Structural stability and artificial buckling modes in topology optimization
This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein t...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 64; no. 4; pp. 1751 - 1763 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2021
Springer Nature B.V Springer Science + Business Media |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples. |
---|---|
AbstractList | Abstract
This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples. This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples. |
Author | Wallin, Mathias Tortorelli, Daniel A. Dalklint, Anna |
Author_xml | – sequence: 1 givenname: Anna orcidid: 0000-0003-4619-5205 surname: Dalklint fullname: Dalklint, Anna email: anna.dalklint@solid.lth.se organization: Division of Solid Mechanics, Lund University – sequence: 2 givenname: Mathias surname: Wallin fullname: Wallin, Mathias organization: Division of Solid Mechanics, Lund University – sequence: 3 givenname: Daniel A. surname: Tortorelli fullname: Tortorelli, Daniel A. organization: Center for Design and Optimization, Lawrence Livermore National Laboratory, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign |
BackLink | https://www.osti.gov/biblio/1814523$$D View this record in Osti.gov https://lup.lub.lu.se/record/dd94e13b-814e-4993-a67a-42f622e1fd58$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/dd94e13b-814e-4993-a67a-42f622e1fd58$$DView record from Swedish Publication Index |
BookMark | eNqNkkuLFDEUhYOM4EzrH3BV6Lo0SaVSlaUMvrDBhQruLkkq6cmYTsokxdD9641drYLg4CIkkHO---BcoYsQg0HoKcEvCMbDy4wx6ccWU9LiDhPaHh-gS8JJ3xI2jhe_38PXR-gq51uM8YiZuEQfPpW06LIk6ZtcpHLelUMjw9TIVJx12tUPtehv3oVds4-TyY0LTYlz9HF3aOJc3N4dZXExPEYPrfTZPDnfG_TlzevP1-_a7ce3769fbVvdM1HaUVFLhkFNUvCOU03laOmkicG8U1gQrFlv1CCklUoopQix2GI-8G6YWC9kt0Fy5eY7My8K5uT2Mh0gSgdzTEV6SCYbmfQN-AWygaryTp-azDBNghnSKRgJM8CE6EDyQQKjllNqiJ36sdbY_rOGX-Z61Jn9n7hnKy7m4iBrV4y-0TEEowuQ6uxpV0XPV9Gc4vfF5AK3cUmhrhJoPwjGGa_0DRpXlU4x52QsVNpptJKk80Aw_IwErJGAGgk4RQKO1Ur_sv4a615Td95EFYedSX-6usf1AwAbzYw |
CitedBy_id | crossref_primary_10_1016_j_cma_2023_116541 crossref_primary_10_1016_j_cma_2024_117204 crossref_primary_10_1016_j_advengsoft_2024_103596 crossref_primary_10_1016_j_cma_2024_117679 crossref_primary_10_1007_s00158_023_03517_9 crossref_primary_10_1007_s00158_023_03712_8 crossref_primary_10_1002_nme_7613 crossref_primary_10_1007_s00158_023_03674_x crossref_primary_10_1016_j_cma_2024_117145 crossref_primary_10_1016_j_cma_2024_116751 crossref_primary_10_1007_s00158_023_03512_0 crossref_primary_10_1016_j_mechmachtheory_2023_105475 crossref_primary_10_1007_s00366_024_02102_y crossref_primary_10_1007_s00158_024_03762_6 crossref_primary_10_1016_j_istruc_2024_107533 crossref_primary_10_1016_j_tws_2025_113216 crossref_primary_10_1007_s43503_024_00031_9 crossref_primary_10_1016_j_istruc_2023_105220 crossref_primary_10_1007_s00158_022_03361_3 crossref_primary_10_1016_j_cma_2023_116119 crossref_primary_10_1016_j_cma_2023_116437 crossref_primary_10_1016_j_cma_2024_117636 crossref_primary_10_1007_s00158_023_03616_7 |
Cites_doi | 10.1016/j.ijsolstr.2018.12.007 10.1007/s00158-019-02253-3 10.1016/j.compstruc.2010.11.008 10.1016/j.compstruc.2017.07.023 10.1002/nme.5203 10.1007/BF01650949 10.1007/s00158-020-02557-9 10.1016/j.cma.2014.03.021 10.1007/s00158-005-0534-0 10.1016/j.cma.2020.112911 10.1016/0045-7949(80)90130-3 10.1061/(ASCE)0733-9399(1993)119:7(1504) 10.1007/BF01743533 10.1016/0020-7683(77)90043-9 10.1007/s00158-011-0644-9 10.1016/0263-8231(95)00010-B 10.1007/s00158-007-0101-y 10.1002/nme.1064 10.1002/nme.1620240207 10.2514/6.2016-0939 10.1007/s00158-018-2030-3 10.1007/s40430-016-0583-x 10.1002/nme.3072 10.1002/nme.1620100510 10.1016/j.cma.2017.11.004 10.1007/s00158-020-02556-w 10.1007/s00158-005-0524-2 10.1002/nme.6273 10.1007/s00158-007-0129-z 10.1007/s001580050130 10.1007/s00158-012-0832-2 10.1016/j.compstruc.2015.05.020 10.1016/j.cma.2010.02.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Institutioner vid LTH Hållfasthetslära Departments at LTH Lunds universitet Profile areas and other strong research environments Faculty of Engineering, LTH Lunds Tekniska Högskola Institutionen för byggvetenskaper Lund University Department of Construction Sciences Strategiska forskningsområden (SFO) Solid Mechanics Strategic research areas (SRA) eSSENCE: The e-Science Collaboration Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Strategiska forskningsområden (SFO) – name: Institutionen för byggvetenskaper – name: Department of Construction Sciences – name: Strategic research areas (SRA) – name: Lunds Tekniska Högskola – name: Departments at LTH – name: Lunds universitet – name: Hållfasthetslära – name: Faculty of Engineering, LTH – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Profile areas and other strong research environments – name: Solid Mechanics – name: eSSENCE: The e-Science Collaboration – name: Institutioner vid LTH |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS OTOTI ADTPV AGCHP AOWAS D8T D95 ZZAVC |
DOI | 10.1007/s00158-021-03012-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection OSTI.GOV SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
EndPage | 1763 |
ExternalDocumentID | oai_portal_research_lu_se_publications_dd94e13b_814e_4993_a67a_42f622e1fd58 oai_lup_lub_lu_se_dd94e13b_814e_4993_a67a_42f622e1fd58 1814523 10_1007_s00158_021_03012_z |
GrantInformation_xml | – fundername: Lawrence Livermore National Laboratory grantid: DE-AC52-07NA27344 funderid: https://doi.org/10.13039/100006227 – fundername: Lund University – fundername: Energimyndigheten grantid: 48344-1 funderid: https://doi.org/10.13039/501100004527 – fundername: eSSENCE: The e-Science Collaboration grantid: 2020 6:1 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAFGU AAPBV ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OTOTI UNUBA ADTPV AGCHP AOWAS D8T D95 ZZAVC |
ID | FETCH-LOGICAL-c549t-8b2f177bda96362c2a8f2dc1e063b0910c45eb79afab9bbb11f0f067637d459a3 |
IEDL.DBID | U2A |
ISSN | 1615-147X |
IngestDate | Thu Aug 21 06:55:39 EDT 2025 Thu Jul 03 05:22:01 EDT 2025 Thu May 18 22:31:25 EDT 2023 Fri Jul 25 11:05:04 EDT 2025 Tue Jul 01 01:31:46 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Fri Feb 21 02:47:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Topology optimization Eigenvalue problem Stability Nonlinear elasticity Artificial buckling modes Energy transition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-8b2f177bda96362c2a8f2dc1e063b0910c45eb79afab9bbb11f0f067637d459a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
ORCID | 0000-0003-4619-5205 0000000346195205 |
OpenAccessLink | https://link.springer.com/10.1007/s00158-021-03012-z |
PQID | 2579464699 |
PQPubID | 2043658 |
PageCount | 13 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_dd94e13b_814e_4993_a67a_42f622e1fd58 swepub_primary_oai_lup_lub_lu_se_dd94e13b_814e_4993_a67a_42f622e1fd58 osti_scitechconnect_1814523 proquest_journals_2579464699 crossref_citationtrail_10_1007_s00158_021_03012_z crossref_primary_10_1007_s00158_021_03012_z springer_journals_10_1007_s00158_021_03012_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: Germany |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Science + Business Media |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Science + Business Media |
References | BendsøeMPOptimal shape design as a material distribution problemStruct Optim19891419320210.1007/BF01650949 BruyneelMColsonBRemouchampsADiscussion on some convergence problems in buckling optimisationStruct Multidiscip Optim200835218118610.1007/s00158-007-0129-z KemmlerRLipkaARammELarge deformations and stability in topology optimizationStruct Multidiscip Optim2005306459476218578910.1007/s00158-005-0534-0 NevesMRodriguesHGuedesJGeneralized topology design of structures with a buckling load criterionStruct Optim1995102717810.1007/BF01743533 Dalklint A, Wallin M, Tortorelli DA (2020) Eigenfrequency constrained topology optimization of finite strain hyperelastic structures. Struct Multidiscip Optim pp 1–18 ReitingerRRammEBuckling and imperfection sensitivity in the optimization of shell structuresThin-Walled Struct1995231-415917710.1016/0263-8231(95)00010-B GaoXMaHTopology optimization of continuum structures under buckling constraintsComput Struct201515714215210.1016/j.compstruc.2015.05.020 BrendelBRammELinear and nonlinear stability analysis of cylindrical shellsComput Struct198012454955810.1016/0045-7949(80)90130-3 LazarovBSSigmundOFilters in topology optimization based on helmholtz-type differential equationsInt J Numer Methods Eng2011866765781281589310.1002/nme.3072 OlhoffNRasmussenSHOn single and bimodal optimum buckling loads of clamped columnsInt J Solids Struct197713760561410.1016/0020-7683(77)90043-9 SulemanASedaghatiRBenchmark case studies in optimization of geometrically nonlinear structuresStruct Multidiscip Optim200530427329610.1007/s00158-005-0524-2 MadahHAmirOConcurrent structural optimization of buckling-resistant trusses and their initial imperfectionsInt J Solids Struct201916224425810.1016/j.ijsolstr.2018.12.007 MaharajYJamesKAMetamaterial topology optimization of nonpneumatic tires with stress and buckling constraintsInt J Numer Methods Eng2020121714101439416117410.1002/nme.6273 LindgaardELundEA unified approach to nonlinear buckling optimization of composite structuresComput Struct2011893-435737010.1016/j.compstruc.2010.11.008 PedersenNLMaximization of eigenvalues using topology optimizationStruct Multidiscip Optim200020121110.1007/s001580050130 CrisfieldMANon-linear finite element analysis of solids and structures, vol 11993New YorkWiley10.1061/(ASCE)0733-9399(1993)119:7(1504) Zhou M (2004) Topology optimization for shell structures with linear buckling responses, WCCM VI, Beijing China, pp 5–10 MadahHAmirOTruss optimization with buckling considerations using geometrically nonlinear beam modelingComput Struct201719223324710.1016/j.compstruc.2017.07.023 BendsøeMSigmundOTheory, methods and applications Topology optimization2003BerlinSpringer1059.74001 FerrariFSigmundORevisiting topology optimization with buckling constraintsStruct Multidiscip Optim201959514011415393840310.1007/s00158-019-02253-3 WriggersPNonlinear finite element methods2008New YorkSpringer Science & Business Media1153.74001 LindgaardELundENonlinear buckling optimization of composite structuresComput Methods Appl Mech Eng201019937-4023192330267210610.1016/j.cma.2010.02.005 SvanbergKThe method of moving asymptotes-a new method for structural optimizationInt J Numer Methods Engi198724235937387530710.1002/nme.1620240207 DunningPDOvtchinnikovEScottJKimHALevel-set topology optimization with many linear buckling constraints using an efficient and robust eigensolverInt J Numer Methods Eng20161071210291053354520610.1002/nme.5203 GravesenJEvgrafovANguyenDMOn the sensitivities of multiple eigenvaluesStruct Multidiscip Optim2011444583587284228410.1007/s00158-011-0644-9 GuestJKPrévostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variables and projection functionsInt J Numer Methods Eng2004612238254208121810.1002/nme.1064 WangFLazarovBSSigmundOJensenJSInterpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problemsComput Methods Appl Mech Eng2014276453472321234310.1016/j.cma.2014.03.021 DuJOlhoffNTopological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gapsStruct Multidiscip Optim200734291110233776810.1007/s00158-007-0101-y ToriiAJDe FariaJRStructural optimization considering smallest magnitude eigenvalues: a smooth approximationJ Braz Soc Mech Sci Eng20173951745175410.1007/s40430-016-0583-x KhotNVenkayyaVBerkeLOptimum structural design with stability constraintsInt J Numer Methods Eng19761051097111410.1002/nme.1620100510 Wallin M, Ivarsson N, Amir O, Tortorelli D (2020) Consistent boundary conditions for pde filter regularization in topology optimization. Struct Multidiscip Optim Chin TW, Kennedy G (2016) Large-scale compliance-minimization and buckling topology optimization of the undeformed common research model wing. In: 57th AIAA/ASCE/AHS/ASC structures structural dynamics, and materials conference, p 0939 LindgaardEDahlJOn compliance and buckling objective functions in topology optimization of snap-through problemsStruct Multidiscip Optim2013473409421303890710.1007/s00158-012-0832-2 FerrariFSigmundOTowards solving large-scale topology optimization problems with buckling constraints at the cost of linear analysesComput Methods Appl Mech Eng2020363112911406794610.1016/j.cma.2020.112911 WallinMIvarssonNTortorelliDStiffness optimization of non-linear elastic structuresComput Methods Appl Mech Eng2018330292307375909710.1016/j.cma.2017.11.004 PedersenNLPedersenPBuckling load optimization for 2d continuum models, with alternative formulation for buckling load estimationStruct Multidiscip Optim201858521632172386015410.1007/s00158-018-2030-3 Y Maharaj (3012_CR23) 2020; 121 F Ferrari (3012_CR11) 2020; 363 H Madah (3012_CR21) 2017; 192 K Svanberg (3012_CR30) 1987; 24 E Lindgaard (3012_CR19) 2010; 199 M Neves (3012_CR24) 1995; 10 JK Guest (3012_CR14) 2004; 61 MP Bendsøe (3012_CR2) 1989; 1 E Lindgaard (3012_CR18) 2013; 47 E Lindgaard (3012_CR20) 2011; 89 B Brendel (3012_CR3) 1980; 12 A Suleman (3012_CR29) 2005; 30 J Du (3012_CR8) 2007; 34 R Kemmler (3012_CR15) 2005; 30 R Reitinger (3012_CR28) 1995; 23 M Bendsøe (3012_CR1) 2003 H Madah (3012_CR22) 2019; 162 N Olhoff (3012_CR25) 1977; 13 3012_CR33 F Wang (3012_CR34) 2014; 276 3012_CR36 AJ Torii (3012_CR31) 2017; 39 PD Dunning (3012_CR9) 2016; 107 F Ferrari (3012_CR10) 2019; 59 NL Pedersen (3012_CR26) 2000; 20 M Bruyneel (3012_CR4) 2008; 35 MA Crisfield (3012_CR6) 1993 3012_CR5 3012_CR7 J Gravesen (3012_CR13) 2011; 44 NL Pedersen (3012_CR27) 2018; 58 BS Lazarov (3012_CR17) 2011; 86 X Gao (3012_CR12) 2015; 157 N Khot (3012_CR16) 1976; 10 M Wallin (3012_CR32) 2018; 330 P Wriggers (3012_CR35) 2008 |
References_xml | – reference: GaoXMaHTopology optimization of continuum structures under buckling constraintsComput Struct201515714215210.1016/j.compstruc.2015.05.020 – reference: BendsøeMPOptimal shape design as a material distribution problemStruct Optim19891419320210.1007/BF01650949 – reference: MaharajYJamesKAMetamaterial topology optimization of nonpneumatic tires with stress and buckling constraintsInt J Numer Methods Eng2020121714101439416117410.1002/nme.6273 – reference: WallinMIvarssonNTortorelliDStiffness optimization of non-linear elastic structuresComput Methods Appl Mech Eng2018330292307375909710.1016/j.cma.2017.11.004 – reference: SulemanASedaghatiRBenchmark case studies in optimization of geometrically nonlinear structuresStruct Multidiscip Optim200530427329610.1007/s00158-005-0524-2 – reference: BendsøeMSigmundOTheory, methods and applications Topology optimization2003BerlinSpringer1059.74001 – reference: GuestJKPrévostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variables and projection functionsInt J Numer Methods Eng2004612238254208121810.1002/nme.1064 – reference: FerrariFSigmundOTowards solving large-scale topology optimization problems with buckling constraints at the cost of linear analysesComput Methods Appl Mech Eng2020363112911406794610.1016/j.cma.2020.112911 – reference: LindgaardEDahlJOn compliance and buckling objective functions in topology optimization of snap-through problemsStruct Multidiscip Optim2013473409421303890710.1007/s00158-012-0832-2 – reference: LazarovBSSigmundOFilters in topology optimization based on helmholtz-type differential equationsInt J Numer Methods Eng2011866765781281589310.1002/nme.3072 – reference: CrisfieldMANon-linear finite element analysis of solids and structures, vol 11993New YorkWiley10.1061/(ASCE)0733-9399(1993)119:7(1504) – reference: WangFLazarovBSSigmundOJensenJSInterpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problemsComput Methods Appl Mech Eng2014276453472321234310.1016/j.cma.2014.03.021 – reference: BrendelBRammELinear and nonlinear stability analysis of cylindrical shellsComput Struct198012454955810.1016/0045-7949(80)90130-3 – reference: NevesMRodriguesHGuedesJGeneralized topology design of structures with a buckling load criterionStruct Optim1995102717810.1007/BF01743533 – reference: DunningPDOvtchinnikovEScottJKimHALevel-set topology optimization with many linear buckling constraints using an efficient and robust eigensolverInt J Numer Methods Eng20161071210291053354520610.1002/nme.5203 – reference: ToriiAJDe FariaJRStructural optimization considering smallest magnitude eigenvalues: a smooth approximationJ Braz Soc Mech Sci Eng20173951745175410.1007/s40430-016-0583-x – reference: Wallin M, Ivarsson N, Amir O, Tortorelli D (2020) Consistent boundary conditions for pde filter regularization in topology optimization. Struct Multidiscip Optim – reference: WriggersPNonlinear finite element methods2008New YorkSpringer Science & Business Media1153.74001 – reference: PedersenNLPedersenPBuckling load optimization for 2d continuum models, with alternative formulation for buckling load estimationStruct Multidiscip Optim201858521632172386015410.1007/s00158-018-2030-3 – reference: LindgaardELundENonlinear buckling optimization of composite structuresComput Methods Appl Mech Eng201019937-4023192330267210610.1016/j.cma.2010.02.005 – reference: LindgaardELundEA unified approach to nonlinear buckling optimization of composite structuresComput Struct2011893-435737010.1016/j.compstruc.2010.11.008 – reference: PedersenNLMaximization of eigenvalues using topology optimizationStruct Multidiscip Optim200020121110.1007/s001580050130 – reference: ReitingerRRammEBuckling and imperfection sensitivity in the optimization of shell structuresThin-Walled Struct1995231-415917710.1016/0263-8231(95)00010-B – reference: KhotNVenkayyaVBerkeLOptimum structural design with stability constraintsInt J Numer Methods Eng19761051097111410.1002/nme.1620100510 – reference: BruyneelMColsonBRemouchampsADiscussion on some convergence problems in buckling optimisationStruct Multidiscip Optim200835218118610.1007/s00158-007-0129-z – reference: FerrariFSigmundORevisiting topology optimization with buckling constraintsStruct Multidiscip Optim201959514011415393840310.1007/s00158-019-02253-3 – reference: KemmlerRLipkaARammELarge deformations and stability in topology optimizationStruct Multidiscip Optim2005306459476218578910.1007/s00158-005-0534-0 – reference: DuJOlhoffNTopological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gapsStruct Multidiscip Optim200734291110233776810.1007/s00158-007-0101-y – reference: GravesenJEvgrafovANguyenDMOn the sensitivities of multiple eigenvaluesStruct Multidiscip Optim2011444583587284228410.1007/s00158-011-0644-9 – reference: SvanbergKThe method of moving asymptotes-a new method for structural optimizationInt J Numer Methods Engi198724235937387530710.1002/nme.1620240207 – reference: Chin TW, Kennedy G (2016) Large-scale compliance-minimization and buckling topology optimization of the undeformed common research model wing. In: 57th AIAA/ASCE/AHS/ASC structures structural dynamics, and materials conference, p 0939 – reference: Dalklint A, Wallin M, Tortorelli DA (2020) Eigenfrequency constrained topology optimization of finite strain hyperelastic structures. Struct Multidiscip Optim pp 1–18 – reference: OlhoffNRasmussenSHOn single and bimodal optimum buckling loads of clamped columnsInt J Solids Struct197713760561410.1016/0020-7683(77)90043-9 – reference: MadahHAmirOTruss optimization with buckling considerations using geometrically nonlinear beam modelingComput Struct201719223324710.1016/j.compstruc.2017.07.023 – reference: MadahHAmirOConcurrent structural optimization of buckling-resistant trusses and their initial imperfectionsInt J Solids Struct201916224425810.1016/j.ijsolstr.2018.12.007 – reference: Zhou M (2004) Topology optimization for shell structures with linear buckling responses, WCCM VI, Beijing China, pp 5–10 – volume: 162 start-page: 244 year: 2019 ident: 3012_CR22 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2018.12.007 – volume: 59 start-page: 1401 issue: 5 year: 2019 ident: 3012_CR10 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02253-3 – volume: 89 start-page: 357 issue: 3-4 year: 2011 ident: 3012_CR20 publication-title: Comput Struct doi: 10.1016/j.compstruc.2010.11.008 – volume: 192 start-page: 233 year: 2017 ident: 3012_CR21 publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.07.023 – volume: 107 start-page: 1029 issue: 12 year: 2016 ident: 3012_CR9 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5203 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 3012_CR2 publication-title: Struct Optim doi: 10.1007/BF01650949 – ident: 3012_CR7 doi: 10.1007/s00158-020-02557-9 – volume: 276 start-page: 453 year: 2014 ident: 3012_CR34 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.03.021 – volume: 30 start-page: 459 issue: 6 year: 2005 ident: 3012_CR15 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-005-0534-0 – volume: 363 start-page: 112911 year: 2020 ident: 3012_CR11 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.112911 – volume: 12 start-page: 549 issue: 4 year: 1980 ident: 3012_CR3 publication-title: Comput Struct doi: 10.1016/0045-7949(80)90130-3 – volume-title: Non-linear finite element analysis of solids and structures, vol 1 year: 1993 ident: 3012_CR6 doi: 10.1061/(ASCE)0733-9399(1993)119:7(1504) – volume: 10 start-page: 71 issue: 2 year: 1995 ident: 3012_CR24 publication-title: Struct Optim doi: 10.1007/BF01743533 – volume: 13 start-page: 605 issue: 7 year: 1977 ident: 3012_CR25 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(77)90043-9 – volume-title: Nonlinear finite element methods year: 2008 ident: 3012_CR35 – volume-title: Theory, methods and applications Topology optimization year: 2003 ident: 3012_CR1 – volume: 44 start-page: 583 issue: 4 year: 2011 ident: 3012_CR13 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0644-9 – volume: 23 start-page: 159 issue: 1-4 year: 1995 ident: 3012_CR28 publication-title: Thin-Walled Struct doi: 10.1016/0263-8231(95)00010-B – volume: 34 start-page: 91 issue: 2 year: 2007 ident: 3012_CR8 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0101-y – volume: 61 start-page: 238 issue: 2 year: 2004 ident: 3012_CR14 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1064 – volume: 24 start-page: 359 issue: 2 year: 1987 ident: 3012_CR30 publication-title: Int J Numer Methods Engi doi: 10.1002/nme.1620240207 – ident: 3012_CR5 doi: 10.2514/6.2016-0939 – volume: 58 start-page: 2163 issue: 5 year: 2018 ident: 3012_CR27 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-2030-3 – volume: 39 start-page: 1745 issue: 5 year: 2017 ident: 3012_CR31 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-016-0583-x – volume: 86 start-page: 765 issue: 6 year: 2011 ident: 3012_CR17 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.3072 – volume: 10 start-page: 1097 issue: 5 year: 1976 ident: 3012_CR16 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620100510 – volume: 330 start-page: 292 year: 2018 ident: 3012_CR32 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.11.004 – ident: 3012_CR33 doi: 10.1007/s00158-020-02556-w – volume: 30 start-page: 273 issue: 4 year: 2005 ident: 3012_CR29 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-005-0524-2 – volume: 121 start-page: 1410 issue: 7 year: 2020 ident: 3012_CR23 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.6273 – volume: 35 start-page: 181 issue: 2 year: 2008 ident: 3012_CR4 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0129-z – volume: 20 start-page: 2 issue: 1 year: 2000 ident: 3012_CR26 publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050130 – volume: 47 start-page: 409 issue: 3 year: 2013 ident: 3012_CR18 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-012-0832-2 – volume: 157 start-page: 142 year: 2015 ident: 3012_CR12 publication-title: Comput Struct doi: 10.1016/j.compstruc.2015.05.020 – volume: 199 start-page: 2319 issue: 37-40 year: 2010 ident: 3012_CR19 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2010.02.005 – ident: 3012_CR36 |
SSID | ssj0008049 |
Score | 2.4578843 |
Snippet | This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained... Abstract This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability... |
SourceID | swepub osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1751 |
SubjectTerms | Applied Mechanics Artificial buckling modes Asymptotes Buckling Computational Mathematics and Numerical Analysis Constraints Eigenvalue problem Eigenvalues Energy transition Engineering Engineering and Technology Engineering Design Maskinteknik Mechanical Engineering Nonlinear elasticity Nonlinear response Optimization Research Paper Stability Stability analysis Structural response Structural stability Teknik Teknisk mekanik Theoretical and Applied Mechanics Topology optimization |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BeoFDVaAI04D2wA2sZtev9Qm1VaIIRISglaJeVvsUSMUJSnpofj0z9sZtEIo4-GRn7cxrv9md_QbgXUDUyT2mqcHXmKAgAEGXklnqpBPolxWiDjqN_GVWTq_yT_NiHhfcVrGschsT20DtFpbWyE_RtOq8xGSu_rj8nVLXKNpdjS00HsMBhmCJydfB-Xj29Vsfi2UHgAnWpDyv5vHYTHt4juCCTKlEgdICkW52pqbBAl1sB3b2O6V_sYq2M9HkCA4jhGRnnc6fwSPfPIenD4gFX8Dn7y0tLFFqMIR_bQHsHdONY2QpHWkEM7Sti48z6oazYj8btu46JtyxBQaSX_GE5jFcTcaXF9M0tk1ILSZ761QaEXhVGafRuUphhZZBOIsaKTND8MDmhTdVrYM2tTGG8zAKOGmVWeXyotbZSxg0i8a_AhZE8F5Il6HG0NlH2nJXaO-MdXxU25AA30pM2cgpTq0tblTPhtxKWaGUVStltUngff-bZceosffpE1KEQjxApLaWqn_sWiEuyTGFTmC41Y-KvrdS95aSwIetzu5v73vXuNNr_13EvX1zu8TL4KVWXjlX5x6lofADvMJ0MVO6rLTKRSiF8Dy4QiZw_Y9xunRKRQ6nH3G85YPF2f8a_PX-v3wCTwSZdFtuOIQBWpt_g7Bpbd5G3_gDJScV3A priority: 102 providerName: ProQuest |
Title | Structural stability and artificial buckling modes in topology optimization |
URI | https://link.springer.com/article/10.1007/s00158-021-03012-z https://www.proquest.com/docview/2579464699 https://www.osti.gov/biblio/1814523 https://lup.lub.lu.se/record/dd94e13b-814e-4993-a67a-42f622e1fd58 oai:portal.research.lu.se:publications/dd94e13b-814e-4993-a67a-42f622e1fd58 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED40ztIORfpC1aQGh2ytAIt6UaNt2AkSxCjaGnC7EHyiAVLZgN0h-fW5kyg1KYKgGQgNlCjqjkd-J959BDj2iDoTh26qdxU6KAhA0KREGlthOdpliaiDspEvFsXpMjtb5auQFLbtot27Lclmpu6T3Wh5FzGFFBCM5_HNHuzn5LvjKF7ycT__ihb0EpSJk6xchVSZh9u4txwN1mhW96Bmvzv6D5Nos_rMD-BlgI1s3Or5FTxz9Wt4cYdM8A2cf2uoYIlGgyHka4Jer5mqLaPR0RJFME1buXg7oxNwtuyyZrv2lIRrtsbJ43fIynwLy_ns-_Q0DkclxAYdvF0sNPdJWWqr0KAKbrgSnluDWihSTZDAZLnTZaW80pXWOkn8yONCVaSlzfJKpe9gUK9r9x6Y5945LmyKWkIDHymT2Fw5q41NRpXxESSdxKQJPOJ0nMWV7BmQGylLlLJspCxvIvjUP7NpWTQevfuQFCERAxCRraGIH7OTiEUydJsjOOr0I4O9bSVOPFVWoKtfRfC509nf6sfeNWv12veL-Lav_mywaCxy66S1VeZQGhI74CS6iKlURalkxn3BuUu8zUUEPx9op3WhZOBt-hXa29z5IftfjX942jcdwnNOQ7wJOTyCAY4-9xGh004PYU_MT4awP55PJgu6nvw4n-F1Mlt8-Yq102I6bKzpFpEZGBA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcAAOVXmppi3sAU5gEa_X9vqAEIKGlLS90EoRl2WfAqk4QUmF0h_Fb2TGr7YIRVx68MnOejOv_ca78w3A84CoM_GYpgZfYoKCAARdSqaxk46jXxaIOqga-eg4H5-KT9NsugG_u1oYOlbZxcQ6ULuZpW_kr9G0SpFjMle-nf-MqWsU7a52LTQas5j41S9M2RZvDj6gfl9wPto_eT-O264CscVcaBlLw0NSFMZptL2cW65l4M7ihPPU0OppReZNUeqgTWmMSZIwDBjT87RwIit1iuPegtsiTUvyKDn62Ed-2cBtAlFxIoppW6RTl-oROJExHYigJITHF9cWwsEMHfoayO33Zf_iMK3XvdEWbLaAlb1rLOw-bPjqAdy7QmP4ECafaxJaIvBgCDbr47YrpivHyC4bigpmaBMZH2fUe2fBvlds2fRnWLEZhq0fbT3oIzi9EXE-hkE1q_w2sMCD91y6FO0DQ8tQ28Rl2jtjXTIsbYgg6SSmbMtgTo00zlTPvVxLWaGUVS1ldRHBy_4384a_Y-3TO6QIheiDKHQtnTWyS4UoSGDCHsFupx_VevpCXdplBK86nV3eXveu_Uav_byI6fvsfI6XwUstvHKuFB6loXACXmFymiqdF1oJHnLOfRJcJiP48o9xmuRNtYxR39rx5lc-Bf_X4E_W_-VncGd8cnSoDg-OJztwl5N51wcdd2GAluf3ELAtzdPaSxh8vWm3_AM3QVHU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BIiE4IJ5qaCk-cIOoa-d9REtXhUKFBJVWXEZ-CqQ2u9KGQ_vrmXGyYYuqqhxyiuM4Mx77m3jmG4A3gVCn9OSmBt-Qg0IAhEyqzlJXO0V2WRHq4GzkLyfl0Wn-aVEstrL4Y7T75kiyz2lglqa2O1i5cDAmvvFWX6ccXsCQXqWXd-EeeSrxoHZWzsa1uO4BMMOaVObVYkibub6PK1vTZEkmdgV2jiel_7CKxp1o_hgeDRBSvO91_gTu-PYpPNwiFnwGx98iLSxTagiCfzEA9kLo1gmeKT1phDB8rEvNBVfDWYtfrej6igkXYkkLyfmQofkcTueH32dH6VA2IbXk7HVpbVSQVWWcJuMqlVW6DspZ0kiZGYYHNi-8qRodtGmMMVKGaaBNq8wqlxeNzl7ApF22fgdEUMF7VbuMNEbGPtVWukJ7Z6yT08aGBORGYmgHTnEubXGGIxtylDKSlDFKGS8TeDs-s-oZNW5svcuKQMIDTGprOfrHdki4JCcXOoG9jX5wsL010iLU5CW5_U0C7zY6-3v7pncd9nodx8Xc22e_V3QZunDt0bkm9yQNpAF4JHcxQ11WGnMVSqW8DK6oE_hxTT-9O4UDh9PPob_V1s_ZW3X-8v--6TXc__phjp8_nhzvwgPFsz1GIu7BhCaif0WIqjP70Wj-ABEFGLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+stability+and+artificial+buckling+modes+in+topology+optimization&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Dalklint%2C+Anna&rft.au=Wallin%2C+Mathias&rft.au=Tortorelli%2C+Daniel+A.&rft.date=2021-10-01&rft.issn=1615-147X&rft.volume=64&rft.issue=4&rft.spage=1751&rft_id=info:doi/10.1007%2Fs00158-021-03012-z&rft.externalDocID=oai_lup_lub_lu_se_dd94e13b_814e_4993_a67a_42f622e1fd58 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |