Structural stability and artificial buckling modes in topology optimization

This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein t...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 64; no. 4; pp. 1751 - 1763
Main Authors Dalklint, Anna, Wallin, Mathias, Tortorelli, Daniel A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2021
Springer Nature B.V
Springer Science + Business Media
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.
AbstractList Abstract This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.
This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.
Author Wallin, Mathias
Tortorelli, Daniel A.
Dalklint, Anna
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0000-0003-4619-5205
  surname: Dalklint
  fullname: Dalklint, Anna
  email: anna.dalklint@solid.lth.se
  organization: Division of Solid Mechanics, Lund University
– sequence: 2
  givenname: Mathias
  surname: Wallin
  fullname: Wallin, Mathias
  organization: Division of Solid Mechanics, Lund University
– sequence: 3
  givenname: Daniel A.
  surname: Tortorelli
  fullname: Tortorelli, Daniel A.
  organization: Center for Design and Optimization, Lawrence Livermore National Laboratory, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
BackLink https://www.osti.gov/biblio/1814523$$D View this record in Osti.gov
https://lup.lub.lu.se/record/dd94e13b-814e-4993-a67a-42f622e1fd58$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/dd94e13b-814e-4993-a67a-42f622e1fd58$$DView record from Swedish Publication Index
BookMark eNqNkkuLFDEUhYOM4EzrH3BV6Lo0SaVSlaUMvrDBhQruLkkq6cmYTsokxdD9641drYLg4CIkkHO---BcoYsQg0HoKcEvCMbDy4wx6ccWU9LiDhPaHh-gS8JJ3xI2jhe_38PXR-gq51uM8YiZuEQfPpW06LIk6ZtcpHLelUMjw9TIVJx12tUPtehv3oVds4-TyY0LTYlz9HF3aOJc3N4dZXExPEYPrfTZPDnfG_TlzevP1-_a7ce3769fbVvdM1HaUVFLhkFNUvCOU03laOmkicG8U1gQrFlv1CCklUoopQix2GI-8G6YWC9kt0Fy5eY7My8K5uT2Mh0gSgdzTEV6SCYbmfQN-AWygaryTp-azDBNghnSKRgJM8CE6EDyQQKjllNqiJ36sdbY_rOGX-Z61Jn9n7hnKy7m4iBrV4y-0TEEowuQ6uxpV0XPV9Gc4vfF5AK3cUmhrhJoPwjGGa_0DRpXlU4x52QsVNpptJKk80Aw_IwErJGAGgk4RQKO1Ur_sv4a615Td95EFYedSX-6usf1AwAbzYw
CitedBy_id crossref_primary_10_1016_j_cma_2023_116541
crossref_primary_10_1016_j_cma_2024_117204
crossref_primary_10_1016_j_advengsoft_2024_103596
crossref_primary_10_1016_j_cma_2024_117679
crossref_primary_10_1007_s00158_023_03517_9
crossref_primary_10_1007_s00158_023_03712_8
crossref_primary_10_1002_nme_7613
crossref_primary_10_1007_s00158_023_03674_x
crossref_primary_10_1016_j_cma_2024_117145
crossref_primary_10_1016_j_cma_2024_116751
crossref_primary_10_1007_s00158_023_03512_0
crossref_primary_10_1016_j_mechmachtheory_2023_105475
crossref_primary_10_1007_s00366_024_02102_y
crossref_primary_10_1007_s00158_024_03762_6
crossref_primary_10_1016_j_istruc_2024_107533
crossref_primary_10_1016_j_tws_2025_113216
crossref_primary_10_1007_s43503_024_00031_9
crossref_primary_10_1016_j_istruc_2023_105220
crossref_primary_10_1007_s00158_022_03361_3
crossref_primary_10_1016_j_cma_2023_116119
crossref_primary_10_1016_j_cma_2023_116437
crossref_primary_10_1016_j_cma_2024_117636
crossref_primary_10_1007_s00158_023_03616_7
Cites_doi 10.1016/j.ijsolstr.2018.12.007
10.1007/s00158-019-02253-3
10.1016/j.compstruc.2010.11.008
10.1016/j.compstruc.2017.07.023
10.1002/nme.5203
10.1007/BF01650949
10.1007/s00158-020-02557-9
10.1016/j.cma.2014.03.021
10.1007/s00158-005-0534-0
10.1016/j.cma.2020.112911
10.1016/0045-7949(80)90130-3
10.1061/(ASCE)0733-9399(1993)119:7(1504)
10.1007/BF01743533
10.1016/0020-7683(77)90043-9
10.1007/s00158-011-0644-9
10.1016/0263-8231(95)00010-B
10.1007/s00158-007-0101-y
10.1002/nme.1064
10.1002/nme.1620240207
10.2514/6.2016-0939
10.1007/s00158-018-2030-3
10.1007/s40430-016-0583-x
10.1002/nme.3072
10.1002/nme.1620100510
10.1016/j.cma.2017.11.004
10.1007/s00158-020-02556-w
10.1007/s00158-005-0524-2
10.1002/nme.6273
10.1007/s00158-007-0129-z
10.1007/s001580050130
10.1007/s00158-012-0832-2
10.1016/j.compstruc.2015.05.020
10.1016/j.cma.2010.02.005
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Institutioner vid LTH
Hållfasthetslära
Departments at LTH
Lunds universitet
Profile areas and other strong research environments
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Institutionen för byggvetenskaper
Lund University
Department of Construction Sciences
Strategiska forskningsområden (SFO)
Solid Mechanics
Strategic research areas (SRA)
eSSENCE: The e-Science Collaboration
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Strategiska forskningsområden (SFO)
– name: Institutionen för byggvetenskaper
– name: Department of Construction Sciences
– name: Strategic research areas (SRA)
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Lunds universitet
– name: Hållfasthetslära
– name: Faculty of Engineering, LTH
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Profile areas and other strong research environments
– name: Solid Mechanics
– name: eSSENCE: The e-Science Collaboration
– name: Institutioner vid LTH
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
OTOTI
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1007/s00158-021-03012-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
OSTI.GOV
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList


Engineering Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 1763
ExternalDocumentID oai_portal_research_lu_se_publications_dd94e13b_814e_4993_a67a_42f622e1fd58
oai_lup_lub_lu_se_dd94e13b_814e_4993_a67a_42f622e1fd58
1814523
10_1007_s00158_021_03012_z
GrantInformation_xml – fundername: Lawrence Livermore National Laboratory
  grantid: DE-AC52-07NA27344
  funderid: https://doi.org/10.13039/100006227
– fundername: Lund University
– fundername: Energimyndigheten
  grantid: 48344-1
  funderid: https://doi.org/10.13039/501100004527
– fundername: eSSENCE: The e-Science Collaboration
  grantid: 2020 6:1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AAFGU
AAPBV
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OTOTI
UNUBA
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c549t-8b2f177bda96362c2a8f2dc1e063b0910c45eb79afab9bbb11f0f067637d459a3
IEDL.DBID U2A
ISSN 1615-147X
IngestDate Thu Aug 21 06:55:39 EDT 2025
Thu Jul 03 05:22:01 EDT 2025
Thu May 18 22:31:25 EDT 2023
Fri Jul 25 11:05:04 EDT 2025
Tue Jul 01 01:31:46 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Fri Feb 21 02:47:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Topology optimization
Eigenvalue problem
Stability
Nonlinear elasticity
Artificial buckling modes
Energy transition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-8b2f177bda96362c2a8f2dc1e063b0910c45eb79afab9bbb11f0f067637d459a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0003-4619-5205
0000000346195205
OpenAccessLink https://link.springer.com/10.1007/s00158-021-03012-z
PQID 2579464699
PQPubID 2043658
PageCount 13
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_dd94e13b_814e_4993_a67a_42f622e1fd58
swepub_primary_oai_lup_lub_lu_se_dd94e13b_814e_4993_a67a_42f622e1fd58
osti_scitechconnect_1814523
proquest_journals_2579464699
crossref_citationtrail_10_1007_s00158_021_03012_z
crossref_primary_10_1007_s00158_021_03012_z
springer_journals_10_1007_s00158_021_03012_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: Germany
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Science + Business Media
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Science + Business Media
References BendsøeMPOptimal shape design as a material distribution problemStruct Optim19891419320210.1007/BF01650949
BruyneelMColsonBRemouchampsADiscussion on some convergence problems in buckling optimisationStruct Multidiscip Optim200835218118610.1007/s00158-007-0129-z
KemmlerRLipkaARammELarge deformations and stability in topology optimizationStruct Multidiscip Optim2005306459476218578910.1007/s00158-005-0534-0
NevesMRodriguesHGuedesJGeneralized topology design of structures with a buckling load criterionStruct Optim1995102717810.1007/BF01743533
Dalklint A, Wallin M, Tortorelli DA (2020) Eigenfrequency constrained topology optimization of finite strain hyperelastic structures. Struct Multidiscip Optim pp 1–18
ReitingerRRammEBuckling and imperfection sensitivity in the optimization of shell structuresThin-Walled Struct1995231-415917710.1016/0263-8231(95)00010-B
GaoXMaHTopology optimization of continuum structures under buckling constraintsComput Struct201515714215210.1016/j.compstruc.2015.05.020
BrendelBRammELinear and nonlinear stability analysis of cylindrical shellsComput Struct198012454955810.1016/0045-7949(80)90130-3
LazarovBSSigmundOFilters in topology optimization based on helmholtz-type differential equationsInt J Numer Methods Eng2011866765781281589310.1002/nme.3072
OlhoffNRasmussenSHOn single and bimodal optimum buckling loads of clamped columnsInt J Solids Struct197713760561410.1016/0020-7683(77)90043-9
SulemanASedaghatiRBenchmark case studies in optimization of geometrically nonlinear structuresStruct Multidiscip Optim200530427329610.1007/s00158-005-0524-2
MadahHAmirOConcurrent structural optimization of buckling-resistant trusses and their initial imperfectionsInt J Solids Struct201916224425810.1016/j.ijsolstr.2018.12.007
MaharajYJamesKAMetamaterial topology optimization of nonpneumatic tires with stress and buckling constraintsInt J Numer Methods Eng2020121714101439416117410.1002/nme.6273
LindgaardELundEA unified approach to nonlinear buckling optimization of composite structuresComput Struct2011893-435737010.1016/j.compstruc.2010.11.008
PedersenNLMaximization of eigenvalues using topology optimizationStruct Multidiscip Optim200020121110.1007/s001580050130
CrisfieldMANon-linear finite element analysis of solids and structures, vol 11993New YorkWiley10.1061/(ASCE)0733-9399(1993)119:7(1504)
Zhou M (2004) Topology optimization for shell structures with linear buckling responses, WCCM VI, Beijing China, pp 5–10
MadahHAmirOTruss optimization with buckling considerations using geometrically nonlinear beam modelingComput Struct201719223324710.1016/j.compstruc.2017.07.023
BendsøeMSigmundOTheory, methods and applications Topology optimization2003BerlinSpringer1059.74001
FerrariFSigmundORevisiting topology optimization with buckling constraintsStruct Multidiscip Optim201959514011415393840310.1007/s00158-019-02253-3
WriggersPNonlinear finite element methods2008New YorkSpringer Science & Business Media1153.74001
LindgaardELundENonlinear buckling optimization of composite structuresComput Methods Appl Mech Eng201019937-4023192330267210610.1016/j.cma.2010.02.005
SvanbergKThe method of moving asymptotes-a new method for structural optimizationInt J Numer Methods Engi198724235937387530710.1002/nme.1620240207
DunningPDOvtchinnikovEScottJKimHALevel-set topology optimization with many linear buckling constraints using an efficient and robust eigensolverInt J Numer Methods Eng20161071210291053354520610.1002/nme.5203
GravesenJEvgrafovANguyenDMOn the sensitivities of multiple eigenvaluesStruct Multidiscip Optim2011444583587284228410.1007/s00158-011-0644-9
GuestJKPrévostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variables and projection functionsInt J Numer Methods Eng2004612238254208121810.1002/nme.1064
WangFLazarovBSSigmundOJensenJSInterpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problemsComput Methods Appl Mech Eng2014276453472321234310.1016/j.cma.2014.03.021
DuJOlhoffNTopological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gapsStruct Multidiscip Optim200734291110233776810.1007/s00158-007-0101-y
ToriiAJDe FariaJRStructural optimization considering smallest magnitude eigenvalues: a smooth approximationJ Braz Soc Mech Sci Eng20173951745175410.1007/s40430-016-0583-x
KhotNVenkayyaVBerkeLOptimum structural design with stability constraintsInt J Numer Methods Eng19761051097111410.1002/nme.1620100510
Wallin M, Ivarsson N, Amir O, Tortorelli D (2020) Consistent boundary conditions for pde filter regularization in topology optimization. Struct Multidiscip Optim
Chin TW, Kennedy G (2016) Large-scale compliance-minimization and buckling topology optimization of the undeformed common research model wing. In: 57th AIAA/ASCE/AHS/ASC structures structural dynamics, and materials conference, p 0939
LindgaardEDahlJOn compliance and buckling objective functions in topology optimization of snap-through problemsStruct Multidiscip Optim2013473409421303890710.1007/s00158-012-0832-2
FerrariFSigmundOTowards solving large-scale topology optimization problems with buckling constraints at the cost of linear analysesComput Methods Appl Mech Eng2020363112911406794610.1016/j.cma.2020.112911
WallinMIvarssonNTortorelliDStiffness optimization of non-linear elastic structuresComput Methods Appl Mech Eng2018330292307375909710.1016/j.cma.2017.11.004
PedersenNLPedersenPBuckling load optimization for 2d continuum models, with alternative formulation for buckling load estimationStruct Multidiscip Optim201858521632172386015410.1007/s00158-018-2030-3
Y Maharaj (3012_CR23) 2020; 121
F Ferrari (3012_CR11) 2020; 363
H Madah (3012_CR21) 2017; 192
K Svanberg (3012_CR30) 1987; 24
E Lindgaard (3012_CR19) 2010; 199
M Neves (3012_CR24) 1995; 10
JK Guest (3012_CR14) 2004; 61
MP Bendsøe (3012_CR2) 1989; 1
E Lindgaard (3012_CR18) 2013; 47
E Lindgaard (3012_CR20) 2011; 89
B Brendel (3012_CR3) 1980; 12
A Suleman (3012_CR29) 2005; 30
J Du (3012_CR8) 2007; 34
R Kemmler (3012_CR15) 2005; 30
R Reitinger (3012_CR28) 1995; 23
M Bendsøe (3012_CR1) 2003
H Madah (3012_CR22) 2019; 162
N Olhoff (3012_CR25) 1977; 13
3012_CR33
F Wang (3012_CR34) 2014; 276
3012_CR36
AJ Torii (3012_CR31) 2017; 39
PD Dunning (3012_CR9) 2016; 107
F Ferrari (3012_CR10) 2019; 59
NL Pedersen (3012_CR26) 2000; 20
M Bruyneel (3012_CR4) 2008; 35
MA Crisfield (3012_CR6) 1993
3012_CR5
3012_CR7
J Gravesen (3012_CR13) 2011; 44
NL Pedersen (3012_CR27) 2018; 58
BS Lazarov (3012_CR17) 2011; 86
X Gao (3012_CR12) 2015; 157
N Khot (3012_CR16) 1976; 10
M Wallin (3012_CR32) 2018; 330
P Wriggers (3012_CR35) 2008
References_xml – reference: GaoXMaHTopology optimization of continuum structures under buckling constraintsComput Struct201515714215210.1016/j.compstruc.2015.05.020
– reference: BendsøeMPOptimal shape design as a material distribution problemStruct Optim19891419320210.1007/BF01650949
– reference: MaharajYJamesKAMetamaterial topology optimization of nonpneumatic tires with stress and buckling constraintsInt J Numer Methods Eng2020121714101439416117410.1002/nme.6273
– reference: WallinMIvarssonNTortorelliDStiffness optimization of non-linear elastic structuresComput Methods Appl Mech Eng2018330292307375909710.1016/j.cma.2017.11.004
– reference: SulemanASedaghatiRBenchmark case studies in optimization of geometrically nonlinear structuresStruct Multidiscip Optim200530427329610.1007/s00158-005-0524-2
– reference: BendsøeMSigmundOTheory, methods and applications Topology optimization2003BerlinSpringer1059.74001
– reference: GuestJKPrévostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variables and projection functionsInt J Numer Methods Eng2004612238254208121810.1002/nme.1064
– reference: FerrariFSigmundOTowards solving large-scale topology optimization problems with buckling constraints at the cost of linear analysesComput Methods Appl Mech Eng2020363112911406794610.1016/j.cma.2020.112911
– reference: LindgaardEDahlJOn compliance and buckling objective functions in topology optimization of snap-through problemsStruct Multidiscip Optim2013473409421303890710.1007/s00158-012-0832-2
– reference: LazarovBSSigmundOFilters in topology optimization based on helmholtz-type differential equationsInt J Numer Methods Eng2011866765781281589310.1002/nme.3072
– reference: CrisfieldMANon-linear finite element analysis of solids and structures, vol 11993New YorkWiley10.1061/(ASCE)0733-9399(1993)119:7(1504)
– reference: WangFLazarovBSSigmundOJensenJSInterpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problemsComput Methods Appl Mech Eng2014276453472321234310.1016/j.cma.2014.03.021
– reference: BrendelBRammELinear and nonlinear stability analysis of cylindrical shellsComput Struct198012454955810.1016/0045-7949(80)90130-3
– reference: NevesMRodriguesHGuedesJGeneralized topology design of structures with a buckling load criterionStruct Optim1995102717810.1007/BF01743533
– reference: DunningPDOvtchinnikovEScottJKimHALevel-set topology optimization with many linear buckling constraints using an efficient and robust eigensolverInt J Numer Methods Eng20161071210291053354520610.1002/nme.5203
– reference: ToriiAJDe FariaJRStructural optimization considering smallest magnitude eigenvalues: a smooth approximationJ Braz Soc Mech Sci Eng20173951745175410.1007/s40430-016-0583-x
– reference: Wallin M, Ivarsson N, Amir O, Tortorelli D (2020) Consistent boundary conditions for pde filter regularization in topology optimization. Struct Multidiscip Optim
– reference: WriggersPNonlinear finite element methods2008New YorkSpringer Science & Business Media1153.74001
– reference: PedersenNLPedersenPBuckling load optimization for 2d continuum models, with alternative formulation for buckling load estimationStruct Multidiscip Optim201858521632172386015410.1007/s00158-018-2030-3
– reference: LindgaardELundENonlinear buckling optimization of composite structuresComput Methods Appl Mech Eng201019937-4023192330267210610.1016/j.cma.2010.02.005
– reference: LindgaardELundEA unified approach to nonlinear buckling optimization of composite structuresComput Struct2011893-435737010.1016/j.compstruc.2010.11.008
– reference: PedersenNLMaximization of eigenvalues using topology optimizationStruct Multidiscip Optim200020121110.1007/s001580050130
– reference: ReitingerRRammEBuckling and imperfection sensitivity in the optimization of shell structuresThin-Walled Struct1995231-415917710.1016/0263-8231(95)00010-B
– reference: KhotNVenkayyaVBerkeLOptimum structural design with stability constraintsInt J Numer Methods Eng19761051097111410.1002/nme.1620100510
– reference: BruyneelMColsonBRemouchampsADiscussion on some convergence problems in buckling optimisationStruct Multidiscip Optim200835218118610.1007/s00158-007-0129-z
– reference: FerrariFSigmundORevisiting topology optimization with buckling constraintsStruct Multidiscip Optim201959514011415393840310.1007/s00158-019-02253-3
– reference: KemmlerRLipkaARammELarge deformations and stability in topology optimizationStruct Multidiscip Optim2005306459476218578910.1007/s00158-005-0534-0
– reference: DuJOlhoffNTopological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gapsStruct Multidiscip Optim200734291110233776810.1007/s00158-007-0101-y
– reference: GravesenJEvgrafovANguyenDMOn the sensitivities of multiple eigenvaluesStruct Multidiscip Optim2011444583587284228410.1007/s00158-011-0644-9
– reference: SvanbergKThe method of moving asymptotes-a new method for structural optimizationInt J Numer Methods Engi198724235937387530710.1002/nme.1620240207
– reference: Chin TW, Kennedy G (2016) Large-scale compliance-minimization and buckling topology optimization of the undeformed common research model wing. In: 57th AIAA/ASCE/AHS/ASC structures structural dynamics, and materials conference, p 0939
– reference: Dalklint A, Wallin M, Tortorelli DA (2020) Eigenfrequency constrained topology optimization of finite strain hyperelastic structures. Struct Multidiscip Optim pp 1–18
– reference: OlhoffNRasmussenSHOn single and bimodal optimum buckling loads of clamped columnsInt J Solids Struct197713760561410.1016/0020-7683(77)90043-9
– reference: MadahHAmirOTruss optimization with buckling considerations using geometrically nonlinear beam modelingComput Struct201719223324710.1016/j.compstruc.2017.07.023
– reference: MadahHAmirOConcurrent structural optimization of buckling-resistant trusses and their initial imperfectionsInt J Solids Struct201916224425810.1016/j.ijsolstr.2018.12.007
– reference: Zhou M (2004) Topology optimization for shell structures with linear buckling responses, WCCM VI, Beijing China, pp 5–10
– volume: 162
  start-page: 244
  year: 2019
  ident: 3012_CR22
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2018.12.007
– volume: 59
  start-page: 1401
  issue: 5
  year: 2019
  ident: 3012_CR10
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02253-3
– volume: 89
  start-page: 357
  issue: 3-4
  year: 2011
  ident: 3012_CR20
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2010.11.008
– volume: 192
  start-page: 233
  year: 2017
  ident: 3012_CR21
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.07.023
– volume: 107
  start-page: 1029
  issue: 12
  year: 2016
  ident: 3012_CR9
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5203
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 3012_CR2
  publication-title: Struct Optim
  doi: 10.1007/BF01650949
– ident: 3012_CR7
  doi: 10.1007/s00158-020-02557-9
– volume: 276
  start-page: 453
  year: 2014
  ident: 3012_CR34
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.03.021
– volume: 30
  start-page: 459
  issue: 6
  year: 2005
  ident: 3012_CR15
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-005-0534-0
– volume: 363
  start-page: 112911
  year: 2020
  ident: 3012_CR11
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.112911
– volume: 12
  start-page: 549
  issue: 4
  year: 1980
  ident: 3012_CR3
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(80)90130-3
– volume-title: Non-linear finite element analysis of solids and structures, vol 1
  year: 1993
  ident: 3012_CR6
  doi: 10.1061/(ASCE)0733-9399(1993)119:7(1504)
– volume: 10
  start-page: 71
  issue: 2
  year: 1995
  ident: 3012_CR24
  publication-title: Struct Optim
  doi: 10.1007/BF01743533
– volume: 13
  start-page: 605
  issue: 7
  year: 1977
  ident: 3012_CR25
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(77)90043-9
– volume-title: Nonlinear finite element methods
  year: 2008
  ident: 3012_CR35
– volume-title: Theory, methods and applications Topology optimization
  year: 2003
  ident: 3012_CR1
– volume: 44
  start-page: 583
  issue: 4
  year: 2011
  ident: 3012_CR13
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0644-9
– volume: 23
  start-page: 159
  issue: 1-4
  year: 1995
  ident: 3012_CR28
  publication-title: Thin-Walled Struct
  doi: 10.1016/0263-8231(95)00010-B
– volume: 34
  start-page: 91
  issue: 2
  year: 2007
  ident: 3012_CR8
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-007-0101-y
– volume: 61
  start-page: 238
  issue: 2
  year: 2004
  ident: 3012_CR14
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1064
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 3012_CR30
  publication-title: Int J Numer Methods Engi
  doi: 10.1002/nme.1620240207
– ident: 3012_CR5
  doi: 10.2514/6.2016-0939
– volume: 58
  start-page: 2163
  issue: 5
  year: 2018
  ident: 3012_CR27
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-2030-3
– volume: 39
  start-page: 1745
  issue: 5
  year: 2017
  ident: 3012_CR31
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-016-0583-x
– volume: 86
  start-page: 765
  issue: 6
  year: 2011
  ident: 3012_CR17
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.3072
– volume: 10
  start-page: 1097
  issue: 5
  year: 1976
  ident: 3012_CR16
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620100510
– volume: 330
  start-page: 292
  year: 2018
  ident: 3012_CR32
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.11.004
– ident: 3012_CR33
  doi: 10.1007/s00158-020-02556-w
– volume: 30
  start-page: 273
  issue: 4
  year: 2005
  ident: 3012_CR29
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-005-0524-2
– volume: 121
  start-page: 1410
  issue: 7
  year: 2020
  ident: 3012_CR23
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6273
– volume: 35
  start-page: 181
  issue: 2
  year: 2008
  ident: 3012_CR4
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-007-0129-z
– volume: 20
  start-page: 2
  issue: 1
  year: 2000
  ident: 3012_CR26
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580050130
– volume: 47
  start-page: 409
  issue: 3
  year: 2013
  ident: 3012_CR18
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0832-2
– volume: 157
  start-page: 142
  year: 2015
  ident: 3012_CR12
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2015.05.020
– volume: 199
  start-page: 2319
  issue: 37-40
  year: 2010
  ident: 3012_CR19
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.02.005
– ident: 3012_CR36
SSID ssj0008049
Score 2.4578843
Snippet This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained...
Abstract This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability...
SourceID swepub
osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1751
SubjectTerms Applied Mechanics
Artificial buckling modes
Asymptotes
Buckling
Computational Mathematics and Numerical Analysis
Constraints
Eigenvalue problem
Eigenvalues
Energy transition
Engineering
Engineering and Technology
Engineering Design
Maskinteknik
Mechanical Engineering
Nonlinear elasticity
Nonlinear response
Optimization
Research Paper
Stability
Stability analysis
Structural response
Structural stability
Teknik
Teknisk mekanik
Theoretical and Applied Mechanics
Topology optimization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BeoFDVaAI04D2wA2sZtev9Qm1VaIIRISglaJeVvsUSMUJSnpofj0z9sZtEIo4-GRn7cxrv9md_QbgXUDUyT2mqcHXmKAgAEGXklnqpBPolxWiDjqN_GVWTq_yT_NiHhfcVrGschsT20DtFpbWyE_RtOq8xGSu_rj8nVLXKNpdjS00HsMBhmCJydfB-Xj29Vsfi2UHgAnWpDyv5vHYTHt4juCCTKlEgdICkW52pqbBAl1sB3b2O6V_sYq2M9HkCA4jhGRnnc6fwSPfPIenD4gFX8Dn7y0tLFFqMIR_bQHsHdONY2QpHWkEM7Sti48z6oazYj8btu46JtyxBQaSX_GE5jFcTcaXF9M0tk1ILSZ761QaEXhVGafRuUphhZZBOIsaKTND8MDmhTdVrYM2tTGG8zAKOGmVWeXyotbZSxg0i8a_AhZE8F5Il6HG0NlH2nJXaO-MdXxU25AA30pM2cgpTq0tblTPhtxKWaGUVStltUngff-bZceosffpE1KEQjxApLaWqn_sWiEuyTGFTmC41Y-KvrdS95aSwIetzu5v73vXuNNr_13EvX1zu8TL4KVWXjlX5x6lofADvMJ0MVO6rLTKRSiF8Dy4QiZw_Y9xunRKRQ6nH3G85YPF2f8a_PX-v3wCTwSZdFtuOIQBWpt_g7Bpbd5G3_gDJScV3A
  priority: 102
  providerName: ProQuest
Title Structural stability and artificial buckling modes in topology optimization
URI https://link.springer.com/article/10.1007/s00158-021-03012-z
https://www.proquest.com/docview/2579464699
https://www.osti.gov/biblio/1814523
https://lup.lub.lu.se/record/dd94e13b-814e-4993-a67a-42f622e1fd58
oai:portal.research.lu.se:publications/dd94e13b-814e-4993-a67a-42f622e1fd58
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED40ztIORfpC1aQGh2ytAIt6UaNt2AkSxCjaGnC7EHyiAVLZgN0h-fW5kyg1KYKgGQgNlCjqjkd-J959BDj2iDoTh26qdxU6KAhA0KREGlthOdpliaiDspEvFsXpMjtb5auQFLbtot27Lclmpu6T3Wh5FzGFFBCM5_HNHuzn5LvjKF7ycT__ihb0EpSJk6xchVSZh9u4txwN1mhW96Bmvzv6D5Nos_rMD-BlgI1s3Or5FTxz9Wt4cYdM8A2cf2uoYIlGgyHka4Jer5mqLaPR0RJFME1buXg7oxNwtuyyZrv2lIRrtsbJ43fIynwLy_ns-_Q0DkclxAYdvF0sNPdJWWqr0KAKbrgSnluDWihSTZDAZLnTZaW80pXWOkn8yONCVaSlzfJKpe9gUK9r9x6Y5945LmyKWkIDHymT2Fw5q41NRpXxESSdxKQJPOJ0nMWV7BmQGylLlLJspCxvIvjUP7NpWTQevfuQFCERAxCRraGIH7OTiEUydJsjOOr0I4O9bSVOPFVWoKtfRfC509nf6sfeNWv12veL-Lav_mywaCxy66S1VeZQGhI74CS6iKlURalkxn3BuUu8zUUEPx9op3WhZOBt-hXa29z5IftfjX942jcdwnNOQ7wJOTyCAY4-9xGh004PYU_MT4awP55PJgu6nvw4n-F1Mlt8-Yq102I6bKzpFpEZGBA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcAAOVXmppi3sAU5gEa_X9vqAEIKGlLS90EoRl2WfAqk4QUmF0h_Fb2TGr7YIRVx68MnOejOv_ca78w3A84CoM_GYpgZfYoKCAARdSqaxk46jXxaIOqga-eg4H5-KT9NsugG_u1oYOlbZxcQ6ULuZpW_kr9G0SpFjMle-nf-MqWsU7a52LTQas5j41S9M2RZvDj6gfl9wPto_eT-O264CscVcaBlLw0NSFMZptL2cW65l4M7ihPPU0OppReZNUeqgTWmMSZIwDBjT87RwIit1iuPegtsiTUvyKDn62Ed-2cBtAlFxIoppW6RTl-oROJExHYigJITHF9cWwsEMHfoayO33Zf_iMK3XvdEWbLaAlb1rLOw-bPjqAdy7QmP4ECafaxJaIvBgCDbr47YrpivHyC4bigpmaBMZH2fUe2fBvlds2fRnWLEZhq0fbT3oIzi9EXE-hkE1q_w2sMCD91y6FO0DQ8tQ28Rl2jtjXTIsbYgg6SSmbMtgTo00zlTPvVxLWaGUVS1ldRHBy_4384a_Y-3TO6QIheiDKHQtnTWyS4UoSGDCHsFupx_VevpCXdplBK86nV3eXveu_Uav_byI6fvsfI6XwUstvHKuFB6loXACXmFymiqdF1oJHnLOfRJcJiP48o9xmuRNtYxR39rx5lc-Bf_X4E_W_-VncGd8cnSoDg-OJztwl5N51wcdd2GAluf3ELAtzdPaSxh8vWm3_AM3QVHU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BIiE4IJ5qaCk-cIOoa-d9REtXhUKFBJVWXEZ-CqQ2u9KGQ_vrmXGyYYuqqhxyiuM4Mx77m3jmG4A3gVCn9OSmBt-Qg0IAhEyqzlJXO0V2WRHq4GzkLyfl0Wn-aVEstrL4Y7T75kiyz2lglqa2O1i5cDAmvvFWX6ccXsCQXqWXd-EeeSrxoHZWzsa1uO4BMMOaVObVYkibub6PK1vTZEkmdgV2jiel_7CKxp1o_hgeDRBSvO91_gTu-PYpPNwiFnwGx98iLSxTagiCfzEA9kLo1gmeKT1phDB8rEvNBVfDWYtfrej6igkXYkkLyfmQofkcTueH32dH6VA2IbXk7HVpbVSQVWWcJuMqlVW6DspZ0kiZGYYHNi-8qRodtGmMMVKGaaBNq8wqlxeNzl7ApF22fgdEUMF7VbuMNEbGPtVWukJ7Z6yT08aGBORGYmgHTnEubXGGIxtylDKSlDFKGS8TeDs-s-oZNW5svcuKQMIDTGprOfrHdki4JCcXOoG9jX5wsL010iLU5CW5_U0C7zY6-3v7pncd9nodx8Xc22e_V3QZunDt0bkm9yQNpAF4JHcxQ11WGnMVSqW8DK6oE_hxTT-9O4UDh9PPob_V1s_ZW3X-8v--6TXc__phjp8_nhzvwgPFsz1GIu7BhCaif0WIqjP70Wj-ABEFGLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+stability+and+artificial+buckling+modes+in+topology+optimization&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Dalklint%2C+Anna&rft.au=Wallin%2C+Mathias&rft.au=Tortorelli%2C+Daniel+A.&rft.date=2021-10-01&rft.issn=1615-147X&rft.volume=64&rft.issue=4&rft.spage=1751&rft_id=info:doi/10.1007%2Fs00158-021-03012-z&rft.externalDocID=oai_lup_lub_lu_se_dd94e13b_814e_4993_a67a_42f622e1fd58
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon