Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect
Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the...
Saved in:
Published in | Foods Vol. 8; no. 9; p. 398 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
07.09.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC50 values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats (p < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver. |
---|---|
AbstractList | Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC50 values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats (p < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver. Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC50 values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats (p < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver.Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC50 values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats (p < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver. Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC 50 values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats ( p < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver. Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats ( < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver. |
Author | Lin, Li-Yun Chuang, Cheng-Hung Yang, Kai-Min Chen, Hsin-Chun |
AuthorAffiliation | 1 Department of Food Science and Technology, Hungkuang University, Taichung 433, Taiwan 4 Department of Hospitality Management, Mingdao Unicersity, ChangHua 523, Taiwan 3 Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan 2 Department of Nutrition, Hungkuang University, Taichung 433, Taiwan |
AuthorAffiliation_xml | – name: 1 Department of Food Science and Technology, Hungkuang University, Taichung 433, Taiwan – name: 4 Department of Hospitality Management, Mingdao Unicersity, ChangHua 523, Taiwan – name: 3 Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan – name: 2 Department of Nutrition, Hungkuang University, Taichung 433, Taiwan |
Author_xml | – sequence: 1 givenname: Li-Yun surname: Lin fullname: Lin, Li-Yun – sequence: 2 givenname: Cheng-Hung orcidid: 0000-0003-1963-1825 surname: Chuang fullname: Chuang, Cheng-Hung – sequence: 3 givenname: Hsin-Chun orcidid: 0000-0002-6076-3611 surname: Chen fullname: Chen, Hsin-Chun – sequence: 4 givenname: Kai-Min orcidid: 0000-0003-0270-3511 surname: Yang fullname: Yang, Kai-Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31500259$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vFCEYh4mpsbX25tlwbJPdysd8gIcmzWS1TTbpwY8reQeYLQ0zjDCj7s0_XerWZmtM5AKBhycv74-X6GAIg0XoNSXnnEvytgvBJEEk4VI8Q0eMk2IpaCkO9taH6CSlO5KHpFxw9gIdcloSwkp5hH6uXW_xaeOmOCcMc4Rhcl3wDvLmbXRp6s_P8Mfvbth4e4ZXKdkMgMc3zqd3-EvwMDlvcRP6McyDSQt8mYHww5lswg2MoN20XWAYDL7ajtk8OmN7p_Gq66yeXqHnHfhkTx7mY_T5_epTc7Vc33y4bi7XS10WclqCoaItbFVSqKGl0hZCCJCF4Zq0RNdC0rosKKOl5tBxC1WnbW4B1cAkMy0_Rtc7rwlwp8boeohbFcCp3xshbhTEyWlvFWgArnN_O8oKrSupa0qNoWVRVKKikF0XO9c4t701Orckgn8ifXoyuFu1Cd9UVdeEyiILTh8EMXydbZpU75K23sNgw5wU47yknPIc139RJkROltcko2_2y3qs50_aGVjsAB1DStF2jwgl6v4_qf3_lHH2F56jzHGH-0c5_-9LvwCeOM9z |
CitedBy_id | crossref_primary_10_1016_j_fpsl_2024_101267 crossref_primary_10_3390_molecules26195991 crossref_primary_10_1016_j_biopha_2024_117410 crossref_primary_10_59124_guhes_1407399 crossref_primary_10_1016_j_foodcont_2024_111027 crossref_primary_10_1051_e3sconf_202343403001 crossref_primary_10_1016_j_psep_2024_04_104 crossref_primary_10_1007_s13580_021_00347_w crossref_primary_10_2174_1386207324666210712094148 crossref_primary_10_3390_foods13111681 crossref_primary_10_3390_molecules27228090 crossref_primary_10_1016_j_crgsc_2024_100410 crossref_primary_10_1016_j_heliyon_2024_e29721 crossref_primary_10_1002_slct_202200187 crossref_primary_10_3390_foods12102036 crossref_primary_10_3390_app12199482 crossref_primary_10_3390_agriculture13030535 crossref_primary_10_1016_j_jddst_2022_103188 crossref_primary_10_3390_ph16081081 crossref_primary_10_1016_j_fbio_2025_106259 crossref_primary_10_1016_j_sjbs_2024_103987 crossref_primary_10_3892_etm_2021_10943 crossref_primary_10_1007_s42452_024_06100_z crossref_primary_10_1016_j_postharvbio_2021_111488 crossref_primary_10_4236_alamt_2020_102017 crossref_primary_10_1002_jsfa_12892 crossref_primary_10_1039_D0FO00810A crossref_primary_10_3390_pharmaceutics15102470 crossref_primary_10_3390_insects13050480 crossref_primary_10_1016_j_jep_2022_115421 crossref_primary_10_1080_0972060X_2020_1868347 crossref_primary_10_1080_10408398_2021_1969891 crossref_primary_10_3390_ani12172185 crossref_primary_10_3390_antiox9060529 crossref_primary_10_3389_fpls_2021_611449 crossref_primary_10_3390_ani14030382 crossref_primary_10_3390_ani12030375 crossref_primary_10_3390_gels8030169 crossref_primary_10_3390_plants13020191 crossref_primary_10_1002_ptr_7083 crossref_primary_10_1080_22311866_2023_2277899 crossref_primary_10_1016_j_scienta_2022_110909 crossref_primary_10_1515_znc_2020_0007 crossref_primary_10_3390_agriculture13010179 crossref_primary_10_1080_00405167_2023_2258675 crossref_primary_10_3390_agriculture11040300 crossref_primary_10_1007_s11694_023_01839_2 crossref_primary_10_1016_j_phytol_2023_08_007 crossref_primary_10_1039_D1FO03793E crossref_primary_10_15188_kjopp_2020_04_34_2_81 crossref_primary_10_3389_fnut_2022_978130 crossref_primary_10_1080_22311866_2024_2439927 crossref_primary_10_1016_j_fbio_2021_101135 crossref_primary_10_1039_D0RA09314A crossref_primary_10_3390_molecules28135051 crossref_primary_10_3390_foods12030680 crossref_primary_10_1016_j_polymer_2023_126265 crossref_primary_10_1016_j_foodchem_2024_140361 crossref_primary_10_33086_cdj_v7i1_3559 crossref_primary_10_1007_s10570_023_05469_1 crossref_primary_10_1080_09205063_2024_2313829 crossref_primary_10_1080_87559129_2022_2042556 crossref_primary_10_1088_1755_1315_1356_1_012080 crossref_primary_10_3390_foods12173265 crossref_primary_10_4236_aim_2020_105017 crossref_primary_10_3389_fnut_2022_920413 crossref_primary_10_3390_agriengineering6030178 crossref_primary_10_1021_acsfoodscitech_4c00009 crossref_primary_10_5650_jos_ess24171 crossref_primary_10_1016_j_ctim_2024_103107 crossref_primary_10_1038_s41598_022_11692_w |
Cites_doi | 10.1007/s00217-006-0541-4 10.3390/molecules21121735 10.1021/jf902143x 10.3390/molecules22091539 10.3390/nu7125552 10.5740/jaoacint.19-0128 10.3390/medicines3020013 10.1016/j.foodchem.2013.07.125 10.1111/j.1750-3841.2011.02511.x 10.3390/antiox7010014 10.3390/medicines4020028 10.1016/j.jfca.2016.08.008 10.1080/10412905.1996.9701030 10.1016/j.clinthera.2007.05.002 10.1093/jn/120.6.561 10.1016/j.foodres.2018.05.047 10.1016/S0271-5317(01)00398-0 10.1186/s13065-015-0145-9 10.1021/jf800195d 10.1016/j.jpba.2009.07.027 10.3390/foods7110175 10.1159/000080252 10.3945/an.113.005603 10.1021/jf903573g 10.1016/S0899-9007(96)00410-8 10.1016/j.foodchem.2005.07.042 10.3390/agriculture5010048 10.1002/jsfa.4396 10.3390/molecules22081391 10.3390/ijms19071966 10.1016/S0308-8146(99)00247-2 10.1016/j.jff.2015.01.043 10.1134/S0003683808040182 10.3390/nu10020138 |
ContentType | Journal Article |
Copyright | 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/foods8090398 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2304-8158 |
ExternalDocumentID | oai_doaj_org_article_acaa3c339f124cc69c711dd15446861a PMC6770194 31500259 10_3390_foods8090398 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BHPHI CITATION GROUPED_DOAJ HYE IAO KQ8 M0K M48 MODMG M~E OK1 PIMPY PROAC RPM NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c549t-ad18b4e651a7ab19e4888a94d3c0b0c78917541215c3af3ea6fce2301ca292db3 |
IEDL.DBID | M48 |
ISSN | 2304-8158 |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Thu Aug 21 14:09:57 EDT 2025 Fri Jul 11 15:37:55 EDT 2025 Fri Jul 11 02:50:35 EDT 2025 Thu Jan 02 23:04:58 EST 2025 Thu Apr 24 22:58:15 EDT 2025 Tue Jul 01 04:28:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | antioxidant capacity lime essential oil (LEO) hypolipidemic effect |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-ad18b4e651a7ab19e4888a94d3c0b0c78917541215c3af3ea6fce2301ca292db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6076-3611 0000-0003-1963-1825 0000-0003-0270-3511 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/foods8090398 |
PMID | 31500259 |
PQID | 2288009370 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acaa3c339f124cc69c711dd15446861a pubmedcentral_primary_oai_pubmedcentral_nih_gov_6770194 proquest_miscellaneous_2335131338 proquest_miscellaneous_2288009370 pubmed_primary_31500259 crossref_primary_10_3390_foods8090398 crossref_citationtrail_10_3390_foods8090398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190907 |
PublicationDateYYYYMMDD | 2019-09-07 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190907 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Foods |
PublicationTitleAlternate | Foods |
PublicationYear | 2019 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Alam (ref_8) 2014; 5 Misharina (ref_33) 2008; 44 Mehl (ref_19) 2014; 143 Pak (ref_4) 2004; 98 ref_35 ref_12 Peng (ref_30) 2009; 57 Balasundram (ref_7) 2006; 99 ref_31 Zhu (ref_24) 2018; 111 Montesano (ref_11) 2008; 226 Schaich (ref_25) 2015; 14 Keys (ref_13) 1997; 13 Moreno (ref_10) 2010; 51 ref_18 Jantan (ref_6) 1996; 8 ref_15 Tundis (ref_36) 2012; 77 Lv (ref_1) 2015; 9 Rafiq (ref_3) 2018; 17 Kelebek (ref_2) 2011; 91 Shinnick (ref_28) 1990; 120 Sadgrove (ref_20) 2015; 5 ref_22 Cheng (ref_29) 2010; 58 ref_21 Fattore (ref_9) 2016; 53 Lee (ref_14) 2015; 7 Jacobson (ref_32) 2007; 29 Lin (ref_17) 2008; 56 ref_26 Castillo (ref_23) 2017; 15 Ruberto (ref_34) 2000; 69 ref_5 Park (ref_27) 2002; 22 Delgado (ref_16) 2019; 102 |
References_xml | – volume: 226 start-page: 327 year: 2008 ident: ref_11 article-title: Innovative extraction procedure for obtaining high pure lycopene from tomato publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-006-0541-4 – ident: ref_18 doi: 10.3390/molecules21121735 – volume: 57 start-page: 8812 year: 2009 ident: ref_30 article-title: Insulin secretagogue bioactivity of finger citron fruit (Citrus medica L. var. sarcodactylis Hort, Rutaceae) publication-title: J. Agr. Food Chem. doi: 10.1021/jf902143x – ident: ref_35 doi: 10.3390/molecules22091539 – volume: 7 start-page: 10525 year: 2015 ident: ref_14 article-title: Hypolipidemic effect of tomato juice in hamsters in high cholesterol diet-induced hyperlipidemia publication-title: Nutrients doi: 10.3390/nu7125552 – volume: 102 start-page: 1356 year: 2019 ident: ref_16 article-title: Analysis of main and healthy phenolic compounds in foods publication-title: J AOAC Int. doi: 10.5740/jaoacint.19-0128 – ident: ref_22 doi: 10.3390/medicines3020013 – volume: 143 start-page: 325 year: 2014 ident: ref_19 article-title: Differentiation of lemon essential oil based on volatile and non-volatile fractions with various analytical techniques: A metabolomic approach publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.07.125 – volume: 77 start-page: 40 year: 2012 ident: ref_36 article-title: Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. peel essential oils publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2011.02511.x – ident: ref_31 doi: 10.3390/antiox7010014 – ident: ref_15 doi: 10.3390/medicines4020028 – volume: 53 start-page: 61 year: 2016 ident: ref_9 article-title: Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes publication-title: J. Food Compost. Anal. doi: 10.1016/j.jfca.2016.08.008 – volume: 8 start-page: 627 year: 1996 ident: ref_6 article-title: Chemical composition of some citrus oils from Malaysia publication-title: J. Essent. Oil Res. doi: 10.1080/10412905.1996.9701030 – volume: 15 start-page: 129 year: 2017 ident: ref_23 article-title: Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils publication-title: CyTa J. Food – volume: 29 start-page: 763 year: 2007 ident: ref_32 article-title: Hypertriglyceridemia and cardiovascular risk reduction publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2007.05.002 – volume: 17 start-page: 351 year: 2018 ident: ref_3 article-title: Citrus peel as a source of functional ingredient: A review publication-title: J. Saudi Soc. Agric. Sci. – volume: 120 start-page: 561 year: 1990 ident: ref_28 article-title: Dose response to a dietary oat bran fraction in cholesterol-fed rats publication-title: J. Nutr. doi: 10.1093/jn/120.6.561 – volume: 111 start-page: 291 year: 2018 ident: ref_24 article-title: Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: Ultra-filtration performance and HPLC-MS2 profile publication-title: Food Res. Int. doi: 10.1016/j.foodres.2018.05.047 – volume: 22 start-page: 283 year: 2002 ident: ref_27 article-title: Effect of rutin and tannic acid supplements on cholesterol metabolism in rats1 publication-title: Nutr. Res. doi: 10.1016/S0271-5317(01)00398-0 – volume: 9 start-page: 68 year: 2015 ident: ref_1 article-title: Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health publication-title: Chem. Cent. J. doi: 10.1186/s13065-015-0145-9 – volume: 56 start-page: 4435 year: 2008 ident: ref_17 article-title: Alpinia zerumbet potentially elevates high-density lipoprotein cholesterol level in hamsters publication-title: J. Agr. Food Chem. doi: 10.1021/jf800195d – volume: 51 start-page: 327 year: 2010 ident: ref_10 article-title: Natural bioactive compounds of Citrus limon for food and health publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2009.07.027 – ident: ref_21 doi: 10.3390/foods7110175 – volume: 98 start-page: 49 year: 2004 ident: ref_4 article-title: Medical management of urinary stone disease publication-title: Nephron Clin. Pract. doi: 10.1159/000080252 – volume: 5 start-page: 404 year: 2014 ident: ref_8 article-title: Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action publication-title: Adv. Nutr. doi: 10.3945/an.113.005603 – volume: 58 start-page: 1502 year: 2010 ident: ref_29 article-title: Chemical synthesis of 9 (Z)-octadecenamide and its hypolipidemic effect: A bioactive agent found in the essential oil of mountain celery seeds publication-title: J. Agr. Food Chem. doi: 10.1021/jf903573g – volume: 13 start-page: 249 year: 1997 ident: ref_13 article-title: Coronary heart disease in seven countries publication-title: Nutrition doi: 10.1016/S0899-9007(96)00410-8 – volume: 99 start-page: 191 year: 2006 ident: ref_7 article-title: Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses publication-title: Food Chem. doi: 10.1016/j.foodchem.2005.07.042 – volume: 5 start-page: 48 year: 2015 ident: ref_20 article-title: A contemporary introduction to essential oils: Chemistry, bioactivity and prospects for Australian agriculture publication-title: Agriculture doi: 10.3390/agriculture5010048 – volume: 91 start-page: 1855 year: 2011 ident: ref_2 article-title: Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice publication-title: J. Sci. Food Agr. doi: 10.1002/jsfa.4396 – ident: ref_26 doi: 10.3390/molecules22081391 – ident: ref_5 doi: 10.3390/ijms19071966 – volume: 69 start-page: 167 year: 2000 ident: ref_34 article-title: Antioxidant activity of selected essential oil components in two lipid model systems publication-title: Food Chem. doi: 10.1016/S0308-8146(99)00247-2 – volume: 14 start-page: 111 year: 2015 ident: ref_25 article-title: Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays publication-title: J. Funct. Foods doi: 10.1016/j.jff.2015.01.043 – volume: 44 start-page: 438 year: 2008 ident: ref_33 article-title: Antioxidant properties of essential oils from lemon, grapefruit, coriander, clove, and their mixtures publication-title: Appl. Biochem. Micro. doi: 10.1134/S0003683808040182 – ident: ref_12 doi: 10.3390/nu10020138 |
SSID | ssj0000913832 |
Score | 2.3849378 |
Snippet | Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 398 |
SubjectTerms | 2,2-diphenyl-1-picrylhydrazyl alanine transaminase animal models antioxidant activity antioxidant capacity antioxidants aspartate transaminase beta-pinene blood serum byproducts Citrus aurantiifolia diet essential oils fatty liver food processing gamma-terpinene gas chromatography-mass spectrometry hyperlipidemia hypolipidemic effect lime essential oil (LEO) lime juice limonene lipemic effect low density lipoprotein cholesterol obesity protective effect rats triacylglycerols volatile compounds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70goDwCFBkJEBUNjePED25labVCUA5Q1FtkOxMRKU0qZSvg1p_esZ1d7SIeF66OYzn22PN98fgbQp6BBjCg_PkgR4IiIUsVFzoFnG_Ez9rqcH3s44mYnxbvz8qztVRfPiYsygPHgTswzhjuONcNeiLnhHaSsbr2IjJCCRagEfq8NTIV9mDNkHrlMdIdX84OmmGoR-X_Smi14YOCVP_v8OWvYZJrfuf4Frk5AUZ6GDt6m9yA_g5J3rWwoC_opOrZ0ZOlqP4OufrQngN9OQvXKai5RGe0aJuhaw0WBimB89d79PN39Fkd7NGj0V8_Qiukn9pufEO_Dj46rgPqdwqfc2ncp4c-JPJHW2NLdIbe1SF036emr-n8p8_yELPMOhqlkO-S0-OjL7N5OuVZSB2yw0VqaqZsAaJkRhrLNOCiVkYXNXeZzZxUSOnKwstQOG4aDkY0DpC6MGdyndeW3yNb_dDDA0KlcTJDfl6WyhTKNVZYC9g8oLMEREIJebUc-cpNIuQ-F0ZXIRnx81Stz1NCnq9qX0TxjT_Ue-sncVXHS2aHAjSkajKk6l-GlJCnSxOocIn5cxPTw3A5VnmOm1yGvc_-UofzknFP-BNyP5rNqjscQTdCS50QuWFQG_3dfNK334LUt5BeLr94-D8-8BHZRrQXA-TkY7KFVgi7iKgW9klYPNcHTSF0 priority: 102 providerName: Directory of Open Access Journals |
Title | Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31500259 https://www.proquest.com/docview/2288009370 https://www.proquest.com/docview/2335131338 https://pubmed.ncbi.nlm.nih.gov/PMC6770194 https://doaj.org/article/acaa3c339f124cc69c711dd15446861a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBvAmPykiAqGhKHCexjYRQWVqtEC0HWNRb5DgTiJQm0GxFe-OnM-NkV10oiKvjWJZnxvONPf6GscdgACxouh-UGKAoiEItMxMCyhvxsymMfz62f5BNZ8m7w_RwjS2qjY4L2F8Y2lE9qdlxs336_ew1GvwrijgxZH9RdV3ZazpwMPoSu4w-SZGJ7o9A3-_JRmAoFvtKc1ESapHqIQv-jwFW_JOn8b8Ie_6eQnnOJ-1dY1dHMMl3BulfZ2vQ3mDB2xrm_CkfGT8bfrAg3L_Jfr6vj4A_m_inFtyeoKOa11XX1BYbPc3A0fYm__gD_VkDm3y3p6dJqKH8Q930L_nnjjLnGuC0i1A9pn6L71C65Gld4kh8gp7XIazf4rYt-fSMKkAMFWgdH2iSb7HZ3u6nyTQcazCEDiPHeWhLoYsEslRYZQthAA1eW5OU0kVF5JTGcC9NiKLCSVtJsFnlANdYOBubuCzkbbbedi3cZVxZpyKM3dNU20S7qsiKAnB4QEcKiJIC9nyx8rkbCcqpTkaTY6BCcsrPyylgT5a9vw3EHH_p94aEuOxDdNq-oTv-ko_WmVtnrXT4b4Vwx7nMOCVEWRJTUaYzYQP2aKECOZof3anYFrqTPo9j3AAjnH30jz5SpkLSYUDA7gxqs5yORECOsNMETK0o1Mp8V7-09VdPA54potJP7v3nQtxnVxDsDflx6gFbR0WDhwio5sWGP4jY8BbzC_efIak |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lime+%28Citrus+aurantifolia+%28Christm.%29+Swingle%29+Essential+Oils%3A+Volatile+Compounds%2C+Antioxidant+Capacity%2C+and+Hypolipidemic+Effect&rft.jtitle=Foods&rft.au=Lin%2C+Li-Yun&rft.au=Chuang%2C+Cheng-Hung&rft.au=Chen%2C+Hsin-Chun&rft.au=Yang%2C+Kai-Min&rft.date=2019-09-07&rft.issn=2304-8158&rft.eissn=2304-8158&rft.volume=8&rft.issue=9&rft.spage=398&rft_id=info:doi/10.3390%2Ffoods8090398&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_foods8090398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-8158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-8158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-8158&client=summon |