhgL48gH7NuSwJC_kVeCE0_GDUlZ6aAFGOJi5xVY3rX5PnedEKkfLcjWn6yw8YI-mS6F2_6B-yI5vRJGP2PqsmvnHjBsvfZYYocoQJBahBkKh0NnIzAUiJR2wuFeWhg67nCg0vmusYUi_mvSrE6FJv5r0O2Bvl5-ct8Ad1wm_pxFYChLmdvOimp_pbgrr3IbMuLxUWcD_L-LC2dIH66TFXiqRDNhLGj9NqBozOrZzZi7qWk--ftFDJZpMIE0H7E0nFCr8AzDdLQjUAwFxrUhurUjiQMFqc28munM7tf47SZ5c3_yC3R4fHezr_cnh3lN2h3RA599EucXWF_ML_wwzrYV93pg3Z6c3PZ_-AM2lPCU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUBcEE8RKLBCICQkK_Z6vbYPCKW0oaEQVYWK3pZ9VpEgLnEq6F_j1zHjRyAHeuvR3rG0np2dxz6-D-C5Fb6UIeeRxZIHCxSbR9qWaZT5WOsktpYb2tH9OJX7x-L9SXayAb_7uzB0rLL3iY2jdpWlNfIhRpoCzVGk6TB0xyIOd8dvzn5ExCBFO609nUZrIgf-4ieWb_XryS6O9QvOx3uf3-5HHcNAZLEuWkaOl9wVJol1Lm3utXTBp9I7E0vrtDTSlTZ4Z4XIC-0dYeNgAHXCFbG3XBPoAbr_rZyqok3Y2tmbHh71cUCKpIH5JUS5KMU8qN1TxYxJDNGJOToTgclKjnZKZOP_RMWGPOB_IaKJe-NbcLNLWNmotbDbsOHnd-Dau4YQ-OIufBkxu6IyZFVghNrxnRJYemjhRpjVC4Otblb9mjnPiGKOFulqRpdbWMAezVZC7W5CfQ-Or0SV92FzXs39A2DaC58lmssyBIElqbahkOh6ROYCUZQOIO6VpWyHZE6EGt8UVjSkX0X6VQlXpF9F-h3Aq9UnZy2Mx2XCOzQCK0FC4G5eVItT1U1olZuQaZeXMgv4_0VcOFP6YJww2EvJkwE8o_FThLExJ2s91ed1rSafjtRI8iYvSNMBvOyEQoV_YHV3JwL1QLBca5Lba5I4UHa9uTcT1TmhWv2dMg8vb34K13EuqQ-T6cEjuEEqoMNwvNyGzeXi3D_GtGtpnnT2zeDrVU-pP7LmQbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+estimates+of+global+carbon+dioxide+emissions+from+fossil+carbon+sources&rft.jtitle=Earth+system+science+data&rft.au=Andrew%2C+Robbie+M.&rft.date=2020-06-29&rft.issn=1866-3516&rft.eissn=1866-3516&rft.volume=12&rft.issue=2&rft.spage=1437&rft.epage=1465&rft_id=info:doi/10.5194%2Fessd-12-1437-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_essd_12_1437_2020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon